

1 ***Identifying core biological processes distinguishing human eye tissues with precise systems-
2 level gene expression analyses and weighted correlation networks***
3

4 Bryan, John M†

5 Fufa, Temesgen D†

6 Bharti, Kapil†

7 Brooks, Brian P†

8 Hufnagel, Robert B†

9 McGaughey, David M†*

10

11 * Corresponding author

12 † Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of
13 Health, United States of America

14 **Abstract**

15

16 The human eye is built from several specialized tissues which direct, capture, and pre-
17 process information to provide vision. The gene expression of the different eye tissues has been
18 extensively profiled with RNA-seq across numerous studies. Large consortium projects have also
19 used RNA-seq to study gene expression patterning across many different human tissues, minus
20 the eye. There has not been an integrated study of expression patterns from multiple eye tissues
21 compared to other human body tissues. We have collated all publicly available healthy human
22 eye RNA-seq datasets as well as dozens of other tissues. We use this fully integrated dataset to
23 probe the biological processes and pan expression relationships between the cornea, retina, RPE-
24 choroid complex, and the rest of the human tissues with differential expression, clustering, and
25 GO term enrichment tools. We also leverage our large collection of retina and RPE-choroid
26 tissues to build the first human weighted gene correlation networks and use them to highlight
27 known biological pathways and eye gene disease enrichment. We also have integrated publicly
28 available single cell RNA-seq data from mouse retina into our framework for validation and
29 discovery. Finally, we make all these data, analyses, and visualizations available via a powerful
30 interactive web application (<https://eyeintegration.nei.nih.gov/>).

31 **Introduction**

32
33 The human eye is a highly specialized organ using several distinct tissues to focus and
34 capture light and begin processing it into visual information. Light passes through the cornea and
35 the lens which focus the light onto the retina (1). The rod and cone photoreceptors of the retina
36 capture the light and transmits visual information that is processed by a network of retinal
37 synapses and passed through the optic nerve to the brain (2). The retinal pigment epithelium
38 (RPE) is responsible for absorbing scattered light and providing nutrition, maintaining ionic
39 homeostasis, and waste product processing for the photoreceptors, as well as mediating immune
40 function for the retina and eye (3). The RPE and outer neural retina is supported by and
41 connected to the vascular system of the body via the choroid (4).

42 Many genetic disorders affect the function of the various eye tissues and cause vision
43 perturbation or loss. The genetics of eye diseases range from monogenic Mendelian disorders to
44 complex multi-gene system perturbations that are modified by environmental influences. While
45 at least 316 identified genes underlying retinal diseases have been identified, recent
46 comprehensive next generation sequencing studies fail to find the cause of a variety of inherited
47 retinal diseases like cone-rod dystrophies or retinitis pigmentosa 40-60% of the time (5-7). In an
48 example of complex disease, age-related macular degeneration (AMD), which is believed to be
49 caused by dysfunction of the RPE and choroid, genome-wide association studies (GWAS) have
50 identified dozens of genomic locations associated with the disease. Still it is very difficult to
51 pinpoint the causative gene or genes (8).

52 An valuable tool in understanding basic biology and unravelling the causes of disease has
53 been the analysis of gene expression profiles. The Genotype-Tissue Expression
54 (GTEx) Project has compiled nearly 10,000 individual tissue human RNA-seq samples and
55 shared the data via a powerful and easy-to-use web portal (9). GTEx data has been used to help
56 filter variants in GWAS studies, to build networks to identify candidate testis cancer genes, to
57 help identify pathogenic mutations in an epilepsy cohort, and to identify a genetic variant linking
58 folate homeostasis to warfarin response (10-14). Notably, the eye was not included as a tissue
59 for this project. Because the vision community has been adopting RNA-seq for profiling
60 different components of the eye, there is a large and growing set of useful transcriptome data.
61 However, each study uses different bioinformatic processes to analyze their transcriptomes and
62 the full genome-wide expression values are difficult to obtain, analyze, and visualize across
63 studies. Therefore, utility of these resources ought to be optimized to similar effect as for other
64 tissues.

65 We have collated all publicly available human eye tissue RNA-seq data and processed it
66 with a robust and consistent bioinformatics process. We also have brought in a substantial
67 portion of the GTEx project RNA-seq data to provide a comparison set to the eye tissues. Our
68 full data-set holds 1027 samples. This comprehensive and consistently processed pan-eye and
69 human data set allows for several novel analyses: first, to probe the relationships within cornea,
70 retina, and RPE tissues and between eye tissues and other human tissues; second, to look for
71 overarching patterns in gene expression and shared biology in differentially expressed genes
72 between the eye tissues; and, third, we use the large collated retina and RPE samples to build
73 gene correlation networks for both. A single cell mouse RNA-seq retina dataset has also been
74 integrated to validate the retina gene correlation networks.

75 To maximize utility of this project to all researchers, we have also created a freely
76 available web application that allows quick and powerful access to the expression profiles of

77 nearly 20,000 genes across 177 human eye tissue RNA-seq sets and 853 GTEx tissue RNA-seq
78 sets, the two gene networks, and the 10,000 plus cells of the mouse retina single cell dataset
79 (<https://eyeIntegration/nei.nih.gov/>).

80 **Materials and Methods**

81

82 *Identification of normal human eye RNA-seq data-sets and tissue labelling*

83

84 The entire SRA dataset was downloaded as a SQL file on January 19th, 2017 with the
85 SRAdb R package. The following keywords were used in a partial-matching case-insensitive
86 (e.g. ‘retina’ would match ‘RETINAL’) search: ‘RPE’, ‘macula’, ‘fovea’, ‘retina’, ‘choroid’,
87 ‘sclera’, ‘iris’, ‘lens’, ‘cornea’, and ‘eye.’ These keywords were matched against the following
88 fields in the SRA: ‘study_abstract’, ‘experiment_name’, ‘study_name’, ‘sample_ID’,
89 ‘sample_name’, ‘study_title’, ‘study_description’ in human samples with a ‘library_source’ of
90 ‘transcriptomic’ and filtering out miRNA studies. Study titles, abstracts, and other fields were
91 checked by hand for inclusion in this study for whether they were genuine eye studies of normal
92 (non-disease, non-mutated, no chemical modification) human eye tissue. The SRA metadata for
93 the GTEx project was also pulled by searching for the study accession ‘SRP012682.’ Our script
94 enabling search of the SRA for eye tissues is provided as ‘sraDB_search_select.R’

95 For reproducibility, the meta-data for each sample was parsed with our script
96 ‘parse_sample_attribute.R’ to label the eye tissue (cornea, lens, eye-lid, retina, RPE, ESC) and
97 its origin (immortalized cell-line, cell-line derived from ESC, fetal tissue, or adult tissue). This
98 script has been written to handle the wide variety of metadata usage by the 21 research projects
99 and the script likely would need to be modified to handle new eye samples. The GTEx tissue
100 were labeled by tissue or sub tissue by parsing the GTEx SRA metadata for ‘histological type’
101 and ‘body site’, respectively with the ‘parse_sample_attribute.R’ script.

102

103 *Efficient quantification of gene expression across 1027 samples*

104

105 Two studies had their raw RNA-seq data accessioned with dbGaP (9, 15). We obtained
106 access to these studies under dbGaP study #115588. Raw sequence data for these two studies
107 were pulled and converted to fastq with the sratoolkit (2.8.0) fastq-dump tool. The remaining raw
108 fastq data was pulled from NCBI via ftp, with the wget calls created by the script
109 ‘sra_to_fastq.R’. The one exception was the E-MTAB-4377 resource which was only available
110 in the bam format as of January 19th 2017 from European Bioinformatics Institutes ArrayExpress
111 archive (16). The bam files were downloaded, then converted to fastq with the Picard
112 SamToFastq (2.1.1) program (<https://broadinstitute.github.io/picard/>).

113 The raw fastq read files were loaded into salmon (0.7.2) with –seqBias and –gcBias flags
114 against the Gencode Release 25 protein-coding transcript sequences fasta file to perform
115 transcript-level quantification (17, 18). The Gencode gene names are used across this study. To
116 improve specificity of the gene expression, transcripts with low abundance across all tissues
117 were removed from the fasta file, and Salmon was re-run as per Soneson et. al (19). The filtered
118 fasta file is provided in the source code as ‘gencode.v25.pc_transcripts.commonTx.fa.gz.’ and
119 the Salmon script as ‘run_salmon.sh.’ To improve sensitivity and specificity, the transcript-level
120 quantifications were merged to the gene-level and the length scaled transcripts per kilobase
121 million (TPM) calculations were done with the R library tximport (1.2.0) (20) in our
122 ‘calculate_lengthScaledTPM.R’ script.

123

124 *Multi-step process to remove samples with low overall gene expression counts, quantile
125 normalize samples by tissue, then cluster to identify outliers*

126 A multi-stage process was then used on the full data set to remove outlier samples (either
127 because of overall low gene expression levels or from clustering with the incorrect tissue group).
128 Genes with zero to extremely low expression across the entire data-set were removed. While we
129 found several mislabeled GTEx samples, this has been noticed before (21). Samples with a
130 median TPM value < 50 were removed as these were outliers in terms of overall gene expression
131 coverage. This step alone removed all of the lens samples, 20 RPE, 15 retina, and 16 ESC
132 samples (Supplementary Materials, Table S1, S2 and Figure S2). To alleviate potential batch
133 effects between the samples from different studies, the TPM values were quantile normalized
134 within tissues and globally simultaneously with the qsmooth algorithm (22) (Supplementary
135 Materials, Figure S7).

136 Finally, the remaining samples were dimensionality reduced with t-SNE, then clustered
137 with DBSCAN. The performance of t-SNE is sensitive to the perplexity parameter, which
138 weighs local versus global relationships. We found for our study that perplexities ranging from
139 30-50 performed the most reliably (data not shown). For the all-sample t-SNE we used a
140 perplexity of 45. For the eye-only sample t-SNE, we used a perplexity of 35. The t-SNE
141 coordinates were clustered by DBSCAN with the eps parameter set to 1.3. The cluster
142 assignments from DBSCAN were then aggregated to the tissue and origin level, to identify small
143 numbers of samples that clustered with other tissues; these are likely sample swaps. These
144 outliers were removed. The script for this process is 'outlier_identification.Rmd.'

145
146 *Differential gene expression analysis with pair-wise testing*
147

148 A synthetic pan-human gene expression set was created by randomly sampling 8 tissues
149 from each of the 22 GTEx tissue samples. This was used with the nine different eye tissue-origin
150 sample sets and the ESC set, totaling 11 different groups. All 55 pair-wise tests (11 choose 2
151 equals 55) were done with the limma package with voom library size normalization, using the
152 quantile-normalized TPM values as the input (23, 24). The script 'differential_expression.Rmd'
153 contains the code for these steps.

154
155 *GO, HPO, and STRING enrichment*
156

157 For GO enrichment, the biomaRt package was used, in R, to get the entrez IDs from the
158 'dec2016' 'hsapiens_gene_ensembl' mart. The GOstats package, in R, was used to calculate GO
159 enrichment by the hypergeometric test, only keeping over-enriched terms. The background gene
160 list across the different tests was defined as all genes in the original TPM expression matrix. The
161 function for this analysis is provided as 'GO_enrichment.R.'

162 For HPO enrichment, no working R package was available. To identify modules that
163 mapped to a higher than expected number of HPO terms we used bootstrapping, comparing the
164 number of HPO terms mapped to a module (proportional to its size) against a bootstrap
165 distribution of the same metric. To analyze overabundance of HPO terms in a module we used
166 hypergeometric testing, comparing the number of HPO terms in a module against the
167 background of all genes and their associated HPO terms. The
168 'ALL_SOURCES_FREQUENT_FEATURES_genes_to_phenotype.txt' file from 'Build #124'
169 was downloaded on April 4th, 2017 from
170 <http://compbio.charite.de/jenkins/job/hpo.annotations.monthly/lastStableBuild/>. This file links

171 gene names to HPO terms. The script that did the hypergeometric testing is provided as
172 'HPO_enrichment_function.R.'

173 STRING enrichment p-values were computed with the STRINGdb R package. We placed
174 all genes in each module, up to 400 (the max input possible for STRINGdb). For modules with
175 more than 400 genes (7 retina modules and 10 RPE modules), we used the 400 genes in the
176 module with the highest kWithin connectivity. The script for this is 'stringDB.R.'

177

178 *Tissue-level gene block analysis with KMeans clustering and gene ontology enrichment*

179

180 The differential gene expression patterns across the 55 pair-wise tests were grouped into
181 twenty clusters, each holding groups of genes with shared expression patterns. The grouping was
182 done with the *k*-means algorithm, in R, with 10,000 iterations and the 'MacQueen' algorithm.
183 The cluster assignments for each gene was joined with the eye-tissue TPM values for the gene.
184 The TPM values were averaged for each eye tissue, then the overall gene expression in each
185 cluster was averaged. The TPM values, averaged by tissue, then cluster, were plotted in a
186 heatmap. The code for this analysis is in 'kmeans_de_cluster_heatmap.Rmd' and the cluster
187 assignments for each gene are available as 'DE_Kmeans_cluster_Gene_Lists.zip'.

188

189 *Gene network construction with WGCNA*

190

191 Weighted co-expression networks were constructed separately on both retina and RPE
192 samples using the Weighted Gene Co-Expression Network Analysis (WGCNA) framework with
193 the corresponding WGCNA R package. TPM expression matrices were used for the construction
194 of both networks. Genes with consistently low levels of expression (less than 30 TPM in at least
195 5% of samples for the retina network, less than 40 TPM in at least 5% of samples for the RPE
196 network) were removed prior to network construction. We found that less stringent cut-offs for
197 low expression resulted in poor clustering of these genes (data not shown).

198 Average-linkage hierarchical clustering and t-distributed Stochastic Neighbor Embedding
199 (t-SNE) were used to assess batch issues stemming from sample origin and study source, using
200 the WGCNA and Rtsne R packages, respectively. Following the observation of batch effects, the
201 ComBat R package was used to correct for batch issues stemming from an interaction variable
202 between sample origin and study source. Following batch correction, a \log_2 -transformation was
203 applied to each expression matrix. the following transformation was applied to each expression
204 matrix:

$$f(lsTPM) = \log_2(lsTPM + 1)$$

205 WGCNA identifies co-expression patterns using a weighted correlation matrix. The un-
206 weighted correlation matrix is raised to a soft-thresholding power (β) in order to satisfy the
207 scale-free law (25). This means that $p(i)$, the probability that a node has degree i , follows a
208 power law distribution $p(i) \sim i^{-n}$. In choosing β for each of the networks, it is suggested by the
209 WGCNA developers to choose a β which produces a negative correlation between $\log(i)$ and
210 $\log(p(i))$, with $R^2 > 0.8$. Using the *pickSoftThreshold* function in the WGCNA R package, a
211 range of soft-thresholding powers (β) were evaluated for both networks. The suggested criteria
212 were met with soft-thresholding powers of 4 and 7 for the retina and RPE networks, respectively.
213 Each co-expression network was constructed in the following manner using the \log_2 -transformed
214 expression matrices:

215 1. Compute a Pearson correlation matrix of all gene pairs: $S = [S_{ij}]$, where $S_{ij} =$
216 $|cor(i, j)|$, where i and j are distinct genes.
217 2. Compute an adjacency matrix as:
218 $A = [a_{ij}]$, where $a_{ij} = power(S_{ij}, \beta) = [S_{ij}]^\beta$
219 3. Compute an unsigned topological overlap matrix (TOM) as:
220 $TOM_{ij} = \frac{a_{ij} + \sum_{u \neq i, j} a_{iu} a_{uj}}{\min(k_i, k_j) + 1 - a_{ij}}$, where $k_i = \sum_{u \neq i} a_{iu}$, and $k_j = \sum_{u \neq j} a_{ju}$
221 4. Define a dissimilarity matrix as $d_{ij} = 1 - TOM_{ij}$. Use average-linkage hierarchical
222 clustering on the dissimilarity matrix to cluster the genes.
223 5. Use the *cutreeDynamic* function to place genes into distinct modules. For this function,
224 parameters of *deepSplit* = 0 and *minClusterSize* = 30 were used.
225 The script used to generate the networks is provided as ‘WGCNA_networks.Rmd.’
226

227 *Identifying Similar Modules Across Retina and RPE Networks*

228
229 Similarities in module compositions between the retina and RPE networks were assessed.
230 This was performed through pair-wise cross-network comparison of retina and RPE modules in
231 terms of the genes that were assigned to each pair of modules, as well as the GO terms that were
232 associated with the modules being compared. For each cross-network module comparison, the
233 number of overlapping genes was calculated and subjected to a hypergeometric test to assess
234 significance. This process was repeated with examining overlap in GO terms between modules.
235 In both analyses, p-values were adjusted using the FDR correction method.
236

237 *Processing of Macosko et al. single cell RNA-seq dataset*

238
239 The counts from study GSE63472 were downloaded as file
240 GSE63472_P14Retina_merged_digital_expression.txt.gz and processed with Seurat (2.3) (26).
241 The full script is made available as process_macosko.R. Outlier cells were filtered out by
242 removing ones which had more than 6000 or fewer than 900 genes expressed. This reduced the
243 number of cells from 44,098 to 10,831 cells. The expression values were normalized with
244 ‘LogNormalize’ and scaled against mitochondrial percentage and nUMI with the negative-
245 binomial regression. t-SNE dimensionality reduction was done to visualize the expression data.
246 The cluster assignments for each cell from Macosko et al. was downloaded from
247 http://mccarrolllab.com/wp-content/uploads/2015/05/retina_clusteridentities.txt.
248

249 Comparison of scRNA-seq with bulk RNA

250
251 The lists of genes in each retina WGCNA network module were pulled and their cell-type
252 specific expression in the Macosko et al. mouse retina single cell dataset was calculated (27).
253 High variance expression was identified by setting retina network – cell type expression with
254 variance > 9. A fake dataset was created by randomizing the assignment of cells to retina
255 network clusters. This fake set was used as the control group for the wilcox t test to determine
256 whether a retina network – cell type group expression was significantly different. The code for
257 this analysis is made available in scripts.zip as ‘single_cell_retina_network_comparison.Rmd.’
258

259 *Selection of candidate functional RPE genes and differentiation of human induced pluripotent
260 stem cells (iPSC) into RPE cells*

261
262 We took genes which: 1. were much more highly expressed in fetal RPE and stem cell
263 RPE relative to the synthetic body set, 2. were more highly expressed in fetal RPE relative to the
264 retina and adult RPE-choroid, and 3. had an RPE network kWithin score > 10. This produced a
265 list of 36 genes (Supplemental Materials, Table S2). 17 of these genes were randomly selected
266 and we also added SLC13A3 and GDF11 as these genes were common RPE network partners of
267 the short list. Best1, MITF-Pan, MITF-M, and MITF-A were included as positives controls.

268 To calculate the hypergeometric p value, we counted the number of genes which were
269 $\text{abs}(0.5 \log_2 \text{Fold Change})$ different in RPE stem cell derived relative to RPE fetal tissue (6096
270 out of 19128 total genes). The phyper function in R was used as $1 - \text{phyper}(14, 6906, 19128 -$
271 6906, 19).

272 Tyr-GFP 3D1, an RPE-specific reporter hiPSC line was grown in complete Essential 8™
273 Medium (Life Technologies, cat# A1517001) on vitronectin (Life Technologies, cat# A14700)
274 coated tissue culture plates at 37°C in a humidified atmosphere of 5% CO₂. Differentiation of
275 Tyr-GFP 3D1 cells into RPE was performed according to previously described protocols (28,
276 29). Differentiated RPE cells were maintained in RPE medium: MEM alpha (Life Technologies;
277 cat # 12571-063) with 5% FBS (Hyclone; cat # SH30071-03), 1% CTS™ N-2 supplement (Life
278 Technologies; cat # A13707-01), 0.1 mM MEM non-essential amino acid solution (Life
279 Technologies; cat # 11140), 1 mM Sodium Pyruvate (Life Technologies; cat # 11360-070), 250
280 ug/mL Taurine (Sigma; cat # T4571), 20 ug/L Hydrocortisone (Sigma; cat # H6909), 0.013 ug/L
281 3,3',5-Triiodo-L-thyronine sodium salt (Sigma; cat # T5516).

282
283 *RNA isolation and TaqMan® real-time PCR*
284

285 GFP-positive and GFP-negative RPE cells were sorted using FACSDiva 8.0.1 cell sorter
286 (BD Bioscience) and lysed with TRIzol reagent (Thermo Fisher Scientific; cat # 15596026).
287 Total RNA was isolated using the Direct-zol™ RNA Miniprep Kit (Zymo Research, Irvine, CA)
288 and one-microgram of total RNA was reverse-transcribed using High Capacity cDNA Reverse
289 Transcription Kit (Applied Biosystem). TaqMan probe/primer set for the target genes were
290 designed and gene expression was performed on the cDNA using TaqMan® Universal PCR
291 Master Mix on StepOne Plus Real-Time PCR instrument (Thermo Fisher Scientific/Applied
292 Biosystems) (Supplementary Material, Table S3).

293
294 *Web app, other tools, and source code*
295

296 The fastq file transfer and salmon quantification were run in the bash environment. The
297 salmon-based RNA-seq quantification used the computational resources of the NIH HPC
298 Biowulf cluster (<http://hpc.nih.gov>).

299 All other statistical analyses and visualization was done in the R environment (see
300 'session_info_R.txt' for packages used and versions). The heatmaps were made with the
301 superheat package. All other figures were made with ggplot2.

302 The interactive web application was built with the R Shiny framework and hosted on a R
303 Shiny Server (<https://shiny.rstudio.com>) installation at NEI. ggiraph was used to turn ggplot
304 images into interactive images. The visNetwork R package was used to visualize the network

305 modules. For the purpose of limiting the number of edges to a number that would be tractable for
306 interactive visualization, the network edges were filtered so that each node would have its k -
307 nearest within-module genes (k -strongest edges to genes in the same module) remain in the
308 network, for a range of k values.

309 The source code and links to the data for the web application is available at
310 https://gitlab.com/davemcg/Human_eyeIntegration_App. The scripts mentioned in the methods
311 underlying the data processing and analysis for this paper are available as supplemental file
312 scripts.zip and the data used in the scripts is available at Zenodo (10.5281/zenodo.569870).
313

314 **Results**

315

316 *Hundreds of individual human eye tissue RNA-seq datasets publicly available across twenty-one*
317 *research studies*

318

319 To identify all publicly available human eye tissue RNA-seq datasets, the Sequence Read
320 Archive (SRA) was queried on January 19th 2017 with the R package SRAdb for human
321 transcriptomic studies with the keywords ‘RPE’, ‘macula’, ‘fovea’, ‘retina’, ‘choroid’, ‘sclera’,
322 ‘iris’, ‘lens’, ‘cornea’, and ‘eye’ across numerous fields in the SRA (30). This inclusive search
323 identified 603 samples across 53 studies. Hand searching the studies to identify human eye tissue
324 samples that did not have chemical, pharmacological, or genetic modifications or known eye-
325 disease pared the initial search down to 219 samples across 21 studies (Supplementary Materials
326 Table S1, Fig. 1A) (15, 16, 29–43) . The metadata of the remaining eye samples was queried
327 and parsed to label each sample by tissue (cornea, retina, RPE) and origin (immortalized cell
328 line, stem cell line, fetal tissue, adult tissue) (Fig. 1B). Before gene expression quantification and
329 quality control to remove lower quality samples we had 110 retina, 85 RPE, 28 cornea, 16
330 human embryonic stem cell lines (ESC), 6 lens, and 4 eyelid tissue RNA-seq data sets.

331

332 *Efficient quantification tools allow for comparison of the eye transcriptome meta-set with dozens*
333 *of other human tissues*

334

335 The raw sequence data was obtained from the SRA or European Nucleotide Archive
336 (ENA) and the transcript counts were quantified with the Salmon pseudo-alignment transcript
337 quantification (17). To improve reliability of quantification, the transcript level counts were
338 merged to the gene level (20). We then applied quantile normalization of the TPM (transcripts
339 per million) values on a per-tissue basis with the qsmooth tool to reduce variability between
340 different studies (22). Outliers with extremely low median gene counts and individual samples
341 that clustered very far apart from similar samples were removed, leaving 171 eye samples (Fig.
342 1A, Supplementary Material, Tables S4 and S5). Voom normalization was then applied to adjust
343 for different library sequencing depths (23). See methods for further details.

344

345 This efficient bioinformatic process also enabled us to bring in 878 samples from the
346 GTEx project to compare to our eye meta-set (9). We selected, when possible, 10 male and 10
347 female non-gender specific tissues from the GTEx, ending up with 22 tissues, including blood,
348 brain, heart, kidney, liver, lung, and thyroid (Supplementary Material, Tables S1 and S5). All
349 raw data from the collated eye tissues or GTEx were processed identically with the above
350 workflow. After outlier removal, using the same workflow as the eye tissue set above, we have
853 GTEx samples across 22 tissues.

351

352 *Eye tissues from disparate studies cluster according to labelled eye component and tissue or*
353 *cell-line origin*

354

355 Our first question was whether the collated eye tissues, which potentially have significant
356 batch effects from merging data from disparate sources, would group together using
357 dimensionality reduction approaches. We used the Barnes-Hut implementation of the t-
358 Distributed Stochastic Neighbor Embedding (t-SNE), which has been shown to work well in
359 single-cell RNA-seq study analyses as well as the GTEx study set, to visualize relationships in

360 two dimensions between the processed eye tissues (Fig. 2A) (21, 46, 47). The DBSCAN
361 algorithm was used on the t-SNE coordinates for each sample to identify nine distinct clusters
362 (48).

363 The adult tissue retina samples clustered together, though apart from their fetal or cell line
364 based samples. The ESC-derived retina samples have a variety of time points (37, 47, 67, 90
365 days) during their differentiation; we found no clustering by those criteria (data not shown) (33).
366 The fetal and adult cornea samples, grouped closely together, but still clustered independently
367 (Fig. 2A, clusters 8 and 9). Human embryonic stem cells (ESC), included because they are used
368 across several studies to differentiate into different eye tissues, clustered together, generally
369 closer to the cell-line derived samples (Fig. 2A, cluster 5).

370 RPE is the only tissue for which more than three different sources were available: fetal tissue,
371 adult tissue immortalized cell-line, and cells differentiated from ESCs. It should be noted that the
372 adult RPE tissues are a mixture of RPE and choroid tissue, which is a vascular layer of the eye,
373 providing oxygen and nutrients to the RPE and outer retina. This tissue will be referred to as
374 adult RPE/choroid. The four sources cluster into three groups, with the few RPE fetal tissues
375 clustering with the ESC-derived RPE samples (Fig 2A, cluster 1). The RPE derived from ESC
376 group (Fig 2A, cluster 1) is composed of samples from three studies (31, 36, 41). All three
377 groups differentiated their RPE cells for about two to four months, according to their method
378 section. Wu and Zeng et al. gave specific times of differentiation for the exact tissues used in the
379 SRA metadata (40 or 100 days); we did not see any differences in clustering patterns based on
380 length of differentiation (data not shown) (41). This close grouping of fetal and ESC-derived
381 RPE tissues are consistent across multiple runs of t-SNE with different perplexity parameters
382 ranging from 35-50 (data not shown). The adult RPE/choroid tissue clusters further away from
383 the cell-line based tissues.

384 Overall, the t-SNE dimensionality reduction demonstrates that the eye tissues consistently
385 cluster in unique groups by their tissue and origin. This happens despite a variety of laboratory
386 origins with disparate culturing conditions, tissue handling, RNA extraction, sequencing cores,
387 and so on.

388
389 *Eye tissues distinct from most human tissues*
390

391 To explore the relationship of eye tissues to other tissues in the human body, we
392 leveraged the GTEx data we reprocessed to create a pan-human two-dimensional tissue
393 relationship map with t-SNE (Fig. 2B). DBSCAN was then used, as before, to identify clusters.
394 ‘Tissue’ labels from GTEx metadata in the SRA were used with one exception; fibroblasts are
395 labelled separately from ‘Skin’ as they consistently group independently of skin-punch tissues.
396 From the t-SNE visualization (Fig. 2B) we observe most human tissues group close to each
397 other, with the exception of brain. The eye tissues, except retina, group closer to the non-brain
398 human tissues. While the cell-line versus tissue derived eye tissue distinctions are maintained
399 with the pan-human set, the eye-tissues are generally more related to each other than non-eye
400 tissues.

401 The t-SNE 1 and 2 dimension coordinates generated by t-SNE are sensitive to the parameter
402 perplexity, which controls the weighing of local to global relationships (49). Figures 2A and 2B
403 used perplexities of 35 and 45, respectively. To more consistently demonstrate the pair-wise
404 relationships between the tissues, the t-SNE dimensions were iteratively generated with
405 perplexities from 35 to 50. Then means were taken, grouped by sample. The individual samples

406 were then grouped by labelled tissue type and the t-SNE coordinates were again averaged.
407 Hierarchical clustering by Euclidean distance was done to group the tissues and a heatmap was
408 generated (Fig. 2C) which displays the most closely related tissues. Because the hierarchical
409 distances between cell-line derived eye tissues were inconsistent, they were removed from this
410 analysis. We see that retina and brain tissues are individual outliers. We also see that the pituitary
411 is grouped near RPE tissue and that fibroblasts group closely with the cornea (as denoted by the
412 height of the dendrogram).

413
414 *Differential expression analysis identifies large sets of genes distinguishing separating eye*
415 *tissues*
416

417 The eye tissue set collected can be separated on two major axes: tissue type (cornea,
418 retina, or RPE) and origin (immortalized cell line, stem cell line, fetal tissue, adult tissue).
419 Labelling each set of tissues by these two criteria gives us ten sets of eye tissues (Fig. 1B). To
420 compare expression against non-eye tissue, we created a synthetic human ‘body’ expression set,
421 by evenly combining the 22 GTEx tissues. The total number of body samples was matched to the
422 total number of eye tissues we have by taking a random set of 8 tissues from each human body
423 tissue category (e.g. Brain, Pituitary). There are 55 two-way combinations possible among the 11
424 sets.

425 To calculate differential expression, we modeled expression with the limma linear fit
426 function with voom to correct for library size differences. The limma empirical Bayes function
427 was used to identify statistically significant differentially expressed genes (23, 24). To look for
428 global changes between the eye tissues and the body, we will first compare all of the eye tissue
429 groups individually against the synthetic body (Table 1). A second synthetic body set was
430 created by sampling the un-used GTEx tissues from the first synthetic body set and we found
431 very similar differential expression values (data not shown).

432 The differentially expressed genes identified for each test (Table 1) was filtered to retain
433 only genes with log fold change ($\log FC$) < -2 or > 2 relative to the baseline tissue and with a
434 false discovery rate (FDR) corrected p-value less than 0.01. A $\log FC$ of more than two means
435 that the detected transcript level is more than four times as much (or one quarter as much)
436 compared to the body tissue.

437
438 *Biological term enrichment identifies eye-specific gene expression biology relating to visual*
439 *function and body-specific gene expression relating to immunity and cell adhesion*
440

441 As we have hundreds to thousands of genes meeting these stringent differential
442 expression criteria across the ten comparisons we did Gene Ontology (GO) biological process
443 term enrichment to identify systems-level patterns. We did the GO term enrichment
444 independently on the over- and under-expressed gene sets, relative to the synthetic body set; 20
445 tests were performed. Overall, we found 2796 unique GO term IDs across the tests with an FDR
446 corrected p value under 0.01 (Supplementary Materials, Table S6).

447 We took the top forty GO term IDs from the over and under-expressed tests (ranked by p
448 value) and plotted them in a heatmap to identify shared GO terms among the different
449 comparisons and to find overall trends in eye tissues gene expression relative to the synthetic
450 body gene expression set (Figure 3). Clustering was done on both rows and columns to group
451 together shared patterns. Like the t-SNE based clustering, the retina is an outlier for GO term

452 enrichment. The GO terms in the first 20 rows (Fig. 3, Block 1) is driven by genes that are more
453 highly expressed in the retina relative to other tissues. These over-expressed genes are highly
454 enriched in GO terms relative to visual perception, light stimulus, synaptic signaling, and
455 neurogenesis.

456 The next group (Fig. 3, Block 2) of enriched GO terms most strongly defines the ESC,
457 the cornea, and RPE immortalized cell lines and to a lesser extent, fetal cornea and stem cell
458 retina tissue. These GO terms relate to cell cycle and division as well as DNA packaging and
459 conformation. The last block (Fig 3., Block 3) is a set of GO IDs related to the body gene
460 expression being higher than most of the eye tissues. This large block has GO terms involving
461 migration, organismal process, adhesion, immune process, and stimulus. The full set of
462 significantly ($p < 0.01$) enriched GO terms (2796) is available in Supplementary Materials Table
463 S6.

464

465 *Within eye tissue differential expression comparisons identify cornea, retina, RPE, and*
466 *RPE/choroid gene sets*

467

468 To more directly identify sets of genes enriched in particular eye tissue(s) relative to the
469 other eye tissues, we compared all eye tissue differential expression pair-wise against each other
470 and the synthetic body set (55 tests). To identify common gene sets, we used k -means clustering
471 to group all genes into twenty groups; each group has a different overall gene expression pattern.
472 We then plotted the relative gene expression for each eye tissue across the twenty k -means
473 groups (Supplementary Materials, Figure S1). This produces a heatmap which identifies sets of
474 genes that are more highly (or lowly) expressed in particular eye tissue(s) relative to the other
475 eye tissues. We use this heatmap to identify genes defining the cornea, retina, RPE, and adult
476 RPE/choroid and did GO term enrichment on these clusters (Table 2, Supplementary Table S7).
477 The gene lists for each of the 20 groups are available in Supplementary File S1).

478

479 *The cornea is enriched for genes involved in the extracellular matrix and collagen relative to the*
480 *other eye tissues*

481

482 In the GO heatmap (Fig. 3) the cornea tissues (immortalized cell line, fetal, adult) lack a
483 highly distinguishing set of GO terms from the other eye tissues. However, there is a cluster
484 (Supplementary Materials, Figure S1, cluster 3), with enriched fetal and adult cornea expression
485 compared to the other tissues. This cluster contains 157 genes and top GO terms enriched for this
486 set relate to extracellular matrix organization, collagen metabolism, and developmental processes
487 (Table 2, Supplementary Table S7).

488

489 *Adult retina and, to a lesser extent, retina stem cells enriched in visual function genes*

490

491 Compared to the synthetic body set, the adult retina has many GO terms relating to visual
492 function (Fig. 3, Block 1). This same GO enrichment is seen even when comparing adult retina
493 against the other eye tissues, focusing on cluster 8 (Supplementary Materials, Figure S1, Table
494 2). This cluster is very highly expressed in adult retina and somewhat highly expressed in stem
495 cell derived retina, relative to the other eye tissues.

496

497 *RPE, excluding hTERT RPE, is highly enriched in genes relating to pigmentation and visual*
498 *perception,*

499

500 Like cornea, the non-immortalized RPE tissues do not have a distinct block of GO terms
501 (Fig. 3). In the *k*-means heatmap (Supplementary Materials, Figure S1) we see that cluster 14 is
502 more highly expressed in stem cell RPE, fetal RPE, and adult RPE/choroid. The hTERT
503 immortalized cell line RPE is not highly expressed for this gene set. The 92 genes in this cluster
504 are enriched in GO terms for visual perception, melanin processing, and vitamin A metabolism
505 (Table 2).

506

507 *Compared to other eye tissues, adult RPE/choroid is enriched for genes involved in immune*
508 *function and adhesion*

509

510 The cluster with genes highly expressed in adult RPE/choroid compared to the other eye
511 tissues (number 10), has 229 genes. As this cluster is not highly expressed in the other RPE
512 tissues, this cluster may define the choroid. These genes are strongly enriched in immune
513 function and adhesion (Table 2).

514

515 *hTERT RPE immortalized cell line has substantial gene expression differences relative to RPE*
516 *derived from ESCs*

517

518 As we had seen that the hTERT RPE clusters apart from the other RPE tissues, and there
519 is a benefit to examining the differences between an immortalized RPE cell line model versus a
520 differentiated RPE cell line model, we looked directly at differences in expression between
521 hTERT RPE and stem cell derived RPE. We identified what genes and GO terms make these two
522 cell lines different. There are over 1323 genes with a more than four-fold expression difference
523 between RPE derived from human ESCs and the ATCC hTERT RPE immortalized cell line and
524 1572 with four-fold lower expression (Supplementary Materials, Table S8). The five genes most
525 highly expressed in RPE derived from human ESCs relative to the ATCC hTERT RPE
526 immortalized cell line are *TTR* (Transthyretin), *DCT* (Dopachrome Tautomerase), *KIF1A*
527 (Kinesin Family Member 1A), *SFRP5* (Secreted Frizzled Related Protein 5), and *NELL2* (Neural
528 EGFL Like 2). GO terms associated with higher stem cell RPE expression relate to ion transport
529 and synaptic transmission, suggesting that stem cell derived RPE is a more faithful model of
530 human biology (Fig. 4).

531

532 *Dissection of high expression retina genes with single cell RNA-seq reveals blocks of genes with*
533 *retina-cell specific function and candidate signature genes*

534

535 We took advantage of the availability of a retina single cell RNA-seq data set from
536 normal mouse retina (P14) from Macosko et al. (27). The raw counts from 44,098 individual
537 dissociated retina cells were filtered down to 10,831 high quality cells, reanalyzed (see methods)
538 and clustered with t-SNE (Supplementary Materials, Figure S2). The gene expression was
539 grouped by the eleven major cell types identified by Macosko et al. and the expression was split
540 into deciles of expression, with 10 being genes in the top 10% of expression for the cell type.
541 This 179, 112 row data table is made available on eyeintegration.nei.nih.gov (Data Table ->
542 Mouse Retina Single Cell RNA-seq Data).

543 This expression set was combined with the list of genes expressed highly in retina (adult)
544 relative to the synthetic body set and this list was further subdivided by whether the gene was
545 highly expressed in any specific retina cell type. Of the 11,660 genes with > 1 fold change in the
546 adult retina tissue over the synthetic set 1,913 were expressed in the top decile in one of the 11
547 retina sub-types. We ran a bootstrap test 10,000 times to calculate which of the 11 cell types
548 were enriched in the 11,660 gene set, relative to a random set of genes of the same size. We
549 found that amacrine, bipolar, cones, rods, horizontal, Müller glia, and retinal ganglion cells were
550 enriched ($p < 0.05$).

551 To leverage this more specific gene list to identify functional modules we took the genes
552 in the top decile expression for each cell type and ran GO enrichment (Supplementary Materials,
553 Figure SX3). GO terms relating to visual perception and light stimulus are highly enriched in
554 rods and cones and enriched in amacrine, bipolar, astrocytes, microglia, and Müller glia. Retinal
555 ganglion cells are enriched in a set of GO processes describing neuron projections, axogenesis,
556 and microtubule processes. Retinal ganglion, amacrine, and bipolar cells share a set of GO terms
557 involved with synaptic vesicles, ion regulation, and neurogenesis.

558 To identify candidate signature genes for each cell type we looked for genes
559 overexpressed in the bulk retina tissue relative to the synthetic body set, in the top 20% of
560 expression in a particular retina cell type, and in the bottom 50% for the remaining retina cell
561 types (Supplemental Table S9). Several examples of these genes are plotted in t-SNE plot of the
562 clustered single cell retina data, demonstrating how genes like GAD1, PDE6C, and TUBB2B
563 distinguish amacrine, cones, and retinal ganglion cells from the other retina types
564 (Supplementary Materials, Figure S4).

565

566 *Highly connected genes in retina and RPE gene networks recapitulate known eye biology*

567

568 To this point, we have used the full gene expression set to independently cluster samples
569 by tissue type and origin. We then used differential expression between the eye tissues and the
570 synthetic body set to highlight differences in GO terms. We delved further by clustering the
571 differential expression patterns between the eye tissues to find how each eye tissue is different
572 from the other. We can go even further, by examining the relationships of the genes to each
573 other, within a tissue, by using gene correlation networks. These networks use correlated
574 fluctuations of all-by-all pairwise gene expression similarities to build networks of gene-to-gene
575 relationships.

576 As we had collected a substantial amount of retina and RPE samples, we were able to
577 build weighted gene correlation networks with the Weighted Gene Co-Expression Network
578 Analysis (WGCNA) R tool (25). We also attempted to build a cornea network, but the network
579 construction failed due to failure to both differentiate the genes cleanly into defined modules and
580 achieve appropriate network topology within a reasonable parameter space; more cornea samples
581 are needed (Supplementary Materials, Figure S5). The gene expression TPM values, with the full
582 set of corrections described earlier for the differential expression analyses, were used as inputs.
583 All retina and all RPE tissues that passed quality control steps were used to build independent
584 retina and RPE networks. The parameters used in the WGCNA network construction are
585 enumerated in the methods.

586 There are 11,101 and 10,843 genes in the retina and RPE networks, respectively. 9621 of
587 the genes are shared between the retina and RPE network. The kWithin metric from WGCNA
588 measures the intramodular connectivity. Genes with higher connectivity are, theoretically, more

589 likely to be important in gene regulation as perturbations in them will affect the system more
590 than less connected genes.

591 To get a sense of what the biology was of the most connected genes in the retina network,
592 we took the 1017 genes with a kWithin greater than 20 and did GO enrichment (Supplementary
593 Materials, Table S9), finding the top five GO terms all relate to visual perception. We did the
594 same with the RPE network, using the 566 genes with a kWithin greater than 20. The top five
595 GO terms in this RPE network connected list were related to endoplasmic reticulum function
596 (Supplementary Materials, Table S10). The most similar modules, calculated by doing
597 hypergeometric testing of GO terms and gene names, between the retina and RPE networks are
598 the light cyan retina module and the pink RPE module. Both of these modules, by GO term
599 enrichment, are involved in protein targeting to the ER (Supplementary Materials, Figure S6).
600

601 *Retina network module highly enriched in genes implicated in eye disease and crucial for visual*
602 *function*

603 A key advantage of WGCNA networks over correlation networks is that genes can be
604 partitioned into modules, presumably with shared biological function within each individual
605 module. The retina network has 27 modules, with 64 to 1922 genes in each module. The RPE
606 network has 23 modules, with 90 to 1458 genes in each module (Supplementary Materials,
607 Figure S7). To determine whether the modules were enriched for known gene to gene
608 interactions, we loaded each network module gene list into STRING and calculated whether
609 there were more interactions than expected. For 23/27 retina modules and 20/23 RPE modules,
610 the STRING p value for interaction enrichment was < 0.01 (Supplementary Materials, Table
611 S10). We also ran GO term enrichment for each module within each network (Supplementary
612 Materials, Table S14 and S17). While many modules have highly significant GO term
613 enrichment, only the ‘green’ module is highly enriched for visual perception terms. Pinelli et al.
614 built an unweighted retina gene correlation network and identified 14 candidate photoreceptor
615 genes based upon their network (16). All 14 are in our retina network and 9 of the 14 are in our
616 green visual function module ($p < 2.8 \times 10^{-10}$) (Supplementary Materials, Table S12).
617

618 There are 617 genes within the green retina module and 178 of these have a kWithin
619 greater than 20. Many of the top connected genes have known visual function or are implicated
620 in retinal diseases. To demonstrate the strong enrichment of known eye function genes in this
621 module we divided the genes in the green module into four categories: known to play a role in
622 eye disease, having GO terms relating to visual function, both, or neither (Fig. 5, Supplementary
623 Materials, Table S13). From RetNet (<http://www.sph.uth.tmc.edu/RetNet/>) we have a list of 331
624 genes that have been implicated in retinal diseases (5). There are 178 genes with kWithin > 20 in
625 the green module; 14 of those genes are also in RetNet, 17 have a vision GO term, 31 have both,
626 and the remaining 116 genes are neither in RetNet nor have a vision-related GO term.
627

628 The human phenotype ontology (HPO) project is conceptually similar to gene ontology,
629 except that they map abnormal human phenotype terms onto a graph and match them to genes
630 (50). This provides a way to identify enrichment of abnormal human phenotypes. As there is no
631 functioning package in R to systematically calculate HPO enrichment, we did bootstrapping and
632 hypergeometric testing (see methods), looking for enrichment overall at the module level and for
633 individual HPO terms within each module, respectively. The green module is highly enriched for
HPO terms relating to eye disease, with terms like nyctalopia, abnormal electroretinogram,

634 photophobia, cone-rod dystrophies, and blindness among the top terms (Supplementary
635 Materials, Table S15).

636 Other highly significant GO terms in the remaining retina network modules also match
637 known retina function. GO terms enriched relate to ion transport (greenyellow), developmental
638 processes (darkorange, greenyellow, tan), mitochondrial function (midnight blue), and
639 metabolism (turquoise) (Supplementary Materials, Table S14). The retina network darkgrey
640 module also contains several genes implicated in retina diseases like *ELOVL4*, *OPN1SW*,
641 *SLC24A1*, and *PDE6A* (see Supplementary Materials, Table S16 for full list). Additionally, the
642 green, tan, brown, and blue modules are, overall, enriched for HPO disease terms
643 (Supplementary Materials, Figure S8).

644
645 *Differentially expressed, high connectivity RPE genes are highly expressed in functional pure*
646 *RPE cells*

647
648 To experimentally validate whether our differential RPE gene expression data and RPE-
649 choroid network connectivity could identify important genes in functional RPE we first made a
650 short list of highly expressed and high connectivity RPE genes (see methods). We then compared
651 expression of the genes in human iPSC-derived RPE, purified using an RPE-specific *TYR*
652 enhancer coupled to a GFP transgene. Differentiating cells were then sorted using flow
653 cytometry to purify the GFP positive cells in the population. We find that 17 of our 19 genes are
654 more highly expressed in the GFP+ RPE (Supplementary Materials, Figure S9). 14 of the 19
655 genes are 0.5 log₂ fold change greater than the in the purified RPE population (hypergeometric p
656 < 0.0002, see methods).

657
658 *Retina green module identifies visual transduction pathway and core upstream regulators*
659

660 The green module was further analyzed for known biological networks components,
661 which were generated through the use of Ingenuity Pathways Analysis (Ingenuity® Systems,
662 www.ingenuity.com). Visual transduction was the most significant pathway present, with 16
663 components present in the green module. These components function predominantly in rod and
664 cone photoreceptors in the conversion of photic energy to neural signaling in the retina
665 (Supplementary Materials, Figure S11A and data not shown), as confirmed by the single cell
666 RNA-seq dataset. Regulatory component analysis projected that *CRX* and *NRL* were predicted
667 among the regulators of gene expression in the green module, upstream of several genes
668 implicated in retinal photoreceptor degeneration also present in the green module
669 (Supplementary Materials, Figure S11B). These two transcription factors drive rod photoreceptor
670 differentiation and maintenance beginning in embryogenesis, and dysfunction of either of these
671 is associated with retinal degeneration (51). In sum, the green module is enriched for
672 photoreceptor function and recapitulates specific components of known biological and gene
673 regulatory networks that are important causes of retinal disease.

674
675 *RPE/choroid network contains many modules related to cell metabolism*
676

677 Unlike the retina network, there are no strongly associated GO terms relating to visual
678 function. However, there are numerous modules with strongly significant GO terms relating to
679 metabolic processes and active transcription and translation (blue, brown, dark turquoise, green,

680 light cyan, light green, red, turquoise). One module (yellow) relates to catabolism, one to
681 immune function (tan), one to the endoplasmic reticulum (ER) (pink), and two the mitochondria
682 (dark green, dark yellow) (Supplementary Materials, Table S16). Among the top HPO terms
683 across the RPE modules are ones relating to anemia (pink), optic disc pallor (green), and
684 respiration (dark green). Overall, the green, midnightblue, turquoise, lightyellow, magenta, and
685 brown RPE modules are enriched for HPO terms (Supplementary Materials, Figure S9).

686

687 *Single-cell RNA-seq confirms many network modules represent specific retina cell types*

688

689 Because the GO terms are distinct between the different WGCNA modules some of them
690 should be enriched in genes distinguishing different types of retinal cells. We took the Macosko
691 et al retina single cell sequencing data and looked at the expression profile for each labelled cell
692 type grouped by retina network module color (Supplementary Materials, Figure S10). We see
693 that many modules have very similar expression profiles across the twelve retina cell types (see
694 black, blue, brown, darkgreen).

695

696 However, we also see that several modules have strongly divergent expression patterns
697 between different cell types (Figure 5a). For example, the green module is enriched in genes with
698 strong expression in rods, cones, and bipolar cells. The greenyellow and salmon modules have
699 genes with high expression in retinal ganglion cells. The darkorange and tan modules are
700 enriched for genes expressed highly in Müller glia and astrocytes.

701

702 *Retina and RPE networks in retinal diseases and AMD*

703

704 Higher connected genes are theoretically more important in the function of the retina and
705 RPE. From RetNet we have a list of 331 genes that are associated with retinal diseases (though
706 some unknown proportion affect the retina via the RPE). From a recent large AMD GWAS
707 study, there is a list of 33 loci strongly associated with AMD, and thus likely related to RPE or
708 choroid dysfunction (8). To see whether these retina or RPE gene lists have higher connectivity
709 relative to the other genes in the networks we used density plots of the kWithin value to see
710 whether we see any left-ward (less connectivity) or right-ward (more connectivity) shifts in our
711 gene list kWithin connectivity.

712

713 We see that the RetNet gene list has a higher connectivity than non-RetNet genes in the
714 retina module; this right-ward shift is highly significant ($p = 3.26 \times 10^{-8}$). The connectivity of the
715 RetNet gene list in the RPE network is significantly different than the non-RetNet genes ($p =$
716 0.28). 53 RetNet genes are in the green retina module, which is a 4.1 fold enrichment over
717 chance. The darkgrey module has a similar enrichment in RetNet genes with 10, which is a 3.8
718 fold enrichment over chance.

719

720 The 33 genes associated with AMD have a higher connectivity the remaining genes in the
721 RPE network; this right-ward shift is also significant ($p = 0.049$). Like the RetNet retinal disease
722 gene list in the RPE network, the 33 AMD genes are not significantly more connected than the
723 other genes in the retina network ($p = 0.49$) (Supplementary Materials, Figure S12).

722 **Discussion**

723

724 We collected all publicly available human eye RNA-seq datasets creating the largest pan-
725 eye collection to date, and carefully performed a lengthy series of normalization and quality
726 control procedures to robustly quantify gene expression within three major eye tissues and
727 between the eye and other human tissues. Gene expression data can be used to accurately cluster
728 samples by tissue and origin. We used differential gene expression analysis with GO term
729 enrichment to identify biological processes that best distinguish the eye tissues both from each
730 other and from a synthetic human expression set. We then leveraged the large sets of retina and
731 RPE tissues to build the first human weighted gene correlation networks for retina and RPE,
732 confirming with single cell RNA-seq data that several of the retina modules have cell-type
733 specific expression. We demonstrated the power of the networks to highlight genes known to be
734 crucial in eye biology. Finally, we make the data and analyses available in a powerful web
735 application (<https://eyeIntegration.nei.nih.gov>).

736 The structures of the eye are epithelial, neuroepithelial, and neural crest in origin. We
737 were expecting some of the eye tissues to cluster closely with the skin, but instead we found that
738 the retina was a very unique tissue, that transformed fibroblasts most closely matched the cornea,
739 and the RPE was nearest the pituitary. Embryologic origins and specialized functions likely
740 create these similarities and divisions, respectively. Cornea is derived from the same surface
741 ectoderm as skin and from neural crest cells, while retina and RPE are derived from the neural
742 tube epithelium from the ventral diencephalon, along with the hypothalamus and posterior
743 pituitary. Corneal epithelium is replenished by limbal stem cells that remain into adulthood,
744 which may explain the proximity of corneal and ESC clusters. This also may reflect that the
745 majority of our corneal dataset is derived from cultured corneal epithelium. That retina was
746 separated from other ocular and non-ocular tissues likely related to the exclusivity and high
747 expression burden of the visual transduction cycle in cone and rod photoreceptors.

748 The systems-level study of differential gene expression across cornea, retina, RPE, and
749 RPE-choroid tissue highlights core functions of these tissues. Cornea-specific genes specify the
750 structural aspect of the cornea with extracellular matrix organization and collagen metabolism
751 and catabolism. The corneal epithelium is replenished continuously with limbal stem cells, which
752 may be reflected in the enrichment of GO terms relating to development. The retinal tissues are
753 strongly defined by genes involved in visual processes. The RPE and RPE-choroid tissues are
754 also distinguished, with the former being more involved in visual processes and pigmentation
755 while the latter is involved with immune system processes.

756 The creation of the first human retina and RPE weighted gene correlation networks has
757 allowed us to identify dozens of modules with co-regulated genes. It is important to stress that
758 these networks were built only with gene expression information and were optimized using
759 network-specific metrics, such as how well the topological overlap matrix placed genes into
760 well-defined modules. Only afterwards did we evaluate the significance of connected genes and
761 modules to GO terms and known eye biology.

762 It is striking that the some of the most significant GO terms, by p-value and enrichment,
763 in the retina network are associated with a single 617-gene module underlying visual function.
764 This module represents the visual transduction pathway, which is relatively unique to the retina
765 and is associated with isolated and nonsyndromic retinal degenerative conditions. Single-cell
766 RNA-seq data demonstrated that the genes in this module are expressed more highly in the rods,
767 cones, and bipolar cells.

768 As the RPE has a high-energy role in transferring nutrients and clearing waste products
769 for the photoreceptors of the retina, it is not surprising that a plurality of the modules are
770 enriched for genes important in RNA translation, protein modification and production,
771 catabolism, and mitochondrial function. The enrichment of highly connected AMD associated
772 genes in the RPE network further emphasizes the value of this network.

773 Finally, the value of this extensive and carefully curated data-set is enhanced by the
774 creation of the eyeIntegration web app (<http://eyeIntegration.nei.nih.gov>; Supplementary
775 Materials, Figure S13). The site serves two roles, first as an interactive extension of this
776 manuscript and second as a platform for researchers to identify interesting genes in eye function
777 via searchable gene expression plots across many tissues, 55 pair-wise differential expression
778 tests, and two gene networks. We also make the source code and accompanying data-sets fully
779 and freely available for other researchers (see methods) and will periodically refresh the data.
780 The unravelling of eye biology and function has been furthered by genetic eye diseases, animal
781 models, and functional assays. We hope that this open data sharing and powerful web application
782 will provide a fourth way to decipher eye biology in health and disease.

783
784
785

786 **Funding**

787

788 This research was supported by the Intramural Research Program of the National Eye Institute,
789 National Institutes of Health.

790 **Acknowledgements**

791

792 This work utilized the computational resources of the NIH HPC Biowulf cluster
793 (<http://hpc.nih.gov>). We would like to thank the 21 eye research projects whose public sharing of
794 their raw sequencing data and metadata made this project possible.

795 **References**

796

797 1. Bourne,W.M. (2003) Biology of the corneal endothelium in health and disease. *Eye*, **17**, 912–918.

798 2. Wallace,V.A. (2011) Concise Review: Making a Retina—From the Building Blocks to Clinical Applications. *STEM CELLS*, **29**, 412–417.

801 3. Bharti,K., Nguyen,M.-T.T., Skuntz,S., Bertuzzi,S. and Arnheiter,H. (2006) The other pigment cell: specification and development of the pigmented epithelium of the vertebrate eye. *Pigment Cell Res. Spons. Eur. Soc. Pigment Cell Res. Int. Pigment Cell Soc.*, **19**, 380–394.

802

803 4. Hayreh,S.S. (1975) Segmental nature of the choroidal vasculature. *Br. J. Ophthalmol.*, **59**, 631–648.

804

805 5. Daiger,S., Rossiter,B., Greenberg,J., Christoffels,A. and Hide,W. (1998) Data services and software for identifying genes and mutations causing retinal degeneration. *Invest Ophthalmol Vis Sci*, **39**, S295.

806

807 6. Ellingford,J.M., Barton,S., Bhaskar,S., Williams,S.G., Sergouniotis,P.I., O'Sullivan,J., Lamb,J.A., Perveen,R., Hall,G., Newman,W.G., *et al.* (2016) Whole Genome Sequencing Increases Molecular Diagnostic Yield Compared with Current Diagnostic Testing for Inherited Retinal Disease. *Ophthalmology*, **123**, 1143–1150.

808

809 7. Cars,J.K., Arno,G., Erwood,M., Stephens,J., Sanchis-Juan,A., Hull,S., Meger,K., Grozeva,D., Dewhurst,E., Malka,S., *et al.* (2017) Comprehensive Rare Variant Analysis via Whole-Genome Sequencing to Determine the Molecular Pathology of Inherited Retinal Disease. *Am. J. Hum. Genet.*, **100**, 75–90.

810

811 8. Fritsche,L.G., Igl,W., Bailey,J.N.C., Grassmann,F., Sengupta,S., Bragg-Gresham,J.L., Burdon,K.P., Hebringer,S.J., Wen,C., Gorski,M., *et al.* (2016) A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. *Nat. Genet.*, **48**, 134–143.

812

813 9. GTEx Consortium (2013) The Genotype-Tissue Expression (GTEx) project. *Nat. Genet.*, **45**, 580–585.

814

815 10. Okbay,A., Beauchamp,J.P., Fontana,M.A., Lee,J.J., Pers,T.H., Rietveld,C.A., Turley,P., Chen,G.-B., Emilsson,V., Meddens,S.F.W., *et al.* (2016) Genome-wide association study identifies 74 loci associated with educational attainment. *Nature*, **533**, 539–542.

816

817 11. Murthy,M.N., Blauwendraat,C., UKBEC, Guelfi,S., IPDGC, Hardy,J., Lewis,P.A. and Trabzuni,D. (2017) Increased brain expression of GPNMB is associated with genome wide significant risk for Parkinson's disease on chromosome 7p15.3. *Neurogenetics*, 10.1007/s10048-017-0514-8.

818

819 12. Wang,C., Gu,Y., Zhang,K., Xie,K., Zhu,M., Dai,N., Jiang,Y., Guo,X., Liu,M., Dai,J., *et al.* (2016) Systematic identification of genes with a cancer-testis expression pattern in 19 cancer types. *Nat. Commun.*, **7**, 10499.

820

821 13. Muona,M., Berkovic,S.F., Dibbens,L.M., Oliver,K.L., Maljevic,S., Bayly,M.A., Joensuu,T., Canafoglia,L., Franceschetti,S., Michelucci,R., *et al.* (2015) A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. *Nat. Genet.*, **47**, 39–46.

822

823 14. Daneshjou,R., Gamazon,E.R., Burkley,B., Cavallari,L.H., Johnson,J.A., Klein,T.E., Limdi,N., Hillenmeyer,S., Percha,B., Karczewski,K.J., *et al.* (2014) Genetic variant in folate homeostasis is associated with lower warfarin dose in African Americans. *Blood*, **124**, 2298–2305.

824

825 15. Zhu,Y., Stephens,R.M., Meltzer,P.S. and Davis,S.R. (2013) SRAdb: query and use public

841 next-generation sequencing data from within R. *BMC Bioinformatics*, **14**, 19.

842 16. Peng,S., Gan,G., Qiu,C., Zhong,M., An,H., Adelman,R.A. and Rizzolo,L.J. (2013)

843 Engineering a blood-retinal barrier with human embryonic stem cell-derived retinal pigment

844 epithelium: transcriptome and functional analysis. *Stem Cells Transl. Med.*, **2**, 534–544.

845 17. Pinelli,M., Carissimo,A., Cutillo,L., Lai,C.-H., Mutarelli,M., Moretti,M.N., Singh,M.V.,

846 Karali,M., Carrella,D., Pizzo,M., *et al.* (2016) An atlas of gene expression and gene co-

847 regulation in the human retina. *Nucleic Acids Res.*, **44**, 5773–5784.

848 18. Li,M., Jia,C., Kazmierkiewicz,K.L., Bowman,A.S., Tian,L., Liu,Y., Gupta,N.A.,

849 Gudiseva,H.V., Yee,S.S., Kim,M., *et al.* (2014) Comprehensive analysis of gene expression in

850 human retina and supporting tissues. *Hum. Mol. Genet.*, **23**, 4001–4014.

851 19. Whitmore,S.S., Wagner,A.H., DeLuca,A.P., Drack,A.V., Stone,E.M., Tucker,B.A., Zeng,S.,

852 Braun,T.A., Mullins,R.F. and Scheetz,T.E. (2014) Transcriptomic analysis across nasal,

853 temporal, and macular regions of human neural retina and RPE/choroid by RNA-Seq. *Exp. Eye*

854 *Res.*, **129**, 93–106.

855 20. Kaewkhaw,R., Kaya,K.D., Brooks,M., Homma,K., Zou,J., Chaitankar,V., Rao,M. and

856 Swaroop,A. (2015) Transcriptome Dynamics of Developing Photoreceptors in Three-

857 Dimensional Retina Cultures Recapitulates Temporal Sequence of Human Cone and Rod

858 Differentiation Revealing Cell Surface Markers and Gene Networks. *Stem Cells Dayt. Ohio*, **33**,

859 3504–3518.

860 21. Frausto,R.F., Le,D.J. and Aldave,A.J. (2016) Transcriptomic Analysis of Cultured Corneal

861 Endothelial Cells as a Validation for Their Use in Cell Replacement Therapy. *Cell Transplant.*,

862 **25**, 1159–1176.

863 22. Darrow,E.M., Huntley,M.H., Dudchenko,O., Stamenova,E.K., Durand,N.C., Sun,Z.,

864 Huang,S.-C., Sanborn,A.L., Machol,I., Shamim,M., *et al.* (2016) Deletion of DXZ4 on the

865 human inactive X chromosome alters higher-order genome architecture. *Proc. Natl. Acad. Sci. U.*

866 *S. A.*, **113**, E4504-4512.

867 23. Hu,G., Huang,K., Yu,J., Gopalakrishna-Pillai,S., Kong,J., Xu,H., Liu,Z., Zhang,K., Xu,J.,

868 Luo,Y., *et al.* (2012) Identification of miRNA Signatures during the Differentiation of hESCs

869 into Retinal Pigment Epithelial Cells. *PLOS ONE*, **7**, e37224.

870 24. Radeke,M.J., Radeke,C.M., Shih,Y.-H., Hu,J., Bok,D., Johnson,L.V. and Coffey,P.J. (2015)

871 Restoration of mesenchymal retinal pigmented epithelial cells by TGF β pathway inhibitors:

872 implications for age-related macular degeneration. *Genome Med.*, **7**, 58.

873 25. Ouyang,H., Xue,Y., Lin,Y., Zhang,X., Xi,L., Patel,S., Cai,H., Luo,J., Zhang,M., Zhang,M.,

874 *et al.* (2014) WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis.

875 *Nature*, **511**, 358–361.

876 26. Gill,K.P., Hung,S.S.C., Sharov,A., Lo,C.Y., Needham,K., Lidgerwood,G.E., Jackson,S.,

877 Crombie,D.E., Nayagam,B.A., Cook,A.L., *et al.* (2016) Enriched retinal ganglion cells derived

878 from human embryonic stem cells. *Sci. Rep.*, **6**, 30552.

879 27. Chen,Y., Huang,K., Nakatsu,M.N., Xue,Z., Deng,S.X. and Fan,G. (2013) Identification of

880 novel molecular markers through transcriptomic analysis in human fetal and adult corneal

881 endothelial cells. *Hum. Mol. Genet.*, **22**, 1271–1279.

882 28. Wu,W., Zeng,Y., Li,Z., Li,Q., Xu,H. and Yin,Z.Q. (2016) Features specific to retinal

883 pigment epithelium cells derived from three-dimensional human embryonic stem cell cultures —

884 a new donor for cell therapy. *Oncotarget*, **7**, 22819–22833.

885 29. Chng,Z., Peh,G.S.L., Herath,W.B., Cheng,T.Y.D., Ang,H.-P., Toh,K.-P., Robson,P.,

886 Mehta,J.S. and Colman,A. (2013) High Throughput Gene Expression Analysis Identifies

887 Reliable Expression Markers of Human Corneal Endothelial Cells. *PLOS ONE*, **8**, e67546.

888 30. Farkas,M.H., Grant,G.R., White,J.A., Sousa,M.E., Consugar,M.B. and Pierce,E.A. (2013)

889 Transcriptome analyses of the human retina identify unprecedented transcript diversity and 3.5

890 Mb of novel transcribed sequence via significant alternative splicing and novel genes. *BMC*

891 *Genomics*, **14**, 486.

892 31. Santaguida,S., Vasile,E., White,E. and Amon,A. (2015) Aneuploidy-induced cellular stresses

893 limit autophagic degradation. *Genes Dev.*, 10.1101/gad.269118.115.

894 32. Tian,L., Kazmierkiewicz,K.L., Bowman,A.S., Li,M., Curcio,C.A. and Stambolian,D.E.

895 (2015) Transcriptome of the human retina, retinal pigmented epithelium and choroid. *Genomics*,

896 **105**, 253–264.

897 33. Patro,R., Duggal,G., Love,M.I., Irizarry,R.A. and Kingsford,C. (2017) Salmon provides fast

898 and bias-aware quantification of transcript expression. *Nat. Methods*, **advance online**

899 **publication**.

900 34. Soneson,C., Love,M.I. and Robinson,M.D. (2016) Differential analyses for RNA-seq:

901 transcript-level estimates improve gene-level inferences. *F1000Research*, **4**, 1521.

902 35. Hicks,S.C., Okrah,K., Paulson,J.N., Quackenbush,J., Irizarry,R.A. and Bravo,H.C. (2016)

903 Smooth Quantile Normalization. *bioRxiv*, 10.1101/085175.

904 36. Law,C.W., Chen,Y., Shi,W. and Smyth,G.K. (2014) voom: precision weights unlock linear

905 model analysis tools for RNA-seq read counts. *Genome Biol.*, **15**, R29.

906 37. Maaten,L. van der and Hinton,G. (2008) Visualizing Data using t-SNE. *J. Mach. Learn. Res.*,

907 **9**, 2579–2605.

908 38. Ntranos,V., Kamath,G.M., Zhang,J.M., Pachter,L. and Tse,D.N. (2016) Fast and accurate

909 single-cell RNA-seq analysis by clustering of transcript-compatibility counts. *Genome Biol.*, **17**,

910 112.

911 39. Taskesen,E. and Reinders,M.J.T. (2016) 2D Representation of Transcriptomes by t-SNE

912 Exposes Relatedness between Human Tissues. *PLOS ONE*, **11**, e0149853.

913 40. Ester,M., Kriegel,H., Sander,J. and Xu,X. (1996) A density-based algorithm for discovering

914 clusters in large spatial databases with noise. In: AAAI Press, pp. 226–231.

915 41. Wattenberg,M., Viégas,F. and Johnson,I. (2016) How to Use t-SNE Effectively. *Distill*,

916 10.23915/distill.00002.

917 42. Ritchie,M.E., Phipson,B., Wu,D., Hu,Y., Law,C.W., Shi,W. and Smyth,G.K. (2015) limma

918 powers differential expression analyses for RNA-sequencing and microarray studies. *Nucleic*

919 *Acids Res.*, **43**, e47.

920 43. Macosko,E.Z., Basu,A., Satija,R., Nemesh,J., Shekhar,K., Goldman,M., Tirosh,I.,

921 Bialas,A.R., Kamitaki,N., Martersteck,E.M., *et al.* (2015) Highly Parallel Genome-wide

922 Expression Profiling of Individual Cells Using Nanoliter Droplets. *Cell*, **161**, 1202–1214.

923 44. Langfelder,P. and Horvath,S. (2008) WGCNA: an R package for weighted correlation

924 network analysis. *BMC Bioinformatics*, **9**, 559.

925 45. Köhler,S., Vasilevsky,N.A., Engelstad,M., Foster,E., McMurry,J., Aymé,S., Baynam,G.,

926 Bello,S.M., Boerkoel,C.F., Boycott,K.M., *et al.* (2017) The Human Phenotype Ontology in 2017.

927 *Nucleic Acids Res.*, **45**, D865–D876.

928 46. Swaroop,A., Kim,D. and Forrest,D. (2010) Transcriptional regulation of photoreceptor

929 development and homeostasis in the mammalian retina. *Nat. Rev. Neurosci.*, **11**, 563–576.

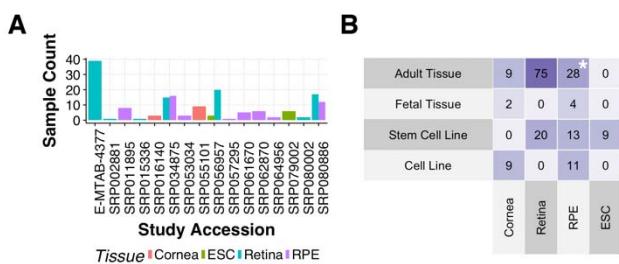
930 47. J.H., A.F., Jm,G., E.T., M.D., F.K., Bl,A., D.B., A.Z., S.S., *et al.* (2012) GENCODE: the

931 reference human genome annotation for The ENCODE Project. *Genome Res.*, **22**, 1760–1774.

932 48. Soneson,C., Matthes,K.L., Nowicka,M., Law,C.W. and Robinson,M.D. (2016) Isoform

933 prefiltering improves performance of count-based methods for analysis of differential transcript
934 usage. *Genome Biol.*, **17**, 12.
935
936

937 **Figures**



938

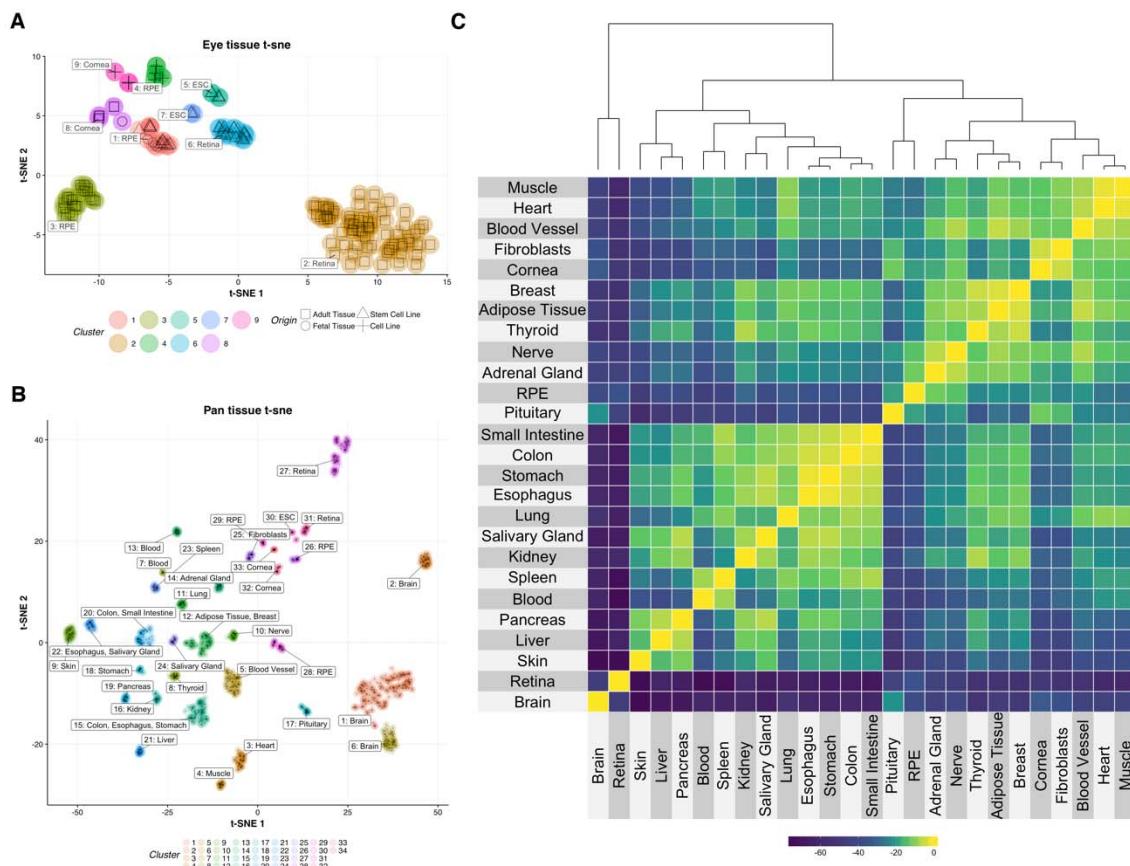
939 Figure 1

940 Identifying 177 unique human eye and ESC samples across 16 studies and four tissue types

941

942 A. Counts for unique cornea, ESC, retina, and RPE (choroid) human RNA-seq samples by
943 study accession
944 B. Counts by tissue and origin. * is adult RPE – choroid

945



946

947

Figure 2

948

Gene expression information sufficient to both accurately cluster eye and GTEx tissue independently and demonstrates that eye tissues are generally more closely related to other than other body tissues

949

950

- Dimensionality reduction by t-SNE of human eye tissues and ESC, colored by clustering assignment, and labelled by tissues in cluster. Shape of point corresponds to tissue origin
- Eye tissues with GTEx tissues, colored by clustering assignment, labelled by tissues in cluster
- Pair-wise euclidean distance between each tissue. Closer tissues have a smaller height in the dendrogram and are more yellow in color. More distant tissues have a larger height in the dendrogram and are more blue.

951

952

953

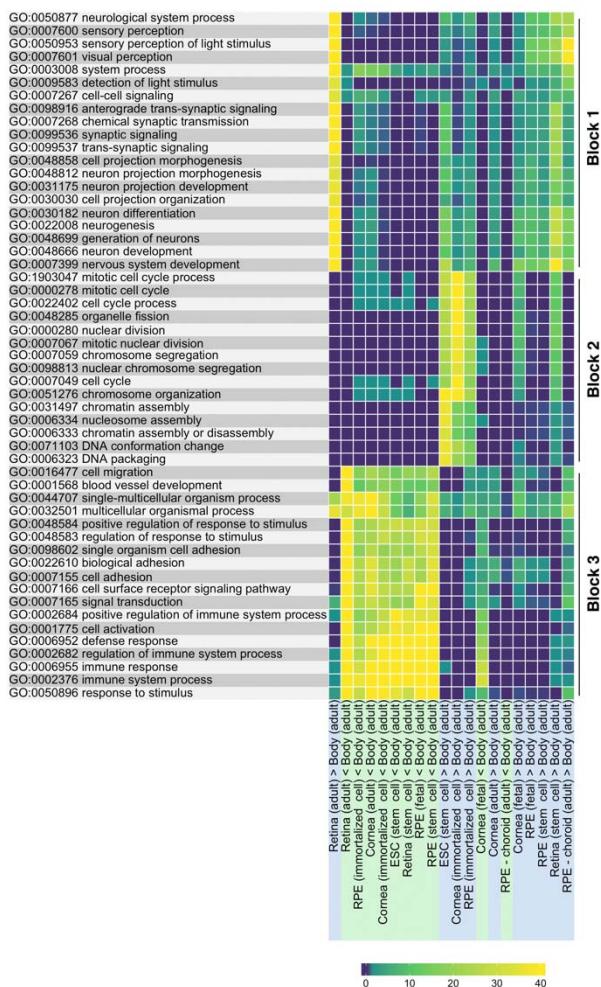
954

955

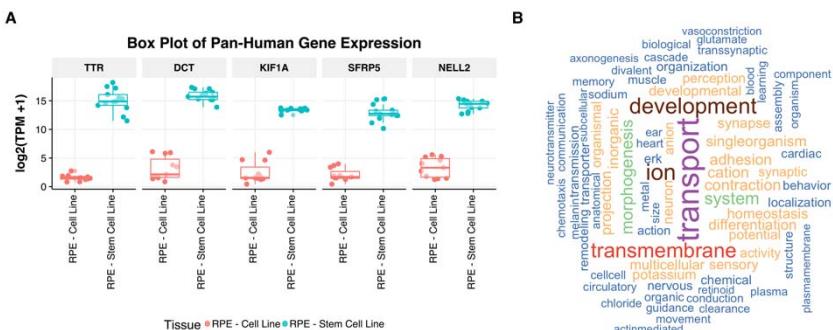
956

957

958



959
 960 Figure 3
 961 Major differences in systems relating to visual function, active cell division, adhesion, and
 962 immunity between the eye tissues and the other tissues in the human body
 963 Top 80 GO Terms (40 with eye > body and 40 with body > eye) across eye-tissue to body
 964 differential expression tests. Yellow is more significant, blue is less. Hierarchical clustering of
 965 both rows and columns place more related GO terms and tissue comparison sets together.
 966

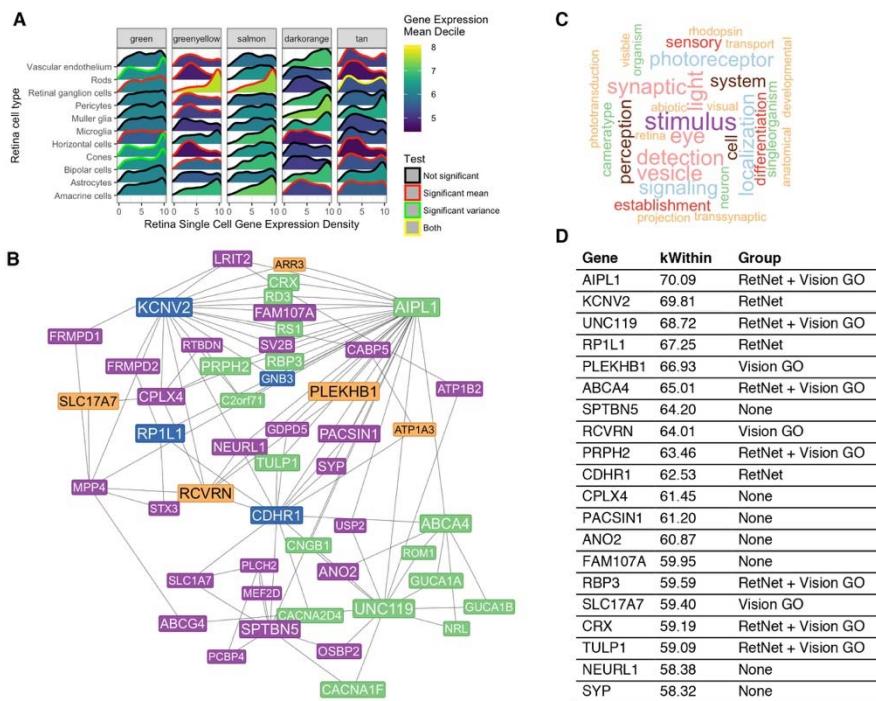


967
968
969
970
971
972
973
974

Figure 4

Genes crucial in eye function are highly differentially expressed between stem cell derived RPE and hTERT RPE

- A. The top 5 genes overexpressed in ESC-derived RPE and immortalized cell line hTERT RPE
- B. Word cloud of enriched GO terms



975
976 Figure 5
977 Retina network green module highly enriched for important visual function genes
978
979
980
981
982
983
984
985
986
987

988 **Tables**

989

990 Table 1

991

Comparison	Log Fold Change	
	< -2	> 2
Cornea (adult) vs Body (adult)	1969	1249
Cornea (fetal) vs Body (adult)	172	873
Cornea (immortalized cell) vs Body (adult)	2611	1475
ESC (stem cell) vs Body (adult)	2738	2177
Retina (adult) vs Body (adult)	2607	1978
Retina (stem cell) vs Body (adult)	3443	2622
RPE - choroid (adult) vs Body (adult)	1200	1258
RPE (fetal) vs Body (adult)	1510	1402
RPE (immortalized cell) vs Body (adult)	2446	1398
RPE (stem cell) vs Body (adult)	2270	1308

992

993 Many genes are differentially expressed between the eye tissues and the synthetic body

994

995 Number of genes with logFC < -2 or > 2 (0.25 or 4 fold, p value < 0.01) between each
996 eye tissue against the synthetic body set

997 Table 2
998

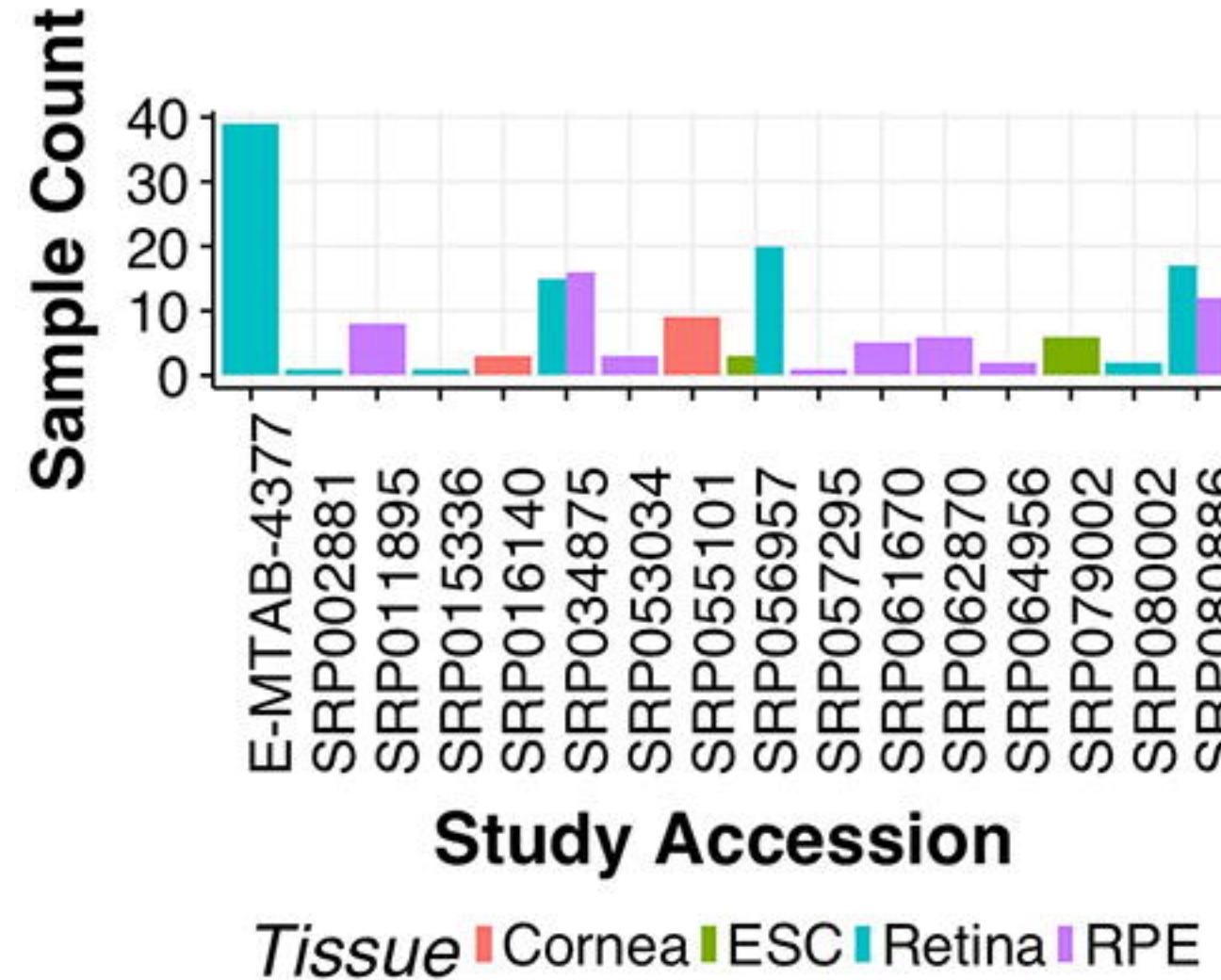
Tissue(s)-Specific Set	Cluster	GO BP ID	P value (FDR)	Odds Ratio	Term
Cornea	3	GO:0030198	1.16e-13	11.27	extracellular matrix organization
Cornea	3	GO:0030574	1.07e-11	30.51	collagen catabolic process
Cornea	3	GO:0032502	1.50e-09	3.20	developmental process
Adult Retina	8	GO:0050953	8.43e-65	38.80	sensory perception of light stimulus
Adult Retina	8	GO:0007601	1.50e-62	37.74	visual perception
Adult Retina	8	GO:0060041	3.87e-19	17.14	retina development in camera-type eye
non-immortalized RPE	14	GO:0007601	1.57e-10	18.39	visual perception
non-immortalized RPE	14	GO:0042438	1.70e-07	104.91	melanin biosynthetic process
non-immortalized RPE	14	GO:0006776	1.39e-05	163.77	vitamin A metabolic process
Adult RPE - choroid	10	GO:0002376	1.35e-20	5.06	immune system process
Adult RPE - choroid	10	GO:0006952	5.03e-18	5.39	defense response
Adult RPE - choroid	10	GO:0007155	1.64e-13	4.25	cell adhesion

999
1000 Top GO terms for tissue-specific cluster groups relate to eye tissue specific function
1001

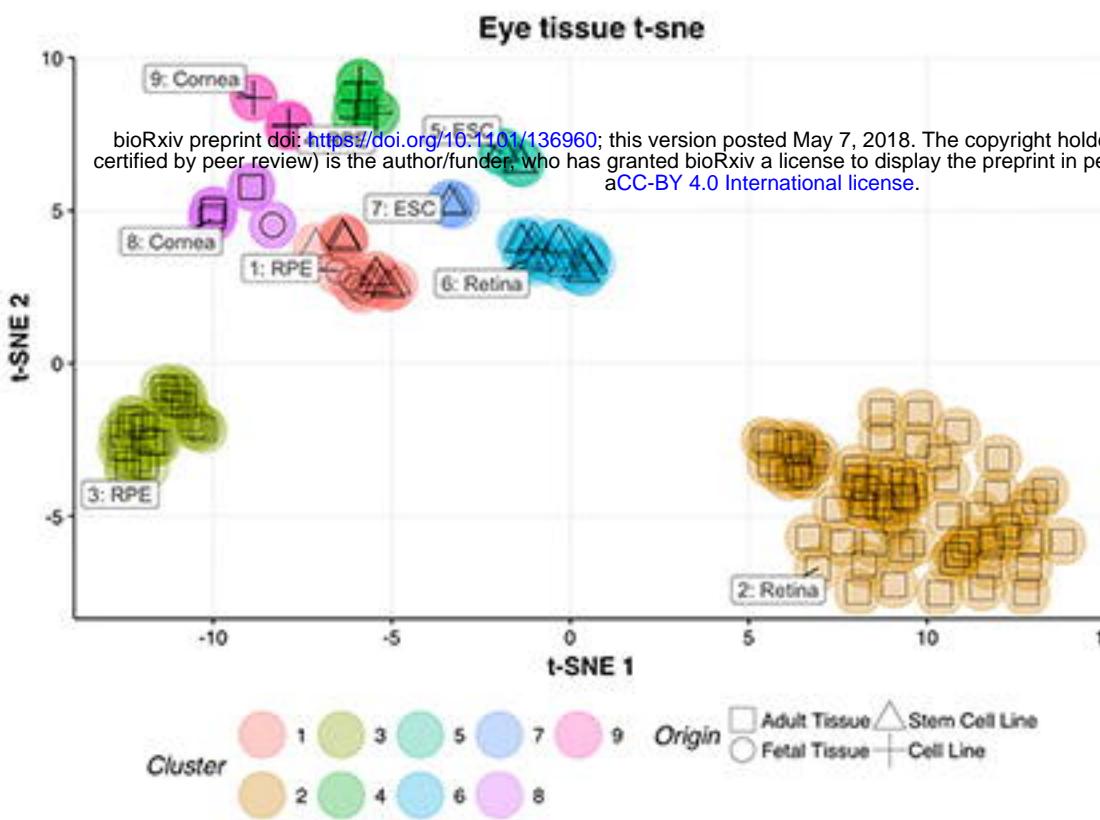
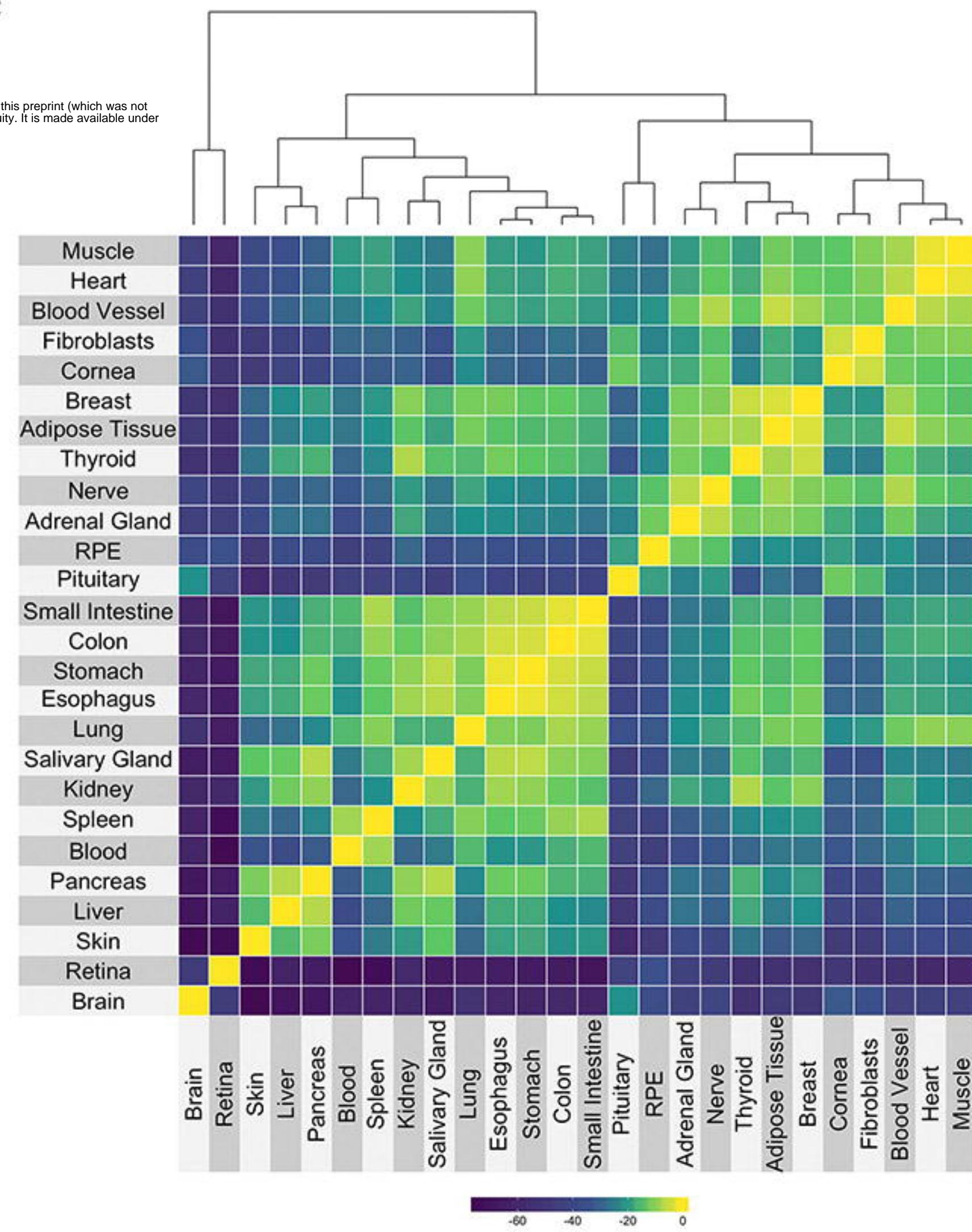
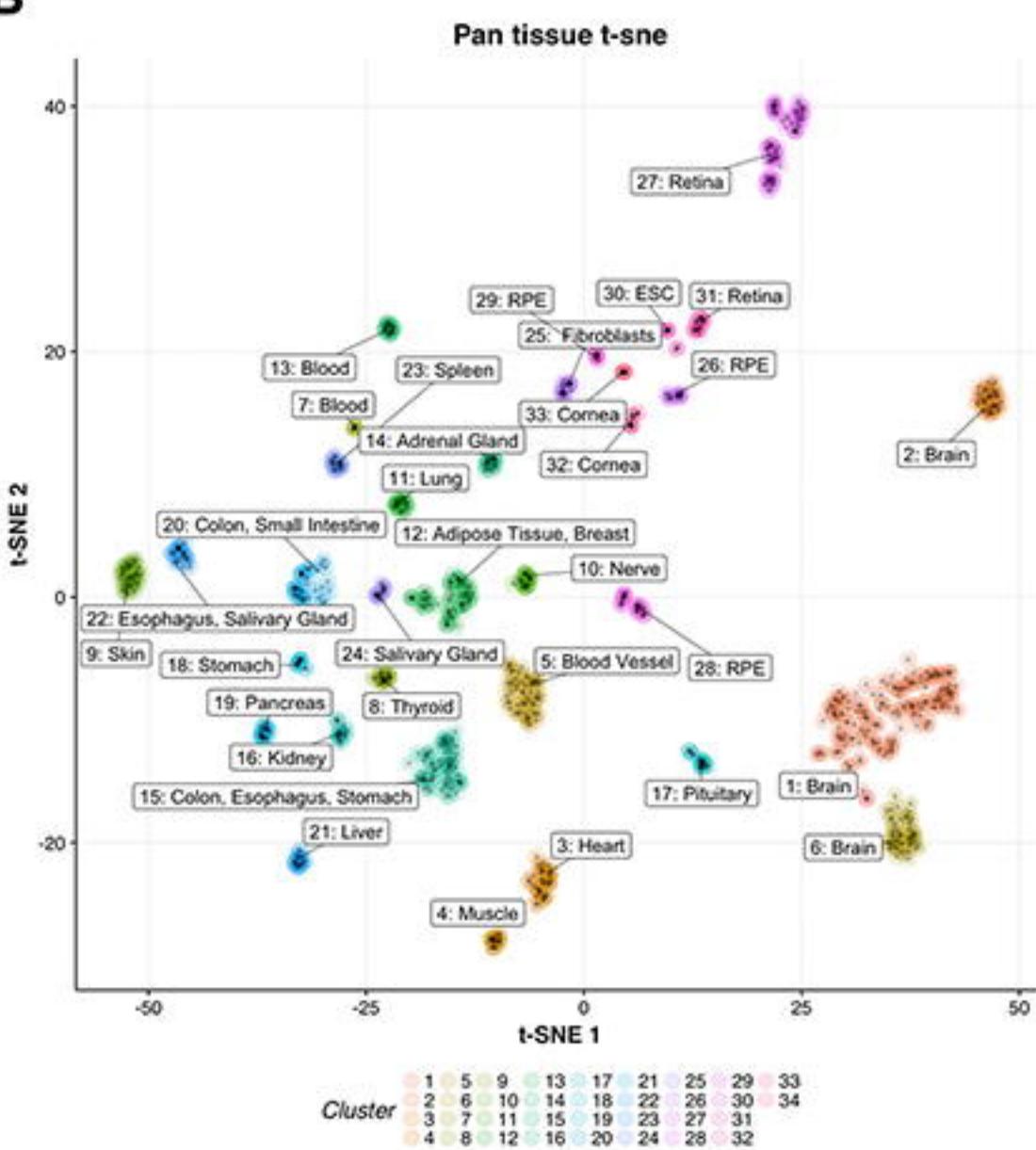
1002 Three representative GO terms were selected for GO term enrichment done on the
1003 differentially expressed K means cluster sets 3, 8, 10, and 14 (see Supplementary Materials,
1004 Figure S1) which represent over-expressed genes in cornea, adult retina, adult RPE/choroid, and
1005 non-immortalized RPE, respectively
1006

1007 **Abbreviations**

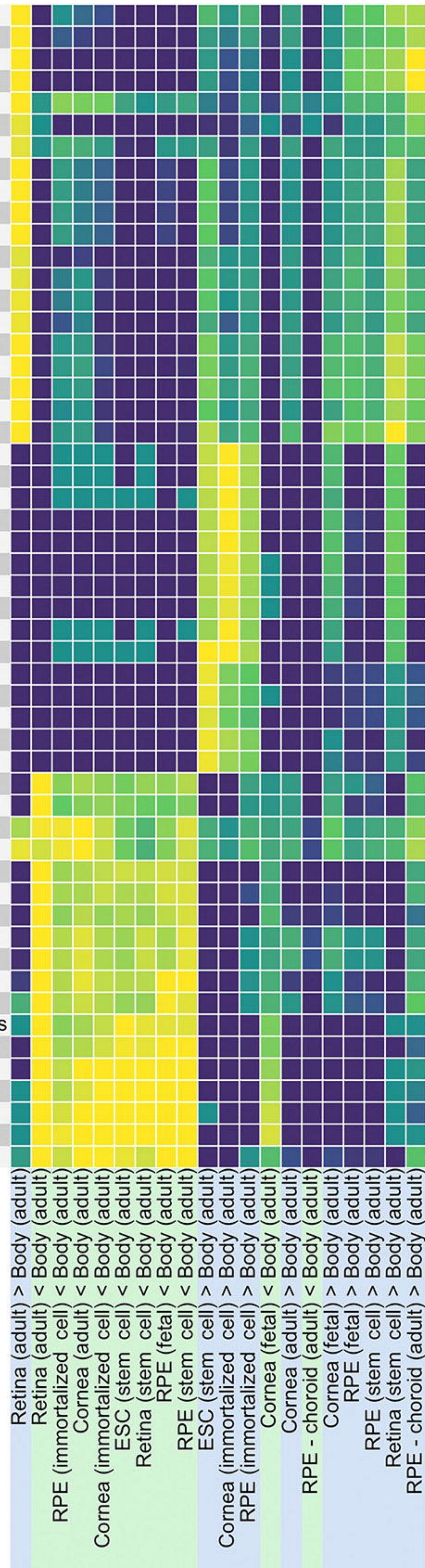
1008 Age-related macular degeneration (AMD)
1009 Human Embryonic Stem Cells (ESCs)
1010 Gene Ontology (GO)
1011 Gene Tissue Expression Project (GTEx)
1012 Human Phenotype Ontology (HPO)
1013 Induced Pluripotent Stem Cell (iPSC)
1014 log Fold Change (logFC)
1015 Retinal Pigment Epithelium (RPE)
1016 Sequence Read Archive (SRA)
1017 length-scaled Transcripts Per Million (TPM)
1018 t-Distributed Stochastic Neighbor Embedding (t-SNE)
1019 Weighted Gene Co-Expression Network Analysis (WGCNA)
1020

A**B**

Adult Tissue	9	75	28*	0
				Cornea
Fetal Tissue	2	0	4	0
Stem Cell Line	0	20	13	9
Cell Line	9	0	11	0

A**C****B**

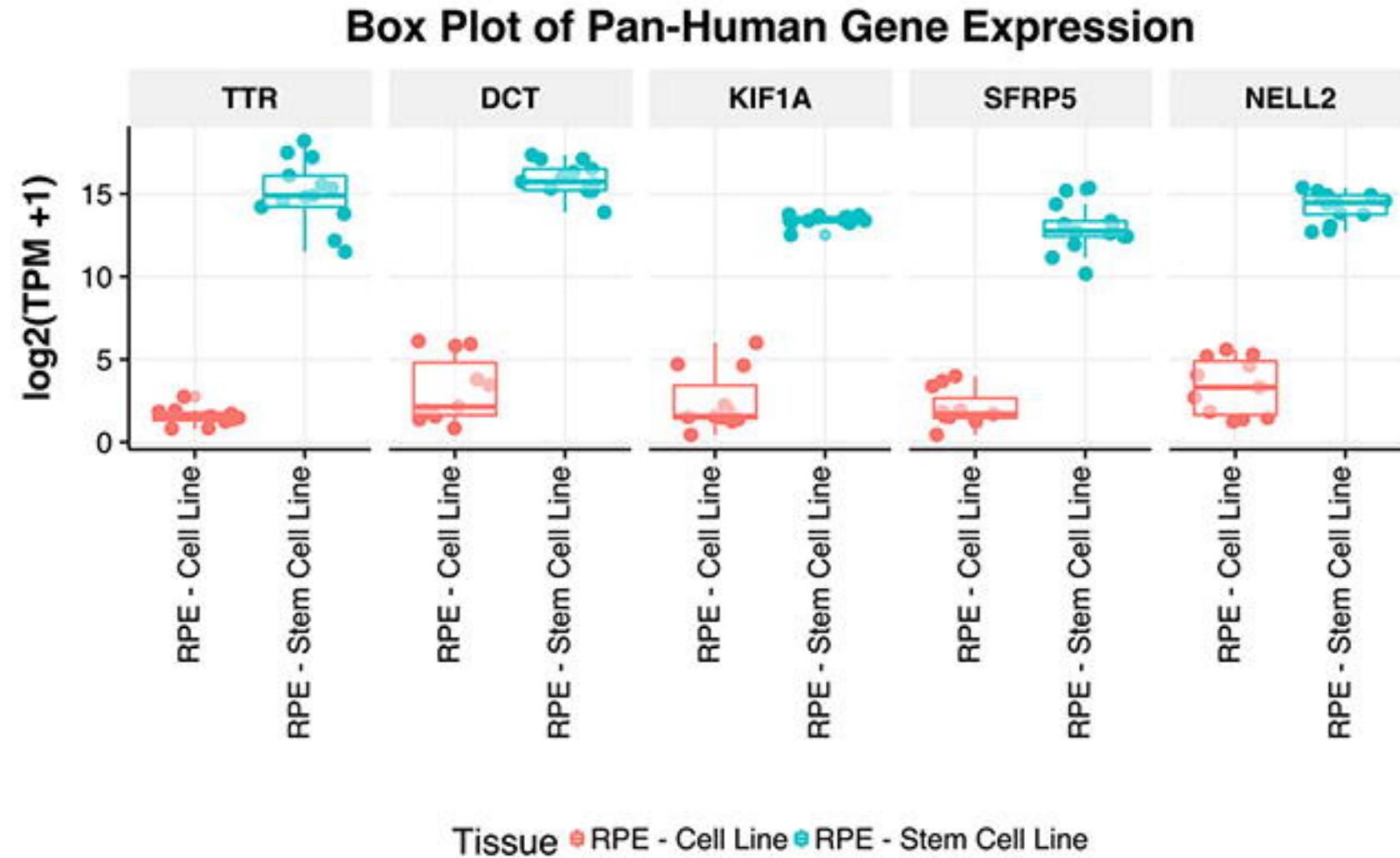
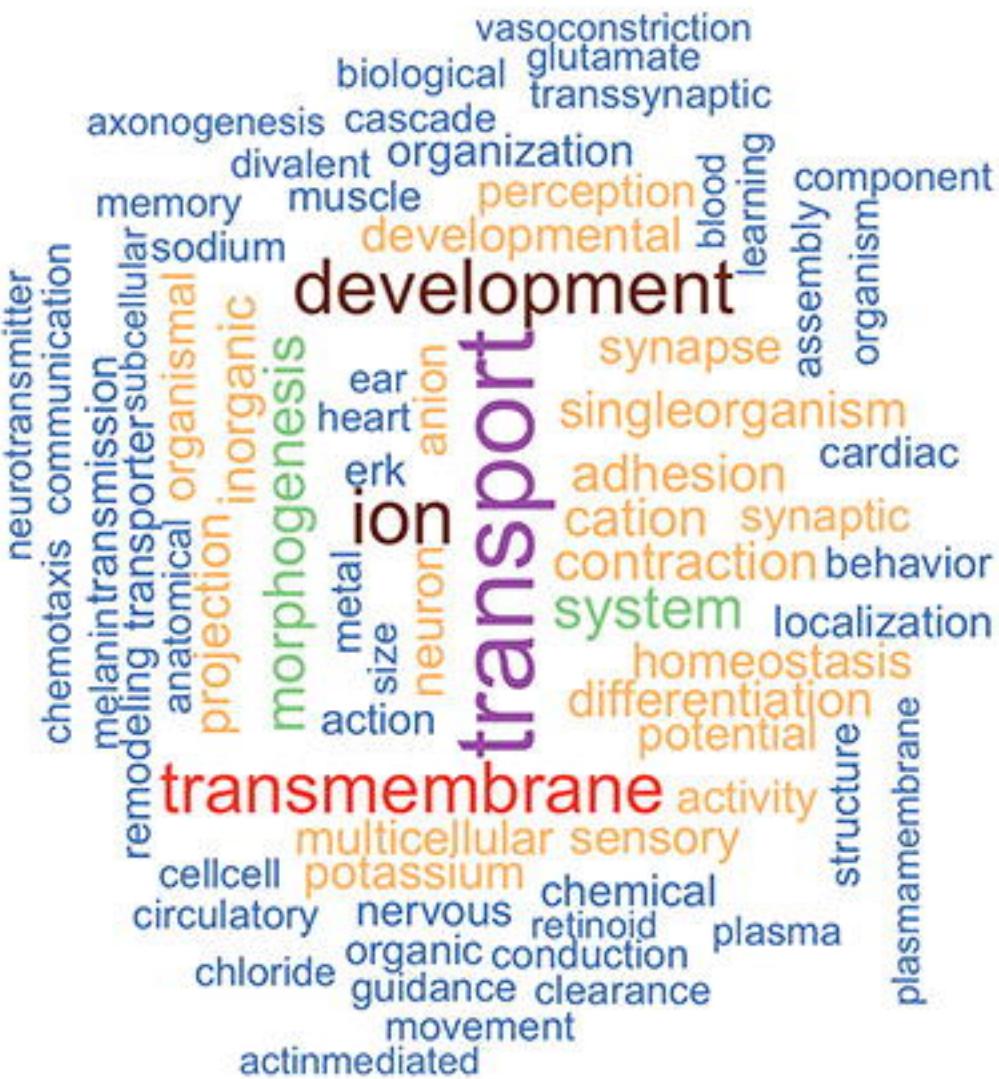
GO:0050877 neurological system process
 GO:0007600 sensory perception
 GO:0050953 sensory perception of light stimulus
 GO:0007601 visual perception
 GO:0003008 system process
 GO:0009583 detection of light stimulus
 GO:0007267 cell-cell signaling
 GO:0098916 anterograde trans-synaptic signaling
 GO:0007268 chemical synaptic transmission
 GO:0099536 synaptic signaling
 GO:0099537 trans-synaptic signaling
 GO:0048858 cell projection morphogenesis
 GO:0048812 neuron projection morphogenesis
 GO:0031175 neuron projection development
 GO:0030030 cell projection organization
 GO:0030182 neuron differentiation
 GO:0022008 neurogenesis
 GO:0048699 generation of neurons
 GO:0048666 neuron development
 GO:0007399 nervous system development
 GO:1903047 mitotic cell cycle process
 GO:0000278 mitotic cell cycle
 GO:0022402 cell cycle process
 GO:0048285 organelle fission
 GO:0000280 nuclear division
 GO:0007067 mitotic nuclear division
 GO:0007059 chromosome segregation
 GO:0098813 nuclear chromosome segregation
 GO:0007049 cell cycle
 GO:0051276 chromosome organization
 GO:0031497 chromatin assembly
 GO:0006334 nucleosome assembly
 GO:0006333 chromatin assembly or disassembly
 GO:0071103 DNA conformation change
 GO:0006323 DNA packaging
 GO:0016477 cell migration
 GO:0001568 blood vessel development
 GO:0044707 single-multicellular organism process
 GO:0032501 multicellular organismal process
 GO:0048584 positive regulation of response to stimulus
 GO:0048583 regulation of response to stimulus
 GO:0098602 single organism cell adhesion
 GO:0022610 biological adhesion
 GO:0007155 cell adhesion
 GO:0007166 cell surface receptor signaling pathway
 GO:0007165 signal transduction
 GO:0002684 positive regulation of immune system process
 GO:0006952 defense activation
 GO:0006952 defense response
 GO:0002682 regulation of immune system process
 GO:0006955 immune response
 GO:0002376 immune system process
 GO:0050896 response to stimulus

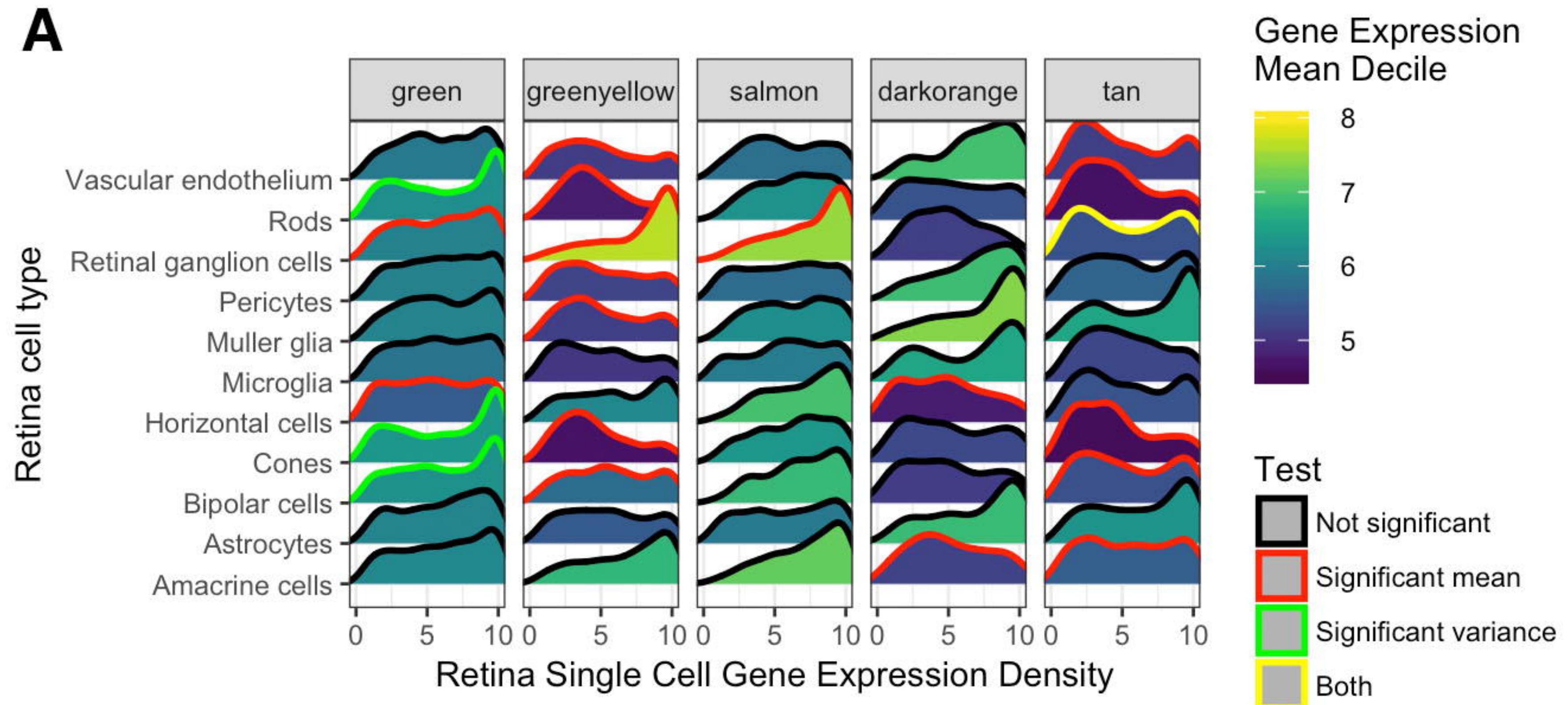


Block 1

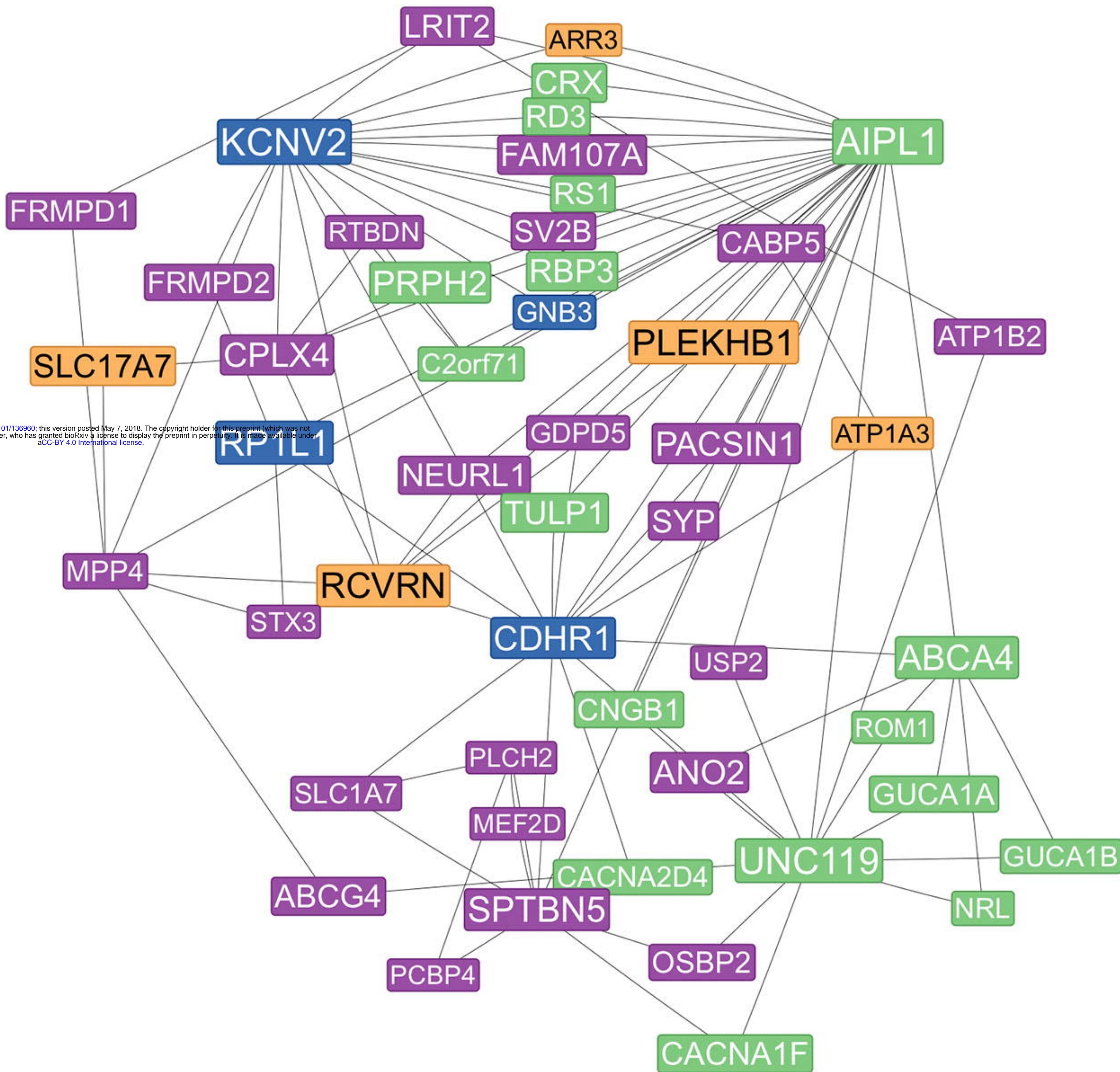
Block 2

Block 3

A**B**

A**C**

rhodopsin
sensory transport
photoreceptor
visible organism
synaptic system
light
stimulus
abiotic visual
retina eye
detection
camera eye
localization
single neuron cell
differentiation
establishment
projection transsynaptic
anatomical development

B**D**

Gene	kWithin	Group
AIPL1	70.09	RetNet + Vision GO
KCNV2	69.81	RetNet
UNC119	68.72	RetNet + Vision GO
RP1L1	67.25	RetNet
PLEKHB1	66.93	Vision GO
ABCA4	65.01	RetNet + Vision GO
SPTBN5	64.20	None
RCVRN	64.01	Vision GO
PRPH2	63.46	RetNet + Vision GO
CDHR1	62.53	RetNet
CPLX4	61.45	None
PACSIN1	61.20	None
ANO2	60.87	None
FAM107A	59.95	None
RBP3	59.59	RetNet + Vision GO
SLC17A7	59.40	Vision GO
CRX	59.19	RetNet + Vision GO
TULP1	59.09	RetNet + Vision GO
NEURL1	58.38	None
SYP	58.32	None