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Abstract. Darwinian fitness is a central concept in evolutionary

biology. In practice, however, it is hardly possible to measure

fitness for all genotypes in a natural population. Here, we

present quantitative tools to make inferences about epistatic

gene interactions when the fitness landscape is only incompletely

determined due to imprecise measurements or missing observa-

tions. We demonstrate that genetic interactions can often be

inferred from fitness rank orders, where all genotypes are ordered

according to fitness, and even from partial fitness orders. We

provide a complete characterization of rank orders that imply

higher order epistasis. Our theory applies to all common types of

gene interactions and facilitates comprehensive investigations of

diverse genetic interactions. We analyzed various genetic systems

comprising HIV-1, the malaria-causing parasite Plasmodium

vivax, the fungus Aspergillus niger, and the TEM-family of

β-lactamase associated with antibiotic resistance. For all systems,

our approach revealed higher order interactions among mutations.
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1. Introduction

The fitness of an individual with a particular genotype is a measure

of its expected contribution to the next generation of the population.

The collection of all fitness values for all genotypes, referred to as the

fitness landscape, is a central concept in evolutionary biology (Wright

1932; Orr 2009). The fitness landscape can have a strong impact on

the fate of the evolving population, such as, for example, the risk of a

pathogen population to develop drug resistance and to survive under

drug treatment (Visser and Krug 2014).

Genetic interactions, or epistasis, are abundant in nature. They can

have many causes and occur at various scales, for instance, among

mutations of a protein-coding sequence or between sequences coding

for different genes. Unless there are genetic interactions, we assume

that fitness is additive, i.e., the fitness effects of individual mutations

sum. An additive fitness landscape is determined by the wild-type and

single-mutant fitness values.

If the fitness landscape is determined by the wild-type, single-

mutant, and double-mutant fitness values, then we say that it has no

higher order epistasis. Intuitively, higher order epistasis means that

the fitness of a multiple mutant is unexpected given the fitness of the

wild type and all single and double mutants. For example, Weinre-

ich, Delaney, et al. (2006) showed that five mutations jointly increase

antibiotic resistance considerably more than expected.

Measuring fitness experimentally is challenging. Fitness measure-

ments tend to come with high uncertainty and they are often obtained

only for a subset of genotypes. Moreover, fitness can sometimes not

be measured directly at all. Instead, phenotypes are considered that

can be measured and are believed to approximate fitness well. For in-

stance, antimicrobial drug resistance is the dominating survival factor

for a bacterial population under drug exposure, so that the degree of

resistance is a good substitute measure of fitness. Several such fitness

proxies are used in microbiology, including survival as measured by disc

diffusion tests. Although it is possible to study epistasis of the proxy
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INFERRING GENETIC INTERACTIONS 3

data, in general, presence or absence of epistasis in the proxy landscape

does not imply presence or absence of epistasis in the fitness landscape

itself.

Experimentally, epistatic interactions have been measured in several

genetic systems, including E. coli (Khan et al. 2011; Weinreich, De-

laney, et al. 2006; Poelwijk, Kiviet, et al. 2007), HIV-1 (Silva et al.

2010; Segal, Barbour, and Grant 2004), and other viruses (Wylie and

Shakhnovich 2011; Sanjuán 2010). These and similar studies involve

the analysis of standing genetic variation or spontaneous mutations

(Bonhoeffer et al. 2004; Bershtein et al. 2006), engineered site-directed

mutations (Sanjuán, Moya, and Elena 2004; Weinreich, Delaney, et

al. 2006), and combinations of both (Sanjuán, Cuevas, et al. 2005;

Poon and Chao 2006). Competition experiments are also frequently

employed to learn mutational fitness effects. For example, Sanjuán,

Moya, and Elena (2004) studied the distribution of deleterious muta-

tional effects in RNA viruses using this approach. Such experiments

are typically run on single-nucleotide substitution mutants produced

by site-directed mutagenesis. The data produced in competition ex-

periments is informative about pairwise comparisons of genotypes with

respect to their fitness. However, little is known about whether or not

it is possible to learn higher order genetic interactions from such fitness

comparison data.

Due to the rapid growth of the number of possible interactions with

the number of loci, all interactions can exhaustively be studied only

for a small number of loci. At the human genome scale, for example, a

complete study of only pairwise gene interactions would already require

hundreds of millions of experiments. On the other hand, for smaller

organisms, such as yeast, all pairwise and several three-way gene in-

teractions have been measured experimentally (Costanzo et al. 2010).

Only when restricting to a small set of preselected loci, can one assess

all combinations of mutations and hence all epistatic interactions. This

approach has been pursued, for example, by Weinreich, Delaney, et al.

(2006) for a five-locus system associated with bacterial drug resistance.
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Historically, the study of genetic interactions was mostly restricted

to pairwise epistasis. According to Crow and Kimura (p. 224, 1970)

higher order interactions were generally believed not to be significant

in nature, with references to Fisher, Haldane, and Wright. More recent

arguments for the same view have been stated in the context of protein

folding (Gupta and Adami 2016). On the other hand, empirical findings

suggest that the opposite is true for many other systems (Szendro et

al. 2013; Neidhart, Szendro, and Krug 2013; Sailer and Harms 2017a).

For example, Weinreich, Lan, et al. (2013) argue that three-way and

four-way interactions can be as strong as pairwise epistasis referring to

various empirical fitness studies, and Knies, Cai, and Weinreich (2017)

find many epistatic interactions in a numerically near-additive fitness

landscape, reducing dramatically the number of accessible evolution-

ary trajectories. Although the significance of higher order interac-

tions may vary between systems, the topic has not been thoroughly

investigated. This is partly due to lack of adequate methodology to

quantitatively assess the interactions underlying an observed empiri-

cal fitness landscape. Improved mathematical and statistical tools for

detecting higher order interactions, as well as more empirical results,

are necessary for more conclusive answers regarding the importance of

higher order interactions.

In this paper, we consider fitness data that comes in the form of

pairwise comparisons. Such data are frequent in practice and can arise

in different ways. First, some assays rely on comparing the fitness of

two genotypes, for example, by letting them grow in direct competi-

tion. Each competition experiment is informative about which of the

two genotypes has higher fitness, without estimating the fitness val-

ues themselves. Second, direct but uncertain fitness measurements are

also often summarized as pairwise fitness relations by recording only

whether two genotypes displayed significantly different fitness values or

not. Third, rather than fitness itself, a fitness proxy, i.e., a phenotype

closely related to fitness, may be considered. Fitness proxies cannot be

used directly to measure epistasis, because they generally do not pre-

serve fitness linearity (Gong, Suchard, and Bloom 2013), but if proxy
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data preserves pairwise comparisons, they may be used instead. Lists

of mutants found in a new environment, such as, for example, a new

host for a pathogen or a drug environment can be utilized similarly.

Assuming that the capability to transition to and survive in the new

environment is an indication of higher fitness, this type of observational

data also provides pairwise fitness comparisons. Similarly, the popula-

tion frequency of genotypes can sometimes be used to draw conclusions

about fitness. For example, by employing a specific model of viral evo-

lution, fitness was inferred computationally from deep sequencing data

of an HIV-1 population, and pairwise credible fitness differences were

reported (Seifert et al. 2015).

Irrespective of how they were obtained, any consistent set of pairwise

fitness relations can be regarded as a partial order of the genotypes with

respect to fitness. Two specific types of partial orders play important

roles for fitness landscapes. First, if comparisons are available for all

pairs of genotypes, then the partial order is a total order, or rank order.

In this case, all genotypes are ordered according to fitness. Second,

several studies compare fitness only between mutational neighbors, i.e.,

genotypes which differ at exactly one locus. The resulting partial orders

are referred to as fitness graphs and have recently been used extensively

(Ogbunugafor, Wylie, et al. 2016; Wu et al. 2016; Smith and Cobey

2016; Mira et al. 2015).

The question addressed in the present study is whether higher order

interactions can be inferred from rank orders, fitness graphs, and gen-

eral partial orders. Connections between rank orders and fitness graphs

to epistasis and global properties of fitness landscapes have been ob-

served repeatedly (Greene and Crona 2014; Crona, Greene, and Barlow

2013; Poelwijk, Tănase-Nicola, et al. 2011; Weinreich, Delaney, et al.

2006; Weinreich, Watson, and Chao 2005). Most recently, Wu et al.

(2016) discussed an example of a fitness graph that implies higher or-

der epistasis. The significance of rank orders of genotypes for epistasis

was recognized by Weinreich, Watson, and Chao (2005). The authors

introduced the concept of sign epistasis. By definition, a system has

sign epistasis if the sign of the effect of a mutation, whether positive
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or negative, depends on genetic background. Importantly, sign epis-

tasis implies that the rank order of the genotypes is not compatible

with additive fitness. In this paper, we develop a related approach

based on rank orders that applies to higher order epistasis as well as

other measures of gene interactions. For instance, if the rank order

of the genotypes implies three-way epistasis for a three-locus system,

then one has a signed variant of three-way epistasis. Similarly, one can

consider signed variants of almost any type of gene interaction. The

theory of sign epistasis stands as a model for development in the area,

and there is a potential for understanding global properties of fitness

landscapes in terms of (local) signed interactions, similar to results for

sign epistasis.

In addition to the theoretical work mentioned above, rank order argu-

ments have been used for developing antimicrobial treatment strategies

(Smith and Cobey 2016; Nichol et al. 2015; Mira et al. 2015; Goulart

et al. 2013). However, the full potential of rank order consideration

for the comprehensive analysis of epistatic gene interactions in general

n-locus genetic systems has not been exploited. Furthermore, to the

best of our knowledge the general case of arbitrary partial fitness orders

has yet to be considered.

Here, we develop quantitative tools to detect any type of gene in-

teractions measured by linear forms, including epistasis as described

by Fourier coefficients, Walsh coefficients, and circuits (Beerenwinkel,

Pachter, and Sturmfels 2007; Weinreich, Lan, et al. 2013). In particu-

lar, our approach applies to total n-way epistasis, conditional epistasis,

and marginal epistasis. We used our approach to analyze genetic

interactions in HIV-1, the parasite Plasmodium vivax, the fungus As-

bergillus niger , and β-lactamase antibiotic resistance systems. In all

cases, we detect higher order interactions based only on partial in-

formation about the fitness order of genotypes, without knowing or

estimating the actual fitness values.
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2. Results

We consider genetic systems consisting of n biallelic loci. A genotype

can then be represented as a binary string of zeros and ones of length

n, where 0 denotes the wild-type allele and 1 the alternative allele. We

assume that fitness is additive in the absence of epistasis. The fitness of

a genotype g is denoted by wg, and we assume that the fitness landscape

w is generic in the sense that no two genotypes have exactly the same

fitness.

A complete analysis of all epistatic interactions would require fitness

measurements of all 2n genotypes. However, this level of completeness

is rarely available in empirical data sets due to experimental design

or an infeasible number of genotypes. To address this limitation, we

developed methods that are applicable to partial orders of genotypes

according to fitness. For example, the two fitness relations w01 > w00

and w10 > w11 together define a partial order. One can always extend

a partial order to a rank order, i.e., a total order of the genotypes in

the system from highest to lowest fitness. For example, the total order

w10 > w11 > w01 > w00 extends the partial order above. Our goal is to

understand what fitness rank orders and more generally partial fitness

orders of genotypes reveal about gene interactions.

Two-locus case. We first consider epistasis for a biallelic two-locus

population consisting of the unmutated genotype, or wild type, 00, the

two single mutants 01 and 10, and the double mutant 11. In this case,

epistasis is denoted by ε2, where the index 2 refers to the number of

loci. It is defined as the deviation from additivity,

ε2 = (w00 + w11)− (w01 + w10). (1)

The system has no epistasis if ε2 = 0, positive epistasis if ε2 > 0 and

negative epistasis if ε2 < 0.

We first assume that the available information on fitness is a rank

order of the genotypes (Figure 1). The rank order is sometimes suffi-

cient for determining that the system has epistasis. For instance, the

rank order w11 > w00 > w10 > w01 (Figure 1 rank order 3), implies
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w00 + w11 > w01 + w10, so ε2 > 0. It follows that the rank order alone

allows one to detect positive epistasis without knowledge of the actual

fitness values. There are 24 rank orders of the biallelic two-locus sys-

tem. Among these, eight imply positive epistasis, eight imply negative

epistasis, and eight do not permit any inference regarding epistasis. In

total two thirds of the rank orders imply epistasis. Each rank order

that implies epistasis also determines the sign of ε2 (Figure 1).
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Figure 1. All 24 rank orders of the biallelic two-locus
system, where the 16 colored rank orders imply epista-
sis. Red (top row) indicates positive epistasis and blue
(middle row) negative epistasis.

Sometimes even a partial order of the genotypes is sufficient for de-

termining that the system has epistasis. For instance, if we know that

w01 > w00 and w10 > w11, then we can infer that the system has nega-

tive epistasis (Figure 2 (a)). To see this, we consider all rank orders that

extend the partial order. There are six such total extensions, namely

rank orders 9, 10, 12, 13, 14, and 16 in Figure 1, and all imply negative

epistasis. We conclude that the partial order implies epistasis, based

on only two fitness comparisons and without knowing any of the actual
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fitness values. This observation holds in general: If all total extensions

imply epistasis then the same is true for the partial order. We will use

this argument repeatedly.

A partial order can also be compatible with several rank orders,

some of which might imply epistasis while others do not. In this case,

the information is not sufficient to detect epistasis from the partial

order alone. For example, the partial order w00 > w01 > w10, w11 is

compatible with the two rank orders w00 > w01 > w11 > w10 and w00 >

w01 > w10 > w11 (Figure 2(b)). The first rank order implies positive

epistasis, but the other one does not. Consequently, the partial order

does not reveal whether or not the system has epistasis, and further

comparisons are needed for a conclusion. A more detailed treatment

of partial fitness orders can be found in (Lienkaemper et al. 2017).

(a) (b)

00

01

11

10

10

11

00

01

11

10

00

01

00

01

1110

Figure 2. (a) A partial fitness order of genotypes. The
rank orders that extend this partial order are orders (9),
(10), (12), (13), (14), and (16) in Figure 1. All of them
imply negative epistasis (ε2 < 0). (b) A partial order
of genotypes with all its total extensions shown on the
right. The first extension shown in red implies positive
epistasis (ε2 > 0), while the second one in black does
not.

Fitness graphs constitute an important subclass of partial orders,

as they often are the reported result of experiments, and because of

their relevance for evolutionary processes (Figure 3). Briefly, the nodes

of a fitness graph represent genotypes and for each pair of mutational

neighbors, i.e., genotypes which differ at exactly one locus, an arrow

points toward the genotype of higher fitness (Section1.3).
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A fitness graph implies epistasis exactly when all rank orders com-

patible with the graph do, as is the case for partial orders in general.

For example, Figure 3 shows the four fitness graphs where genotype 00

has lowest fitness in the in the system. The graphs (b), (c) and (d)

imply epistasis, whereas (a) is compatible with additive fitness.

(a) 00

01 10

11

(b) 00

01 10

11

(c) 00

01 10

11

(d) 00

01 10

11

Figure 3. For a biallelic two-locus system where the
genotype 00 has the lowest fitness, there are four fitness
graphs. The graph (a) is compatible with additive fit-
ness, whereas the remaining graphs imply negative epis-
tasis.

A couple of observations from Figure 3 are useful for determining

if a system is compatible with additive fitness. First, any rank order

compatible with the graph (a) has the following property: For each

genotype, replacing 0 by 1 results in a genotype of higher fitness. If

the genotype 00 has minimal fitness in the system, then rank orders

are compatible with graph (a) exactly if they satisfy this property. The

second observation is that a fitness graph where 00 has minimal fitness

is compatible with additive fitness exactly if all arrows point up. Both

observations generalize to any number of loci, and can be phrased in

full generality (one can reduce the general problem to the case when

0 . . . 0 has lowest fitness in the system by a relabeling argument). In

particular, only 384 out of (23)! = 40,320 rank orders are compatible

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2017. ; https://doi.org/10.1101/137372doi: bioRxiv preprint 

https://doi.org/10.1101/137372
http://creativecommons.org/licenses/by/4.0/


INFERRING GENETIC INTERACTIONS 11

with fitness graphs with all arrows up (after relabeling) for the three-

locus system, which we consider next (Appendix, Section 1.3).

Three-locus case. The biallelic three-locus system consists of the

eight genotypes 000, 001, 010, 011, 100, 101, 110, and 111. The system

has total three-way epistasis if

ε3 = (w000 +w011 +w101 +w110)− (w001 +w010 +w100 +w111) 6= 0. (2)

For the three-locus system, we distinguish between fitness landscapes

with no epistasis (fitness is additive), with pairwise but not higher

order epistasis (fitness is not additive but ε3 = 0), and with three-way

epistasis (ε3 6= 0).

Some rank orders imply three-way epistasis, similar to our obser-

vation of epistasis in the two-locus case. The condition for when a

rank order implies three-way epistasis is remarkably simple, and we

demonstrate it with an example. Consider the rank order

w110 > w111 > w101 > w011 > w100 > w010 > w000 > w001. (3)

We can represent this rank order by a word in the letters e and o using

the following procedure. The genotype 110 with the highest fitness is

represented by e because it has an even number of 1’s, the genotype

111 with the second highest fitness is represented by o because it has

an odd number of 1’s, and so forth. Working from highest to lowest

fitness, we obtain the word

e o e e o o e o . (4)

If one reads the word letter by letter from left to right, then one

has never encountered more o’s than e’s. This property means that

eoeeooeo is a Dyck word (Stanley 1999).

For a biallelic three-locus system, a rank order implies three-way

epistasis exactly if its associated word (where the role of e and o can

be interchanged) is a Dyck word (Appendix 1, Proposition 1). This

simple rule allows us to conclude that an empirical system has three-

way epistasis. As in the two-locus case, a landscape may have three-way
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epistasis even if the rank order does not imply it. For biallelic three-

locus systems, there are in total 40,320 rank orders, of which 16,128

(40%) imply three-way epistasis (Appendix 1, Proposition 1).

Fitness graphs can be analyzed by using our results on rank orders

as in the two-locus case. Figure 4 shows three fitness graphs for three-

locus systems. The fitness graph (a) implies three-way epistasis, the

graph (b) pairwise but not higher order epistasis, and the graph (c) is

compatible with additive fitness.

There are in total 1, 862 fitness graphs for the biallelic three-locus

system, of which 698 graphs (37%) imply three-way epistasis. In prin-

ciple one can check a particular three-locus system for higher order

epistasis using this result. However, it is not convenient to work with

a list of over one thousand graphs. In order to make the problem more

tractable, we can utilize the fact that some fitness graphs are isomor-

phic (Appendix 1 – Figure 2). There are 54 distinct isomorphism classes

of graphs for the three-locus system, of which 20 imply higher order

epistasis (Appendix 1, Section 1.3). Consequently, to detect three-way

epistasis, one can find the isomorphism class and then check 54 graphs,

namely one for each isomorphism class (Appendix 1 – Figure 3).

(a) 000

001010

011

100

101110

111

(b) 000

001010

011

100

101110

111

(c) 000

001010

011

100

101110

111

Figure 4. The fitness graph (a) implies three way epis-
tasis, the graph (b) implies epistasis, but not higher or-
der epistasis, and (c) does not imply epistasis, since all
arrows point up.

We complete the consideration of the three-locus case by analyzing

partial orders. Again, in favorable cases one can infer three-way epis-

tasis. Indeed, if there exists a partition of all eight genotypes into four
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pairs (ge, go), where e and o are as above, and wge > wgo for each pair,

then one can conclude three-way epistasis (Appendix 1, Proposition 7).

General n-locus case. The results on rank orders and higher order

epistasis for n = 3 generalize to any number of loci. The definition

of n-way epistasis in an n-locus system is analogous to the three-locus

case, as is the condition for when rank orders imply n-way epistasis.

Accordingly, a characterization of rank orders that imply n-way epista-

sis can be phrased in terms of Dyck words (Appendix 1, Proposition 1).

From this result it follows that the fraction of rank orders that imply

n-way epistasis is 2/(2n−1 + 1) (Appendix 1, Corollary 2) and that it

can be determined in a computationally efficient manner whether or

not a rank order implies n-way epistasis.

Rank order methods are useful for analyzing the total n-way epistasis

for an n-locus system, as demonstrated. However, a single quantity

cannot capture all possible gene interactions. Rank order approaches

have the capacity to reveal finer interactions as well.

We start with a general description of gene interactions before ex-

ploring what rank orders can reveal about these interactions. We define

an additive dependence relation as a linear form that is zero on additive

fitness landscapes. Interaction coordinates and circuits (Beerenwinkel,

Pachter, and Sturmfels 2007), as well as Walsh coefficients of order two

or more (Weinreich, Lan, et al. 2013), are additive dependence rela-

tions. For simplicity, we restrict our analysis to the three-locus system,

although the arguments used are readily extendable to any number of

loci n.

First, we consider additive dependence relations that directly corre-

spond to the two-locus case by fixing one allele at the third locus. For

example, if we fix the third locus at 0, then

a = w000 + w110 − w010 − w100

measures pairwise epistasis between the first and second locus. Simi-

larly, if we set the third locus to 1, then

b = w001 + w111 − w011 − w101
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measures pairwise epistasis between the first and second locus.

An example of an additive dependence relation with no correspon-

dence in the two-locus setting is

m = w001 + w010 + w100 − w111 − 2w000,

which compares the fitness of the triple mutant 111 to the three single

mutants. This expression is negative if the triple mutant has higher

fitness than one would expect based on the fitness effects of the three

single mutations. An example of an additive dependence relation with

eight non-zero terms is

u110 = w000 − w100 − w010 + w001 + w110 − w101 − w011 + w111.

One can verify that u110 is twice the average of a and b. For a systematic

approach to a comprehensive set of gene interactions, one can take

advantage of circuits, that is, minimal additive dependence relations.

In contrast, u110 is not minimal, because it can be derived from a and

b. There are 20 circuits for the three-locus system, including a, b, and

m (Appendix 1, Section 1.2).

The interactions described by a and b are referred to as conditional

epistasis, i.e., interactions that measure the total epistasis of subsys-

tems obtained by fixing some loci at 0 or 1. If the interactions a and

b differ substantially, it may be important to consider both of them.

However, if we are rather interested in the average interaction for the

first two loci over all genetic backgrounds, then u110 is the right mea-

sure.

In general, relations that measure average effects, such as u110, are

referred to as interaction coordinates. The interaction coordinates u110

differs from the Walsh coefficient E110 (Weinreich, Lan, et al. 2013) only

by a constant scaling factor. Provided that average effects are sufficient

for the purpose of a study, one can analyze higher order epistasis by

considering interaction coordinates, or Walsh coefficients, (Weinreich,

Lan, et al. 2013) (Appendix 1).
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One interesting class of circuits compares the effect of replacing pairs

of loci with different backgrounds. For instance,

k = w000 − w001 − w110 + w111

compares the effect of replacing 00 by 11 if the third coordinate is fixed

at 0, versus if the third coordinate is fixed at 1. We refer to k as a

circuit measuring marginal epistasis between two pairs of loci as in

(Beerenwinkel, Pachter, and Sturmfels 2007).

Arguments based on Dyck words can be used for analyzing rank

orders and additive dependence relations in general. The letters are

determined by the signs of the coefficients in the linear form, as for

three-way epistasis (Appendix 1, Theorem 3).

For each circuit and interaction coordinate, we identify all rank or-

ders that determine its sign. The characterization is given in terms

of general Dyck word conditions. We found that for each interaction

coordinate, 2/5 of all rank orders determine its sign; for each circuit

corresponding to either conditional two-way interaction or marginal

epistasis between two pairs of loci, 2/3 of all rank orders determine its

sign; and for each circuit relating the three-way interaction to the total

two-way epistasis, 1/2 of all rank orders determine its sign (Appendix 1,

Corollary 4 and 6).

Importantly, if a rank order implies that the sign of an additive

dependence relation, such as a circuit or an interaction coordinates, is

determined, then the system has sign epistasis.

One can ask if it possible to decompose the word obtained for an-

alyzing n-way epistasis into subunits, so as to learn about circuits or

properties for subsystems of the genotypes. In general, no such de-

compositions are possible unless one has information in addition to

the word itself. For instance, suppose that a rank order is mapped to

ooeeeooe. The first half of the word, namely ooee, does not necessar-

ily reveal any interesting information about the system. (Appendix 1,

Section 1.2).

The signs of all twenty circuits determines the polyhedral shape of

the fitness landscape (Beerenwinkel, Pachter, and Sturmfels 2007). The
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16 K.CRONA, A.GAVRYUSHKIN, D.GREENE, AND N.BEERENWINKEL

shape combines the circuit information into a more manageable object.

However, no rank order determines a shape for n = 3 (Appendix 1,

Section 1.2).

Our tools for detecting gene interactions work for total n-way epis-

tasis, interaction coordinates and circuits. Moreover, our approach ap-

plies to any type of gene interaction that can be expressed by a linear

form (Appendix 1, Theorem 3), such as Fourier coefficients (Beeren-

winkel, Pachter, and Sturmfels 2007) and Walsh coefficients (Weinre-

ich, Lan, et al. 2013). We have implemented algorithms for detecting

the gene interactions described in this section, both for rank orders

and partial orders, specifically, algorithms for n-way epistasis, three-

way and four-way interaction coordinates, and three-way circuit in-

teractions (Appendix 2, https://github.com/gavruskin/fitlands#

fitlands). The most computationally demanding task of our algo-

rithms is reading the rank order from disk. The run time complexity is

proportional to the number of non-zero coefficients in the linear form.

Analysis of empirical fitness data. As proof of principle, we ap-

plied our tools to fitness data from a diverse set of biological systems,

ranging from HIV-1 (Segal, Barbour, and Grant 2004), malaria (Og-

bunugafor and Hartl 2016), antibiotic resistance (Mira et al. 2015), to

the fungus Aspergillus Niger (Franke et al. 2011). Our approach re-

veals higher order epistasis for all of these systems, only by considering

rank orders and partial orders of genotypes, without the need to access

direct fitness measurements or estimates.

Our first application is to the HIV-1 data published by Segal, Bar-

bour, and Grant (2004). Following Beerenwinkel, Pachter, and Sturm-

fels (2007), we consider the three-locus biallelic system that consists of

the mutation L90M in the protease and mutations M184V and T215Y

in the reverse transcriptase of HIV-1. Fitness was measured as the

number of offspring in a single replication cycle of the virus in the

original study, and was reported relative to the wild-type strain NL4-3

on a logarithmic scale. The data consist of 288 fitness measurements,

including between 5 and 214 replicates per genotype.
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The following rank order was obtained by comparing the mean fitness

of the eight genotypes:

w000 > w100 > w011 > w110 > w101 > w001 > w010 > w111,

where 000 corresponds to the sequence of amino acids LMT and 111

to MVY comprising the three selected loci. This rank order implies

positive three-way epistasis because the associated word

e o e e e o o o

is a Dyck word. It follows that the three mutations under consideration

together have a stronger effect on fitness than one would predict from

single and double mutants. A closer inspection of the word reveals more

information. If we swap any two adjacent letters in the word, then we

still have a Dyck word, with the single exception of the first two letters.

In other words, only one pair of adjacent genotypes in the rank order,

namely 000 and 100, could violate the conclusion if transposed.

If the experiment was to continue, our analysis could be used to di-

rect the data collection process. Indeed, the argument above suggests

that the position of the genotype 100 may violate the conclusion of pos-

itive three-way epistasis. To quantify the uncertainty in the ranking

of 100 with respect to the wild type 000, we employed the Wilcoxon

rank sum test on the replicate fitness measurements. The p-value of

the test is 0.47 for the relation w000 > w100, which implies considerable

uncertainty and justifies our recommendation of further experiments

to clarify the position of 100. Importantly, the suggested experiment

reduces the number of measurements required to make a more robust

conclusion about epistasis considerably, namely to one out of 28 possi-

ble comparisons.

We proceeded by considering other types of gene interactions in this

data set. When considering all 20 circuits, the rank order implies inter-

actions for 55% of the circuits, with positive sign for 30% and negative

for 25% of the circuits. This result is consistent with the conventional

statistical approaches that use direct fitness measurements. Indeed,
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since the empirical study of Segal, Barbour, and Grant (2004) pro-

vided multiple fitness measurements of each genotype, it was possible

to compare our conclusion based on rank orders with statistical tests

based on fitness estimates.

The results for fitness measurements were confirmed by the conven-

tional Wilcoxon rank sum test. We computed interaction coordinates

and circuit interactions for the summary statistics reported in (Beeren-

winkel, Pachter, and Sturmfels 2007). Figure 5 shows that our rank

order methods detected the majority of circuit interactions identified

by using the summary statistics. Specifically, both approaches detected

three-way epistasis. Furthermore, 11 of the 20 circuit interactions have

been detected by our method and confirmed by Wilcoxon rank sum

test.

We also applied Student’s t-test to detect interactions and quantify

the significance of the estimates. In addition to the 11 interactions,

the t-test found 6 circuit interactions as significant (Appendix 2 – Ta-

ble 2). We emphasize that the rank order approach required much less

information to arrive at the same conclusions, thus demonstrating the

power of the method.

We conclude that the three sites in the HIV-1 genome under consid-

eration are prone to a diverse set of interactions. Specifically, the strong

support for the three-way epistasis, along with the 55% of informative

circuit interactions, imply that the three loci together interact in a

complex manner, meaning that the interactions cannot be explained

using pairwise interactions alone. Thus, in this data set, higher order

interactions have a strong impact on the fitness landscape.

Our second application is to a study of antimicrobial drug resis-

tance in malaria (Ogbunugafor and Hartl 2016). The authors measured

growth rates for several mutants of Plasmodium vivax under exposure

to the antimalarial drug pyrimethamine. We identified higher order

epistasis by analyzing rank orders. More precisely, we considered a

three-locus sub-system of the study that consists of mutations N50I,

S58R, and S117N, in the context of T173L, a fixed mutation, under
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INFERRING GENETIC INTERACTIONS 19

Figure 5. Interactions detected from fitness summary
statistics and from rank orders. The horizontal axis
is labeled by the four interaction coordinates u110, . . . ,
u111 and twenty circuits a, . . . , t. The boxplots show
the distributions of the various interactions induced by
the empirical fitness distribution. The red star indicates
whether the interaction has been detected by our rank or-
der method. Specifically, a star with vertical coordinate
−1, 0, and 1 means negative, no, and positive interac-
tion, respectively.

nine different concentrations of pyrimethamine. The genotypes com-

prising positions 50, 58, and 117 are labeled 000 (NSS), 100, 010, 001,

110, 101, 011, and 111 (IRN). The three highest concentrations of the
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drug resulted in the following rank orders:

w111 > w011 > w001 > w101 > w010 > w100 > w110 > w000

w111 > w011 > w001 > w010 > w100 > w101 > w110 > w000

w111 > w011 > w010 > w001 > w100 > w110 > w101 > w000.

The corresponding words are oeoeooee for the first rank order, ob-

tained under the highest concentration of the drug, and oeoooeee for

the second and third rank orders. Since we obtain Dyck words in all

cases, the system has negative three-way epistasis for the three highest

concentrations of the drug. This consistency among pyrimethamine

concentrations shows that the result is robust.

Using our software, we also analyzed all interaction coordinates

for this data set (https://github.com/gavruskin/fitlands/blob/

master/Four-way_interaction_coordinates_and_total_n-way_

interaction.ipynb). Our analysis revealed that for the two highest

concentrations of the drug, the rank order implies that the interaction

coordinate denoted u0111 (Appendix 1) is negative.

Next, we applied our tools to a study of the TEM-family of β-

lactamase, associated with antibiotic resistance (Mira et al. 2015). The

study measured growth rates for 16 genotypes exposed to 15 differ-

ent antibiotics. Specifically, all 16 genotypes that combine subsets of

the four amino acid substitutions M69L, E104K, G238S, N276D found

in TEM-50, including eight known enzymes, were created using site-

directed mutagenesis. We considered the fitness graph obtained when

the system was exposed to the antibiotic FEP Cefepime at a concentra-

tion of 0.0156 µg/ml (Figure 6). The fitness graph implies higher order

epistasis (Appendix 1, Proposition 7), that is, the fitness of TEM-50

cannot be predicted even with complete knowledge of the fitness values

of the remaining genotypes in the system. The fitness graphs for the

other 14 antibiotics do not share this property. We conclude that

even though some of the single and triple mutants confer low antibiotic

resistance, a large population of triple mutants alone is more prone
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0110(TEM-15)1001(TEM-35)0101 1010 1100

1000(TEM-33)0100(TEM-17)0010(TEM-19)0001(TEM-84)

1110110110110111

0011

0000(TEM-1)

1111(TEM-50)

Figure 6. The TEM-family of β-lactamase contributes
to antibiotic resistance problems in hospitals. The fit-
ness graph shows a four-locus system consisting of the
wild type, TEM-1, the quadruple mutant, TEM-50, and
all intermediate mutants, including six clinically found
mutants in the TEM family. The mutation M69L cor-
responds to 1000, E104K to 0100, G238S to 0010, and
N276D to 0001. Growth rates were measured for the
16 genotypes under exposure to the antibiotic FEP Ce-
fepime, and the fitness graph was determined accordingly
(Mira et al. 2015). The graph reveals higher order epis-
tasis.

to become antibiotic resistant due to the epistatic fitness advantage of

TEM-50, as compared to a setting with no higher order epistasis.

Finally, we investigated a study of the filamentous fungus Aspergillus

Niger (Franke et al. 2011). We considered a system consisting of the

wild type and all combinations of the four individually deleterious mu-

tations fwnA1, leuA1, oliC2 and crnB12 (Figure 7). Fitness was es-

timated with two-fold replication by measuring the linear mycelium

growth rate in the original study. The fitness graph implies higher

order epistasis (Appendix 1, Proposition 7).

All four arrows incident to 0000 point towards the genotype, so that

the genotype 0000 is a peak in the landscape. The same is true for the

genotypes 1100, 0011, and 1001. Because of the four peaks, it is possible
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1000010000100001

1110110110110111
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0000
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Figure 7. The fitness graph shows a four-locus sys-
tem for the filamentous fungus Aspergillus Niger. The
system consists of all combinations of the four individ-
ually deleteriouis mutations fwnA1, leuA1, oliC2 and
crnB12. The landscape has in total four peaks, labeled
0000, 1100, 0011 and 1001.

that the fungus population gets stranded at a suboptimal peak during

the course of evolution (we do not necessarily assume that the starting

point for an evolutionary process is at 0000). In contrast, an additive

fitness landscape is single peaked. This example illustrates that epis-

tasis may have an impact on the evolutionary dynamics. Several peaks

can make the evolutionary process less predictable, depending also on

other factors such as population size, mutation rate, etc. More gener-

ally, for three-locus fitness graphs, we analyzed the impact of higher

order epistasis versus only pairwise epistasis systematically. We found

that higher order epistasis correlates with more peaks as well as other

features that can lead to involved evolutionary dynamics (Appendix 1,

Section 1.4).

We completed our analysis of this data set by considering the 5-locus

system of mutations fwnA1, argH12, pyrA5, leuA1, and pheA1, condi-

tioning on mutations lysD25, oliC2, and crnB12 all being absent. The
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original study does not contain any measurements for the two geno-

types 11010 and 10111. Furthermore, two pairs of genotypes in the sys-

tem have identical ranks, namely (11000, 10010) and (10011, 11101).

We obtained the following word for the total five-way epistasis u11111,

eeoeexxooooeoooeoyyeeeoeoeoeoo

where the two x’s correspond to genotypes 11000 and 10010, the y’s to

10011 and 11101, and two letters are missing. Whether one can draw

conclusions about five-way epistasis or not, depends on the positions of

the two missing genotypes, as well as the genotypes represented by y’s,

whereas it is independent of the genotypes represented by x’s. Specifi-

cally, if genotype 11101 has higher fitness than 10011, genotype 10111

has rank between 1 and 15, and genotype 11010 has rank between 20

and 32, then the resulting rank order implies positive five-way epista-

sis, i.e., u11111 > 0, for both possible options to resolve the ranking of

genotypes 11000 and 10010 (Appendix 2, Table 3).

3. Discussion

Gene interactions play a critical role in evolutionary processes. Im-

portant features of fitness landscapes, such as the number of peaks, and

accessible evolutionary trajectories, depend on epistatic gene interac-

tions. The importance of higher order versus pairwise epistasis, within

and among genes or in non-coding regions, as well as the impact of

higher order epistasis on evolutionary dynamics, remains a central re-

search topic (Sailer and Harms 2017b; Wu et al. 2016; Weinreich, Lan,

et al. 2013). Progress in all of these areas requires adequate math-

ematical and statistical approaches, in addition to empirical studies.

Here, we have developed new quantitative tools for detecting gene

interactions from empirical data. The main advantage of our tools is

that they can reveal gene interactions from the types of data frequently

generated in empirical studies, specifically rank orders, fitness graphs,

and general partial orders of genotypes. The reasons why, in prac-

tice, these types of data are available more often than precise fitness
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measurements for each genotype are manifold. They include restricted

comparative experimental designs and known and unknown confound-

ing factors in measuring fitness that can result in uncertain and biased

estimates. The methods presented here allow for studying epistatic

interactions even when direct fitness measurements are lacking or only

a subset of pairwise fitness comparisons is available, either as the im-

mediate outcome of the experiment or the reported summary.

We provide a complete characterization of rank orders that imply

higher order epistasis, along with precise results for fitness graphs of

three-locus systems. In principle, our approach applies to general par-

tial orders as well, and we have implemented algorithms accordingly.

However, because of the increasing computational complexity it would

be desirable to have theoretical results for handling large systems. In

particular, a characterization of fitness graphs that imply higher order

epistasis is of independent mathematical interest.

We found that for biallelic three-locus systems, 40% of all possible

rank orders and 37% of all possible fitness graphs imply higher order

epistasis. These fractions suggest that our methods have a good ca-

pacity to detect higher order epistasis among three loci, even if exact

and complete fitness measurements or estimates are not available.

The fraction of rank orders that imply n-way epistasis decreases

rapidly with increasing number of loci, n. However, many rank orders

are informative regarding other additive dependence relations, for in-

stance some circuits measuring conditional epistasis. This is clear from

the observation that the proportion of rank orders that are compatible

with additive fitness decreases rapidly with n.

Moreover, the power of our methods was demonstrated for a di-

verse set of biological systems. We detected higher order epistasis for

HIV, malaria, the fungus Aspergillus Niger, and antibiotic resistance

systems. Our findings suggest that genetic interactions beyond two-

way epistasis shape the fitness landscapes of these genetic systems and

may play an important role in determining their evolutionary trajec-

tories. We also exhaustively investigated various types of higher order

interactions in HIV-1 and discovered a complex pattern of interactions,
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confirming that our approach is powerful enough to detect finer gene

interactions. Specifically, we identified over twenty interactions by con-

ventional approaches, and rank order methods detected about half of

them.

Another important application of our method is to experimental de-

sign. When the information available in the data does not contradict

an interaction, but is not conclusive enough to claim the interaction, for

example because the number of performed competition experiments is

too small, then the method allows for prioritizing further experiments

by suggesting additional comparisons of genotypes. This feature may

prove useful in guiding fitness experiments that aim for testing spe-

cific interactions and allow for iteration. We have developed this idea

further in (Lienkaemper et al. 2017), where we consider partial fitness

orders of genotypes and develop efficient algorithms to detect genetic

interactions, as well as study the geometry of such partial orders. Evo-

lutionary aspects of partial orders and gene interactions are studied in

Crona and Luo (2017).

Genetic interactions, especially those of higher order, are particu-

larly difficult to detect in high-dimensional systems, where complete

fitness measurements of all genotypes are infeasible. Human genome-

wide association studies (GWAS) are a prime example. Here, already

the number of loci, n, and certainly the number of possible genotypes,

2n, is much larger than the actual number of genotyped and pheno-

typed individuals, even if the genotype data is summarized on the level

of genes or haplotype blocks. Since most diseases are polygenic, rather

than monogenic, genetic interactions play an important role, and ac-

counting for them may explain some of the missing heritability and

improve genetic disease models. Several methods have been proposed

for detecting pairwise interactions in GWAS, most of them relying on

scanning all or a prioritized subset of pairs of loci (Wei, Hemani, and

Haley 2014), but little is known about higher order interactions in these

landscapes.

The methods presented in the present study may help addressing

this challenge as they can sometimes reveal higher order interactions
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from a small number of comparisons, and the choice of genotypes to

compare can be optimized if particular interactions are to be tested.

Another advantage is the flexibility of our approach regarding the type

of epistatic interaction analyzed. While we have focused on analyz-

ing complete genetic systems, i.e., n-dimensional hypercubes, for small

values of n in this work, genotype spaces consisting of subsets of the

2n possible genotypes have different sets of interactions, such as cir-

cuits, that are natural to consider. Towards this end, Huggins, Pachter,

and Sturmfels (2007) have explored circuits and their sign patterns for

genotype data from the HapMap project in two ENCODE regions. The

Dyck word approach will be particularly useful if quantitative data on

the phenotype is difficult to obtain, but rank order information is more

accessible, for example by considering disease indicators, rather than

the condition itself.

For a more theoretical perspective, we emphasize the distinction be-

tween rank order-induced gene interactions, and interactions that do

not change the rank order of genotypes. This distinction was pointed

out by Weinreich, Watson, and Chao (2005) who introduced the term

sign epistasis. If a system has sign epistasis, then the rank order of the

genotypes is not compatible with additive fitness. Rank order-induced

gene interactions of any type can thus be regarded as analogues to sign

epistasis.

There exist a number of possible ways to quantify and interpret

higher order interactions (Weinreich, Lan, et al. 2013; Beerenwinkel,

Pachter, and Sturmfels 2007; Hallgŕımsdóttir and Yuster 2008), and

our rank order approach applies to any type of gene interactions mea-

sured by linear forms. In particular, we can detect interactions as

described by Fourier coefficients and Walsh coefficients. From our gen-

eral argument based on Dyck words we investigated three-locus sys-

tems, and determined the number of rank orders that imply circuit

interactions, including conditional and marginal epistasis, and simi-

larly for interactions coordinates. The method works equally well for

other interactions.
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Further investigation of rank order-induced interaction has the po-

tential to relate global and local properties of fitness landscapes, sim-

ilarly to results on sign epistasis (Weinreich, Watson, and Chao 2005;

Poelwijk, Tănase-Nicola, et al. 2011; Crona, Greene, and Barlow 2013).

Global properties concern peaks and mutational trajectories in the fit-

ness landscape, whereas local properties concern, for instance, fitness

graphs for small system. The relation between global and local prop-

erties is important since only local properties can be easily observed in

experiments or nature.

A very useful feature of sign epistasis is that one can identify, or rule

out, sign epistasis in a system from inspection of two-locus subsystems

only. The theoretical significance and applicability of sign epistasis de-

pends on its local nature. Fortunately, the signed versions of other

gene interactions are sometimes local as well. For instance, it seems

plausible that the absence of rank order induced conditional epistasis of

specified orders (a local property) correlates with few peaks and good

peak accessibility. In this spirit we explore some evolutionary conse-

quences of higher order epistasis in (Crona and Luo 2017). Theory for

sign epistasis stands as a model for further development in this area.

Although we have applied our method here only to fitness, any other

continuous phenotype of interest can be analyzed in exactly the same

manner. The fitness landscape w is then replaced by a more general

genotype-to-phenotype map. For example, rather than using it as a fit-

ness proxy, one may be concerned about the drug resistance phenotype

itself and its genetic architecture.

In summary, rank order methods have potential for the interpreta-

tion of empirical data, as well as for relating higher order gene inter-

actions and evolutionary dynamics. Our approach facilitates detecting

higher order epistasis from a very broad range of empirical data, and

will therefore contribute to enhancing our general understanding of

empirical fitness landscapes and epistatic gene interactions.
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Appendices

Appendix 1. Mathematical framework and proofs

Here we provide proofs for the results in the main text, and give

a brief background on the discrete Fourier transform, Dyck words,

and Catalan numbers. Catalan numbers (Stanley 1999) have rarely

been used in biology, so we describe them briefly without assuming

any knowledge. Several arguments in the appendix depend on elemen-

tary combinatorics, and the reader may consult a general text, such as

Grimaldi (2006).

We start with rank orders and the total n-way epistasis, followed by

more general results on rank orders, circuits and other linear forms.

The next topic is epistasis and fitness graphs, including some related

graph theory. Finally we provide a few observations on epistasis and

partial orders.

Gene interactions for a biallelic n-locus system can be described in

terms of the Fourier transform for (Z2)
n defined as

ui1i2...in =
1

2n−1 ·
1∑

j1=0

1∑
j2=0

· · ·
1∑

jn=0

(−1)i1j1+i2j2+···+injn wj1j2...jn .

By abuse of notation we will ignore the scaling factor 1
2n−1 . We define

interaction coordinates as the elements ui1i2...in such that at least two

entries in i1i2 . . . in are 1. The interaction coordinate u1...1 measures

the total n-way epistasis,

u1...1 =
1∑

j1=0

1∑
j2=0

· · ·
1∑

jn=0

(−1)j1+j2+···+jn wj1j2...jn .

In particular,

u11 = w00 − w10 − w01 + w11 = ε2

and

u111 = w000 − w100 − w010 − w001 + w110 + w101 + w011 − w111 = ε3
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as defined in Eqs. 1 and 2 in the main text. A biallelic three-locus sys-

tem has three-way epistasis exactly if u111 6= 0. Otherwise the system

has only pairwise interactions. Similarly, a biallelic n-locus system has

(total) n-way epistasis exactly if u1...1 6= 0.

The remaining interaction coordinates of the three-locus system are

u110 = w000 − w100 − w010 + w001 + w110 − w101 − w011 + w111,

u101 = w000 − w100 + w010 − w001 − w110 + w101 − w011 + w111,

u011 = w000 + w100 − w010 − w001 − w110 − w101 + w011 + w111.

Weinreich, Lan, et al. (2013) characterize epistatic interactions using

Walsh coefficients, which are closely related to interaction coordinates.

Specifically, the Walsh coefficients E111, E110, E101, E011 differ from the

interaction coordinates u111, u110, u101, u011 only by a scalar. Here we

ignore scalars, since we focus on the signs of the interactions coordinates

only. It follows that all our results on interaction coordinates hold for

Walsh coefficients as well.

1.1. Rank orders. We will determine the number of rank orders

which imply n-way epistasis. The proof depends on Catalan numbers

and Dyck words (Stanley 1999). Let Ci denote the ith Catalan number

for i ≥ 0, that is, Ci = (2i)!
(i+1)!i!

. In particular, C0 = C1 = 1, C2 = 5,

C3 = 14 and C4 = 42. A Dyck word of length 2n in the letters X and

Y is a string consisting of n X’s and n Y ’s such that no initial segment

of the string has more Y ’s than X’s. For instance, the Dyck words of

length 4 are XXY Y and XYXY . The initial segments of XXY Y are

X, XX, XXY , and XXY Y .

Proposition 1. Consider a biallelic n-locus system. The number of

rank orders which imply n-way epistasis is

(2n)!× 2

2n−1 + 1

Proof. There are (2n)! rank orders in total. Let ei denote the fitnesses

of genotypes with an even number of 1’s in the subscripts (w0...0, w110...0,

and so forth) and oi the fitnesses of genotypes with an odd number of
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1’s, ordered in such a way that ei > ei+1 and oi > oi+1 for all i. We

will refer to even and odd elements from now on. Let u1...1 denote the

interaction coordinate as defined above. Notice that u1...1 = 0 exactly

if
∑

i ei−
∑

i oi = 0. Consequently a rank order implies positive n-way

epistasis (u1...1 > 0) when the sum
∑

i (ei − oi) is positive for all fitness

landscapes compatible with the rank order. It is therefore sufficient to

count such rank orders.

We define a map from fitness rank orders to words in the alphabet

{e, o} as follows: ei 7→ e, oi 7→ o. For instance, the order w00 > w11 >

w10 > w01 is mapped to eeoo. We claim that a rank order satisfies∑
i (ei − oi) > 0 exactly when it is mapped to a Dyck word (where e

precedes o).

It is immediate that
∑

i (ei − oi) > 0 holds if the rank order is

mapped to a Dyck word. Conversely, suppose that a rank order is

not mapped to a Dyck word. Let s be the least number such that the

number of o’s exceeds the number of e’s for an initial segment of length

s (note that s has to be odd in this case) and let j = s+1
2

. Clearly one

can make the sum of
∑j

i=1 (ei − oi) negative for a particular choice of

ei and oi. By choosing the remaining numbers ei, oi sufficiently small,

we get
∑

i (ei − oi) < 0, which proves the claim.

It remains to count the rank orders where
∑

i (ei − oi) > 0. Such

rank orders are mapped to Dyck words (where e precedes o) consisting

of 2n−1 e’s and 2n−1 o’s. There are C2n−1 such Dyck words (Stanley

1999). For each word there are (2n−1)! × (2n−1)! fitness rank orders

which map to the word. Indeed, one can choose the ordering of even

and odd elements each in (2n−1)! different ways.

In total there are C2n−1 × (2n−1)! × (2n−1)! fitness rank orders such

that
∑

i (ei − oi) > 0 for all landscapes. By symmetry, the same

number of fitness rank orders satisfy the negative epistasis condition∑
i (ei − oi) < 0. One verifies that

C2n−1 × (2n−1)!× (2n−1)!× 2 =
(2n)!× 2

(2n−1 + 1)
,

which completes the proof. �
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A few observations in the proof of Proposition 1 are of interest.

Importantly, the proof gives a computationally efficient method (linear

in the number of genotypes) for checking if a rank order implies n-way

epistasis. Indeed, the rank order implies higher order epistasis exactly

if it is mapped to a Dyck word. Moreover, the proposition states that
(2n)!×2
(2n−1+1)

orders imply n-way epistasis. From the proof it is clear that

half of these orders imply positive n-way epistasis (u1...1 > 0) and the

other half negative n-way epistasis (u1...1 < 0). Also, the proof points

out some symmetries. If a rank order implies epistasis, then the same

is true for rank orders obtained by (i) any permutation of the even

elements, (ii) any permutation of the odd elements, and (iii) the flip

obtained by replacing every “<” by “>” in the rank order. It follows

that each rank order that implies three-way epistasis belongs to a class

of 1152 (= 4! · 4! · 2) elements, which differ by the operations (i)–(iii)

only.

Corollary 2. The fraction of rank orders that imply n-way epistasis

among all rank orders is
2

2n−1 + 1
.

Proof. Since the number of all rank orders is (2n)!, the result follows.

�

The results on rank orders and epistasis for 2 ≤ n ≤ 4 are summa-

rized in Table 1. Notice that the expression in the corollary approaches
1

2n−2 for large n.

Loci Rank orders Imply epistasis Fraction
2 24 16 2/3
3 40,320 16,128 2/5
4 20,922,789,890,000 4,649,508,864,000 2/9

Appendix-table 1. Numbers and fractions of rank or-
ders that imply n-way epistasis.

Interestingly, no integer sequence that starts with 16, 16 128, . . . is

available at The On-Line Encyclopedia of Integer Sequences (2016).
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1.2. Circuits. The proof of Proposition 1 depends on the map defined

from the rank orders to words in the alphabet {e, o}. We will use a

generalization of the map in subsequent proofs. The starting point is

a given linear form. The form determines a map from rank orders to

words. Although the idea is closely related to the previous proof, we

will work with positive and negative coefficients in the linear forms.

For that reason, we will use P and N rather than e and o (even and

odd is no longer meaningful).

We start with a clarifying example. Assume that a given linear form

has integer coefficients and that the sum of its coefficients is zero. For

instance, the form

m = w001 + w010 + w100 − w111 − 2w000

defines a map ϕm as follows: Each of the variables w001, w010, w100 corre-

sponds to the letter P (for positive), and the variable w111 corresponds

to N (for negative). The variable w000 corresponds to NN , because of

the coefficient −2. In this case, the rank order

w111 > w001 > w000 > w100 > w010 > w110 > w101 > w011

is mapped to NPNNPP under ϕm. Specifically, starting from left

w111 corresponds to N , w001 to P , w000 to NN , w100 to P , and w100

to P . The remaining variables w110, w101, w011 do not impact the word,

since their coefficients are zero for the form m.

Definition 1. Let f be a linear form with integer coefficients. Assume

that the sum of its coefficients is zero. Let ϕf denote the map from

a total order on the variables (a rank order) to words in the alphabet

{P,N} defined as follows: Each variable of f with a positive integer

coefficient c corresponds to a substring of c letters P . Each variable

in f with a negative integer coefficient c′ corresponds to a substring

of |c′| letters N . A rank order of the variables is mapped to the word

consisting of the substrings obtained for each variable with non-zero

coefficient in f . Specifically, the substrings (from left to right) of the

word correspond to the variables in the rank order (from highest to

lowest fitness).
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The proof of Proposition 1 uses e and o instead of P and N . However,

notice that the map from rank orders to words in e’s and o’s is exactly

ϕu1...1 (modulo the labeling). The next result is a generalization of

Proposition 1. The proof is similar in every step with the modification

that ϕu1...1 is replaced by ϕf for an arbitrary form f , so we omit the

details.

Theorem 3. Let f be a linear form with integer coefficients. Assume

that the sum of its coefficients is zero. Then a rank order implies that

f is not zero if and only if it is mapped to a Dyck word by ϕf .

We define additive dependence relations as linear forms that are zero

for all additive landscapes. Theorem 3 applies to all additive depen-

dence relations, because the coefficients of an additive dependence rela-

tion sum to zero. This fact explains why our Dyck word-based method

applies broadly. All we require is that an epistasis measure is defined

by linear forms, as any such measure is zero on additive fitness land-

scapes. In particular, Theorem 3 applies to n-way epistasis, interaction

coordinates, and circuits. However, some approaches to epistasis are of

a completely different type, for instance the approach based on Shan-

non entropy (Moore et al. 2006), in which case rank order methods

may not apply.

Recall from the main text that a = w000 − w010 − w100 + w110 is a

circuit. In particular, a = 0 for all additive fitness landscapes. More-

over, a is minimal with this property, in the sense that no linear form

in a proper subset of {w000, w010, w100, w110} equals zero for all addi-

tive landscapes. In general, circuits are defined as minimal (additive)

dependence relations, in the sense that the set of wg which appear with

non-zero coefficient is minimal with respect to inclusion.
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There are 20 circuits a, . . . , t for the three-locus system (Beeren-

winkel, Pachter, and Sturmfels 2007), namely

a := w000 − w010 − w100 + w110

b := w001 − w011 − w101 + w111

c := w000 − w001 − w100 + w101

d := w010 − w011 − w110 + w111

e := w000 − w001 − w010 + w011

f := w100 − w101 − w110 + w111

g := w000 − w011 − w100 + w111

h := w001 − w010 − w101 + w110

i := w000 − w010 − w101 + w111

j := w001 − w011 − w100 + w110

k := w000 − w001 − w110 + w111

l := w010 − w011 − w100 + w101

m := w001 + w010 + w100 − w111 − 2w000

n := w011 + w101 + w110 − w000 − 2w111

o := w010 + w100 + w111 − w001 − 2w110

p := w000 + w011 + w101 − w110 − 2w001

q := w001 + w100 + w111 − w010 − 2w101

r := w000 + w011 + w110 − w101 − 2w010

s := w000 + w101 + w110 − w011 − 2w100

t := w001 + w010 + w111 − w100 − 2w011

Before describing applications of Theorem 3 in more detail, we will

compare different approaches to epistasis. As already noted, interaction

coordinates (Beerenwinkel, Pachter, and Sturmfels 2007) and Walsh

coefficients of order two or more (Weinreich, Lan, et al. 2013) differ

only by a scalar. However, circuits provide information of a different
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type. To see this, we consider the two circuits

a = w000 − w010 − w100 + w110

b = w001 − w011 − w101 + w111

which measure epistasis between the first and the second locus condi-

tional on the third locus being fixed to 0 and 1, respectively. If a = −b
for a system, then u110 = 0 (and the Walsh coefficient E110 = 0 as well),

because u110 = a + b. If, in addition, |a| = |b| is a large number, then

the first and second loci have substantial interactions as measured by

a and b, yet the interaction coordinate u110 captures only the average

effect which is zero and would indicate no interaction.

Even if one knows the signs of all interaction coordinates u111, u110,

u101, and u011, one may still be ignorant about important gene interac-

tions. In contrast, the signs of all 20 circuits provide a more complete

description of the gene interactions from a qualitative point of view. In

this sense, it is natural to say that two fitness landscapes have similar

gene interactions if their circuit sign patterns agree.

One type of circuits measures conditional epistasis, and they relate

to interaction coordinates in an interesting way. More precisely, con-

ditional epistasis concerns subsystem obtained by fixing a subset of

coordinates at 0 or 1 and varying the remaining loci. Conditional epis-

tasis for an n-locus subsystem agrees with the total n-way epistasis for

the subsystem. In particular, the circuits a and b measure conditional

epistasis. The circuit a measures epistasis for the two-locus subsystem

of genotypes with last coordinate 0, and the circuit b measures epistasis

for the two-locus subsystem of genotypes with last coordinate at 1. As

mentioned, the interaction coordinate u110 is the average of a and b

(modulo a constant).

The relation between interaction coordinates and circuits is similar

for larger systems. For instance, the circuit

w0000 − w0100 − w1000 + w1100,

measures conditional epistasis for the two-locus subsystem obtained

by fixing the last two coordinates at zero. The interaction coordinate
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u1100 measures the average effect of four different circuits that measure

conditional epistasis. In summary, all interaction coordinates can be

interpreted as averages of circuits expressing conditional epistasis.

Technically, the 20 circuits can be obtained as linear combinations

of the interaction coordinates u111, u110, u101, and u011. However, none

of the interaction coordinates are themselves circuits, since they do not

satisfy the condition of being minimal.

The circuits a, . . . , f all measure conditional two-way epistasis be-

tween two loci when the allele at the third locus is fixed. But there

are other types of circuits. The circuits g, . . . , l relate marginal epista-

sis of two pairs of loci, and the circuits m, . . . , t relate the three-way

interaction to the total two-way epistasis (Beerenwinkel, Pachter, and

Sturmfels 2007).

For a given circuit, some rank orders imply that the circuit is positive,

i.e., the circuit is positive for all fitness values compatible with the rank

order. Similarly, some rank orders imply that the circuit is negative,

whereas the sign cannot be determined from other rank orders. We

will use Theorem 3 to check whether a rank order determines the sign

of a circuit or not.

Corollary 4. For the circuits a, . . . l, two thirds of all possible rank

orders determine the sign of the circuit. For the circuits m, . . . , t, one

half of all possible rank orders determine the sign of the circuit.

Proof. Fix one of the circuits from a to l and a rank order. The circuit

has exactly four variables with non-zero coefficients (for instance, for

the circuit a the variables are w000, w100, w010, w110, so that ϕa maps

rank orders to four-letter words). By Theorem 3, the rank order implies

that the circuit differs from zero when it is mapped to one of the Dyck

words PPNN , PNPN , NNPP or NPNP under ϕ, whereas the sign

of the circuit is not determined when the word is PNNP or NPPN .

One concludes that the sign of a given circuit from a to l is determined

for 2/3 of the rank orders.

Using a similar argument, we consider words of length 6 for the

circuits labeled m to t. There are in total 20 words consisting of 3 P ’s
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and 3 N ’s. Ten of them are Dyck words. We conclude that the sign of

a given circuit from m to t is determined for 1/2 of the rank orders. �

In general, it is not possible to decompose the word obtained for

analyzing n-way epistasis into informative subunits. For example, as

mentioned in the main text, the first half of the word ooeeeooe is ooee,

and it does not appear to reveal any interesting information about the

system. On the other hand, if one knows that the word ooeeeooe was

obtained from the rank order

w010 > w111 > w110 > w101 > w011 > w100 > w001 > w000,

then one can identify meaningful parts of the word. For instance, con-

sider the subsystem of genotypes with last coordinate 0. The corre-

sponding letters (the first, third, sixth and eighth letter of the word

ooeeeooe) form the four-letter word oeoe, which implies that the cor-

responding subsystem has sign epistasis. Moreover, there is no con-

nection between words used for analyzing three-way epistasis and the

words representing Walsh-coefficients. For instance, in order to ana-

lyze u110 one maps the rank order above to NPPNNNPP , but the

two words ooeeeooe and NPPNNNPP are unrelated.

The gene interactions for a biallelic three-locus system can be clas-

sified in terms of shapes of the fitness landscape, or triangulations of

the 3-cube (Beerenwinkel, Pachter, and Sturmfels 2007). There are

74 shapes for the 3-cube. The shape of the fitness landscapes is deter-

mined by the signs of the 20 circuits. It follows that rank orders provide

some information about possible shapes. However, the following result

shows that rank orders do not determine shapes.

Proposition 5. Consider a three-locus biallelic system. No rank order

determines the shape of a fitness landscape.

Proof. The result follows from the characterization of shapes for the 3-

cube in (Beerenwinkel, Pachter, and Sturmfels 2007), where each shape

is described in terms of a circuit sign pattern. We verified computa-

tionally that no rank order implies that all the circuits have the signs

which describe a particular shape (https://github.com/gavruskin/
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fitlands#analysis-of-rank-orders) . More precisely, for every cir-

cuit a, . . . , t, we determined the set of all rank orders that imply that

the circuit is positive or negative.

For every rank order, we then considered the circuit signs determined

by the order. In no case did a rank order determine all the circuit signs

necessary for describing a particular shape. �

The fact that rank orders do not determine the shape of a fitness

landscape over a three-locus system is not surprising. Shapes reflect

interactions in a very fine scaled way, whereas rank orders provide only

coarse information.

Corollary 6. For each of the interaction coordinates u110, u101, and

u011, the number of rank orders which determines its sign is 16,128.

Proof. The linear form for each interaction coordinate consists of 8

elements, 4 with positive signs and 4 with negative signs. Notice that

16, 128 rank orders imply three-way epistasis, by Proposition 1. By

Theorem 3 the problem can be reduced to counting Dyck words of

length 8. It follows that the number of rank orders is 16, 128 for each

interaction coordinate. �

Note that the sign of a given interaction coordinate is determined

for 16, 128 out of 40, 320 rank orders, that is 2/5 or all rank orders. As

mentioned, the Walsh coefficients E110, E101, E011 differ from the inter-

action coordinates u110, u101, u011 only by a scalar, so that Corollary 6

applies to the coefficients as well.

1.3. Partial orders and fitness graphs. We now consider partial

orders, for instance,

w111 > w110, w100, w010, w001 > w000 > w101, w011

for a three-locus system. Arguing as in the proof of Proposition 1, the

(unknown) total order is mapped to the word oxxxxeee under ϕu1...1 ,

where xxxx is some permutation of eooo. For any such permutation

we get a Dyck word. It follows that the system has three-way epistasis.

This condition can be stated and proved in a more general form.
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Proposition 7. Consider an n-locus biallelic system. Let ei and oi be

defined as in the proof of Proposition 1. If there exists a partition of

the total set of fitness values into pairs (ei, oi), where ei > oi for all i,

then one can conclude n-way epistasis. By symmetry, the same is true

for a partition where ei < oi for each pair.

Proof. We will verify that the existence of a partition as described is

equivalent to the order being mapped to a Dyck word under the map

ϕu1...1 . It is immediate that the existence of such a partition implies

that the order is mapped to a Dyck word. Conversely, if the rank

order is mapped to a Dyck word under ϕu1...1 , then one can construct a

partition as follows. One pair in the partition corresponds to the first

e and the first o in the Dyck word, a second pair corresponds to the

second e and the second o in the word, and so forth. This partition

has the desired property. �

A fitness graph is a directed acyclic graph where each node represents

a genotype, and arrows connect each pair of mutational neighbors,

directed toward the node representing the genotype of higher fitness.

Moreover, fitness graphs are structured so that the node labeled 0 . . . 0

is at the bottom, genotypes with exactly one 1 on the level above, and

so forth (see Appendix 1 – Figure 3).

Our systematic analysis of fitness graphs takes advantage of the fact

that some graphs are isomorphic, i.e., there exists an edge preserving

bijection between the nodes of the graphs. In biological terms, an iso-

morphism can be considered a relabeling of the genotypes such that

mutational neighbors stay neighbors and the direction of arrows indi-

cating higher fitness is preserved. For example, Figure 2 of Appendix 1

shows two isomorphic fitness graphs.

The analysis of the two-locus case is straightforward. An arbitrary

fitness graph is isomorphic to a graph where 00 has the lowest fitness.

There are four fitness graphs satisfying the assumption. Indeed, two of

the arrows point up, so that there are in total 2×2 = 4 possible fitness

graphs depending on the directions of the remaining arrows (Figure 3).
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By inspection, two of the graphs in the figure are isomorphic. Conse-

quently, there are three different fitness graphs for two-locus systems

up to isomorphism.

Some fitness graphs imply epistasis, whereas other fitness graphs are

compatible with additive fitness. As illustrated in the two-locus case, a

fitness graph is compatible with additive fitness if all arrows point up,

that is toward a higher level. More generally, a fitness graph implies

epistasis unless it is isomorphic to a graph where all arrows point up.

Indeed, the graph implies sign epistasis unless such an isomorphism ex-

ists. (Weinreich, Watson, and Chao 2005; Crona, Greene, and Barlow

2013).

Accordingly, we can characterize rank orders that are compatible

with fitness graphs with all arrows up. After relabeling genotypes,

we can assume that the genotype 0 . . . 0 has the lowest fitness in the

system. Then a rank order is compatible with a fitness graph with

all arrows up, exactly if for each genotype replacing 0 by 1 results in

higher fitness. For instance, w00 < w10 < w01 < w11 is compatible with

such a graph whereas the rank order w00 < w11 < w01 < w10 is not.

If 000 has the lowest fitness in the system, one can verify that exactly

48 rank orders are compatible with the fitness graph with all arrows

up. It follows that in total 8 × 48 = 384 rank orders are compatible

with such graphs since there are 8 genotypes in a three-locus system,

each of which can have lowest fitness.

Interestingly, the same result can be obtained from theory on house-

of-cards landscapes. Since all rank orders are equally likely under this

statistical fitness landscape model, the fraction of rank orders that

imply sign epistasis agrees with the probability of sign epistasis. This

probability is 104
105

(Schmiegelt and Krug 2014, Table 2). It follows that

8!× 1
105

= 384 rank orders are compatible with fitness graphs with all

arrows up, that is, the total number of rank orders multiplied by the

fraction of rank orders compatible with such graphs.

As we have already seen, rank orders have potential far beyond de-

tecting whether or not there is epistasis in a system. The same is true

for fitness graphs, and we proceed with higher order interactions. In
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order to analyze fitness graphs and three-way epistasis, we consider

the set of rank orders compatible with a given fitness graphs. For in-

stance, the fitness graph in Appendix 1 – Figure 1 is compatible with

the following two rank orders:

w111 > w000 > w100 > w010 > w001 > w110 > w101 > w011, (5)

w000 > w111 > w100 > w010 > w001 > w110 > w101 > w011. (6)

111

101 110011

010 100001

000

Appendix-figure 1. The fitness graph is compatible
with the two rank orders (5) and (6).

The first order implies three-way epistasis (it is mapped to oeoooeee

under ϕu1,...,1 and the second does not (it is mapped to eooooeee under

ϕu1,...,1). We conclude that in this case, the fitness graph does not

imply higher order epistasis. However, if every rank order compatible

with the fitness graph implies higher order epistasis, then the fitness

graph itself does imply higher order epistasis. More generally, the same

observation holds for any partial order.

Remark. A partial order implies higher order epistasis exactly if all

its total extensions imply higher order epistasis.

Indeed, if all total extensions imply higher order epistasis, then in

particular the (unknown) rank order does. The converse holds by def-

inition.

Consequently, one can in principle determine if a fitness graph im-

plies higher order epistasis by checking all of the compatible rank or-

ders. For a systematic study of the three-locus case, it is convenient
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to reduce the problem to isomorphic graphs. Appendix 1 – Figure 2

shows two isomorphic fitness graphs.

As mentioned in the main text, there are in total 1, 862 fitness graphs

for three-locus systems, and the number of fitness graphs that imply

higher order epistasis is 698 (37 percent). Up to isomorphism there are

in total 54 fitness graphs, and 20 graphs imply higher order epistasis.

This result was verified by reducing the study of all 1, 862 graphs for

three-locus systems to a non-redundant list of 54 graphs, such that no

two graphs in the list are isomorphic. The fact that the total number of

graphs is 1, 862 follows from general theory on acyclic graphs (Stanley

2006), or can be verified computationally (see below).

Isomorphisms between three-locus systems have a geometric inter-

pretation. The fitness graph can be regarded as a three-dimensional

cube, with vertices corresponding to genotypes and edges correspond-

ing to arrows. The group of isomorphisms (see below) then corresponds

to the symmetry group of the three dimensional cube (Coxeter 1973).

Indeed, it was by way of this equivalence that we carried out the enu-

meration described above.

For clarity, we give a more explicit description of the cube isomor-

phisms. Any isomorphism can be constructed as a composition of the

following two transformations: (i) interchange of labels of the pair of

alleles at a locus, and (ii) change of order of the loci in the bitstring

representation of a genotype. There are in total forty-eight isomor-

phisms of the cube, including the identity transformation which leaves

the cube unchanged. Figure 2 of Appendix 1 is an example of such

a transformation, where at the first locus the labels 0 and 1 have

been swapped, and the second and third loci have been interchanged.

The code used for verifying the isomorphisms is available at https:

//github.com/devingreene/3-cube-partial-order-count.git.

A cube has 12 edges, so that the total number graphs on the cube

(graphs similar to fitness graphs, but cycles are allowed) is 212 = 4096.

After exclusion of graphs with cycles, 1, 862 graphs remain. An arbi-

trary graph is isomorphic to a graph where 000 has the lowest fitness.
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000

001

010

100 110

011

101 111

100

110

101

000 001

111

010 011

Appendix-figure 2. An example of an isomorphism.
Here, the allele labels ‘0’ and ‘1’ in the first locus have
been interchanged, as well as the second and third loci.

This relabeling reduces the number of graphs one has to consider sub-

stantially, as in the two-locus case. The list of remaining graphs can

be reduced further using the isomorphisms described above to finally

obtain 54 graphs (Figure 3).

1.4. Graph theoretical aspects. As mentioned in the main text,

the 20 graphs which imply higher order epistasis (see Appendix 1 –

Figure 3) constitute a diverse category. We analyzed the category from

a graph theoretical point of view, but could not see that the graphs

have any property which singles them out.

Recall that a unique sink orientation is a graph where each face

has no more than one sink. Equivalently, there is no subsystems with

reciprocal sign epistasis (Crona, Greene, and Barlow 2013; Poelwijk,

Kiviet, et al. 2007). The category of 20 graphs includes unique sink

orientations (also called USO or AOF graphs), as well as non-USO’s.

Moreover, in the terminology of Gärtner and Kaibel (1998), the cate-

gory includes separable and non-separable graphs, as well as realizable

and non-realizable graphs.

There were some indications of higher complexity for the category,

but only in a statistical sense. Indeed, as can be verified from Appen-

dix 1 – Figure 3, the graphs in the category have on average 1.8 sinks

(a sink corresponds to a peak in the landscape), whereas the average

number of sinks for all graphs is 1.6. Moreover, 5 out of the 20 graphs

(25 percent) in the category are unique sink orientations, whereas in

total 19 out of the 54 graphs (35 percent) are unique sink orientations.
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Even though the category of fitness graphs which implies epistasis

is diverse, it is still possible that a characterization exists. This is an

open problem.
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Appendix-figure 3. All 54 fitness graph types. Those
depicted in red imply three-way epistasis.
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Appendix 2. Software and HIV-1 study

We have implemented algorithms based on our theoretical results in

an open source software package (https://github.com/gavruskin/

fitlands#fitlands). The package provides software for detecting

gene interactions as described in the main text for two- and three-locus

systems. Furthermore, algorithms for detecting total n-way epistasis,

three- and four-way interaction coordinates and three-way circuit in-

teractions have been implemented. The documentation also explains

how to reproduce results for our application to HIV-1 data described

in the main text.

The results of Student’s t-test explained in the main text

are summarized in Appendix 2 – Table 2, and for related

code see https://github.com/gavruskin/fitlands/blob/master/

HIV_2007_conventional_analysis.ipynb
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Interaction p-value Result From rank order
u011 1.13e-31 + 0
u101 2.67e-12 − 0
u110 1.20e-24 − 0
u111 1.50e-29 + +
a 7.10e-16 − +
b 5.23e-32 − −
c 7.62e-04 + +
d 8.36e-68 − −
e 1.39e-38 + +
f 2.59e-01 0 0
g 3.10e-59 − 0
h 2.22e-02 − +
i 7.97e-05 + 0
j 2.20e-32 − −
k 1.96e-05 + 0
l 7.50e-51 − −
m 4.88e-07 − 0
n 9.87e-37 + 0
o 8.83e-03 + 0
p 7.18e-19 + +
q 1.94e-01 0 0
r 5.02e-50 + +
s 7.10e-27 − 0
t 8.49e-61 − −

Appendix-table 2. The first column lists the four in-
teraction coordinates and twenty circuits. The second
column shows p-values returned by Student’s t-test based
on fitness measurements. The third column shows which
interactions are significant based on 0.03 threshold and
their signs. For comparison, the last column displays the
results obtained from rank order methods.
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Rank fwn arg pyr leu phe #mutations o/e #o #e neg. vs
cumul. cumul. pos.

1 0 0 0 0 0 0 e 0 1 +
2 1 0 0 0 1 2 e 0 2 +
3 0 1 0 1 1 3 o 1 2 +
4 0 1 0 0 1 2 e 1 3 +
5 1 1 0 1 1 4 e 1 4 +

6 (or 7) 1 1 0 0 0 2 e 1 5 +
7 (or 6) 1 0 0 1 0 2 e 1 6 +

8 0 0 0 0 1 1 o 2 6 +
9 1 1 1 0 0 3 o 3 6 +
10 0 1 0 0 0 1 o 4 6 +
11 0 1 1 0 1 3 o 5 6 +
12 1 0 1 0 0 2 e 5 7 +
13 0 0 0 1 0 1 o 6 7 +
14 1 0 0 0 0 1 o 7 7 +
15 1 1 0 0 1 3 o 8 7 −
16 0 1 1 0 0 2 e 8 8 +
17 0 0 1 1 1 3 o 9 8 −

18 (or 19) 1 1 1 0 1 4 e 9 9 +
19 (or 18) 1 0 0 1 1 3 o 10 9 −

20 0 0 0 1 1 2 e 10 10 +
21 0 1 0 1 0 2 e 10 11 +
22 0 0 1 0 1 2 e 10 12 +
23 0 0 1 0 0 1 o 11 12 +
24 0 1 1 1 1 4 e 11 13 +
25 0 1 1 1 0 3 o 12 13 +
26 0 0 1 1 0 2 e 12 14 +
27 1 0 1 0 1 3 o 13 14 +
28 1 1 1 1 0 4 e 13 15 +
29 1 1 1 1 1 5 o 14 15 +
30 1 0 1 1 0 3 o 15 15 +
? 1 1 0 1 0 3 o ? ? ?
? 1 0 1 1 1 4 e ? ? ?

Appendix-table 3. Data from (Franke et al. 2011) on a
5-locus system determined by the mutations fwnA1, argH12,
pyrA5, leuA1, and pheA1. We consider 5-way epistasis for
the system. The first column lists the ranking of the geno-
types, where ”?” means missing measurement. The eighth
column indicates whether the genotype is odd or even. The
ninth and tenth columns show the cumulative number of o’s
and e’s, respectively. The last column indicates whether the
number of o’s exceeds the number of e’s (−) or vice versa
(+). We see that if genotype 11101 has higher fitness than
genotype 10011, genotypes 11000, 10010 are ranked arbitrar-
ily, the missing genotype 10111 has rank 1 − 15, and 11010
rank 20 − 32, then the last column would change to all +’s,
so the rank order would imply u11111 > 0.

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted November 22, 2017. ; https://doi.org/10.1101/137372doi: bioRxiv preprint 

https://doi.org/10.1101/137372
http://creativecommons.org/licenses/by/4.0/

	1. Introduction
	2. Results
	Two-locus case
	Three-locus case
	General n-locus case
	Analysis of empirical fitness data

	3. Discussion
	Acknowledgments
	References
	Appendices
	Appendix 1. Mathematical framework and proofs
	1.1. Rank orders
	1.2. Circuits
	1.3. Partial orders and fitness graphs
	1.4. Graph theoretical aspects

	Appendix 2. Software and HIV-1 study

