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Abstract

Parallel single-cell sequencing protocols represent powerful methods for investigating
regulatory relationships, including epigenome-transcriptome interactions. Here, we report a
novel single-cell method for parallel chromatin accessibility, DNA methylation and
transcriptome profiling. scNMT-seq (single-cell nucleosome, methylation and transcription
sequencing) uses a GpC methyltransferase to label open chromatin followed by bisulfite and
RNA sequencing. We validate scNMT-seq by applying it to differentiating mouse embryonic
stem cells, finding links between all three molecular layers and revealing dynamic coupling

between epigenomic layers during differentiation.
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Introduction
Understanding regulatory associations between the epigenome and the transcriptome

requires simultaneous profiling of multiple molecular layers. Previously, such multi-omics
analyses have been limited to bulk assays, which profile ensembles of cells. These methods
have been applied to study variation across individuals?, cell type? or conditions by assessing
links between different molecular layers. With rapid advances in single-cell technologies, it is
now possible to leverage variation between single cells to probe regulatory associations within
and between molecular layers. For example, we and others have established protocols that
allow the methylome and the transcriptome or, alternatively, the methylome and chromatin
accessibility to be assayed in the same cell®> 4 > % 7, However, it is well known that DNA
methylation and other epigenomic layers, including chromatin accessibility, do not act
independently of one another®. Consequently, the ability to profile, at single cell resolution,
multiple epigenetic features in conjunction with gene expression will be critical for obtaining a
more complete understanding of epigenetic dependencies and their associations with
transcription and cell states®.

To address this, we have developed a method that enables the joint analysis of the
transcriptome, the methylome and chromatin accessibility. Our approach builds on previous
parallel protocols such as single-cell methylation and transcriptome sequencing (SCM&T-
seq?), in which physical separation of DNA and RNA is performed prior to a bisulfite conversion
step and the cell’'s transcriptome is profiled using a conventional Smartseg2 protocol'®. To
measure chromatin accessibility together with DNA methylation, we adapted Nucleosome
Occupancy and Methylation sequencing (NOMe-seq)*!, where a methyltransferase is used to
label accessible (or nucleosome depleted) DNA prior to bisulfite sequencing (BS-seq), which
distinguishes between the two epigenetic states. In mammalian cells, cytosine residues in
CpG dinucleotides can be abundantly methylated, whereas cytosines followed by either
adenine, cytosine or thymine (collectively termed CpH) are methylated at a much lower rate*2.
Consequently, by using a GpC methyltransferase (M.CviPI) to label accessible chromatin,
NOMe-seq can recover endogenous CpG methylation information in parallel. NOMe-seq is
particularly attractive for single-cell applications since, contrary to count-based assays such
as ATAC-seq or DNase-seq, the GpC accessibility is encoded through the bisulfite conversion
and hence inaccessible chromatin can be directly discriminated from missing data.
Importantly, this implies that the coverage is not influenced by the overall accessibility, so
lowly accessible sites will not suffer from increased technical variation compared to highly
accessible sites. Additionally, the resolution of the method is determined by the frequency of
GpC sites within the genome (=1 in 16bp), rather than the size of a library fragment (>100bp).

Recently developed single-cell NOMe-seq protocols have been applied to assess cell-to-cell
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variance in CTCF footprinting® and to map chromatin remodeling during preimplantation
development’. However, no method that combines RNA-seq with chromatin accessibility
profiling in the same cells (with or without DNA methylation) has been reported to-date, which

is critical for studying interactions between the epigenome and the transcriptome.

Results
To validate scNMT-seq, we applied the method to a batch of 70 serum-grown EL16 mouse

embryonic stem cells (ESCs), together with four negative (empty wells) and three scM&T-seq
controls (cells processed using scM&T-seq, i.e., without M.CviPl enzyme treatment). This
facilitates direct comparison with previous methods for assaying DNA methylation and
transcription in the same cell® *2, as well as providing a control of bisulfite conversion efficiency
within the experiment. We isolated cells into methyltransferase reaction mixtures using FACS,
followed by the physical separation of the DNA and RNA prior to BS-seq and RNA-seq library
preparation (see Fig. 1a for an illustration of the protocol). Alignment of the BS-seq data and
other bioinformatics processing can be carried out using established pipelines, with the
addition of a filter to discard G-C-G positions, for which it is intrinsically not possible to
distinguish endogenous methylation from in vitro methylated bases (21% of CpGs genome-
wide). Similarly, we discard C-C-G positions to mitigate against possible off-target effects of
the enzyme!! (27% of CpGs). In total, 61 out of 70 cells processed using scNMT-seq passed
quality control for both BS-seq and RNA-seq (Methods).

The requirement to filter out C-C-G and G-C-G positions from the methylation data reduces
the number of genome-wide cytosines that can be assayed from 22 million to 11 million.
However, despite this, a large proportion of genomic loci with regulatory roles, such as
promoters and enhancers, can in principle be assessed by scNMT-seq (Fig. 1b). Consistent
with this, we observed high empirical coverage for methylation: a median of ~50% of
promoters, ~75% of gene bodies and ~25% of active enhancers are captured in a typical cell
by at least 5 cytosines (Fig. 1c, Supplementary Fig. 1a). We also compared the methylation
coverage to data from our previous BS-seq protocols that did not incorporate a DNA
accessibility component®, again finding only small differences in coverage, albeit these
became more pronounced when down-sampling the total sequence coverage (Supplementary
Fig. 1b). Computational methods for imputing these missing values could help to further
mitigate these differences®. Due to the higher frequency of GpC compared to CpG
dinucleotides in the mouse genome, accessibility coverage was larger than that observed for
endogenous methylation (Fig. 1b, ¢ and Supplementary Fig. 1a). Using our data, a median of
~85% of gene bodies and ~75% of promoters could be probed for DNA accessibility, the
highest coverage achieved by any single-cell accessibility protocol to date (9.4% using
scATAC-seq!*, and with scDNase-seq, ~50% of genes >1 RPKM, >80% of genes >3 RPKM?®).
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This coverage also compares favourably with other single-cell NOMe-seq methods developed
in parallel, which report GpC site coverages of 2.9%° and 10%’ compared to 15% using

scNMT-seq.
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Figure 1. scNMT-seq overview and genome-wide coverage. (a) Protocol overview. Single-cells are lysed and
accessible DNA is labelled using GpC methyltransferase. RNA is then separated and sequenced using Smart-
seq2, whilst DNA undergoes scBS-seq library preparation and sequencing. Methylation and chromatin accessibility
data are separated bioinformatically. (b) Theoretical maximum CpG coverage of genomic contexts with known
regulatory roles. Shown is the proportion of loci in different contexts that contain at least 5 cytosines. ‘All CpG’
considers any C-G dinucleotides (e.g. as in scBS-seq), ‘NOMe-seq CpG’ considers A-C-G and T-C-G trinucleotides
and ‘NOMe-seq GpC’ considers G-C-A, G-C-C and G-C-T trinucleotides. (¢) Empirical coverage in 61 mouse ES
cells considering the same contexts as in b. Shown is the coverage distribution across cells after QC; box plots
show median coverage and the first and third quartile, whiskers show 1.5 x the interquartile range above and below
the box. (d) CpG methylation and GpC accessibility profiles at published DNase hypersensitive sites'8. The profiles
were computed as a running average in 50bp windows. Shading denotes standard deviation across cells. (e) CpG
methylation and GpC accessibility profiles at gene promoters. Promoters are stratified by average expression level
of the corresponding gene (log normalised counts less than 2 (low), between 2 and 6 (medium) and higher than 6

(high). The profile is generated by computing a running average in 50bp windows.

Next, we examined accessibility levels at loci with known regulatory roles. We found that
accessibility was increased at known DNasel hypersensitivity sites, super enhancer regions
and binding sites for transcription factors and other DNA binding proteins (from published

ChiIP-seq data, Fig. 1d, Supplementary Fig. 2). As, a control, we included cells which did not
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receive enzyme treatment (scM&T-seq controls) and these cells showed universally low GpC
methylation levels (~2%), with no enrichment at regulatory regions, indicating that the
accessibility data are not affected by endogenous GpC methylation (Supplementary Fig. 3).
We next stratified loci and cells based on the expression level of the nearest gene (based on
the RNA data from the corresponding cell). In agreement with previous studies®, we observed
that highly-expressed genes were associated with increased accessibility at promoters and at
nearby regulatory sites, whereas lowly-expressed genes were associated with reduced
accessibility (Fig. 1e; Supplementary Fig. 4).

Next, to assess the quality of data obtained using scNMT-seq, we compared the
transcriptome, methylome and accessibility profiles to published datasets. When considering
the RNA-seq component, dimensionality reduction'® and hierarchical clustering revealed that
cells cluster by condition and not by protocol (Supplementary Fig. 5). We next compared the
methylome obtained from scNMT-seq to single-cell libraries profiled using scM&T-seq?, scBS-
seq'? and bulk BS-seq®’, finding that most of the cell-to-cell variation is not attributed to
protocol or study but to changes in the mean methylation rate (first principal component, 51%
variance) (Supplementary Fig. 6). To validate the accessibility measurements, we generated
a synthetic pseudo-bulk dataset by merging data from all cells, which we compared to
published bulk DNase-seq data from the same cell type!®. Globally, we observed high
consistency between datasets (Relative accessibility profiles, Pearson R = 0.74,
Supplementary Fig. 7). A notable difference was that sScCNMT-seq data captured, within single
cells, oscillating profiles with peaks spaced ~180 to ~200bp apart, indicating the positions of
nucleosomes (Fig. 1d,e and Supplementary Fig. 8), which is consistent with accessibility
profiles obtained using bulk NOMe-seq!!, demonstrating high resolution of our accessibility

measurements.

As a final quality assessment, we analysed associations between molecular layers within
individual cells (across all genes), which is similar to approaches used to investigate linkages
using bulk data (see Fig. 2 upper panel for a graphical representation). Reassuringly, this
confirmed the expected positive correlations between accessibility and expression!” as well
as negative correlations for methylation with transcription!® and methylation with accessibility®
(Fig. 2, lower panel), indicating that our method recapitulates, within single cells, known trends

from bulk results.
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Figure 2. scNMT-seq recapitulates known global associations between molecular layers. Upper panel shows
an illustration of the computation of the correlation across genes (one association test per cell). Left is CpG
methylation and RNA expression associations, middle is CpG methylation and GpC accessibility associations, and
right is GpC accessibility and RNA expression associations. Red circles represent CpG methylation levels, blue
circles represent GpC accessibility levels and yellow polyA tails represent RNA abundance. Lower panel shows
the Pearson correlation coefficients between molecular layers at different genomic contexts in the ESC data. Box
plots show the distribution of correlation coefficients in single cells. Boxes display median coverage and the first
and third quartile, whiskers show 1.5 x the interquartile range above and below the box. Dots show the correlation
coefficient in the pseudo-bulked data estimated as average across all single-cells. Stars show the correlation

coefficient using published bulk data from the same cell type'”: 18.

Taken together, these results demonstrate that our method is able to robustly profile gene

expression, DNA methylation and chromatin accessibility within the same single cell.

Having established the efficacy of our method, we next explored its potential for identifying
loci with coordinated epigenetic and transcriptional heterogeneity. To obtain a dataset with a
larger degree of heterogeneity than observed in ES cells, we prepared a second dataset
obtained from serum grown ES cells that we removed from LIF for 3 days to initiate
differentiation into embryoid bodies (EBs). We sequenced 43 cells, which clearly clustered into
two sub-populations based on RNA-seq profiles, corresponding to pluripotent and
differentiating states (Supplementary Fig. 9). First, we examined cell-to-cell variance in the
methylation data, finding that enhancers and Nanog binding sites were associated with the
largest methylation heterogeneity, which is in agreement with previous ES cell data® 2
(Supplementary Fig. 10a, 10b). Conversely, variability in accessibility rates was either at
similar levels to the background or, in the case of promoters, CGls, active enhancers, and
gene bodies, found to be reduced relative to the background (Supplementary Fig. 10c, 10d).
This could indicate that there are genomic elements which limit variability of chromatin

accessibility, such as CGls most of which in a cell are constitutively accessible 2.
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Subsequently, we tested locus-specific associations between different pairwise combinations
of molecular layers (Fig. 3a), which is distinct from the correlations across genes used for
guality control above and is enabled by parallel single-cell measurements in multiple cells.
This analysis can be used to discover individual genes and loci with coordinated heterogeneity
across pairs of molecular layers. First, considering associations between methylation and
transcription, we identified a minimum of 3 (exons) and a maximum of 47 (gene bodies)
associations (FDR<0.1, Fig. 3a, Supplementary Fig. 11a, Methods). The majority of these
associations were negative, reflecting the known relationship between these two layers. In
contrast, we found that associations between DNA accessibility and transcription were less
widespread, with a small number of mostly positive associations in promoters, p300 binding
sites and super enhancer regions (13 associations total, FDR< 0.1, Fig. 3a, Supplementary
Fig. 11b). Low numbers of correlated accessibility — expression could indicate that
transcriptional changes in this population are more dependent on DNA methylation changes
than chromatin accessibility changes and this is in agreement with the results presented in
Fig. 2. Finally, for methylation-accessibility, we found associations at most genomic contexts,
with up to 89 significant correlations (introns) and these tended to be negative as expected

(Fig. 3a, Supplementary Fig. 11c).

As an illustrative example, Fig. 3b displays the Esrrb locus, a gene we find to be expressed
primarily in the pluripotent cells (Supplementary Fig. 9), and which displays a strong
correlation between methylation and expression in super enhancer regions, replicating
previous findings®. Mean methylation and accessibility rates along the gene showed clear
differences between the two sub-populations of cells identified, which were largest at
regulatory elements. While the super enhancers showed the strongest negative correlation
between methylation and transcription, a strong positive correlation was found in the promoter
between accessibility and transcription. Similarly, Supplementary Fig. 12 shows the Prtg
locus, a known neuroectoderm marker?!, which is expressed primarily in differentiated cells
(Supplementary Fig. 9), again showing marked epigenetic differences between the two cell

populations.
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Figure 3. scNMT-seq enables the discovery of novel associations at individual loci. (a) Left panel shows an
illustration for the correlation analysis across cells, which results in one association test per locus. The right panel
shows the Pearson correlation coefficient (x-axis) and log10 p-value (y-axis) from association tests between
different molecular layers at individual loci, stratified by genomic contexts. Significant associations (FDR<0.1,
Benjamini-Hochberg adjusted), are highlighted in red. The number of significant positive (+) and negative (-)
associations and the number of tests (centre) are indicated above. (c) Zoom-in view of the Esrrb gene locus. Shown
from top to bottom are: Pairwise Pearson correlation coefficients between each pair of the three layers (Met,
methylation; Acc, accessibility; Expr, expression). Accessibility (blue) and methylation (red) profiles shown
separately for pluripotent and differentiated sub-populations; mean rates (solid line) and standard deviation (shade)
were calculated using a running window of 10kb with a step size of 1000bp; Track with genomic annotations,

highlighting the position of regulatory elements: promoters, super enhancers, and p300 binding sites.

Inspection of accessibility data at the single GpC level reveals complex patterns due to
presence of nucleosomes (Fig. 1d and 1e), which are not appropriately captured by rate
parameters calculated in predefined windows. The prevalence of these oscillatory patterns
prompted us to reconstruct the DNA accessibility profiles in individual cells at a locus level, by
adapting a statistical model initially developed for DNA methylation profiles??. As expected,
the single-cell profiles at gene promoters were more predictive of gene expression than
conventional accessibility rates (Supplementary Fig. 13), and these captured characteristic
patterns of nucleosome depleted regions at transcription start sites and cell-to-cell variation in

both the position and the number of nucleosomes (see Supplementary Fig. 14).

Next, we exploited the reconstructed profiles to quantify the level of heterogeneity of chromatin

accessibility at transcription start sites. For each gene, we clustered the cells based on the


https://doi.org/10.1101/138685
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/138685; this version posted January 17, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

similarity of the accessibility profiles and we estimated the most likely number of clusters
(Methods). Subsequently, we stratified genes by the number of clusters estimated by our
model, which we considered as a measure of accessibility heterogeneity (Fig 4a). This
revealed that genes with homogeneous accessibility profiles (fewer clusters) were associated
with higher average expression levels (Fig. 4b) and were enriched for gene ontology terms
linked to house-keeping functions, such as regulation of gene expression, rRNA processing
and splicing (Fig 4d). Examples of genes with a single cluster are shown in Supplementary
Fig. 15 and examples of genes with two differentially expressed clusters are shown in
Supplementary Fig. 16. In contrast, genes with heterogeneous accessibility (multiple clusters)
were associated with low expression levels and were enriched for bivalent promoters
containing both active H3K4me3 and repressive H3K27me3 histone marks (Fig. 4c). The
increased bivalency was independent of the mean expression level of the gene

(Supplementary Fig. 17).
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Figure 4. Modelling chromatin accessibility profiles at gene promoters in single cells. (a) Accessibility
profiles for each cell and gene are fitted at a single nucleotide resolution (+-200bp around the TSS), followed by
clustering of profiles for each gene to estimate the most likely number of clusters. Genes with higher numbers of
clusters correspond to genes with increased heterogeneity compared to genes with small numbers of clusters. (b)
Relationship between heterogeneity in the accessibility profile and gene expression. Boxplots show the distribution

of average gene expression levels for genes with increasing numbers of accessibility clusters. Upper and lower
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hinges display third and first quartiles; the bar displays the median and the whiskers 1.5 times the inter-quartile
range above and below the boxes. (c) Proportion of gene promoters marked with H3K4me3 and/or H3K27me3
stratified by number of accessibility clusters. Promoters with high levels of accessibility heterogeneity are
associated with the presence of bivalent histone marks (both H3K4me3 and H3K27me3). (d) Gene ontology terms

significantly enriched in genes with most homogeneous accessibility profiles (K=1).

One of the most interesting opportunities of SCNMT-seq is to link epigenetic properties to the
transcriptomic profile along dynamic trajectories of different cell states. To explore this, we
used the RNA-seq component to reconstruct a pseudotemporal ordering of the cells from
pluripotent to differentiated cell states (Fig. 5a, Methods). We then tested for coordinated
changes between the accessibility profiles and the cellular position in the differentiation
trajectory, which identified a set of 15 genes that showed a coherent dynamic pattern
(Supplementary Fig. 18, Methods). Fig. 5b depicts two representative genes: Efhdl, a gene
that displays a transition from a state with an open transcription start site (TSS) to a state with
a closed TSS; and Rock2, with a similar transition on the +1 nucleosome after the TSS.
Supplementary Fig. 19 shows additional examples of genes with associations between

accessibility profile and pseudotime trajectory.

Finally, we investigated whether dynamic changes in the coupling between the epigenetic
layers are observed along the differentiation trajectory. To this end, we plotted methylation-
accessibility correlation coefficients (as calculated in Fig. 2a) against pseudotime, which
revealed an increasing negative correlation coefficient between DNA methylation and
accessibility in practically all genomic contexts (Fig. 5¢). Notably, this suggests that the
coupling between the epigenetic layers increases as cells commit to downstream lineages,
which could be an important step in lineage priming. Importantly, this analysis was made
possible by the continuous nature of the single-cell pseudotime ordering and the ability to
profile the three molecular layers and highlights the utility of such parallel single-cell

techniques.

In conclusion, we have described a method for parallel single-cell DNA methylation, gene
expression and high-resolution chromatin accessibility measurements and report novel
associations between each molecular layer. We additionally show that our method can be
used to dissect the dynamics of epigenome interactions during a developmental trajectory.
This method will greatly expand our ability to investigate relationships between the epigenome
and transcriptome in heterogeneous cell types and across developmental and other cell fate

transitions.
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Figure 5. Using scNMT-seq to explore dynamics of the epigenome during differentiation. (a) Embryoid body
cells ordered in a developmental trajectory inferred from the RNA-seq data. Shown is the location of each cell in
pseudotime (x axis) versus the expression level of Esrrb (y axis). (b) Reconstructed dynamics of variation in
chromatin accessibility profiles across the developmental trajectory. Shown are profiles of representative cells for
Rock2 and Efhd1. Axis ticks display -200bp, Obp and +200bp relative to the TSS. Shading is used to highlight
changes between cells. (c) Developmental trajectory is associated changes in genome-wide methylation-
accessibility coupling. Shown is the location of each cell in pseudotime (x axis) and the corresponding Pearson

correlation coefficients between methylation and accessibility (y axis) in different genomic contexts.
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Methods

Cell culture

El16 mESCs were derived from a 129xCast/129 embryo previously? and cultured in serum
containing media (DMEM 4,500 mg/I glucose, 4 mM L-glutamine, 110 mg/lI sodium pyruvate,
15% fetal bovine serum, 1 U/ml penicillin, 1 pg/ml streptomycin, 0.1 mM nonessential amino
acids, 50 uM B-mercaptoethanol, and 103 U/ml LIF ESGRO) without feeders®. E14 mESCs
(the E14 cell line was a generous gift from A. Smith) were cultured as EL16 then seeded into
low attachment plates at 1000 cells mL? in serum media without LIF for 3 days before
collection. Single cells were collected by FACS, selecting for live cells and low DNA content
(i.e., GO or G1 phase cells) using ToPro-3 and Hoechst 33342 staining °to select for live cells
with low DNA content (i.e. GO or G1 phase cells). The cell lines were subjected to routine

mycoplasma testing using the MycoAlert testing kit (Lonza).

Library preparation

Cells were collected directly into 2.5ul methyltransferase reaction mixture which was
comprised of 1x M.CviPl Reaction buffer (NEB), 2U M.CviPI (NEB), 160 uM S-
adenosylmethionine (NEB), 1U ul' RNAsein (Promega), 0.1% IGEPAL (Sigma) then
incubated for 15 minutes at 37°C. The reaction was stopped and the RNA preserved with the
addition of 5ul RLT plus (Qiagen) prior to scM&T-seq library preparation according to the
published protocols for G&T-seq? 2° and scBS-seq?® 2%2’with minor modifications. Briefly,
MRNA was captured using Smart-seq2 oligo-dT pre-annealed to magnetic beads (MyOne C1,
Invitrogen). The lysate containing the gDNA was transferred to a separate PCR plate and the
beads were washed three times in 15ul of 1x FSS buffer (Superscript Il, Invitrogen), 10mM
DTT, 0.005% tween-20 (Sigma) and 0.4U plt of RNAsin (Promga). After each wash, the
solution was transferred to the DNA plate to maximise recovery. The beads were then
resuspended in 10 yl of reverse transcriptase mastermix (100 U SuperScript Il (Invitrogen),
10 U RNAsin (Promega) 1x Superscript Il First-Strand Buffer, 2.5mM DTT (Invitrogen), 1M
betaine (Sigma), 9mM MgCI2 (Invitrogen), 1 uM Template-Switching Oligo (Exigon), 1mM
dNTP mix (Roche)) and incubated on a thermocycler for 60 min at 42 °C followed by 30 min
at 50 °C and 10 min at 60 °C. PCR was then performed by adding 11 pl of 2x KAPA HiFi
HotStart ReadyMix and 1pl of 2 uM ISPCR primer and cycling as follows: 98 °C for 3 min, then
18 cycles of 98 °C for 15 s, 67 °C for 20 s, 72 °C for 6 min and finally 72 °C for 5 min. cDNA
was purified using a 1:1 volumetric ratio of Ampure Beads (Beckman Coulter) and eluted into
20yl of water. Libraries were prepared from 100 to 400pg of cDNA using the Nextera XT Kit
(lumina), per the manufacturer's instructions but with one-fifth volumes. In parallel, the

genomic DNA was purified with a 0.8:1 volumetric ratio of Ampure XP Beads (Beckman
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Coulter) and eluted into 10ul of water. Bisulfite conversion was carried out using EZ
Methylation Direct MagBead kit (Zymo) according the manufacturers’ instructions but with half
volumes. Converted DNA was eluted into 40pl of first strand synthesis mastermix (1x Blue
Buffer (Enzymatics), 0.4mM dNTP mix (Roche), 0.4uM 6NF oligo (IDT) then heated to 65°C
for 3 minutes and cooled on ice. 50U of klenow exo- (Enzymatics) was added and the mixture
incubated on a thermocycler at 37°C for 30 minutes after slowly ramping from 4°C. First strand
synthesis was repeated 4 more times with the addition of 0.25 pl of reaction mixture (1x blue
buffer, 0.25mM dNTPs, 10mM 6NF oligo and 25U klenow exo-). Reactions were diluted to
100ul and 20U of exonuclease | (NEB) added and incubated at 37°C before purification using
a 0.75:1 ratio of AMPure XP beads. Purified products were resuspended in 50ul of second
strand mastermix (1x Blue Buffer (Enzymatics), 0.4mM dNTP mix (Roche), 0.4uM 6NF oligo
(IDT) then heated to 98°C for 2 minutes and cooled on ice. 50U of klenow exo- (Enzymatics)
was added and the mixture incubated on a thermocycler at 37°C for 90 minutes after slowly
ramping from 4°C. Second strand products were purified using a 0.75:1 ratio of AMPure XP
beads and resuspended in 50ul of PCR mastermix (1x KAPA HiFi Readymix, 0.2uM PE1.0
primer, 0.2uM iTAG index primer) and amplified with 14 cycles. Finally, scBS-seq libraries
were purified using a 0.7:1 volumetric ratio of AMPure XP beads before pooling and

sequencing.

Sequencing

EL16 serum ES cells

20 of the BS-seq libraries, including 3 negative controls, were initially sequenced on a 50bp
single-end MiSeq run to assess quality. The negative controls were found to have substantially
reduced mapping efficiencies compared to the single cell samples (mean of 2.7% compared
to 36.8%). All single-cell BS-seq libraries were subsequently sequenced to a mean depth of
16.1 million paired-end reads and RNA-seq libraries were sequenced to a mean depth of 2.0
million paired-end reads. Both sets of libraries were sequenced on HiSeq 2500 instruments

using v4 reagents and 125bp read length.

E14 embryoid body cells

48 BS-seq libraries were sequenced as a multiplex on one 75bp PE high-output run on an
lllumina NextSeg500 with a mean sequencing depth of 9.6 million per cell. RNA-seq libraries
were sequenced on an lllumina NextSeg500 with a mean depth of 1.0 million 75 bp single-

end reads per cell.
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Data processing

BS-seq alignment

Single-cell bisulfite libraries were processed using Bismark?® as described?® with the additional
--NOMe option in the coverage2cytosine script which produces CpG report files containing
only A-C-G and T-C-G positions and GpC report files containing only G-C-A, G-C-C and G-C-

T positions.

RNA-seq alignment

Single-cell RNA-seq libraries were aligned using HiSat2?° using options --dta --sp 1000,1000
--no-mixed --no-discordant for the paired-end ES cell libraries and --dta --sp 1000,1000 for the
single-end EB cell libraries.

Quiality control — RNA-seq
For the EL16 serum grown ES cells, we discarded cells that had (1) less than 300,000 reads
mapped (2) more than 15% of total reads mapped to mitochondrial genes, (3) less than 2,000

genes expressed. In total, 68 cells passed the quality control (Supplementary Fig. 20a).

For the E14 embryoid body cells, we used a lower read-depth cut-off due to the lower
sequencing depth employed, discarding cells that had (1) less than 100,000 reads mapped
(2) more than 15% of total reads mapped to mitochondrial genes, (3) less than 2,000 genes
expressed. In total, 46 cells passed the quality control (Supplementary Fig. 20b).

Quiality control — BS-seq

For the EL16 serum grown ES cells, we discarded cells that had (1) less than 10% mapping
efficiency (2) less than 500,000 CpG sites or 5,000,000 GpC sites covered. We additionally
excluded one cell with unusually high CpG coverage (>5M) and low duplication (26%) as a
possible doublet. In total, 64 cells out of 73 passed the quality control (Supplementary Fig.
21a). All 64 cells also passed RNA-seq QC (88%) and these comprised 61 scNMT-seq cells
and 3 scM&T-seq cells.

For the E14 EB cells, we again used a lower coverage cutoff due to lower sequencing depth,
discarding cells that had (1) less than 10% mapping efficiency (2) less than 300,000 CpG sites
covered. In total, 40 cells passed the quality control (Supplementary Fig. 21b), all of which
also passed RNA-seq QC and comprised 33 scNMT-seq cells and 7 scM&T-seq cells.

CpG Methylation and GpC accessibility quantification

Following the approach of Smallwood et al'?, individual CpG or GpC sites in each cell were
modelled using a binomial model where the number of successes is the number of reads that
support methylation and the number of trials is the total number of reads. A CpG methylation

or GpC accessibility rate for each site and cell was calculated by maximum a posteriori
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assuming a beta prior distribution. Subsequently, CpG methylation and GpC accessibility rates
were computed for each genomic feature assuming a normal distribution across cells and

accounting for differences in the standard errors of the single site estimates.

RNA quantification

Gene expression counts were quantified from the mapped reads using featureCounts®*. Gene
annotations were obtained from Ensembl version 873!. Only protein-coding genes matching
canonical chromosomes were considered. Following® the count data was log-transformed
and size-factor adjusted based on a deconvolution approach that accounts for variation in cell

size®3,

Statistical analysis

Methylation and accessibility pseudo-bulk profiles

Methylation and accessibility profiles were visualised by taking predefined windows around
the genomic context of interest. For each cell and feature, methylation and accessibility values
were averaged using running windows of 50 bp. The information from multiple cells was
combined by calculating the mean and the standard deviation for each running window. Genes
were split into three classes according to a histogram of the log2 normalised counts (x): Low
(x<2), Medium (2<x<6) and High (x>6). All genomic features were associated to the closest

gene within a 5kb window (upstream and downstream of gene start and stop).

Single-cell accessibility profiles

Accessibility profiles were constructed within each cell and gene in +/-200bp windows around
the TSS (as displayed in Fig 5b and Supplementary Fig. 14, 15 and 16) using a generalised
linear model (GLM) of basis function regression coupled with a Bernoulli likelihood using
BPRMeth??. We only considered genes that were covered in at least 40% of the cells with a
minimum coverage of 10 GpC sites. Subsequently, we clustered the profiles for each gene by
fitting a finite mixture model using an expectation—maximization (EM) algorithm. We estimated
the most likely number of clusters based on the Bayesian Information Criterion (BIC). The
number of clusters was used as a measure of cell-to-cell variation in the accessibility profile;
the rationale being that homogeneous profiles will be grouped in a single cluster, while regions
with heterogeneous profiles will be assigned a higher number of clusters. Gene Ontology
enrichment was performed for the different clusters using Fisher's exact test. The p-values

where corrected by multiple testing using False Discovery Rate.

Predicting expression
To compare the performance of using accessibility rates versus profiles for predicting gene

expression levels we used the same approach described in?2. We first computed the

accessibility rates and profiles for each gene and cell. Then, for each cell, we used the fitted
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values as input features to a regression model with the gene expression levels as the response
variable. To measure the accuracy of the model we computed the Pearson's correlation
coefficient between the observed and predicted expression levels (Supplementary Fig. 13a)
To account for the different number of features used in the two models (i.e. rate vs profile

features) we also computed the adjusted R? (Supplementary Fig. 13b)

Correlation analysis

For the correlation analysis across cells, genes with low expression levels and low variability
were discarded, according to the rationale of independent filtering34. Only the top 50% of the
most variable loci were considered for analysis and a minimum number of 20 cells was
required to compute a correlation. A minimum coverage of 3 sites was required per feature.
All genomic features were associated to the closest gene within a 10kb window (upstream and
downstream of gene start and stop). Following our previous approach?, we tested for linear
associations by computing a weighted Pearson correlation coefficient, thereby accounting for
differences in the coverage between cells. When assessing correlations between GpC
accessibility with CpG methylation, we used the average CpG methylation coverage as a
weight. Two-tailed Student’s t-tests were performed to test for nonzero correlation, and P-
values were adjusted for multiple testing for each context using the Benjamini-Hochberg
procedure. For promoter annotations, we used a small window for accessibility (+/- 50bp) to
focus our analysis on the transcription start site whereas for methylation we considered a
larger window (+/- 2kb). This choice was informed by pseudo-bulking the single-cell data and
computing the correlation between accessibility/methylation and gene expression (across
genes) for small 50bp windows along the promoter, finding that the strongest signal fell within
our chosen range (Supplementary Fig. 22).

Pseudotemporal ordering of cells
Cells were ordered along a putative developmental trajectory (pseudotime) with the destiny
package *°, using the top 500 genes with most biological overdispersion as estimated by the

scran package.

Code availability

All R code is available from https://github.com/PMBio/scNMT-seq/

Data availability

Raw sequencing data together with processed files (RNA counts, CpG methylation reports,
GpC accessibility reports) are available in the Gene Expression Omnibus under accession
GSE109262.
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