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Abstract 
Parallel single-cell sequencing protocols represent powerful methods for investigating 

regulatory relationships, including epigenome-transcriptome interactions. Here, we report a 

novel single-cell method for parallel chromatin accessibility, DNA methylation and 

transcriptome profiling. scNMT-seq (single-cell nucleosome, methylation and transcription 

sequencing) uses a GpC methyltransferase to label open chromatin followed by bisulfite and 

RNA sequencing. We validate scNMT-seq by applying it to differentiating mouse embryonic 

stem cells, finding links between all three molecular layers and revealing dynamic coupling 

between epigenomic layers during differentiation. 
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Introduction 
Understanding regulatory associations between the epigenome and the transcriptome 

requires simultaneous profiling of multiple molecular layers. Previously, such multi-omics 

analyses have been limited to bulk assays, which profile ensembles of cells. These methods 

have been applied to study variation across individuals1, cell type2 or conditions by assessing 

links between different molecular layers. With rapid advances in single-cell technologies, it is 

now possible to leverage variation between single cells to probe regulatory associations within 

and between molecular layers. For example, we and others have established protocols that 

allow the methylome and the transcriptome or, alternatively, the methylome and chromatin 

accessibility to be assayed in the same cell3, 4, 5, 6, 7. However, it is well known that DNA 

methylation and other epigenomic layers, including chromatin accessibility, do not act 

independently of one another8. Consequently, the ability to profile, at single cell resolution, 

multiple epigenetic features in conjunction with gene expression will be critical for obtaining a 

more complete understanding of epigenetic dependencies and their associations with 

transcription and cell states9. 

To address this, we have developed a method that enables the joint analysis of the 

transcriptome, the methylome and chromatin accessibility. Our approach builds on previous 

parallel protocols such as single-cell methylation and transcriptome sequencing (scM&T-

seq3), in which physical separation of DNA and RNA is performed prior to a bisulfite conversion 

step and the cell’s transcriptome is profiled using a conventional Smartseq2 protocol10.  To 

measure chromatin accessibility together with DNA methylation, we adapted Nucleosome 

Occupancy and Methylation sequencing (NOMe-seq)11, where a methyltransferase is used to 

label accessible (or nucleosome depleted) DNA prior to bisulfite sequencing (BS-seq), which 

distinguishes between the two epigenetic states. In mammalian cells, cytosine residues in 

CpG dinucleotides can be abundantly methylated, whereas cytosines followed by either 

adenine, cytosine or thymine (collectively termed CpH) are methylated at a much lower rate12. 

Consequently, by using a GpC methyltransferase (M.CviPI) to label accessible chromatin, 

NOMe-seq can recover endogenous CpG methylation information in parallel. NOMe-seq is 

particularly attractive for single-cell applications since, contrary to count-based assays such 

as ATAC-seq or DNase-seq, the GpC accessibility is encoded through the bisulfite conversion 

and hence inaccessible chromatin can be directly discriminated from missing data. 

Importantly, this implies that the coverage is not influenced by the overall accessibility, so 

lowly accessible sites will not suffer from increased technical variation compared to highly 

accessible sites. Additionally, the resolution of the method is determined by the frequency of 

GpC sites within the genome (~1 in 16bp), rather than the size of a library fragment (>100bp). 

Recently developed single-cell NOMe-seq protocols have been applied to assess cell-to-cell 
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variance in CTCF footprinting6 and to map chromatin remodeling during preimplantation 

development7. However, no method that combines RNA-seq with chromatin accessibility 

profiling in the same cells (with or without DNA methylation) has been reported to-date, which 

is critical for studying interactions between the epigenome and the transcriptome. 

Results 
To validate scNMT-seq, we applied the method to a batch of 70 serum-grown EL16 mouse 

embryonic stem cells (ESCs), together with four negative (empty wells) and three scM&T-seq 

controls (cells processed using scM&T-seq, i.e., without M.CviPI enzyme treatment). This 

facilitates direct comparison with previous methods for assaying DNA methylation and 

transcription in the same cell3, 12, as well as providing a control of bisulfite conversion efficiency 

within the experiment. We isolated cells into methyltransferase reaction mixtures using FACS, 

followed by the physical separation of the DNA and RNA prior to BS-seq and RNA-seq library 

preparation (see Fig. 1a for an illustration of the protocol). Alignment of the BS-seq data and 

other bioinformatics processing can be carried out using established pipelines, with the 

addition of a filter to discard G-C-G positions, for which it is intrinsically not possible to 

distinguish endogenous methylation from in vitro methylated bases (21% of CpGs genome-

wide). Similarly, we discard C-C-G positions to mitigate against possible off-target effects of 

the enzyme11 (27% of CpGs). In total, 61 out of 70 cells processed using scNMT-seq passed 

quality control for both BS-seq and RNA-seq (Methods). 

The requirement to filter out C-C-G and G-C-G positions from the methylation data reduces 

the number of genome-wide cytosines that can be assayed from 22 million to 11 million. 

However, despite this, a large proportion of genomic loci with regulatory roles, such as 

promoters and enhancers, can in principle be assessed by scNMT-seq (Fig. 1b). Consistent 

with this, we observed high empirical coverage for methylation: a median of ~50% of 

promoters, ~75% of gene bodies and ~25% of active enhancers are captured in a typical cell 

by at least 5 cytosines (Fig. 1c, Supplementary Fig. 1a). We also compared the methylation 

coverage to data from our previous BS-seq protocols that did not incorporate a DNA 

accessibility component3, again finding only small differences in coverage, albeit these 

became more pronounced when down-sampling the total sequence coverage (Supplementary 

Fig. 1b). Computational methods for imputing these missing values could help to further 

mitigate these differences13. Due to the higher frequency of GpC compared to CpG 

dinucleotides in the mouse genome, accessibility coverage was larger than that observed for 

endogenous methylation (Fig. 1b, c and Supplementary Fig. 1a). Using our data, a median of 

~85% of gene bodies and ~75% of promoters could be probed for DNA accessibility, the 

highest coverage achieved by any single-cell accessibility protocol to date (9.4% using 

scATAC-seq14, and with scDNase-seq, ~50% of genes >1 RPKM, >80% of genes >3 RPKM15).  
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This coverage also compares favourably with other single-cell NOMe-seq methods developed 

in parallel, which report GpC site coverages of 2.9%6 and 10%7 compared to 15% using 

scNMT-seq. 

 
Figure 1. scNMT-seq overview and genome-wide coverage. (a) Protocol overview. Single-cells are lysed and 

accessible DNA is labelled using GpC methyltransferase. RNA is then separated and sequenced using Smart-

seq2, whilst DNA undergoes scBS-seq library preparation and sequencing. Methylation and chromatin accessibility 

data are separated bioinformatically. (b) Theoretical maximum CpG coverage of genomic contexts with known 

regulatory roles. Shown is the proportion of loci in different contexts that contain at least 5 cytosines. ‘All CpG’ 

considers any C-G dinucleotides (e.g. as in scBS-seq), ‘NOMe-seq CpG’ considers A-C-G and T-C-G trinucleotides 

and ‘NOMe-seq GpC’ considers G-C-A, G-C-C and G-C-T trinucleotides. (c) Empirical coverage in 61 mouse ES 

cells considering the same contexts as in b. Shown is the coverage distribution across cells after QC; box plots 

show median coverage and the first and third quartile, whiskers show 1.5 x the interquartile range above and below 

the box. (d) CpG methylation and GpC accessibility profiles at published DNase hypersensitive sites18. The profiles 

were computed as a running average in 50bp windows. Shading denotes standard deviation across cells. (e) CpG 

methylation and GpC accessibility profiles at gene promoters. Promoters are stratified by average expression level 

of the corresponding gene (log normalised counts less than 2 (low), between 2 and 6 (medium) and higher than 6 

(high). The profile is generated by computing a running average in 50bp windows. 

 

Next, we examined accessibility levels at loci with known regulatory roles. We found that 

accessibility was increased at known DNaseI hypersensitivity sites, super enhancer regions 

and binding sites for transcription factors and other DNA binding proteins (from published 

ChIP-seq data, Fig. 1d, Supplementary Fig. 2). As, a control, we included cells which did not 
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receive enzyme treatment (scM&T-seq controls) and these cells showed universally low GpC 

methylation levels (~2%), with no enrichment at regulatory regions, indicating that the 

accessibility data are not affected by endogenous GpC methylation (Supplementary Fig. 3). 

We next stratified loci and cells based on the expression level of the nearest gene (based on 

the RNA data from the corresponding cell). In agreement with previous studies8, we observed 

that highly-expressed genes were associated with increased accessibility at promoters and at 

nearby regulatory sites, whereas lowly-expressed genes were associated with reduced 

accessibility (Fig. 1e; Supplementary Fig. 4).  

Next, to assess the quality of data obtained using scNMT-seq, we compared the 

transcriptome, methylome and accessibility profiles to published datasets. When considering 

the RNA-seq component, dimensionality reduction16 and hierarchical clustering revealed that 

cells cluster by condition and not by protocol (Supplementary Fig. 5). We next compared the 

methylome obtained from scNMT-seq to single-cell libraries profiled using scM&T-seq3, scBS-

seq12 and bulk BS-seq17, finding that most of the cell-to-cell variation is not attributed to 

protocol or study but to changes in the mean methylation rate (first principal component, 51% 

variance) (Supplementary Fig. 6). To validate the accessibility measurements, we generated 

a synthetic pseudo-bulk dataset by merging data from all cells, which we compared to 

published bulk DNase-seq data from the same cell type18. Globally, we observed high 

consistency between datasets (Relative accessibility profiles, Pearson R = 0.74, 

Supplementary Fig. 7). A notable difference was that scNMT-seq data captured, within single 

cells, oscillating profiles with peaks spaced ~180 to ~200bp apart, indicating the positions of 

nucleosomes (Fig. 1d,e and Supplementary Fig. 8), which is consistent with accessibility 

profiles obtained using bulk NOMe-seq11, demonstrating high resolution of our accessibility 

measurements.  

As a final quality assessment, we analysed associations between molecular layers within 

individual cells (across all genes), which is similar to approaches used to investigate linkages 

using bulk data (see Fig. 2 upper panel for a graphical representation). Reassuringly, this 

confirmed the expected positive correlations between accessibility and expression17 as well 

as negative correlations for methylation with transcription19 and methylation with accessibility8 

(Fig. 2, lower panel), indicating that our method recapitulates, within single cells, known trends 

from bulk results. 
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Figure 2. scNMT-seq recapitulates known global associations between molecular layers. Upper panel shows 

an illustration of the computation of the correlation across genes (one association test per cell). Left is CpG 

methylation and RNA expression associations, middle is CpG methylation and GpC accessibility associations, and 

right is GpC accessibility and RNA expression associations. Red circles represent CpG methylation levels, blue 

circles represent GpC accessibility levels and yellow polyA tails represent RNA abundance. Lower panel shows 

the Pearson correlation coefficients between molecular layers at different genomic contexts in the ESC data. Box 

plots show the distribution of correlation coefficients in single cells. Boxes display median coverage and the first 

and third quartile, whiskers show 1.5 x the interquartile range above and below the box. Dots show the correlation 

coefficient in the pseudo-bulked data estimated as average across all single-cells. Stars show the correlation 

coefficient using published bulk data from the same cell type17, 18.  

 

Taken together, these results demonstrate that our method is able to robustly profile gene 

expression, DNA methylation and chromatin accessibility within the same single cell. 

Having established the efficacy of our method, we next explored its potential for identifying 

loci with coordinated epigenetic and transcriptional heterogeneity. To obtain a dataset with a 

larger degree of heterogeneity than observed in ES cells, we prepared a second dataset 

obtained from serum grown ES cells that we removed from LIF for 3 days to initiate 

differentiation into embryoid bodies (EBs). We sequenced 43 cells, which clearly clustered into 

two sub-populations based on RNA-seq profiles, corresponding to pluripotent and 

differentiating states (Supplementary Fig. 9). First, we examined cell-to-cell variance in the 

methylation data, finding that enhancers and Nanog binding sites were associated with the 

largest methylation heterogeneity, which is in agreement with previous ES cell data3, 12 

(Supplementary Fig. 10a, 10b). Conversely, variability in accessibility rates was either at 

similar levels to the background or, in the case of promoters, CGIs, active enhancers, and 

gene bodies, found to be reduced relative to the background (Supplementary Fig. 10c, 10d). 

This could indicate that there are genomic elements which limit variability of chromatin 

accessibility, such as CGIs most of which in a cell are constitutively accessible 20. 
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Subsequently, we tested locus-specific associations between different pairwise combinations 

of molecular layers (Fig. 3a), which is distinct from the correlations across genes used for 

quality control above and is enabled by parallel single-cell measurements in multiple cells. 

This analysis can be used to discover individual genes and loci with coordinated heterogeneity 

across pairs of molecular layers. First, considering associations between methylation and 

transcription, we identified a minimum of 3 (exons) and a maximum of 47 (gene bodies) 

associations (FDR<0.1, Fig. 3a, Supplementary Fig. 11a, Methods). The majority of these 

associations were negative, reflecting the known relationship between these two layers. In 

contrast, we found that associations between DNA accessibility and transcription were less 

widespread, with a small number of mostly positive associations in promoters, p300 binding 

sites and super enhancer regions (13 associations total, FDR< 0.1, Fig. 3a, Supplementary 

Fig. 11b). Low numbers of correlated accessibility – expression could indicate that 

transcriptional changes in this population are more dependent on DNA methylation changes 

than chromatin accessibility changes and this is in agreement with the results presented in 

Fig. 2. Finally, for methylation-accessibility, we found associations at most genomic contexts, 

with up to 89 significant correlations (introns) and these tended to be negative as expected 

(Fig. 3a, Supplementary Fig. 11c). 

As an illustrative example, Fig. 3b displays the Esrrb locus, a gene we find to be expressed 

primarily in the pluripotent cells (Supplementary Fig. 9), and which displays a strong 

correlation between methylation and expression in super enhancer regions, replicating 

previous findings3. Mean methylation and accessibility rates along the gene showed clear 

differences between the two sub-populations of cells identified, which were largest at 

regulatory elements. While the super enhancers showed the strongest negative correlation 

between methylation and transcription, a strong positive correlation was found in the promoter 

between accessibility and transcription. Similarly, Supplementary Fig. 12 shows the Prtg 

locus, a known neuroectoderm marker21, which is expressed primarily in differentiated cells 

(Supplementary Fig. 9), again showing marked epigenetic differences between the two cell 

populations. 
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Figure 3. scNMT-seq enables the discovery of novel associations at individual loci. (a) Left panel shows an 

illustration for the correlation analysis across cells, which results in one association test per locus. The right panel 

shows the Pearson correlation coefficient (x-axis) and log10 p-value (y-axis) from association tests between 

different molecular layers at individual loci, stratified by genomic contexts. Significant associations (FDR<0.1, 

Benjamini-Hochberg adjusted), are highlighted in red. The number of significant positive (+) and negative (−) 

associations and the number of tests (centre) are indicated above. (c) Zoom-in view of the Esrrb gene locus. Shown 

from top to bottom are: Pairwise Pearson correlation coefficients between each pair of the three layers (Met, 

methylation; Acc, accessibility; Expr, expression). Accessibility (blue) and methylation (red) profiles shown 

separately for pluripotent and differentiated sub-populations; mean rates (solid line) and standard deviation (shade) 

were calculated using a running window of 10kb with a step size of 1000bp; Track with genomic annotations, 

highlighting the position of regulatory elements: promoters, super enhancers, and p300 binding sites. 

Inspection of accessibility data at the single GpC level reveals complex patterns due to 

presence of nucleosomes (Fig. 1d and 1e), which are not appropriately captured by rate 

parameters calculated in predefined windows. The prevalence of these oscillatory patterns 

prompted us to reconstruct the DNA accessibility profiles in individual cells at a locus level, by 

adapting a statistical model initially developed for DNA methylation profiles22. As expected, 

the single-cell profiles at gene promoters were more predictive of gene expression than 

conventional accessibility rates (Supplementary Fig. 13), and these captured characteristic 

patterns of nucleosome depleted regions at transcription start sites and cell-to-cell variation in 

both the position and the number of nucleosomes (see Supplementary Fig. 14). 

Next, we exploited the reconstructed profiles to quantify the level of heterogeneity of chromatin 

accessibility at transcription start sites. For each gene, we clustered the cells based on the 
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similarity of the accessibility profiles and we estimated the most likely number of clusters 

(Methods). Subsequently, we stratified genes by the number of clusters estimated by our 

model, which we considered as a measure of accessibility heterogeneity (Fig 4a). This 

revealed that genes with homogeneous accessibility profiles (fewer clusters) were associated 

with higher average expression levels (Fig. 4b) and were enriched for gene ontology terms 

linked to house-keeping functions, such as regulation of gene expression, rRNA processing 

and splicing (Fig 4d). Examples of genes with a single cluster are shown in Supplementary 

Fig. 15 and examples of genes with two differentially expressed clusters are shown in 

Supplementary Fig. 16. In contrast, genes with heterogeneous accessibility (multiple clusters) 

were associated with low expression levels and were enriched for bivalent promoters 

containing both active H3K4me3 and repressive H3K27me3 histone marks (Fig. 4c). The 

increased bivalency was independent of the mean expression level of the gene 

(Supplementary Fig. 17).   

 

Figure 4. Modelling chromatin accessibility profiles at gene promoters in single cells. (a) Accessibility 

profiles for each cell and gene are fitted at a single nucleotide resolution (+-200bp around the TSS), followed by 

clustering of profiles for each gene to estimate the most likely number of clusters. Genes with higher numbers of 

clusters correspond to genes with increased heterogeneity compared to genes with small numbers of clusters. (b) 

Relationship between heterogeneity in the accessibility profile and gene expression. Boxplots show the distribution 

of average gene expression levels for genes with increasing numbers of accessibility clusters. Upper and lower 
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hinges display third and first quartiles; the bar displays the median and the whiskers 1.5 times the inter-quartile 

range above and below the boxes. (c) Proportion of gene promoters marked with H3K4me3 and/or H3K27me3 

stratified by number of accessibility clusters. Promoters with high levels of accessibility heterogeneity are 

associated with the presence of bivalent histone marks (both H3K4me3 and H3K27me3). (d) Gene ontology terms 

significantly enriched in genes with most homogeneous accessibility profiles (K=1).   

One of the most interesting opportunities of scNMT-seq is to link epigenetic properties to the 

transcriptomic profile along dynamic trajectories of different cell states. To explore this, we 

used the RNA-seq component to reconstruct a pseudotemporal ordering of the cells from 

pluripotent to differentiated cell states (Fig. 5a, Methods). We then tested for coordinated 

changes between the accessibility profiles and the cellular position in the differentiation 

trajectory, which identified a set of 15 genes that showed a coherent dynamic pattern 

(Supplementary Fig. 18, Methods). Fig. 5b depicts two representative genes: Efhd1, a gene 

that displays a transition from a state with an open transcription start site (TSS) to a state with 

a closed TSS; and Rock2, with a similar transition on the +1 nucleosome after the TSS. 

Supplementary Fig. 19 shows additional examples of genes with associations between 

accessibility profile and pseudotime trajectory. 

Finally, we investigated whether dynamic changes in the coupling between the epigenetic 

layers are observed along the differentiation trajectory. To this end, we plotted methylation-

accessibility correlation coefficients (as calculated in Fig. 2a) against pseudotime, which 

revealed an increasing negative correlation coefficient between DNA methylation and 

accessibility in practically all genomic contexts (Fig. 5c). Notably, this suggests that the 

coupling between the epigenetic layers increases as cells commit to downstream lineages, 

which could be an important step in lineage priming. Importantly, this analysis was made 

possible by the continuous nature of the single-cell pseudotime ordering and the ability to 

profile the three molecular layers and highlights the utility of such parallel single-cell 

techniques.  

In conclusion, we have described a method for parallel single-cell DNA methylation, gene 

expression and high-resolution chromatin accessibility measurements and report novel 

associations between each molecular layer. We additionally show that our method can be 

used to dissect the dynamics of epigenome interactions during a developmental trajectory. 

This method will greatly expand our ability to investigate relationships between the epigenome 

and transcriptome in heterogeneous cell types and across developmental and other cell fate 

transitions. 
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Figure 5. Using scNMT-seq to explore dynamics of the epigenome during differentiation. (a) Embryoid body 

cells ordered in a developmental trajectory inferred from the RNA-seq data. Shown is the location of each cell in 

pseudotime (x axis) versus the expression level of Esrrb (y axis). (b) Reconstructed dynamics of variation in 

chromatin accessibility profiles across the developmental trajectory. Shown are profiles of representative cells for 

Rock2 and Efhd1. Axis ticks display -200bp, 0bp and +200bp relative to the TSS. Shading is used to highlight 

changes between cells. (c) Developmental trajectory is associated changes in genome-wide methylation-

accessibility coupling. Shown is the location of each cell in pseudotime (x axis) and the corresponding Pearson 

correlation coefficients between methylation and accessibility (y axis) in different genomic contexts. 
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Methods  

Cell culture 

El16 mESCs were derived from a 129xCast/129 embryo previously23 and cultured in serum 

containing media (DMEM 4,500 mg/l glucose, 4 mM L-glutamine, 110 mg/l sodium pyruvate, 

15% fetal bovine serum, 1 U/ml penicillin, 1 μg/ml streptomycin, 0.1 mM nonessential amino 

acids, 50 μM β-mercaptoethanol, and 103 U/ml LIF ESGRO) without feeders3. E14 mESCs 

(the E14 cell line was a generous gift from A. Smith) were cultured as EL16 then seeded into 

low attachment plates at 1000 cells mL-1 in serum media without LIF for 3 days before 

collection. Single cells were collected by FACS, selecting for live cells and low DNA content 

(i.e., G0 or G1 phase cells) using ToPro-3 and Hoechst 33342 staining 3to select for live cells 

with low DNA content (i.e. G0 or G1 phase cells). The cell lines were subjected to routine 

mycoplasma testing using the MycoAlert testing kit (Lonza). 

Library preparation 

Cells were collected directly into 2.5μl methyltransferase reaction mixture which was 

comprised of 1x M.CviPI Reaction buffer (NEB), 2U M.CviPI (NEB), 160 μM S-

adenosylmethionine (NEB), 1U μl-1 RNAsein (Promega), 0.1% IGEPAL (Sigma) then 

incubated for 15 minutes at 37°C. The reaction was stopped and the RNA preserved with the 

addition of 5μl RLT plus (Qiagen) prior to scM&T-seq library preparation according to the 

published protocols for G&T-seq24, 25 and scBS-seq26 2527with minor modifications. Briefly, 

mRNA was captured using Smart-seq2 oligo-dT pre-annealed to magnetic beads (MyOne C1, 

Invitrogen). The lysate containing the gDNA was transferred to a separate PCR plate and the 

beads were washed three times in 15μl of 1x FSS buffer (Superscript II, Invitrogen), 10mM 

DTT, 0.005% tween-20 (Sigma) and 0.4U μl-1 of RNAsin (Promga). After each wash, the 

solution was transferred to the DNA plate to maximise recovery. The beads were then 

resuspended in 10 μl of reverse transcriptase mastermix (100 U SuperScript II (Invitrogen), 

10 U RNAsin (Promega) 1x Superscript II First-Strand Buffer, 2.5mM DTT (Invitrogen), 1M 

betaine (Sigma), 9mM MgCl2 (Invitrogen), 1 uM Template-Switching Oligo (Exiqon), 1mM 

dNTP mix (Roche)) and incubated on a thermocycler for 60 min at 42 °C followed by 30 min 

at 50 °C and 10 min at 60 °C. PCR was then performed by adding 11 μl of 2x KAPA HiFi 

HotStart ReadyMix and 1μl of 2 uM ISPCR primer and cycling as follows: 98 °C for 3 min, then 

18 cycles of 98 °C for 15 s, 67 °C for 20 s, 72 °C for 6 min and finally 72 °C for 5 min. cDNA 

was purified using a 1:1 volumetric ratio of Ampure Beads (Beckman Coulter) and eluted into 

20μl of water. Libraries were prepared from 100 to 400pg of cDNA using the  Nextera XT Kit 

(Illumina), per the manufacturer's instructions but with one-fifth volumes. In parallel, the 

genomic DNA was purified with a 0.8:1 volumetric ratio of Ampure XP Beads (Beckman 
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Coulter) and eluted into 10μl of water. Bisulfite conversion was carried out using EZ 

Methylation Direct MagBead kit (Zymo) according the manufacturers’ instructions but with half 

volumes. Converted DNA was eluted into 40μl of first strand synthesis mastermix (1x Blue 

Buffer (Enzymatics), 0.4mM dNTP mix (Roche), 0.4uM 6NF oligo (IDT) then heated to 65°C 

for 3 minutes and cooled on ice. 50U of klenow exo- (Enzymatics) was added and the mixture 

incubated on a thermocycler at 37°C for 30 minutes after slowly ramping from 4°C. First strand 

synthesis was repeated 4 more times with the addition of 0.25 μl of reaction mixture (1x blue 

buffer, 0.25mM dNTPs, 10mM 6NF oligo and 25U klenow exo-). Reactions were diluted to 

100μl and 20U of exonuclease I (NEB) added and incubated at 37°C before purification using 

a 0.75:1 ratio of AMPure XP beads. Purified products were resuspended in 50μl of second 

strand mastermix (1x Blue Buffer (Enzymatics), 0.4mM dNTP mix (Roche), 0.4uM 6NF oligo 

(IDT) then heated to 98°C for 2 minutes and cooled on ice. 50U of klenow exo- (Enzymatics) 

was added and the mixture incubated on a thermocycler at 37°C for 90 minutes after slowly 

ramping from 4°C. Second strand products were purified using a 0.75:1 ratio of AMPure XP 

beads and resuspended in 50μl of PCR mastermix (1x KAPA HiFi Readymix, 0.2uM PE1.0 

primer, 0.2uM iTAG index primer) and amplified with 14 cycles. Finally, scBS-seq libraries 

were purified using a 0.7:1 volumetric ratio of AMPure XP beads before pooling and 

sequencing. 

Sequencing 

EL16 serum ES cells 

20 of the BS-seq libraries, including 3 negative controls, were initially sequenced on a 50bp 

single-end MiSeq run to assess quality. The negative controls were found to have substantially 

reduced mapping efficiencies compared to the single cell samples (mean of 2.7% compared 

to 36.8%). All single-cell BS-seq libraries were subsequently sequenced to a mean depth of 

16.1 million paired-end reads and RNA-seq libraries were sequenced to a mean depth of 2.0 

million paired-end reads. Both sets of libraries were sequenced on HiSeq 2500 instruments 

using v4 reagents and 125bp read length. 

E14 embryoid body cells 

48 BS-seq libraries were sequenced as a multiplex on one 75bp PE high-output run on an 

Illumina NextSeq500 with a mean sequencing depth of 9.6 million per cell. RNA-seq libraries 

were sequenced on an Illumina NextSeq500 with a mean depth of 1.0 million 75 bp single-

end reads per cell. 
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Data processing 

BS-seq alignment 

Single-cell bisulfite libraries were processed using Bismark28 as described26 with the additional 

--NOMe option in the coverage2cytosine script which produces CpG report files containing 

only A-C-G and T-C-G positions and GpC report files containing only G-C-A, G-C-C and G-C-

T positions.   

RNA-seq alignment  

Single-cell RNA-seq libraries were aligned using HiSat229 using options --dta --sp 1000,1000 

--no-mixed --no-discordant for the paired-end ES cell libraries and --dta --sp 1000,1000 for the 

single-end EB cell libraries. 

Quality control – RNA-seq 

For the EL16 serum grown ES cells, we discarded cells that had (1) less than 300,000 reads 

mapped (2) more than 15% of total reads mapped to mitochondrial genes, (3) less than 2,000 

genes expressed. In total, 68 cells passed the quality control (Supplementary Fig. 20a).  

For the E14 embryoid body cells, we used a lower read-depth cut-off due to the lower 

sequencing depth employed, discarding cells that had (1) less than 100,000 reads mapped 

(2) more than 15% of total reads mapped to mitochondrial genes, (3) less than 2,000 genes 

expressed. In total, 46 cells passed the quality control (Supplementary Fig. 20b).  

Quality control – BS-seq 

For the EL16 serum grown ES cells, we discarded cells that had (1) less than 10% mapping 

efficiency (2) less than 500,000 CpG sites or 5,000,000 GpC sites covered. We additionally 

excluded one cell with unusually high CpG coverage (>5M) and low duplication (26%) as a 

possible doublet. In total, 64 cells out of 73 passed the quality control (Supplementary Fig. 

21a). All 64 cells also passed RNA-seq QC (88%) and these comprised 61 scNMT-seq cells 

and 3 scM&T-seq cells. 

For the E14 EB cells, we again used a lower coverage cutoff due to lower sequencing depth, 

discarding cells that had (1) less than 10% mapping efficiency (2) less than 300,000 CpG sites 

covered. In total, 40 cells passed the quality control (Supplementary Fig. 21b), all of which 

also passed RNA-seq QC and comprised 33 scNMT-seq cells and 7 scM&T-seq cells. 

CpG Methylation and GpC accessibility quantification 

Following the approach of Smallwood et al12, individual CpG or GpC sites in each cell were 

modelled using a binomial model where the number of successes is the number of reads that 

support methylation and the number of trials is the total number of reads. A CpG methylation 

or GpC accessibility rate for each site and cell was calculated by maximum a posteriori 
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assuming a beta prior distribution. Subsequently, CpG methylation and GpC accessibility rates 

were computed for each genomic feature assuming a normal distribution across cells and 

accounting for differences in the standard errors of the single site estimates. 

RNA quantification 

Gene expression counts were quantified from the mapped reads using featureCounts30. Gene 

annotations were obtained from Ensembl version 8731. Only protein-coding genes matching 

canonical chromosomes were considered. Following32 the count data was log-transformed 

and size-factor adjusted based on a deconvolution approach that accounts for variation in cell 

size33. 

Statistical analysis 

Methylation and accessibility pseudo-bulk profiles 

Methylation and accessibility profiles were visualised by taking predefined windows around 

the genomic context of interest. For each cell and feature, methylation and accessibility values 

were averaged using running windows of 50 bp. The information from multiple cells was 

combined by calculating the mean and the standard deviation for each running window. Genes 

were split into three classes according to a histogram of the log2 normalised counts (x): Low 

(x<2), Medium (2<x<6) and High (x>6). All genomic features were associated to the closest 

gene within a 5kb window (upstream and downstream of gene start and stop). 

Single-cell accessibility profiles 

Accessibility profiles were constructed within each cell and gene in +/-200bp windows around 

the TSS (as displayed in Fig 5b and Supplementary Fig. 14, 15 and 16) using a generalised 

linear model (GLM) of basis function regression coupled with a Bernoulli likelihood using 

BPRMeth22. We only considered genes that were covered in at least 40% of the cells with a 

minimum coverage of 10 GpC sites. Subsequently, we clustered the profiles for each gene by 

fitting a finite mixture model using an expectation–maximization (EM) algorithm. We estimated 

the most likely number of clusters based on the Bayesian Information Criterion (BIC). The 

number of clusters was used as a measure of cell-to-cell variation in the accessibility profile; 

the rationale being that homogeneous profiles will be grouped in a single cluster, while regions 

with heterogeneous profiles will be assigned a higher number of clusters. Gene Ontology 

enrichment was performed for the different clusters using Fisher's exact test. The p-values 

where corrected by multiple testing using False Discovery Rate. 

Predicting expression 

To compare the performance of using accessibility rates versus profiles for predicting gene 

expression levels we used the same approach described in22. We first computed the 

accessibility rates and profiles for each gene and cell. Then, for each cell, we used the fitted 
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values as input features to a regression model with the gene expression levels as the response 

variable. To measure the accuracy of the model we computed the Pearson's correlation 

coefficient between the observed and predicted expression levels (Supplementary Fig. 13a) 

To account for the different number of features used in the two models (i.e. rate vs profile 

features) we also computed the adjusted R2 (Supplementary Fig. 13b) 

Correlation analysis 

For the correlation analysis across cells, genes with low expression levels and low variability 

were discarded, according to the rationale of independent filtering34. Only the top 50% of the 

most variable loci were considered for analysis and a minimum number of 20 cells was 

required to compute a correlation. A minimum coverage of 3 sites was required per feature. 

All genomic features were associated to the closest gene within a 10kb window (upstream and 

downstream of gene start and stop). Following our previous approach3, we tested for linear 

associations by computing a weighted Pearson correlation coefficient, thereby accounting for 

differences in the coverage between cells. When assessing correlations between GpC 

accessibility with CpG methylation, we used the average CpG methylation coverage as a 

weight. Two-tailed Student’s t-tests were performed to test for nonzero correlation, and P-

values were adjusted for multiple testing for each context using the Benjamini-Hochberg 

procedure. For promoter annotations, we used a small window for accessibility (+/- 50bp) to 

focus our analysis on the transcription start site whereas for methylation we considered a 

larger window (+/- 2kb). This choice was informed by pseudo-bulking the single-cell data and 

computing the correlation between accessibility/methylation and gene expression (across 

genes) for small 50bp windows along the promoter, finding that the strongest signal fell within 

our chosen range (Supplementary Fig. 22). 

Pseudotemporal ordering of cells 

Cells were ordered along a putative developmental trajectory (pseudotime) with the destiny 

package 35, using the top 500 genes with most biological overdispersion as estimated by the 

scran package. 

 

Code availability 

All R code is available from https://github.com/PMBio/scNMT-seq/ 

Data availability 

Raw sequencing data together with processed files (RNA counts, CpG methylation reports, 

GpC accessibility reports) are available in the Gene Expression Omnibus under accession 

GSE109262. 
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