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Abstract

Long-term learning of language, mathematics, and motor skills likely requires plastic changes in the cortex, but
behavior often requires faster changes, sometimes based even on single errors. Here, we show evidence of one mechanism
by which the brain can rapidly develop new motor output, seemingly without altering the functional connectivity between
or within cortical areas. We recorded simultaneously from hundreds of neurons in the premotor (PMd) and primary motor
(M1) cortices, and computed models relating these neural populations throughout adaptation to reaching movement
perturbations. We found a signature of learning in the “null subspace” of PMd with respect to M 1. Earlier experiments have
shown that null subspace activity allows the motor cortex to alter preparatory activity without directly influencing M1. In
our experiments, the null subspace planning activity evolved with the adaptation, yet the “potent” mapping that captures
information sent to M1 was preserved. Our results illustrate a population-level mechanism within the motor cortices to
adjust the output from one brain area to its downstream structures that could be exploited throughout the brain for rapid, on-
line behavioral adaptation.

Introduction executed by the motor cortices'®. Behavioral adaptation
can thus be achieved by adapting this association between
sensory input and the motor plan. Dorsal premotor cortex
(PMd) is ideally situated to perform the re-association
required for short-term learning. PMd is intimately
involved in movement planning®, has diverse inputs, and
shares strong connectivity with the primary motor cortex
(M1)*2, On the other hand, M1 is the main cortical output
to the spinal cord with a role primarily in motor
execution®®. Despite the behavioral observations during
BCI learning described above and the apparent association
between the neural covariance structure and synaptic
connectivity, we cannot discount the possibility that fast
connectivity changes between PMd and M1 might underlie
the adapted behavior. However, an alternative possibility
is that short-term motor adaptation is driven by changes in
planning-related computations within PMd that are
subsequently sent through a stable functional mapping to
M1, without any changes in neural covariance and perhaps
even synaptic connectivity. At present, such a mechanism
has not been described.

A fundamental question in neuroscience is how the
coordinated activity of interconnected neurons gives rise
to behavior, and how these neurons adapt their output
rapidly and flexibly during learning to adapt behavior.
There is considerable evidence that learning extended over
days to weeks is associated with persistent synaptic
changes in the cortex!=. Yet, behavior can also be adapted
much more rapidly: motor errors can be corrected on a
trial-by-trial basis®, and sensory associations can be
learned even following a single exposure®. Furthermore, in
the motor system there appear to be constraints on the
types of motor learning that can occur rapidly. In a brain-
computer interface experiment, monkeys had difficulty
learning to control a computer cursor when a novel control
decoder required that they alter the natural covariation
among the recorded neurons®. There is evidence that such
covariance structure relates to synaptic connectivity”®,
which may not be readily modified on short time scales
(i.e., seconds to minutes)>>°. Together, these observations
suggest that changes in motor cortical structural
connectivity may not be the primary mechanism governing
changes in neural activity during short-term behavioral
adaptation.

Recent work studying population activity during
motor planning provides a possible explanation. Using
dimensionality reduction methods, the activity of
hundreds of motor cortical neurons can be represented in a
reduced-dimensional “manifold” that reflects the
covariance across the neuronal population'*®, When

To achieve skilled movements, sensory input must be
combined with the internal cortical computations needed
to achieve the motor action and transformed into a plan

1


https://doi.org/10.1101/138743
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/138743; this version posted June 8, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

viewed in this way, planning activity in the motor cortices
has shown that this neural manifold can be separated into
subspaces that are “output-potent” or “output-null” with
respect to downstream activity’s. The potent subspace
captures activity that maps functionally onto downstream
signals, for example EMG. In contrast, the null subspace
captures activity that can be modulated without directly
affecting the downstream targets'’. It appears that PMd
planning-related activity remains largely within the null
space, seemingly converging toward an “attractor” state
that sets the initial conditions necessary to initiate a
particular movement®81° Proximity to this attractor state
is correlated with both reaction time and movement
kinematics?®?Y, In our experiment, we applied this
framework to study PMd and M1 activity during short-
term motor learning. Our results illustrate a novel
mechanism within PMd by which the brain rapidly adapts
behavior by exploiting the output-null subspace to develop
altered planning activity. This mechanism could be
thought of as the equivalent of modifying the attractor state
to produce the desired action??. Ultimately, the adapted
initial conditions for that action would be carried to M1 for
execution via a fixed output-potent mapping.

Possible mechanisms underlying adaptive neural activity
changes in PMd and M1

In our experiment, we recorded simultaneously from
electrode arrays implanted in both M1 and PMd as
macagque monkeys learned to make accurate reaching
movements that were perturbed either by “curl field” (CF)
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forces applied to the hand®2°, or by a rotation of the
visual feedback (VR)??. We developed an analytical
approach based on functional connectivity to understand
adaptation-related changes in the activity of M1 and PMd
and distinguish the role of the null and potent subspaces
within PMd throughout this adaptation process. We
trained computational cortico-cortical models (Figure 1) to
predict the spiking of single M1 and PMd neurons based
on the activity of their neighbors, both local (same
recording array) and distant (array in different brain area).
Using these models, we described statistically the
functional connectivity governing the interactions of these
cortical areas. We then tested these models throughout
motor adaptation to explore three fundamental questions:
1) does the connectivity within M1 and PMd change
during adaptation? 2) does the connectivity between the
PMd output-potent activity and M1 change? 3) can
evolving output-null planning activity in PMd explain
behavioral adaptation? Any model that fails to predict
throughout adaptation suggests that the particular modeled
connectivity has changed. Within this framework, we can
make four specific hypotheses that could explain the
modulation of M1 firing rates during adaptation (Figure 1).
Note that these four possibilities are not mutually
exclusive.

#1) The functional connectivity within the local population
of neurons can change, preventing the corresponding
model from extrapolating throughout learning
(Hypothesis #1 in Figure 1). Intuitively, this means the

Figure 1| Possible mechanisms of motor cortical activity changes
underlying behavioral adaptation. Assuming a simplified
hierarchical model where M1 responds to inputs from PMd, we
consider four models describing the functional connectivity within
M1 (blue), within PMd (orange), between the output-potent activity
of PMd and the M1 neurons (dark blue), or the output-null activity
of PMd and M1 (green). Our experiment studies the generalization
of such models during adaptation. Each inset plot shows the time-
course of changes in the behavior (gray line) and the predicted
change in modeled connectivity (colored lines). We then identified
four hypotheses that could explain the change in firing rates of M1:
1) the local functional connectivity could change, causing all four
models to change as behavior adapts; 2) learning could arise from
changes in planning-related computations in PMd that are sent to M1.
Here, the PMd outputs should predict changes in M1 (dark blue); 3)
the mapping between PMd and M1 could change, which would not
impact the within-area models (blue and orange) but would prevent
the PMd to M1 models from generalizing; 4) learning could occur
independently of M1 and PMd, which would not require a change in
any of the models describing this circuit.
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same presynaptic neural spiking causes a different
output in the postsynaptic cell.

#2) A change in motor planning within the null subspace
allows PMd to change its potent output to M1, which
is ultimately sent through an unchanged mapping
captured by the potent space. Here, the potent activity
should continue to predict the changes in M1 spiking,
but the null activity would be unable to (Hypothesis
#2).

#3) A change in the mapping between PMd and M1 will
not impact the ability to predict local neurons within
either PMd or M1, but will prevent both potent and
null PMd activity from predicting M1 (Hypothesis
#3).

#4) Lastly, we consider the case that adaptation occurs
upstream of PMd, and that the observed activity
changes in M1 and PMd are solely in response to
altered input. In this case, all models should predict
well throughout adaptation (Hypothesis #4).

In the following analyses, we used these cortico-
cortical models to explore each of the hypotheses
describing short-term adaptation to CF and VR
perturbations. We first show that functional connectivity
between neurons within each area were preserved
throughout adaptation to the CF and VR perturbations. We
then present evidence that planning activity within the null
subspace of PMd plays a direct and unique role in enabling
rapid adaptation to the curl field, but not the VR. These
results suggest that the CF-related adaptation corresponds
to changes in output-null planning activity within PMd, as
described by Hypothesis #3 above, while VR adaptation
would be mediated by inputs from other brain areas
(Hypothesis #4).

RESULTS

Curl field adaptation involves widespread, complex
changes in firing rate across the motor cortices

We performed experiments to study the functional
connectivity relating distinct motor and premotor cortical
populations during motor learning, and whether output-
potent and output-null activity in premotor cortex enables
adapted motor planning. We trained two rhesus macaque
monkeys to perform an instructed-delay center-out
reaching task (Figure 2a) and implanted 96-channel

recording arrays in M1 and PMd (Figure 2b). Each
experimental session consisted of three behavioral epochs,
beginning with reaches with no perturbation (Baseline)
before the monkeys were exposed to the CF in the Force
epoch, or the Rotation epoch of the VR experiments. The
CF altered movement dynamics and required the monkeys
to adapt to a new mapping between muscle activity and
movement direction?®2° in order to make straight reaches.
The VR preserved the natural movement dynamics, but
offset the visual cursor feedback by a static 30 deg rotation
about the center of the screen. We fi rst consider the CF
experiments. Within each session, the monkeys exhibited
large errors upon exposure to the CF, which were
gradually reduced until behavior stabilized (Figures 2c,d).
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Figure 2 | Curl field task. a) Monkeys performed a standard center-
out task with a variable instructed delay period following cue
presentation. b) We recorded from populations of neurons in M1 and
PMd using implanted electrode arrays (right; CS: central sulcus, PCD:
pre-central dimple, AS: arcuate sulcus). c) Position traces for the first
reach to each target (8cm distance) from two sessions with a clockwise
CF (top row) and five sessions with a counter-clockwise CF (bottom
row). Sessions from both monkeys are included. d) Error in the takeoff
angle for all sessions (light gray lines), with the median across
sessions shown in black. Gray traces were smoothed with a 4-trial
moving average to reduce noise while preserving the time course.
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Further evidence of adaptation was revealed by behavioral study, we explored several competing hypotheses,
after-effects (mirror image errors) that occurred upon described above, to explain the underlying cause of these
return to normal reaching during the Washout epoch diverse adaptation-related changes in single neuron firing

(Figure 2d). During Baseline reaching, M1 and PMd within M1 and PMd.
neurons exhibited diverse firing rate patterns, as observed
in prior studies®®; a small number of examples are shown
in Figures S1 and S2b. At the onset of Force, the firing rate
patterns of most neurons changed throughout adaptation
along with the movements (Figure S1, S2a,b). Similar
changes in firing rate have been previously described in
the motor cortex during CF adaptation®#?>28, With this

populations

Models to study adaptation-related changes in the
functional connectivity within or between cortical

We designed an analysis to test the above hypotheses
using Linear-Nonlinear Poisson Generalized Linear

Models (GLMs) to predict the spiking of individual
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Figure 3| Predicting neural spiking with GLMs a) We trained GLMSs using movement kinematics as well as components of population activity
within an area (M1-M1, blue, and PMd-PMd, orange) to predict the spiking of a left-out single neuron (see Methods). b) Histogram of
dimensionality estimates for M1 (top) and PMd (bottom) manifolds across all sessions from both monkeys. PMd activity was consistently higher-
dimensional than M1. ¢) We trained GLMs using data from the end of Force after behavior had stabilized and tested them for generalization
throughout the initial phase of adaptation, beginning at the first CF trial (Early) and tested once behavior plateaued (Late). The left histograms
show the distribution of rpR? for all cells (pooled across nine sessions) with significant GLM fits (Figure S5; see Methods) based on a cross-
validation procedure in the training data from the end of Force. d) Spiking for representative neurons (black) and model predictions (colors)
during three Early ((highest behavioral error) and Late (lowest error) adaptation trials. €) Histograms of rpR? values for predictions in the Early
and Late blocks. We compared Early (hollow bars; mean: dashed line) and Late (filled bars; mean: solid line) Force trials. M1-M1 and PMd-
PMd had similar distributions during Early and Late. f) Time course of model performance changes. Predictions were made for individual trials,
and then smoothed with a 30-trial window (see Methods). Plotted data indicate the mean across all neurons. Trial-to-trial behavioral error
processed with the same methods is overlaid in gray and scaled vertically for comparison (gray scale bar on left). The inset replicates our

hypothesis prediction from Figure 1. g) Percent error in model performance during the Early and Late adaptation trials as in Panels d and e. No
effects were significant (two-sample t-test).
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neurons based on the activity of the remaining neurons
(Figure 3a; see Methods)3!32, Once trained, these models
can be used to predict neural spiking during behavioral
adaptation even on single trials. We tested whether these
models could generalize throughout the Force epoch while
behavior changed. We assessed model performance using
a relative pseudo-R? (rpR?) metric®, which quantified the
improvement in performance due to the neural covariates
above that of the reach kinematic covariates alone (Figure
S5a; Methods). Including kinematic covariates helped to
account for the linear shared variability related to the
executed movement, while leaving the unique
contributions of individual neurons (see Discussion and
Methods). We separated the adaptation epochs (Force of
Rotation) into two sets of trials: training trials taken from
the end of the epoch when the behavioral adaptation had
stabilized, and testing trials taken from the beginning of
adaptation, during rapidly changing behavior. We asked
whether our models predicted neural activity throughout
adaptation, i.e. whether performance was as accurate for
the testing trials as for the training trials (Figure S5d).
Failure to generalize indicated that the functional
connectivity was altered.

We used the low-dimensional latent activity in PMd
and M1 obtained by principal component analysis
(PCA)*15 as inputs to the models. This approach
implicitly assumes that the neural population covariance
matrix (i.e., the neural manifold) is unchanged throughout
each experimental session. To confirm this, we compared
the covariance between each unit before, during, and after
learning (see Methods) and observed no change in
covariance throughout the entire experiment (Figure S2;
for a single session: Pearson’s correlation with Baseline
values r > 0.85 for M1 and r > 0.93 for PMd). Across all
sessions, the differences in covariance strongly resembled
those obtained from random subsamples of Baseline data
for which the covariance structure should be unchanged
(Figure S3a). These results show that although neurons in
M1 and PMd change their activity to compensate for the
curl field, the underlying population covariance remains
unchanged.

In order to determine an appropriate number of
principal components to use as inputs, we estimated the
dimensionality of the manifold that captured the neural
population activity (see Methods). In brief, the
dimensionality was defined as the number of principal

components whose explained variance exceeded a
threshold determined by the variance of noise (defined to
be variability across trials)**. The PMd manifold
consistently contained roughly twice the dimensionality as
the manifold of M1 (Figure 3b, see Methods), a difference
that was robust to the number of recorded neurons (Figure
S4d). Thus, for M1 and PMd we used the first eight and
sixteen components, respectively, though our results were
qualitatively unchanged within a reasonable range of
values. Note that the higher dimensionality of PMd
necessarily leads to the existence of potent and null
subspaces in PMd activity with respect to the M1 latent
activity, as hypothesized above.

Curl field adaptation is not associated with changes in
functional connectivity within M1 or PMd

First, we used GLMs to assess whether curl field
adaptation was associated with functional connectivity
changes within local neural populations (Hypothesis #1
above). To study the functional connectivity within the M1
and PMd populations, we trained two models: M1-M1
predicted single M1 neurons from the M1 population
activity and PMd-PMd predicted PMd neurons from the
PMd population. To quantify the model accuracy, we
calculated rpR? for each GLM in the “Early” and “Late”
blocks of our testing trials taken from the beginning of the
Force epoch. We defined the “model error” to be the
change in rpR2 normalized by its cross-validated
performance (see Methods). We tested whether
predictions in the Early block were significantly worse
than the Late block, an indication that the models failed to
generalize. We set a stringent significance threshold of p =
0.01 for all statistical comparisons. Note that if adaptation
affects the accuracy of the models, the highest model error
is expected to be in the Early block since it is the furthest
removed in time from the training trials. We found that
both within-area models (M1-M1, PMd-PMd) generalized
well, predicting the adaptation-related changes in single-
cell spiking nearly equally well in both blocks (Figure 3e,f;
Figure S6 shows individual monkeys; Figure S7a,b). As a
qualitative test of the relation between the behavioral and
neural changes during adaptation, we smoothed the rpR?
of single-trial GLM predictions and compared their time
course to that of the changing behavioral error (Figure 3f;
Figure S6 shows individual monkeys). Neither model
changed significantly during adaptation (Figure 3g). Based
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generalization of the GLMs during learning and the

unchanging covariance structure (Figures S2, S3), learning
is unlikely to arise from changes in the connectivity within
M1 or PMd (Figure 1).

Output-potent activity in PMd consistently predicts M1
neurons across curl field adaptation

We next adapted the models to test whether curl field
adaptation corresponded to a change in the output-potent
mapping between PMd and M1 (Hypothesis #2 above), or
in the output-null computations performed by the PMd
population and that seem to capture movement
preparation'®t’ (Hypothesis #3). The analysis of activity in
the null and potent subspaces described above provides an
elegant framework to separate putative outputs to M1 from
the null space putatively comprising the planning
computations within PMd (as proposed in Figure 1). We
computed the null and potent activity of PMd, defined as
the projections of the PMd latent activity into the
respective subspaces (see Methods), and used this activity
as the inputs for two additional GLMs: Null-M1 and Pot-
M1 (Figure 4b). Importantly, we computed the null and
potent subspaces during Baseline, to avoid any possible
bias resulting from adaptation-related changes in neural
activity during the Force epoch. If the mapping between

Early
Force

Late

F
oree test).

PMd and M1 changes (Hypothesis #3), Pot-M1 will fail to
predict M1 spiking during adaptation. Alternatively, if
there is a change in the output-null computations reflecting
an altered motor plan (Hypothesis #2), then Pot-M1, but
not Null-M1, predicts M1 spiking.

Both models had similar accuracy when evaluated
within the end-of-Force training trials using ten-fold cross-
validation (Figure S5e; see Methods). During learning,
however, the time-courses of the prediction accuracy from
the potent and null activity were quite different from each
other. Pot-M1 made accurate predictions in Early Force as
well as Late Force (Figure 4d, blue) despite the concurrent
behavioral changes. However, predictions of M1 spiking
from the PMd null space were significantly worse in the
Early block than the Late block (Figure 4d, green).
Therefore, curl field motor adaptation is paralleled by
changes in the null subspace activity of PMd, while
preserving an unchanged output-potent mapping between
M1 and PMd (Hypothesis #2 in Fig. 1).

We performed several controls to validate these
results. The difference between the models could not be
trivially explained by our choice of dimensionality, since
we varied the number of principal component inputs across
a broad range and observed similar results (Figure S7e).
We also developed an additional model, PMd-M1, which
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used all principal components from PMd as inputs. Since
PMd-M1 contained all of the Potent and Null subspace
activity, we expected that, similarly to Null-M1, it would
fail to generalize during adaptation. Indeed, its accuracy
changed progressively during adaptation (Figure S6, pink),
with a time-course very much like that of behavior. As a
final control, we repeated the GLM analyses using the
spiking activity of all single neurons in M1 or PMd as
inputs, as opposed to the lower-dimensional latent activity
(Figure S7c,d). As expected, the results were very similar
since the latent activity captured the dominant patterns of
the single neuron spiking.

An important hallmark of motor adaptation is the
behavior during Washout: brief mirror-image aftereffects
of the errors are seen early in adaptation??’. If the
inaccurate Null-M1 predictions were a consequence of
motor adaptation, we hypothesized that the mapping
between null activity in PMd and M1 spiking would return
to Baseline during Washout. To test this hypothesis, we
trained GLMs using Baseline data and predicted the early
Washout trials — conditions which, although separated
widely in time, had the same dynamic environment but a
very different sta te of adaptation. We found that Null-M1
generaliz ed poorly in the earliest trials, then rapidly
improved with de-adaptation as null activity began to
return to Baseline. There was no such effect for the Pot-
M1 model, which accurately predicted both early and late
Washout trials (Figure 5). The stability of Pot-M1, and the
corresponding change in Null-M1, match Hypothesis #2 in
Figure 1. Therefore, we conclude that there exists a direct
mapping between PMd and M1 that persists unchanged
throughout short-term motor adaptation to a curl field,
while the evolving null latent activity within PMd changes
in a way that drives behavioral adaptation.

Evolving changes in PMd output-null planning activity
lead to adapted motor output

We next investigated the nature of the activity
changes in the null and potent PMd subspaces during CF
adaptation. To better visualize the changes in latent
activity, we plotted activity in the single leading axis of the
potent and null subspaces for movements to a single target
during a Baseline reach (black) and throughout adaptation
(blue shades) (Figure 6a). During behavioral adaptation,
potent and null activity both progressively deviated from
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Figure 5 | GLM performance during de-adaptation in
Washout We asked whether de-adaptation following the removal

of the CF triggered a return to the Baseline Null-M1 model. We
trained GLMs using Baseline trials and asked how well they
generalized in Washout. We found that for Null-M1 only,
performance was worse in the first eight trials compared to eight
trials taken later in Washout. This result supports the idea that the
Baseline model was restored in the later trials. Asterisks indicate
significant differences at p < 0.01 (two-sample t-test).

that of baseline. In this simple example, activity
preferentially changes along the output-null axis prior to
the go cue, before the activity begins to modulate in the
output-potent axes during the subsequent movement. To
guantify this effect, we asked whether the activity changes
across all targets and sessions were consistent with the idea
that they represented adapted preparatory movement
plans. Throughout adaptation, we computed the
Mahalanobis distance in the low-dimensional neural
manifold at the time of go cue between the neural activity
in Force and the corresponding activity in Baseline (Figure
6b). The distance increased monotonically throughout
adaptation. Critically, since the increased distance was
observed already at the time of the go cue, well before the
onset of movement, these changes are suggestive of an
adapting motor plan, as we predicted in Hypothesis #2.

In the preceding results, we interpret the null activity
as the computations necessary to formulate a new motor
plan, a plan that can ultimately influence activity in M1.
One prediction from this interpretation is that the null
activity should precede the potent activity to which it
should be linked'®’. We estimated the lag between the
null and potent activity by computing the canonical
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Figure 6 | Potent and Null activity during CF adaptation a) The evolution of potent and null activity during CF adaptation for a single reach
direction (filled square) averaged in four blocks of trials. Activity along the first null and potent PMd axes changed with adaptation. Notably,
the change between early and late Force were evident at the time of go cue, before movement began (circles). b) Analysis of neural state shows
a progressive change in potent and null activity during adaptation. At the time of go cue, we computed the Mahalanobis distance for all target
directions, which represents the separation of the instantaneous neural state from that of the Baseline. Plots show mean and s.e.m. across all CF
sessions. ¢) We used Canonical Correlation Analysis (CCA; see Methods) to compare the null and potent activity at different time shifts to
identify their relative lag. The first canonical correlation value is shown for five example sessions. Dots indicate the lag with peak correlation.
A peak left of zero indicates that null leads potent activity. d) Peak lag across Baseline for all 16 CF and VR sessions (black histogram). Null
activity preceded potent by 35 ms on average, and the distribution was significantly negative (t-test; p = 0.02). The distribution obtained from

the end of the Force period for the CF sessions (9 sessions) is overlaid in blue. The shift in time did not change during learning.

correlations at varying time shifts (see Methods). We
identified the shift at which the correlation was maximum
and found that null activity consistently did precede that of
potent (and thus also M1; Figure 6c,d), during both
Baseline and at the end of Force, when behavior was fully
adapted. This observation, coupled with the GLM results,
provides evidence that the changes in null activity could
be causally related to the formation and subsequent
execution of an adapted motor plan.

PMd to M1 mapping is unchanged throughout adaptation
to a visuomotor rotation

In an important parallel experiment, we asked
whether changes between PMd and M1 are a necessary
consequence of adapted behavior, or indicative of a
specialized role for PMd in the CF task. The same
monkeys also learned to reach in the presence of a 30°

visuomotor rotation (VR), a static rotation of the reach-
related visual feedback (Figure 7a). Considerable evidence
suggests that the brain areas involved in adapting to the
VR differ from those required for CF*>*’, and include the
parietal cortex, upstream of PMd. If the change in Null-
M1 mapping during CF adaptation represents updated
motor planning within PMd, we hypothesized that VR
adaptation might not result in a similar change. Instead,
VR adaptation is mediated by processes occurring before
the inputs to M1 and PMd (Hypothesis #4, Figure 1).

In many respects, adaptation during the CF and VR
sessions was quite similar. Behavioral errors were similar
in magnitude and time course (Figure 7b,c), with large
initial errors in the Rotation epoch, and strong after-effects
in Washout. Single neurons also changed their firing in
complex ways (Figure S1b), and the altered activity was
observed during pre-movement planning. Additionally,

changes in neural activity preserved the population
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adaptation (all p > 0.01, two-sample t-test). f) Washout model performance for the VR task. Methods and data are as presented in Figure 5. We

observed no change in performance during de-adaptation.

covariance structure (Figure S2b). However, all GLM
models, including Null-M1, accurately generalized
throughout Rotation (Figure 7d,e). Furthermore, we did
not see the effect of de-adaptation in the Washout
predictions, despite the presence of behavioral after-
effects (Figure 7f). Thus, there were no changes in the
relationships between the PMd null activity and M1,
despite behavioral adaptation and diverse changes in
single-neuron activity. This result highlights a
fundamental difference in the neural adaptation to these
two perturbations, and supports the view that VR
adaptation occurs upstream of PMd*~". It also strengthens
our conclusions about the CF task: the poor generalization
of the Null-M1 GLM is not a necessary consequence of
changing behavior, but rather captures a previously
undescribed mechanism by which the premotor cortex can
drive rapid sensorimotor adaptation by exploiting the
output-null subspace.

Discussion

We have reported an experiment designed to help
understand how the motor cortex can rapidly adapt
behavior. We analyzed the functional connectivity
between local and distant neural populations in M1 and
PMd during two common motor adaptation tasks and
studied PMd activity in output-potent and output-null
subspaces. Our analyses revealed several intriguing
results: 1) during both short-term adaptation tasks, the
functional connectivity within M1 and PMd assessed using
GLMs, as well as the neural covariance, was unchanged:;
2) the estimated dimensionality of PMd activity was larger
than that of M1, suggesting the existence of null and potent
subspaces; 3) PMd potent activity had a consistent
relationship with M1 throughout adaptation in both tasks;
4) the relationship between PMd null activity and neurons
in M1 changed with behavioral adaptation and subsequent
de-adaptation in Washout for the curl field task (Figures
4,5,56), but not visuomotor rotation (Figure 7); 5) pre-
movement activity within PMd appears to reflect motor
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planning within the null space that evolves gradually
during adaptation (Figure 6). This study was enabled by
recording large neural populations simultaneously from
two distinct regions of the motor cortex; none of these
observations would have been possible with sequential
single-neuron recordings. Our results are inconsistent with
the idea that changes in connectivity is a necessary
mechanism for short-term motor learning. Instead, our
results show that within the constrained, low-dimensional
manifold, the cortex is able to utilize the output-null
subspace to change its output on a trial-by-trial basis. The
use of output-null population activity while maintaining an
unchanged output-potent projection to downstream
structures, could provide a powerful mechanism
underlying a variety of rapid learning processes
throughout the brain.

Interpreting output-null activity in PMd

The relation between the null and potent subspaces in
movement execution and motor learning is an intriguing
area of inquiry. Two recent studies using natural reaching
movements and a BCI paradigm suggest that the
appropriate neural state must be established within the
cortical null subspace to initiate potent activity and
subsequent motor output’®®, In our CF experiment, we
observed progressive adaptation-related changes in the
null activity during the planning period preceding
movement (Figure 6), and corresponding changes during
the more rapid de-adaptation process in Washout.
Critically, the null activity led the potent activity following
target presentation. Together with evidence from prior
studies implicating null activity in motor preparation67:3,
our results strongly suggest that the evolving activity
within the null subspace of PMd serves to set the
preparatory state within PMd prior to movement initiation.
One possible interpretation is that during movement
preparation, an attractor-like state within PMd is altered,
in order to establish new initial conditions for the
execution of an adapted movement by M1%, At the
transition between movement planning and initiation, the
null and potent subspaces are thought to be transiently
coupled, such that the state in the null subspace initiates
the cortical dynamics necessary to cause the desired motor
output!®’4° The nature of this transition, including the
underlying mechanism and its timing, are the subject of
ongoing experimental and modeling efforts*’. Kaufman et

al. propose that the transition could be driven by influence
froma third area, perhaps a higher cortical area or the basal
ganglia®. In our experiments, the altered state in the null
subspace is used to initiate a new, adapted movement.
Importantly, this process could be accomplished without
changing either the functional connectivity within either
area, or the potent mapping from PMd to M1.

The manifold comprising the activity within PMd was
divided into null and potent subspaces relative to the latent
activity of M1, We computed the subspaces using data
from the Baseline epoch, i.e., independently of the CF
trials used for the GLM analysis. By definition, the null
activity orthogonal to that of the potent activity and M1
latent activity. An obvious question then, is how it is
possible to use GLMs to predict the activity of M1 neurons
from null activity in PMd? Although the potent and null
subspace activity reside in orthogonal axes, the activity
along any two of these axes can be linearly related during
behavior since they are constructed from different
weighted combinations of the common set of PMd latent
activity. This explains why both null and potent activity
can be used to predict M1 spiking in the GLMs. Yet,
during learning the precise relationship between null
activity and M1 appears to evolve with adaptation, while
potent activity maintains the same relation with M1
spiking throughout the entire adaptation period. What is
the correct way to interpret these activity changes? At any
given time, the neural activity can occupy any portion of
the potent or null subspaces. Adaptation could result in a
change in either the orientation of these subspaces within
the higher-dimensional PMd manifold, the trajectory of
PMd neural activity within the fixed subspaces, or both
(Figure S3c illustrates these distinctions). The similarity of
the neural covariance structure (Figure S2, S3) is evidence
that the orientation of the M1 and PMd manifolds did not
change during adaptation. Instead, activity within these
fixed subspaces changed as the monkeys learned.

Testing the limits of the relations inferred from GLMs

While it is tempting to infer detailed cortical circuitry
from the statistical structure in the neural population
activity, it is dangerous to do so. The simple neural
covariance approach (Figures S2,S3) is particularly far
from cortical circuitry, as it is driven to a great extent by
the common input received by all the recorded neurons*.
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Furthermore, because many trials of data are necessary to
estimate the covariance structure accurately, such
covariance approaches are ill-suited to study trial-by-trial
adaptive changes. Our GLMs are instead able to predict
spiking activity on single trials. Furthermore, the GLMs
can make a better estimate of the direct statistical
dependencies, which we interpret as functional
connectivity, between groups of cells by discounting some
of the common input that drives their activity. To achieve
this, other studies have incorporated a wide variety of
covariates, such as spiking history, the activity of
neighboring neurons, expected reward, or
kinematics®*424%, We included additional kinematic
covariates as inputs to the models to account for the shared
inputs to the neurons (see Methods)3'#2#4, though our
results were not qualitatively dependent on the precise set
of signals used. Note that our use of kinematic signals in
the model does not assume a direct link between neural
activity and movement kinematics. Rather, it is an attempt
to discount influences in common input across a large
number of neurons, which would otherwise obscure
subtler, unique influences. Here, this approach revealed a
differential effect of adaptation on the functional
connectivity between M1 and the null and potent
subspaces of PMd.

Visuomotor rotation and curl field likely employ distinct
adaptive processes

The visuomotor rotation experiments provide an
intriguing counterpoint to curl field results. Adaptation to
the VR is believed to involve neural processes that are
independent from those of the curl field®. Previous
evidence from modeling studies has led to the proposition
that VR adaptation involves changes in functional
connectivity between parietal cortex and motor and
premotor cortices®’. Consistent with that proposal, despite
the dramatic changes in PMd and M1 activity during VR
adaptation (Figures S1,S2b), all GLM models generalized
well: there were no changes in PMd to M1 functional
connectivity throughout adaptation (Fig. 6), and we did not
observe the effect of de-adaptation in the Washout Null-
M1 GLM mapping (Figure 7f). We interpret this result to
mean that VR adaptation occurs upstream of the inputs to
PMd, although the current experiment cannot show this
directly. This experiment also serves as an important
control for our main result in the CF task, because a motor

adaptation process with very similar magnitude of error
and time course of adaptation yielded a very different
result. An interesting future experiment would be to repeat
the GLM modeling analysis using simultaneous recordings
from parietal cortex and PMd during VR adaptation. In this
case, we would expect to see evolving null subspace
activity in parietal cortex similar to that observed in PMd
during the CF task.

Relation between short- and long-term learning

Long-term learning is known to alter connectivity in
the motor cortex, resulting in increased horizontal
connections* and synaptogenesis*’. Many have proposed
that the brain also uses similar plastic mechanisms to adapt
behavior on shorter timescales?*“8, However, any such
changes of behaviorally-relevant magnitude would very
likely have impaired the predictions of the Pot-M1, M1-
M1, or PMd-PMd GLM models**®°. Hence our results
suggest that functional connectivity changes within PMd
or M1 play at most a minimal role on the time scale of a
single experimental session. Our lab has previously found
that the relation between evolving M1 activity and the
dynamics of the motor output remains unchanged during
CF adaptation®, with no evidence for adaptive changes in
spatial tuning having a time course like that of behavioral
adaptation®. Therefore, we hypothesized that CF
adaptation must be mediated by changes in recruitment of
M1 by upstream areas, including PMd. Our new results
illustrate how this can occur: in the short-term, PMd could
exploit its null subspace to formulate new motor plans
reflecting the modified task demands of the CF, which are
sent to M1 through a fixed potent mapping.

However, if short-term CF adaptation occurs without
connectivity changes in the cerebral cortex, how can we
account for the performance improvements that are
maintained across sessions®°2? The cerebellum has long
been implicated in a variety of supervised, error-driven
motor-learning problems, including both the CF and VR
paradigms explored in this study3%°3-%°, Importantly, the
cerebellum is thought to be a site at which inverse internal
models of limb dynamics may be learned®?®.
Furthermore, plastic adaptive processes occur at multiple
sites in the cerebellum and over several time scales®*°,
Perhaps its extensive interconnections with PMd®® allow
new motor plans developed during CF adaptation to drive
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an evolving cerebellar internal model*3¢57. Other evidence
suggests that while these internal models may depend on
the cerebellum for their modification, they may actually be
located elsewhere®’. In this case, such connectivity
changes might eventually emerge within PMd and even
M1 to support the long-term refinement and rapid recall of
skillst®2,

Wherever their ultimate location, we envision a
mechanism whereby the tentative plans progressively
developed in something resembling a “neural scratch pad”
of cortical null subspaces, ultimately become consolidated
in neural structural changes. Analogous population
dynamics have been found in prefrontal cortex for
decision-making®®, working memory**, and rule-
learning®, in the motor cortex for movement planning?®,
and in the parietal cortex for navigation®® among others®.
These widespread observations suggest a general
mechanism by which the brain may leverage output-null
subspaces of cortical activity for rapid learning without the
need to engage potentially slow processes to alter the
cortical circuitry.

Acknowledgements

The authors would like to thank Dr. Sara Solla for her
helpful discussions in preparing these analyses. J.A.G.
received funding from the European Commission (FP7-
PEOPLE-2013-10F-627384). M.G.P. received funding
from NIH NINDS T32 HD07418 and NIH NINDS F31
NS092356. This project was additionally funded by NIH
NINDS NS053603 and NIH NINDS NS074044.

Ethical Statement

All procedures involving animals in this study were
performed in accordance with the ethical standards of the
Northwestern University Institutional Animal Care and
Use Committee and are consistent with Federal guidelines.

Author Contributions

M.G.P. and L.E.M. conceived and designed
experiments. M.G.P. conducted experiments and analyzed
data. M.G.P, JA.G.,, and L.E.M. prepared figures,
designed analyses, interpreted results, and wrote the
manuscript.

References

1. Peters, A.J., Chen, S. X. & Komiyama, T.
Emergence of reproducible spatiotemporal activity
during motor learning. Nature (2014).
doi:10.1038/nature13235

2. Kileim, J. a et al. Cortical synaptogenesis and motor
map reorganization occur during late, but not early,
phase of motor skill learning. J. Neurosci. 24, 628-33
(2004).

3. Black, J. E., Isaacs, K. R., Anderson, B. J., Alcantara,
A. A. & Greenough, W. T. Learning causes
synaptogenesis, whereas motor activity causes
angiogenesis, in cerebellar cortex of adult rats. Proc
Natl Acad Sci U S A. 87, 5568-72 (1990).

4. Thoroughman, K. a & Shadmehr, R. Learning of
action through adaptive combination of motor
primitives. Nature 407, 742—7 (2000).

5. Bailey, C. H. & Chen, M. Morphological basis of
short-term habituation in Aplysia. J. Neurosci. 8,
2452-2459 (1988).

6. Sadtler, P. T. et al. Neural constraints on learning.
Nature 512, 423-426 (2014).

7. Okun, M. et al. Diverse coupling of neurons to
populations in sensory cortex. Nature (2015).
doi:10.1038/nature14273

8. Tsodyks, M., Kenet, T., Grinvald, A. & Arieli, A.
Linking spontaneous activity of single cortical
neurons and the underlying functional architecture.
Science 286, 1943-1946 (1999).

9. Bailey, C. H. & Chen, M. Morphological basis of
long-term habituation and sensitization in Aplysia.
Science 220, 91-3 (1983).

10. Kalaska, J. F., Scott, S. H., Cisek, P. & Sergio, L. E.
Cortical control of reaching movements. Curr. Opin.
Neurobiol. 7, 849-859 (1997).

11. Cisek, P. & Kalaska, J. F. Neural correlates of
reaching decisions in dorsal premotor cortex:
specification of multiple direction choices and final
selection of action. Neuron 45, 801-14 (2005).

12. Dum, R. P. & Strick, P. L. Motor areas in the frontal
lobe of the primate. Physiol. Behav. 77, 677-82
(2002).

13. Rathelot, J.-A. & Strick, P. L. Subdivisions of

12


https://doi.org/10.1101/138743
http://creativecommons.org/licenses/by-nd/4.0/

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

bioRxiv preprint doi: https://doi.org/10.1101/138743; this version posted June 8, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

primary motor cortex based on cortico-motoneuronal
cells. Proc. Natl. Acad. Sci. U. S. A. 106, 918-23
(2009).

Cunningham, J. P. & Yu, B. M. Dimensionality

reduction for large-scale neural recordings. Nat.
Neurosci. (2014). doi:10.1038/nn.3776

Gallego, J. A., Perich, M. G., Miller, L. E. & Solla, S.
A. Neural manifolds for the control of movement.
Neuron 94, 978-984 (2017).

Kaufman, M. T., Churchland, M. M., Ryu, S. |. &
Shenoy, K. V. Cortical activity in the null space:
permitting preparation without movement. Nat.
Neurosci. 17, 440-8 (2014).

Elsayed, G. F., Lara, A. H., Kaufman, M. T.,
Churchland, M. M. & Cunningham, J. P.
Reorganization between preparatory and movement
population responses in motor cortex. Nat. Commun.
13239 (2016). doi:10.1038/ncomms13239

Churchland, M. M. et al. Neural population dynamics
during reaching. Nature (2012).
doi:10.1038/nature11129

Churchland, M. M., Cunningham, J. P., Kaufman, M.
T.,Ryu, S. I. & Shenoy, K. V. Cortical preparatory
activity: representation of movement or first cog in a
dynamical machine? Neuron 68, 387—-400 (2010).

Churchland, M. M., Afshar, A. & Shenoy, K. V. A
Central Source of Movement Variability. Neuron 52,
1085-1096 (2006).

Churchland, M. M., Santhanam, G. & Shenoy, K. V.
Preparatory activity in premotor and motor cortex
reflects the speed of the upcoming reach. J.
Neurophysiol. 96, 3130-3146 (2006).

Remington, E. D., Narain, D., Hosseini, E. &
Jazayeri, M. Flexible sensorimotor computations
through rapid reconfiguration of cortical dynamics.
Neuron 98, 1005-1019 (2018).

Shadmehr, R. & Mussa-lvaldi, F. A. Adaptive
representation of dynamics during learning of a
motor task. J. Neurosci. 14, 3208-24 (1994).

Li, C. S., Padoa-Schioppa, C. & Bizzi, E. Neuronal
correlates of motor performance and motor learning
in the primary motor cortex of monkeys adapting to
an external force field. Neuron 30, 593-607 (2001).

Perich, M. G. & Miller, L. E. Altered tuning in

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

primary motor cortex does not account for behavioral
adaptation during force field learning. Exp. Brain
Res. (2017). doi:10.1007/s00221-017-4997-1

Krakauer, J. W., Ghez, C. & Ghilardi, M. F.
Adaptation to visuomotor transformations:
consolidation, interference, and forgetting. J.
Neurosci. 25, 473-478 (2005).

Martin, T. a, Keating, J. G., Goodkin, H. P., Bastian,
aJ. & Thach, W. T. Throwing while looking through
prisms I1. Specificity and storage of multiple gaze-
throw calibrations. Brain 119, 1199-1211 (1996).

Cherian, A., Fernandes, H. L. & Miller, L. E. Primary
motor cortical discharge during force field adaptation
reflects muscle-like dynamics. J. Neurophysiol. 110,
768-83 (2013).

Thoroughman, K. a & Shadmehr, R.
Electromyographic correlates of learning an internal
model of reaching movements. J. Neurosci. 19,
8573-88 (1999).

Churchland, M. M. & Shenoy, K. V. Temporal
complexity and heterogeneity of single-neuron
activity in premotor and motor cortex. J.
Neurophysiol. 97, 4235-57 (2007).

Pillow, J. W. et al. Spatio-temporal correlations and
visual signalling in a complete neuronal population.
Nature 454, 995-9 (2008).

Truccolo, W., Hochberg, L. R. & Donoghue, J. P.
Collective dynamics in human and monkey
sensorimotor cortex: predicting single neuron spikes.
Nat. Neurosci. 13, 105-11 (2010).

Heinzl, H. & Mittlbock, M. Pseudo R-squared
measures for Poisson regression models with over- or
underdispersion. Comput. Stat. Data Anal. 44, 253—
271 (2003).

Machens, C. K., Romo, R. & Brody, C. D.
Functional, but not anatomical, separation of ‘what’
and ‘when’ in prefrontal cortex. J. Neurosci. 30, 350—
60 (2010).

Krakauer, J. W., Ghilardi, M. F. & Ghez, C.
Independent learning of internal models for
kinematic and dynamic control of reaching. Nat.
Neurosci. 2, 1026-31 (1999).

Diedrichsen, J., Hashambhoy, Y., Rane, T. &
Shadmehr, R. Neural correlates of reach errors. J.

13


https://doi.org/10.1101/138743
http://creativecommons.org/licenses/by-nd/4.0/

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

bioRxiv preprint doi: https://doi.org/10.1101/138743; this version posted June 8, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

Neurosci. 25, 9919-9931 (2005).

Tanaka, H., Sejnowski, T. J. & Krakauer, J. W.
Adaptation to visuomotor rotation through interaction
between posterior parietal and motor cortical areas. J.
Neurophysiol. 102, 2921-32 (2009).

Stavisky, S. D. et al. Motor Cortical Visuomotor
Feedback Activity Is Initially Isolated from
Downstream Targets in Output-Null Neural State
Space Dimensions Article Motor Cortical
Visuomotor Feedback Activity Is Initially Isolated
from Downstream Targets in Output-Null Neural .
Neuron 95, 195-208.€9 (2017).

Sussillo, D., Churchland, M. M., Kaufman, M. T. &
Shenoy, K. V. A neural network that finds a
naturalistic solution for the production of muscle
activity. Nat. Neurosci. 18, 1025-33 (2015).

Kaufman, M. T. et al. The Largest Response
Component in the Motor Cortex Reflects Movement
Timing but Not Movement Type. eNeuro 3, (2016).

Stevenson, I. H., Rebesco, J. M., Miller, L. E. &
Kording, K. P. Inferring functional connections
between neurons. Curr. Opin. Neurobiol. 18, 582-8
(2008).

Glaser, J. 1. et al. The role of expected reward in
frontal eye field during natural scene search. J.
Neurophysiol. jn.00119.2016 (2016).
doi:10.1152/jn.00119.2016

Glaser, J. 1., Perich, M. G., Ramkumar, P., Miller, L.
E. & Kording, K. P. Population coding of conditional
probability distributions in dorsal premotor cortex.
bioRxiv 1-27 (2017).
doi:https://doi.org/10.1101/137026

Ramkumar, P., Dekleva, B., Cooler, S., Miller, L. &
Kording, K. Premotor and motor cortices encode
reward. PLoS One 11, 1-13 (2016).

Krakauer, J. W. Differential Cortical and Subcortical
Activations in Learning Rotations and Gains for
Reaching: A PET Study. J. Neurophysiol. 91, 924—
933 (2003).

Rioult-Pedotti, M. S., Friedman, D., Hess, G. &
Donoghue, J. P. Strengthening of horizontal cortical
connections following skill learning. Nat. Neurosci.
1, 2304 (1998).

Kleim, J. A. et al. Motor Learning-Dependent

48.

49,

50.

51.

52.

53.

54.

95.

56.

o7.

58.

Synaptogenesis Is Localized to Functionally
Reorganized Motor Cortex. Neurobiol. Learn. Mem.
77, 63-77 (2002).

Classen, J., Liepert, J., Wise, S. P., Hallett, M. &
Cohen, L. G. Rapid plasticity of human cortical
movement representation induced by practice. J.
Neurophysiol. 79, 1117-23 (1998).

Ahissar, E. et al. Dependence of cortical plasticity on
correlated activity of single neurons and on
behavioral context. Science (80-.). 257, 1412-5.
(1992).

Gerhard, F. et al. Successful Reconstruction of a
Physiological Circuit with Known Connectivity from
Spiking Activity Alone. PLoS Comput. Biol. 9, 32-34
(2013).

Huang, V. S., Haith, A., Mazzoni, P. & Krakauer, J.
W. Rethinking Motor Learning and Savings in
Adaptation Paradigms: Model-Free Memory for
Successful Actions Combines with Internal Models.
Neuron 70, 787-801 (2011).

Krakauer, J. W. & Shadmehr, R. Consolidation of
motor memory. Trends Neurosci. 29, 58-64 (2006).

Izawa, J., Criscimagna-Hemminger, S. E. &
Shadmehr, R. Cerebellar contributions to reach
adaptation and learning sensory consequences of
action. J. Neurosci. 32, 4230-9 (2012).

Herzfeld, D. J. et al. Contributions of the cerebellum
and the motor cortex to acquisition and retention of
motor memories. Neuroimage (2014).
doi:10.1016/j.neuroimage.2014.04.076

Galea, J. M., Vazquez, A., Pasricha, N., de Xivry, J.-
J. 0. & Celnik, P. Dissociating the roles of the
cerebellum and motor cortex during adaptive
learning: the motor cortex retains what the
cerebellum learns. Cereb. Cortex 21, 1761-70
(2011).

Imamizu, H. et al. Human cerebellar activity
reflecting an acquired internal model of a new tool.
Nature 403, 192-5 (2000).

Wolpert, D. M., Miall, R. C. & Kawato, M. Internal
models in the cerebellum. Trends Cogn. Sci. 2, 338—
47 (1998).

Zheng, N. & Raman, I. M. Synaptic inhibition,
excitation, and plasticity in neurons of the cerebellar

14


https://doi.org/10.1101/138743
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/138743; this version posted June 8, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

nuclei. Cerebellum 9, 56-66 (2010).

59. Yang, Y. & Lisberger, S. G. Interaction of plasticity
and circuit organization during the acquisition of
cerebellum-dependent motor learning. Elife 2013, 1-
19 (2013).

60. Dum, R. P. & Strick, P. L. An unfolded map of the
cerebellar dentate nucleus and its projections to the
cerebral cortex. J. Neurophysiol. 89, 634-639 (2003).

61. Shadmehr, R. & Holcomb, H. H. Neural correlates of
motor memory consolidation. Science 277, 821-5
(1997).

62. Bailey, C. H. & Kandel, E. R. Structural Changes
Accompanying Memory Storage. Annu. Rev. Physiol.
55, 397-426 (1993).

63. Mante, V., Sussillo, D., Shenoy, K. V & Newsome,
W. T. Context-dependent computation by recurrent
dynamics in prefrontal cortex. Nature 503, 78-84
(2013).

64. Durstewitz, D., Vittoz, N. M., Floresco, S. B. &
Seamans, J. K. Abrupt transitions between prefrontal
neural ensemble states accompany behavioral
transitions during rule learning. Neuron 66, 438448
(2010).

65. Harvey, C. D., Coen, P. & Tank, D. W. Choice-
specific sequences in parietal cortex during a virtual-
navigation decision task. Nature 484, 62—8 (2012).

66. Bach, F. R. & Jordan, M. I. Kernel Independent

Component Analysis. J. Mach. Learn. Res. 3, 1-48
(2002).

67. Nelder, J. & Baker, R. Generalized linear models.
Encyclopedia of Statistical Sciences (1972).

68. Moran, D. W. & Schwartz, A. B. Motor cortical

representation of speed and direction during reaching.
J. Neurophysiol. 82, 2676-92 (1999).

Methods

All animal-related methods were approved by the
Institutional Animal Care and Use Committee of
Northwestern University and were consistent with federal
guidelines.

Behavioral task

Two monkeys (male, mucaca mulatta; Monkey C:
11.7 kg, Monkey M: 10.5 kg) were seated in a primate
chair and made reaching movements with a custom 2-D
planar manipulandum to control a cursor displayed on a
computer screen. We recorded the position of the handle
at a sampling frequency of 1kHz using encoders. The
monkeys performed a standard center-out reaching task
with eight outer targets evenly distributed around a circle
ata radius of 8 cm. All targets were 2 cm squares. The first
three sessions with Monkey C used a radius of 6 cm.
However, we observed no qualitative different in the
behavioral or neural results for the shorter reach distance,
and all sessions were thus treated equally. Each trial began
when the monkey moved to the center target. After a
variable hold period (0.5 — 1.5 s), one of the eight outer
targets appeared. The monkey had a variable instructed
delay period (0.5 — 1.5 s) which allowed us to study neural
activity during explicit movement planning and
preparation, in addition to movement execution. The
monkeys then received an auditory go cue, and the center
target disappeared. The monkeys had one second to reach
the target, and were required to hold there for 0.5 s.

In the curl field (CF) task, two motors applied torques
to the elbow and shoulder joints of the manipulandum in
order to achieve the desired endpoint force. The magnitude
and direction of the force depended on the velocity of hand
movement according to Equation 1, where F is the
endpoint force, p is the derivative of the hand position p,
& is the angle of curl field application (85°), and k is a
constant, set to 0.15 N-s/cm:

5 [E] _, [cosB, —sin6.][Px
F= [Fy] =k [sin 0. coséb, ] [Py] @

In the visuomotor rotation (VR) task, hand position p
was rotated by & (here, chosen to be 30°) to provide
altered visual cursor feedback € on the screen. The rotation

was position-dependent so that the cursor would return to
the center target with the return reach:

2 [Cx] _[cosO, —sinB,][Px
€= [Cy] B [Sin 0, cos0, “Py] (2)

Both the CF and VR perturbations were imposed
continuously throughout the block of adaptation trials,
including the return to center and outer target hold periods.

Each session was of variable length since we allowed

the monkeys to reach as long as possible to ensure that
15


https://doi.org/10.1101/138743
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/138743; this version posted June 8, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

behavior had sufficient time to stabilize, and to allow for
large testing and training sets for the GLMs. For the CF
sessions, the monkeys performed a set of unperturbed
trials in the Baseline epoch (range across sessions: 170 —
225 rewards) followed by a Force epoch with the CF
perturbations (201 — 337 rewards). The session concluded
with a Washout epoch, in which the perturbation was
removed and the monkeys readapted to making normal
reaches (153 — 404 rewards). The curl field was applied in
both clockwise (CW) and counter-clockwise (CCW)
directions in separate sessions, though we saw no
qualitative difference between the sessions. Monkey C had
three CW sessions and two CCW sessions, while Monkey
M had four CCW sessions. For the VR sessions, the
monkeys performed 154 — 217 successful trials in
Baseline, 219 — 316 during Rotation (either CW or CCW),
and then 162 — 348 in Washout. Monkey C performed two
CW VR sessions and two CCW sessions, while monkey M
performed three CCW sessions. There is considerable
evidence that learning can be consolidated, resulting in
savings across sessions®L. In this study, we minimized the
effect of savings to focus on single-session adaptation in
the following ways. The monkeys: 1) received different
perturbations day-to-day, as we alternated between CF and
VR sessions, 2) received opposing directions of the
perturbation on subsequent days, and 3) often had multiple
days between successive perturbation exposures.

Behavioral adaptation analysis

For a quantitative summary of behavioral adaptation,
we used the errors in the angle of the initial hand trajectory.
We measured the angular deviation of the hand from the
true target direction measured 150 ms after movement
onset. To account for the slightly curved reaches made by
the monkeys, we found the difference on each trial from
the average deviation for that target in Baseline trials.
Sessions with the CW and CCW perturbations were
similar except for the sign of the effects. Thus, for the
behavioral adaptation time course data such as that
presented in Figure 2d, we pooled all perturbation
directions together and flipped the sign of the CW errors.

Neural recordings

After extensive training in the unperturbed center-out
reaching task, we surgically implanted chronic multi-

electrode arrays (Blackrock Microsystems, Salt Lake City,
UT) in M1 and PMd. From each array, we recorded 96
channels of neural activity using a Blackrock Cerebus
system (Blackrock Microsystems, Salt Lake City, UT).
The snippet data was manually processed offline using
spike sorting software to identify single neurons (Offline
Sorter v3, Plexon, Inc, Dallas, TX). We sorted data from
all three task epochs (Baseline, Force or Rotation, and
Washout) simultaneously to ensure we reliably identified
the same neurons throughout each session. With such array
recordings, there is a small possibility that duplicate
neurons can appear on different channels as a result of
electrode shunting, which would influence our GLM
models by providing perfectly correlated inputs for these
cells. While such duplicate channels are often easily
identifiable during recording, we took two precautionary
steps to ensure our data included only independent
channels. First, we used the electrode crosstalk utility in
the Blackrock Cerebus system to identify and disable any
potential candidates with high crosstalk. Second, offline
we computed the percent of coincident spikes between any
two channels, and compared this percentage against an
empirical probability distribution from all sessions of data.
We excluded any cells whose coincidence was above a
95% probability threshold (in practice, this was
approximately 15-20% coincidence, which excluded no
more than one or two low-firing cells per session).

Across all sessions, we isolated between 137 — 256
PMd and 55 — 93 M1 neurons for Monkey C, and 66 — 121
PMd and 26 — 51 M1 neurons for Monkey M. For the
neural covariance analysis, we excluded cells with trial-
averaged firing rates of less than 1 Hz. Our GLM models
were by necessity poorly fit for neurons with low firing
rates. Thus, for the GLM analyses, we only considered
neurons with a trial-averaged mean firing rate greater than
5 Hz. Pooled across all monkeys and CF and VR sessions,
this gave a population of 918 M1 and 2221 PMd neurons.
Given the chronic nature of these recordings, it is certain
that some individual neurons appeared in multiple
sessions. However, our analyses primarily focus on the
population-level relationships which we found to be robust
to changes in the exact cells recorded, so we do not expect
our results to biased by partial resampling.
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Single neuron covariance analysis

For each trial, we considered all time points between
target presentation and successful target acquisition. We
binned the neural spiking activity in 10ms bins. We
divided each session into five blocks of trials: two from the
Baseline, two from Force, and then one from the Washout
epochs. In each block, we averaged across trials for each
target direction. We then computed the covariance
between the spiking activity of all pairs of simultaneously
recorded neurons.

Next, we sought to summarize the similarity of this
covariance within each block to the Baseline condition to
look for learning-related changes. For each pair of
neurons, we compared the covariance in the Force and
Washout blocks to the Baseline covariance. Across the
recorded population on each session, we computed the
Pearson’s correlation value to quantify the similarity in the
covariance. We also created a reference distribution using
correlations within the Baseline epoch to assess the ceiling
for this metric when the covariance structure should not
have changed. We randomly subsampled the Baseline
trials and compared the correlations between each set. We
repeated this procedure 100 times for each of the 9 CF and
7 VR sessions. The white distributions in Figure S3 show
the correlations for these Baseline trials. For the heat maps
shown in Figure S2, we used a simple hierarchical
clustering algorithm to sort the neurons in the Baseline
condition. To enhance this clustering and visualization, we
normalized each row to range from -1 to 1. The same sort
order was used in the heat map for each block as a means
of visually assessing the consistency in the correlation
structure.

Dimensionality reduction

We counted spikes in 50 ms bins and square root
transformed the raw counts to stabilize the variance!*. We
then convolved the spike train of each neuron for each trial
with a non-causal Gaussian kernel of width 100 ms to
compute a smooth firing rate. We wused Principal
Component Analysis (PCA) to reduce the smoothed firing
rates of the neurons in each session to a small number of
components for M1 and PMd separately'*. PCA finds the
dominant covariation patterns in the population and
provides a set of orthogonal basis vectors that capture the
population variance. We call these covariance patterns

“latent activity.” Importantly, this latent activity reflected
the firing of nearly all individual neurons.

For the null and potent subspace analysis described
below, we needed to select dimensionalities for M1 and
PMd. We adapted a method developed by Machens et al**
to estimate the dimensionality of our recorded populations.
In brief, PCA provides an orthogonal basis set (the
principal axes) with the same dimensionality as the neural
input. However, the variance captured by many of the
higher dimensions (with the smallest eigenvalues) is
typically quite small. We estimated the noise in the neural
activity patterns using the trial-to-trial variation in the
activity of each neuron. We subtracted the activity of each
neuron between random pairs of trials for each reach
direction. This gave an estimate of the variation in spiking
of each neuron (trial-to-trial noise) across targets. We then
ran PCA on the neural “noise” provided by this difference
for all targets. We repeated this 1000 times, giving a
distribution of eigenvalues for each of these noise
dimensions. We used the 99% limit of these distributions
to estimate the amount of noise variance explained for each
dimension. This allowed us to put a threshold on the
amount of variance that could be explained by noise. The
dimensionality was thus defined by the number of
dimensions needed to explain 95% of the remaining
variance (Figure 2b shows all sessions for M1 and PMd).
Importantly, the dimensionality we estimated was robust
to the number of recorded neurons since it reflected
population-level patterns. We performed a control where
we repeated the above analysis with random subsamples
of neurons, taking fixed and equal numbers of neurons
from the M1 or PMd populations for a session (Figure S4d)
and observed no change in the estimated dimensionality.

Potent and null subspace calculation

Using the above method, we estimated the
dimensionality of the M1 and PMd populations on each
session. Since we consistently identified a larger
dimensionality for PMd than M1, there existed a "null
space" in PMd, which encompassed PMd activity with no
net effect on M1%6. To identify the geometry of the null and
potent subspaces, we constructed multi-input multi-output
(MIMO) linear models W relating the N dimensions of
PMd latent activity to the R dimensions of M1 latent
activity (with N > R):
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M=WP 3
where M is an R x t matrix whose rows contain the R
dimensions of M1 latent activity, and P is an N x t whose
rows contain the N dimensions of PMd latent activity; each
column of both matrices contains the activity at time t. The
matrix W, which contains the linear model that maps the
PMd latent activity onto the M1 latent activity, has
dimensions R x N.

We then performed a singular value decomposition (SVD)
of the matrix W:

w=usvT (4)

SVD decomposes the rectangular matrix W into a set

of orthonormal basis vectors that allows us to define the

null and potent subspaces. For our purposes, the vectors

making up matrix VT define the potent and null subspaces,

with the first N rows corresponding to the potent subspace,

and the remaining R - N rows defining the null subspace
(Equation 5):

V= (5)

V11 U10]

Unt " VUno

We used only trials from the Baseline period of each
session to find the axes for PCA, as well as the null and
potent subspaces. The Baseline trials were independent of
the CF/VR trials used for both testing and training the
GLM models, ensuring that we did not bias our results to
find any specific solutions. This is potentially quite
important, as it eliminates the possibility that the null and
potent spaces simply reflect activity patterns developed
during adaptation. In practice, we obtained nearly identical
results if we used all of the data, or data only from the
CF/VR trials to compute the potent and null subspaces,
indicating that they did not change throughout the session.
It is also important to note that the null and potent
subspaces, as with the PCA axes, typically comprised
population-wide activity patterns, rather than sub-groups
of neurons. To show this, we defined an index quantifying
whether a cell was more strongly weighted towards the
output-potent or output-null dimensions. When projected
into the potent and null subspaces, the firing rate of each
individual cell is multiplied by weights defined in the PCA
matrix as well as the matrix defining the null and potent
subspaces (V in Equation 5). We thus multiplied these two
matrices to get an effective weighting of each cell onto the
axes of the potent and null subspaces. We then computed

an index defined as the difference between the magnitude
of the potent and null weights (summed across all
dimensions) divided by the total weights. Thus, a value of
-1 indicates that the neuron contributed only to null
dimensions, +1 indicates the neuron contributed only to
potent dimensions, and values near zero indicate the cell
has no preference. The resulting distribution, centered on
zero, is plotted in Figure S4c.

Calculating the lag between PMd null and potent activity
modulation

We used Canonical Correlation Analysis (CCA) to
compare the latent activity in the potent and null subspaces
of PMd. In brief, CCA finds linear transformations, that
applied to two sets of latent activity, maximize their
pairwise correlation®*%¢. Thus, it provides a principled
measure of the similarity of signals in the potent and null
subspaces. We used CCA to estimate the delay between
the null and potent latent activity during Baseline trials
within a motor planning window of duration 700 ms
following target presentation. We shifted the potent latent
activity relative to the null activity by a series of lags (-350
to 350 ms in 10ms steps) and performed CCA at each lag.
We identified the lag that maximized the correlation
between the activity in each subspace. We repeated this
analysis using a block of trials from the end of Force to
determine if the lags changed as a consequence of learning
(Fig. 6d).

Generalized Linear Models

In our analyses, we used GLMs to predict the spiking
activity of single neurons based on the activity of the
remaining population, as well as kinematic signals. We
trained Poisson Generalized Linear Models®” (GLMs) to
predict the spiking activity of individual neurons on a
single-trial basis®>. GLMs extend Gaussian multilinear
regression approaches to the Poisson statistics of neural
spiking. We took weighted linear combinations of the
desired covariates, xi, such as population spiking:

2i0ix; = X0 (6)
where X and @ are matrices containing all x; and 6,

respectively. The weighted covariates were passed through
an exponential inverse link function. The exponential
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provides a non-negative conditional intensity function A,
analogous to the firing rate of the predicted neuron:

AlX,0 = exp(X0) @)

The number of observed spikes, n, in any given time

bin is assumed to a Poisson process with an instantaneous
firing rate mean of A:

n|A ~ Poisson(A - dt) (8)

Covariate inputs to the GLMs

We binned the neural spikes at 50ms intervals and
downsampled the continuous kinematic signals to 20 Hz to
match the binned spikes and dimensionality-reduced latent
activity. We shifted the kinematic signals backwards in
time by three bins (150 ms) to account for transmission
delays between cortical activity and the motor output.
Previous studies have observed a broad range of delays®®,
so we convolved the kinematic signals with raised cosine
basis functions centered at 0 ms and -100 ms, adapting the
method of Pillow et al., where bases further back in history
become wider®L. By including these convolved signals as
inputs to our GLM maodels, we allowed the neurons to have
more flexible temporal relationships with the kinematics.
Note that all GLM models in the main text included the
same convolved endpoint position, velocity, and
acceleration signals as covariates. For Figure S7c,d, we
performed a control in which we repeated the GLM models
for the CF task using only the velocity inputs.

We trained two types of models: the Basic models
included only kinematic covariates, while the Full models
included both the kinematic covariates and the spiking
activity of the neural populations (Figure S5a). For the
GLM analysis with neural population latent activity as
inputs, we selected a dimensionality for M1 and chose the
PMd dimensionality to be twice this value. This decision
was to control for the number of inputs to the GLM when
analyzing the null and potent space activity. For the PMd-
M1 model, we identified the low-dimensional latent
activity in PMd (see above) and used these as inputs to the
GLM. For M1-M1 and PMd-PMd, we left out the single
predicted neuron and computed the latent activity using the
remaining neurons in that brain area. We then used these
signals to predict the activity of the left-out neuron. For
Pot-M1 and Null-M1, we projected the time-varying PMd
activity onto the axes for the potent and null subspace,
respectively (see above). We then used these time-varying

signals as inputs to GLMs to predict the spiking of M1
neurons. For the GLMs with single neuron inputs, we
trained three different types of Full models. M1sn-M1
models predicted the spiking activity of each M1 neuron
from the activity of all other M1 neurons recorded on the
same session, PMdsn-PMd models predicted the spiking
of each PMd neuron from all other PMd neurons, and
PMdsn-M1 models predicted M1 neurons using the
activity of all PMd cells. Since PCA captures population-
wide covariance patterns, we expected that this approach
would provide nearly identical results to the single neuron
models, and it was included primarily as a control.

Training the GLMs

We trained the models using the last 50% of Force or
Rotation when behavior was most stable, including only
trials in which the monkeys reached successfully to the
outer target (reward trials) (Figure S5d). This allowed us
to test the generalization of the GLMs between late and
early adaptation trials. For the CF, it was important to both
train and test the GLMs using trials from the Force epoch
to avoid extrapolating between the Null and CF conditions:
when we imposed the CF, it changed the relationship
between the kinematics and dynamics of limb movement.
Thus, if we trained the GLM on Baseline trials, the altered
relationship between kinematics and neural activity during
CF trials?® would lead to poor GLM generalization for all
models. By both training and testing within the Force
epoch, we avoided the problem of extrapolating to new
dynamics conditions. Although the VR sessions did not
have this problem, we adopted this same approach for the
sake of consistency. We performed an additional analysis
to look for deadaptation effects in Washout (Figures 5,7f).
The procedures were similar for this analysis, though we
trained the GLMs using Baseline data and then tested
using trials from early Washout.

We trained the models using a maximum likelihood
method (glmfit in Matlab, The Mathworks Inc). In the case
of our full population spiking models, we had dozens to
hundreds of covariate inputs for a single predicted output.
Although we had very large numbers of training datapoints
(typically on the order of 10,000 samples), there is the
possibility our models were impaired by overfitting. We
guarded against overfitting using ten-fold cross-validation
of our training dataset. We also repeated our analyses
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using Lasso GLM for regularization and observed nearly
identical results (data not shown). We thus chose to use the
non-regularized GLM for simplicity and to reduce the
computational load, since it did not impact our results.

Evaluating GLM performance

We evaluated GLM performance using a particular
formulation of the pseudo-R? (pR?). The pR? is analogous
to the R? commonly used in model-fitting with Gaussian
statistics, but it is generalized to incorporate the
approximate Poisson statistics of the neural spiking data:

(9)

The pR? finds the difference in log-likelihood
between the observed spiking data (n) and the model
predictions (1). This value is compared against the
difference in log-likelihood for the mean of the dataset (7).
We used the Likelihood (L) for Poisson data according to:

__logL(n)-log L)

2 —
PR® = log L(n)—log L(1)

T A?texp(—lt)

L = [1%., Poisson(n:|A,) = [T, (10)

ng!

And thus, the log-likelihood (log L) across all time

bins (t) of a given spike train is:
logL = YT_,(n;log A — A, — logn,!) (11)

Although the upper bound for pR? is one, poor model
fits can be less than zero. A pR? of one indicates a perfect
model fit, a value of zero indicates that the model
prediction performs as well as finding the mean of the data,
while values less than zero indicate that the model
performed worse than merely fitting the mean. pR? values
are smaller in magnitude than those typically found with
the Gaussian R2. When evaluating GLM fits on a block of
data, we used a bootstrapping procedure to resample the
data with 1,000 iterations to obtain 95% confidence
bounds on the pR? value. We considered a model fit to be
significant if this bootstrapped confidence interval was
above zero, indicating that the model helped to explain the
spiking activity.

For many analyses, we used the relative pseudo-R?
(rpR?), which directly compares two separate GLM
models. While pR? compared the log-likelihood of the
model predictions to the mean of the data, the rpR?
compares the predictions of a Full model to a Basic model
with fewer covariates®,

log L(n)—log L(AF)

2 - —1_
rpR#(Basic, Full) = 1 Tos L0m) 108 L(3p) (12)

Here, A, the Full model prediction, which includes
both the kinematics and the population spiking, is
compared to A, the prediction of the Basic model, which
includes only kinematics. This metric thus quantifies the
improvement in performance afforded by the additional
neuronal inputs. Positive values indicate that the Full
model performed better than the Basic model, while
negative values indicate that predictions were better with
kinematics alone. As with the pR?, we obtained confidence
bounds with a bootstrapping procedure and assessed
significance by determining if the lower bound was above
zero. This indicated that the addition of population spiking
added information over the kinematics alone, and thus
could be capturing statistical dependencies between the
population and the predicted cell.

For the time course of GLM model performance
plots, such as Figure 3f, we predicted neural spiking on
individual trials. However, single-trial predictions could
be quite noisy, particularly for neurons with relatively low
firing rates. For example, if a cell fired very few spikes on
a particular trial, the pR? may be quite low, even though
the model otherwise performed quite well when viewed
across all trials. To remove some of this variability for
purposes of visualization, we smoothed the trial-to-trial
predictions for each neuron (together with the overlaid
behavior) with a moving average. We chose a window of
30 trials, though we observed similar (but noisier) traces
even down to window sizes of 5-10 trials. Since there were
rapid behavioral improvements in the early trials, we
padded the beginning of the block of trials with NaNs, each
of a length of half of the window size. This helped to
prevent averaging out the changing behavioral effects,
with the tradeoff of increased noise. In practice, the
appearance of the figures was similar without this padding.

Selecting cells with significant population relationships

For most of our analyses, we studied cells that were
well-predicted by our GLMs. We determined this by two
main criteria using ten-fold cross-validation on the training
data. First, we required that the Basic pR? was significantly
above zero. This reduced the pool of candidate cells to 522
of 918 (57%) in M1 and 612 of 2221 (28%) in PMd, but
was necessary so that the rpR? would be well defined.
Qualitatively, we obtained similar results when we relaxed
this criterion to include more cells. We also required that

20


https://doi.org/10.1101/138743
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/138743; this version posted June 8, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-ND 4.0 International license.

the rpR? was significantly above zero. We only included
cells that were significantly above zero for all ten of the
folds for both pR? and rpR?. This conservative method
ensured that we only studied cells that were reliably
predicted.

Calculating GLM error

To compare performance of the different GLM
models, we first defined a fixed reference point of eight
consecutive trials in Late adaptation, which was close to
(but independent from) the trials from the second half of
adaptation that we used to train the GLMs (around 70 trials
from the start). On each trial, we computed the difference
in rpR? relative to this Late adaptation performance. To
account for inherent differences in performance of the
models, we normalized this difference by the rpR?
computed from the cross validated training set. Thus, the
model error metric represents the % change in
performance from Late to Early adaptation. Note that as
constructed, the model error is necessarily zero in Late
adaptation (such as when plotted in Figure 3g). This metric
provides a compact way to compare whether the models
performed worse during Early adaptation compared to
Late adaptation. For the Washout predictions, the rate of
deadaptation was faster than adaptation in either Force or
Rotation. Thus, the blocks of trials that we selected for the
Early and Late reference when testing the GLMs in

Washout were closer to each other in time than the blocks
we used for the Force or Rotation epochs.

Controls for the potent and null subspaces

For the PMd potent and null subspaces, we ensured
our results did not depend on the particular dimensionality
chosen. We repeated the full GLM analysis selecting
different M1 dimensionalities ranging from 5 to 20. We
enforced that PMd always had twice the number of
dimensions of M1 to control for the number of inputs to
the GLM models. We then trained the GLM models using
the methods described above and computed the model
error for each dimensionality (shown in Figure S7e).

Statistical tests

For the GLM models, we assessed the significance of
model fits empirically using a bootstrapping procedure on
cross-validated data as described above. Additionally, we
used two-sample statistical tests to compare the
distributions of pR? changes in Early and Late adaptation.
For Figures 3e and S5f, we used a Kolmogorov-Smirnov
test of the rpR? values. For the Model Error comparisons,
which summarized differences in the metric, we used a t-
test of the normalized change in rpR2. All tests were two-
sided.
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Figure S1 | Example neural activity before and after CF and VR adaptation. a) Trial-averaged firing rates for three example PMd (left) and M1
(right) neurons from the same CF session, for each of the eight targets. Neural activity was smoothed with a Gaussian kernel, aligned to the go cue
(indicated by the dot at the bottom of each panel), and averaged across reaches to each target during Baseline (black) and end of Force (red). b) Same

as Panel a, for a VR session.
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Figure S2 | Neural covariance during CF adaptation. a) Example position and velocity traces for reaches in a single target direction in Baseline
(black) and Force (red) for horizontal (solid) and vertical (dashed) axes. Traces are averaged across the last three successful reaches to the 135° target
in each epoch. b) For the same reaches as Panel a, example firing rates of two M1 neurons and three PMd neurons, where each axis is the firing rate of
a neuron and the firing rates are plotted as a function of time next to each axis. ¢) Covariance matrix relating the example neurons in Panel b before
and after adaptation. The covariance was computed using all eight target directions, but only a single direction is plotted in Panels aand b. d) Covariance
(see Methods) between all cells recorded on the same session as Panels a-d. We normalized the covariances such that the min and max for each neuron
spanned the full dynamic range, clustered the Baseline covariance, and kept the same order for all remaining plots. We compared two halves of Baseline
trials, the Washout trials, and split the Force epoch into two blocks to compare to the full set of Baseline trials. The M1 and PMd populations were
analyzed and plotted separately. e) Summary of covariance structure between BL and all other blocks for all combinations of neurons recorded in each
of the nine CF sessions. The r value for each plot indicates the Pearson’s correlation coefficient between the covariance values for the two task epochs.
The covariance was highly consistent throughout the task.
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Figure S3 | Neural covariance structure during adaptation for all sessions. a) Summary histograms of neural covariance similarity across all CF
sessions. Each count in the colored distributions corresponds to the population-wide Pearson’s r value, as shown in Figure S2e comparing each of the
four blocks of trials to Baseline, as well as comparisons within Baseline (white bars). The real data distributions strongly resemble the split Baseline
ones, indicating that the changes in covariance between Baseline and each of the Force and Washout bins are similar to the changes in covariance in
Baseline bins. Therefore, there were likely no adaptation-related changes in the population covariance structure. b) Same as Panel a to summarize
across all VR sessions. ¢) In order to correctly interpret the results of our study, it is important to discuss what “changes” occur in the output-null
subspace of PMd during CF adaptation. The degradation of the Null-M1 GLM model is not likely to be primarily due to a change in the orientation, or
“structure”, of the null subspace (see Figure S2, S3 and GLM results). Instead, PMd activity explores this subspace in a novel manner. In this cartoon,
we highlight the seemingly subtle but crucial distinction between these ideas. On the left panel, we show a 3-D “state space” for three neurons (N1,
N2, N3). For a Baseline reach to a single target, the activity of these neurons follows the black line as it evolves from movement preparation along the
null axis, and finally to movement initiation along the potent axis. This activity is confined to a 2-D manifold (gray plane). After CF adaptation, the
neural activity takes a different path (blue). However, critically, activity both before and after learning lie within the same Baseline manifold, which
has the same potent and null subspaces. The right panel offers an alternative possibility. The same Baseline reach and manifold is shown in gray.
However, during learning the orientation of the 2-D manifold could change (purple plane). Neural activity in the adapted reach is now constrained to
this new manifold. Our results are best viewed with the first (left panel) hypothesis: our within-area GLM models predicted well, and the covariance
structure in M1 and PMd did not change. These observations suggest that the neural covariance defining these manifolds was also unchanged. Thus,
as our monkeys learned, the null activity in PMd explored a fixed null subspace.
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Figure S4 | Calculation of the PMd null and potent subspaces. a) Example predictions (red) of the first eight principal components of M1 latent
activity (black) from the first sixteen principal components of PMd latent activity, with R2 quantifying quality of fit for a single session. b) Summary
of R? for predictions of each of the eight principal components of M1 latent activity across sessions (gray lines). Black line and shaded area indicate
and mean and standard deviation across sessions. ¢) We attempted to identify potent or null subpopulations of neurons using an index that quantified
the relative weights of each neuron onto the potent and null axes (see Methods). Values of 1 indicate the cell was exclusively potent, and values of -1
indicate the cell was exclusively null. The distribution of cells was centered around zero and virtually no cells had a null/potent index close to -1/ 1,
indicating that the potent and null subspaces captured population-wide features. d) The effect of population size on dimensionality for one example
session from Monkey C. We randomly subsampled the neural populations 100 times at fixed neuron counts and repeated the dimensionality analysis.
The result of each repetition is plotted as a mean and standard deviation. PMd (gray) was consistently higher dimensional than M1 (black).
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Figure S5 | GLM model performance. a) Schematic representation of the GLM models. The Basic model included only kinematic covariates (see
Methods), while the Full model included both kinematics and neural activity. The relative pseudo-R? metric was a comparison between these two
models. b) Distribution of cross-validated pseudo-R? values for predictions of all M1 neurons from all sessions with the Basic model (gray). Black
overlaid distribution shows cells with significant model fits selected for consideration in the later analyses (see Methods). c) Same as Panel b, but for
predictions of PMd neurons. d) Illustration of the training and testing process. Lines indicate the mean and standard deviation of behavioral error during
CF learning aligned on the first CF trial (left) or the last CF trial (right). The GLMs were trained using the end of learning data and tested during the
earlier adaptation period. ) Distribution of cross-validated relative pseudo-R? values for the five GLM models. f) Distribution of unprocessed rpR?
values for all predicted cells for the five GLM models during Early and Late CF adaptation. Only Null-M1 and PMd-M1 were significantly changed
between the two periods.
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Figure S6 | Monkey-specific GLM model performance. a) Formatted as Figure 3f, but for all neurons recorded on a single session from Monkey C.
The gray line shows a moving average behavioral error of the monkey on that session for the same trials. Note that this is the same session from Monkey
C as the previous example data, such as Figure S2. b-c) Same as Panel a, but for all sessions from Monkey C (b) and Monkey M (c). Since Monkey M
contained fewer neurons, predictions were considerably noisier and we had fewer predicted neurons to average over. Thus, we extended the moving
average window size to 50 trials to better illustrate the time course. d) Summary of model error distributions for Monkey C alone. Plotted are mean and
standard error for Early (left) and Late (right) trials for each of the five GLM models used. Asterisks indicate significant differences between the Early

(left connected bar) and Late (right connected bar) trials at p < 0.01 (two-sample t-test). e) Same as Panel d, but for Monkey M alone.
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Figure S7 | GLM controls. a) The distributions of change in rpR? for the curl field sessions, but without the normalization by the cross-validated
performance. The same significant effects are observed. b) Same as Panel a, but for the visuomotor rotation sessions. There were no significant
differences in the models. ¢) We repeated the GLM analysis using single neuron spiking as inputs, rather than the dimensionality-reduced population
activity. We computed models for M1 predicting M1 (M1-M1), PMd predicting PMd (PMdsn-PMd), and PMd predicting M1 (PMdsn-M1). The
Model Error distributions are summarized here for Monkey C (left) and Monkey M (right). Consistent with the results of Figures 3 and 4, only PMdsn-
M1 generalized poorly. d) Testing the Washout epoch performance for the single neuron models. The effect of de-adaptation is observed in the curl
field task for PMdsn-M1 only, and no change was observed in the visuomotor rotation task. €) Comparison of GLM performance error between early
CF (left bars) and late CF trials (right bars) for Pot-M1 and Null-M1 as a function of the selected dimensionality. Asterisks indicate significance at p
< 0.01 (two-sample t-test) for comparison between Early (left) and Late (right) for each model. The results for a dimensionality of eight plotted here
are the same as in Figure 3d. Our primary effect that Pot-M1, and not Null-M1, generalizes to early CF trials held for a wide range of dimensionalities.
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