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Abstract  14 
 15 

The human eye is built from several specialized tissues which direct, capture, and pre-16 
process information to provide vision. The gene expression of the different eye tissues has been 17 
extensively profiled with RNA-seq across numerous studies. Large consortium projects have also 18 
used RNA-seq to study gene expression patterning across many different human tissues, minus 19 
the eye. There has not been an integrated study of expression patterns from multiple eye tissues 20 
compared to other human body tissues. We have collated all publicly available healthy human 21 
eye RNA-seq datasets as well as dozens of other tissues. We use this fully integrated dataset to 22 
probe the biological processes and pan expression relationships between the cornea, retina, RPE-23 
choroid complex, and the rest of the human tissues with differential expression, clustering, and 24 
GO term enrichment tools. We also leverage our large collection of retina and RPE-choroid 25 
tissues to build the first human weighted gene correlation networks and use them to highlight 26 
known biological pathways and eye gene disease enrichment. We also have integrated publicly 27 
available single cell RNA-seq data from mouse retina into our framework for validation and 28 
discovery. Finally, we make all these data, analyses, and visualizations available via a powerful 29 
interactive web application (https://eyeintegration.nei.nih.gov/).   30 
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Introduction 31 
 32 
 The human eye is a highly specialized organ using several distinct tissues to focus and 33 
capture light and begin processing it into visual information. Light passes through the cornea and 34 
the lens which focus the light onto the retina (1). The rod and cone photoreceptors of the retina 35 
capture the light and transmits visual information that is processed by a network of retinal 36 
synapses and passed through the optic nerve to the brain (2). The retinal pigment epithelium 37 
(RPE) is responsible for absorbing scattered light and providing nutrition, maintaining ionic 38 
homeostasis, and waste product processing for the photoreceptors, as well as mediating immune 39 
function for the retina and eye (3). The RPE and outer neural retina is supported by and 40 
connected to the vascular system of the body via the choroid (4).  41 
 Many genetic disorders affect the function of the various eye tissues and cause vision 42 
perturbation or loss. The genetics of eye diseases range from monogenic Mendelian disorders to 43 
complex multi-gene system perturbations that are modified by environmental influences. While 44 
at least 316 identified genes underlying retinal diseases have been identified, recent 45 
comprehensive next generation sequencing studies fail to find the cause of a variety of inherited 46 
retinal diseases like cone-rod dystrophies or retinitis pigmentosa 40-60% of the time (5–7). In an 47 
example of complex disease, age-related macular degeneration (AMD), which is believed to be 48 
caused by dysfunction of the RPE and choroid, genome-wide association studies (GWAS) have 49 
identified dozens of genomic locations associated with the disease. Still it is very difficult to 50 
pinpoint the causative gene or genes (8).  51 
  An valuable tool in understanding basic biology and unravelling the causes of disease has 52 
been the analysis of gene expression profiles. The Genotype-Tissue Expression 53 
 (GTEx) Project has compiled nearly 10,000 individual tissue human RNA-seq samples and 54 
shared the data via a powerful and easy-to-use web portal (9). GTEx data has been used to help 55 
filter variants in GWAS studies, to build networks to identify candidate testis cancer genes, to 56 
help identify pathogenic mutations in an epilepsy cohort, and to identify a genetic variant linking 57 
folate homeostasis to warfarin response (10–14). Notably, the eye was not included as a tissue 58 
for this project. Because the vision community has been adopting RNA-seq for profiling 59 
different components of the eye, there is a large and growing set of useful transcriptome data. 60 
However, each study uses different bioinformatic processes to analyze their transcriptomes and 61 
the full genome-wide expression values are difficult to obtain, analyze, and visualize across 62 
studies. Therefore, utility of these resources ought to be optimized to similar effect as for other 63 
tissues.  64 

We have collated all publicly available human eye tissue RNA-seq data and processed it 65 
with a robust and consistent bioinformatics process. We also have brought in a substantial 66 
portion of the GTEx project RNA-seq data to provide a comparison set to the eye tissues. Our 67 
full data-set holds 1027 samples. This comprehensive and consistently processed pan-eye and 68 
human data set allows for several novel analyses: first, to probe the relationships within cornea, 69 
retina, and RPE tissues and between eye tissues and other human tissues; second, to look for 70 
overarching patterns in gene expression and shared biology in differentially expressed genes 71 
between the eye tissues; and, third, we use the large collated retina and RPE samples to build 72 
gene correlation networks for both. A single cell mouse RNA-seq retina dataset has also been 73 
integrated to validate the retina gene correlation networks.  74 

To maximize utility of this project to all researchers, we have also created a freely 75 
available web application that allows quick and powerful access to the expression profiles of 76 
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nearly 20,000 genes across 177 human eye tissue RNA-seq sets and 853 GTEx tissue RNA-seq 77 
sets, the two gene networks, and the 10,000 plus cells of the mouse retina single cell dataset 78 
(https://eyeIntegration/nei.nih.gov/).   79 
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Materials and Methods 80 
 81 
Identification of normal human eye RNA-seq data-sets and tissue labelling 82 
 83 

The entire SRA dataset was downloaded as a SQL file on January 19th, 2017 with the 84 
SRAdb R package. The following keywords were used in a partial-matching case-insensitive 85 
(e.g. ‘retina’ would match ‘RETINAL’) search: ‘RPE’, ‘macula’, ‘fovea’, ‘retina’, ‘choroid’, 86 
‘sclera’, ‘iris’, ‘lens’, ‘cornea’, and ‘eye.’ These keywords were matched against the following 87 
fields in the SRA: ‘study_abstract’, ‘experiment_name’, ‘study_name’, ‘sample_ID’, 88 
‘sample_name’, ‘study_title’, ‘study_description’ in human samples with a ‘library_source’ of 89 
‘transcriptomic’ and filtering out miRNA studies. Study titles, abstracts, and other fields were 90 
checked by hand for inclusion in this study for whether they were genuine eye studies of normal 91 
(non-disease, non-mutated, no chemical modification) human eye tissue. The SRA metadata for 92 
the GTEx project was also pulled by searching for the study accession ‘SRP012682.’ Our script 93 
enabling search of the SRA for eye tissues is provided as ‘sraDB_search_select.R’ 94 

For reproducibility, the meta-data for each sample was parsed with our script 95 
‘parse_sample_attribute.R’ to label the eye tissue (cornea, lens, eye-lid, retina, RPE, ESC) and 96 
its origin (immortalized cell-line, cell-line derived from ESC, fetal tissue, or adult tissue). This 97 
script has been written to handle the wide variety of metadata usage by the 21 research projects 98 
and the script likely would need to be modified to handle new eye samples. The GTEx tissue 99 
were labeled by tissue or sub tissue by parsing the GTEx SRA metadata for ‘histological type’ 100 
and ‘body site’, respectively with the ‘parse_sample_attribute.R’ script.  101 
 102 
Efficient quantification of gene expression across 1027 samples 103 
 104 
 Two studies had their raw RNA-seq data accessioned with dbGaP (9, 15). We obtained 105 
access to these studies under dbGaP study #115588. Raw sequence data for these two studies 106 
were pulled and converted to fastq with the sratoolkit (2.8.0) fastq-dump tool. The remaining raw 107 
fastq data was pulled from NCBI via ftp, with the wget calls created by the script 108 
‘sra_to_fastq.R’. The one exception was the E-MTAB-4377 resource which was only available 109 
in the bam format as of January 19th 2017 from European Bioinformatics Institutes ArrayExpress 110 
archive (16). The bam files were downloaded, then converted to fastq with the Picard 111 
SamToFastq (2.1.1) program (https://broadinstitute.github.io/picard/). 112 
 The raw fastq read files were loaded into salmon (0.7.2) with –seqBias and –gcBias flags 113 
against the Gencode Release 25 protein-coding transcript sequences fasta file to perform 114 
transcript-level quantification (17, 18). The Gencode gene names are used across this study. To 115 
improve specificity of the gene expression, transcripts with low abundance across all tissues 116 
were removed from the fasta file, and Salmon was re-run as per Soneson et. al (19). The filtered 117 
fasta file is provided in the source code as ‘gencode.v25.pc_transcripts.commonTx.fa.gz.’ and 118 
the Salmon script as ‘run_salmon.sh.’ To improve sensitivity and specificity, the transcript-level 119 
quantifications were merged to the gene-level and the length scaled transcripts per kilobase 120 
million (TPM) calculations were done with the R library tximport (1.2.0) (20) in our 121 
‘calculate_lengthScaledTPM.R’ script.  122 
 123 
Multi-step process to remove samples with low overall gene expression counts, quantile 124 
normalize samples by tissue, then cluster to identify outliers 125 
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 A multi-stage process was then used on the full data set to remove outlier samples (either 126 
because of overall low gene expression levels or from clustering with the incorrect tissue group). 127 
Genes with zero to extremely low expression across the entire data-set were removed. While we 128 
found several mislabeled GTEx samples, this has been noticed before (21). Samples with a 129 
median TPM value < 50 were removed as these were outliers in terms of overall gene expression 130 
coverage. This step alone removed all of the lens samples, 20 RPE, 15 retina, and 16 ESC 131 
samples (Supplementary Materials, Table S1, S2 and Figure S2). To alleviate potential batch 132 
effects between the samples from different studies, the TPM values were quantile normalized 133 
within tissues and globally simultaneously with the qsmooth algorithm (22) (Supplementary 134 
Materials, Figure S7).  135 

Finally, the remaining samples were dimensionality reduced with t-SNE, then clustered 136 
with DBSCAN. The performance of t-SNE is sensitive to the perplexity parameter, which 137 
weighs local versus global relationships. We found for our study that perplexities ranging from 138 
30-50 performed the most reliably (data not shown). For the all-sample t-SNE we used a 139 
perplexity of 45. For the eye-only sample t-SNE, we used a perplexity of 35. The t-SNE 140 
coordinates were clustered by DBSCAN with the eps parameter set to 1.3. The cluster 141 
assignments from DBSCAN were then aggregated to the tissue and origin level, to identify small 142 
numbers of samples that clustered with other tissues; these are likely sample swaps. These 143 
outliers were removed. The script for this process is ‘outlier_identification.Rmd.’  144 
 145 
Differential gene expression analysis with pair-wise testing 146 
 147 
 A synthetic pan-human gene expression set was created by randomly sampling 8 tissues 148 
from each of the 22 GTEx tissue samples. This was used with the nine different eye tissue-origin 149 
sample sets and the ESC set, totaling 11 different groups. All 55 pair-wise tests (11 choose 2 150 
equals 55) were done with the limma package with voom library size normalization, using the 151 
quantile-normalized TPM values as the input (23, 24). The script ‘differential_expression.Rmd’ 152 
contains the code for these steps.  153 
  154 
GO, HPO, and STRING enrichment 155 
 156 

For GO enrichment, the biomaRt package was used, in R, to get the entrez IDs from the 157 
‘dec2016’ ‘hsapiens_gene_ensembl’ mart. The GOstats package, in R, was used to calculate GO 158 
enrichment by the hypergeometric test, only keeping over-enriched terms. The background gene 159 
list across the different tests was defined as all genes in the original TPM expression matrix. The 160 
function for this analysis is provided as ‘GO_enrichment.R.’ 161 
 For HPO enrichment, no working R package was available. To identify modules that 162 
mapped to a higher than expected number of HPO terms we used bootstrapping, comparing the 163 
number of HPO terms mapped to a module (proportional to its size) against a bootstrap 164 
distribution of the same metric. To analyze overabundance of HPO terms in a module we used 165 
hypergeometric testing, comparing the number of HPO terms in a module against the 166 
background of all genes and their associated HPO terms. The 167 
‘ALL_SOURCES_FREQUENT_FEATURES_genes_to_phenotype.txt’ file from ‘Build #124’ 168 
was downloaded on April 4th, 2017 from 169 
http://compbio.charite.de/jenkins/job/hpo.annotations.monthly/lastStableBuild/ . This file links 170 
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gene names to HPO terms. The script that did the hypergeometric testing is provided as 171 
‘HPO_enrichment_function.R.’  172 
 STRING enrichment p-values were computed with the STRINGdb R package. We placed 173 
all genes in each module, up to 400 (the max input possible for STRINGdb). For modules with 174 
more than 400 genes (7 retina modules and 10 RPE modules), we used the 400 genes in the 175 
module with the highest kWithin connectivity. The script for this is ‘stringDB.R.’  176 
 177 
Tissue-level gene block analysis with KMeans clustering and gene ontology enrichment 178 
 179 
 The differential gene expression patterns across the 55 pair-wise tests were grouped into 180 
twenty clusters, each holding groups of genes with shared expression patterns. The grouping was 181 
done with the k-means algorithm, in R, with 10,000 iterations and the ‘MacQueen’ algorithm. 182 
The cluster assignments for each gene was joined with the eye-tissue TPM values for the gene. 183 
The TPM values were averaged for each eye tissue, then the overall gene expression in each 184 
cluster was averaged. The TPM values, averaged by tissue, then cluster, were plotted in a 185 
heatmap. The code for this analysis is in ‘kmeans_de_cluster_heatmap.Rmd’ and the cluster 186 
assignments for each gene are available as ‘DE_Kmeans_cluster_Gene_Lists.zip’.  187 
 188 
Gene network construction with WGCNA 189 
 190 

Weighted co-expression networks were constructed separately on both retina and RPE 191 
samples using the Weighted Gene Co-Expression Network Analysis (WGCNA) framework with 192 
the corresponding WGCNA R package. TPM expression matrices were used for the construction 193 
of both networks. Genes with consistently low levels of expression (less than 30 TPM in at least 194 
5% of samples for the retina network, less than 40 TPM in at least 5% of samples for the RPE 195 
network) were removed prior to network construction. We found that less stringent cut-offs for 196 
low expression resulted in poor clustering of these genes (data not shown).  197 

Average-linkage hierarchical clustering and t-distributed Stochastic Neighbor Embedding 198 
(t-SNE) were used to assess batch issues stemming from sample origin and study source, using 199 
the WGCNA and Rtsne R packages, respectively. Following the observation of batch effects, the 200 
ComBat R package was used to correct for batch issues stemming from an interaction variable 201 
between sample origin and study source. Following batch correction, a log�-transformation was 202 
applied to each expression matrix. the following transformation was applied to each expression 203 
matrix: 204 

�����	
� � log�����	
 
 1� 
WGCNA identifies co-expression patterns using a weighted correlation matrix. The un-205 

weighted correlation matrix is raised to a soft-thresholding power (�) in order to satisfy the 206 
scale-free law (25). This means that ����, the probability that a node has degree �, follows a 207 
power law distribution ����~���. In choosing � for each of the networks, it is suggested by the 208 
WGCNA developers to choose a � which produces a negative correlation between log��� and 209 
log������, with �� � 0.8. Using the pickSoftThreshold function in the WGCNA R package, a 210 
range of soft-thresholding powers (�) were evaluated for both networks. The suggested criteria 211 
were met with soft-thresholding powers of 4 and 7 for the retina and RPE networks, respectively. 212 
Each co-expression network was constructed in the following manner using the log�-transformed 213 
expression matrices: 214 
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1. Compute a Pearson correlation matrix of all gene pairs: � � �����, where ��� �215 
|�����, !�|, where � and ! are distinct genes. 216 

2. Compute an adjacency matrix as: 217 

" � �#���, where #�� � ��$%�&��� , �' � �����
�

 218 
3. Compute an unsigned topological overlap matrix (TOM) as: 219 

�(
�� �
����∑ ���������,�


��
�� ,���������
 , where )� � ∑ #����� , and )� � ∑ #�����  220 

4. Define a dissimilarity matrix as +�� � 1 , �(
�� . Use average-linkage hierarchical 221 
clustering on the dissimilarity matrix to cluster the genes. 222 

5. Use the cutreeDynamic function to place genes into distinct modules. For this function, 223 
parameters of deepSplit = 0 and minClusterSize = 30 were used. 224 

The script used to generate the networks is provided as ‘WGCNA_networks.Rmd.’ 225 
 226 
Identifying Similar Modules Across Retina and RPE Networks 227 
 228 

Similarities in module compositions between the retina and RPE networks were assessed. 229 
This was performed through pair-wise cross-network comparison of retina and RPE modules in 230 
terms of the genes that were assigned to each pair of modules, as well as the GO terms that were 231 
associated with the modules being compared. For each cross-network module comparison, the 232 
number of overlapping genes was calculated and subjected to a hypergeometric test to assess 233 
significance. This process was repeated with examining overlap in GO terms between modules. 234 
In both analyses, p-values were adjusted using the FDR correction method. 235 
 236 
Processing of Macosko et al. single cell RNA-seq dataset 237 
 238 

The counts from study GSE63472 were downloaded as file 239 
GSE63472_P14Retina_merged_digital_expression.txt.gz and processed with Seurat (2.3) (26). 240 
The full script is made available as process_macosko.R. Outlier cells were filtered out by 241 
removing ones which had more than 6000 or fewer than 900 genes expressed. This reduced the 242 
number of cells from 44,098 to 10,831 cells. The expression values were normalized with 243 
‘LogNormalize’ and scaled against mitochondrial percentage and nUMI with the negative-244 
binomial regression. t-SNE dimensionality reduction was done to visualize the expression data. 245 
The cluster assignments for each cell from Macosko et al. was downloaded from 246 
http://mccarrolllab.com/wp-content/uploads/2015/05/retina_clusteridentities.txt.  247 
 248 
Comparison of scRNA-seq with bulk RNA 249 
 250 

The lists of genes in each retina WGCNA network module were pulled and their cell-type 251 
specific expression in the Macosko et al. mouse retina single cell dataset was calculated (27). 252 
High variance expression was identified by setting retina network – cell type expression with 253 
variance > 9. A fake dataset was created by randomizing the assignment of cells to retina 254 
network clusters. This fake set was used as the control group for the wilcox t test to determine 255 
whether a retina network – cell type group expression was significantly different. The code for 256 
this analysis is made available in scripts.zip as ‘single_cell_retina_network_comparison.Rmd.’ 257 
 258 
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Selection of candidate functional RPE genes and differentiation of human induced pluripotent 259 
stem cells (iPSC) into RPE cells 260 
 261 

We took genes which: 1. were much more highly expressed in fetal RPE and stem cell 262 
RPE relative to the synthetic body set, 2. were more highly expressed in fetal RPE relative to the 263 
retina and adult RPE-choroid, and 3. had an RPE network kWithin score > 10. This produced a 264 
list of 36 genes (Supplemental Materials, Table S2). 17 of these genes were randomly selected 265 
and we also added SLC13A3 and GDF11 as these genes were common RPE network partners of 266 
the short list. Best1, MITF-Pan, MITF-M, and MITF-A were included as positives controls.  267 

To calculate the hypergeometic p value, we counted the number of genes which were 268 
abs(0.5 log2 Fold Change) different in RPE stem cell derived relative to RPE fetal tissue (6096 269 
out of 19128 total genes). The phyper function in R was used as 1 - phyper(14, 6906, 19128-270 
6906, 19).  271 

Tyr-GFP 3D1, an RPE-specific reporter hiPSC line was grown in complete Essential 8™ 272 
Medium (Life Technologies, cat# A1517001) on vitronectin (Life Technologies, cat# A14700) 273 
coated tissue culture plates at 37°C in a humidified atmosphere of 5% CO2. Differentiation of 274 
Tyr-GFP 3D1 cells into RPE was performed according to previously described protocols (28, 275 
29). Differentiated RPE cells were maintained in RPE medium: MEM alpha (Life Technologies; 276 
cat # 12571-063) with 5% FBS (Hyclone; cat # SH30071-03), 1% CTSTM N-2 supplement (Life 277 
Technologies; cat # A13707-01), 0.1 mM MEM non-essential amino acid solution (Life 278 
Technologies; cat # 11140),1 mM Sodium Pyruvate (Life Technologies; cat # 11360-070), 250 279 
ug/mL Taurine (Sigma; cat # T4571), 20 ug/L Hydrocortisone (Sigma; cat # H6909), 0.013 ug/L 280 
3,3′,5-Triiodo-L-thyronine sodium salt (Sigma; cat # T5516).  281 
 282 
RNA isolation and TaqMan® real-time PCR  283 
 284 

GFP-positive and GFP-negative RPE cells were sorted using FACSDiva 8.0.1 cell sorter 285 
(BD Bioscience) and lysed with TRIzol reagent (Thermo Fisher Scientific; cat # 15596026). 286 
Total RNA was isolated using the Direct-zolTM RNA Miniprep Kit (Zymo Research, Irvine, CA) 287 
and one-microgram of total RNA was reverse-transcribed using High Capacity cDNA Reverse 288 
Transcription Kit (Applied Biosystem). TaqMan probe/primer set for the target genes were 289 
designed and gene expression was performed on the cDNA using TaqMan® Universal PCR 290 
Master Mix on StepOne Plus Real-Time PCR instrument (Thermo Fisher Scientific/Applied 291 
Biosystems) (Supplementary Material, Table S3).  292 
 293 
Web app, other tools, and source code 294 
 295 

The fastq file transfer and salmon quantification were run in the bash environment. The 296 
salmon-based RNA-seq quantification used the computational resources of the NIH HPC 297 
Biowulf cluster (http://hpc.nih.gov). 298 

 All other statistical analyses and visualization was done in the R environment (see 299 
‘session_info_R.txt’ for packages used and versions). The heatmaps were made with the 300 
superheat package. All other figures were made with ggplot2.  301 

The interactive web application was built with the R Shiny framework and hosted on a R 302 
Shiny Server (https://shiny.rstudio.com) installation at NEI. ggiraph was used to turn ggplot 303 
images into interactive images. The visNetwork R package was used to visualize the network 304 
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modules. For the purpose of limiting the number of edges to a number that would be tractable for 305 
interactive visualization, the network edges were filtered so that each node would have its )-306 
nearest within-module genes ()-strongest edges to genes in the same module) remain in the 307 
network, for a range of ) values.  308 

The source code and links to the data for the web application is available at 309 
https://gitlab.com/davemcg/Human_eyeIntegration_App. The scripts mentioned in the methods 310 
underlying the data processing and analysis for this paper are available as supplemental file 311 
scripts.zip and the data used in the scripts is available at Zenodo (10.5281/zenodo.569870). 312 
  313 
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Results 314 
 315 
Hundreds of individual human eye tissue RNA-seq datasets publicly available across twenty-one 316 
research studies 317 
 318 
 To identify all publicly available human eye tissue RNA-seq datasets, the Sequence Read 319 
Archive (SRA) was queried on January 19th 2017 with the R package SRAdb for human 320 
transcriptomic studies with the keywords ‘RPE’, ‘macula’, ‘fovea’, ‘retina’, ‘choroid’, ‘sclera’, 321 
‘iris’, ‘lens’, ‘cornea’, and ‘eye’ across numerous fields in the SRA (30). This inclusive search 322 
identified 603 samples across 53 studies. Hand searching the studies to identify human eye tissue 323 
samples that did not have chemical, pharmacological, or genetic modifications or known eye-324 
disease pared the initial search down to 219 samples across 21 studies (Supplementary Materials 325 
Table S1, Fig. 1A) (15, 16, 29–43)  . The metadata of the remaining eye samples was queried 326 
and parsed to label each sample by tissue (cornea, retina, RPE) and origin (immortalized cell 327 
line, stem cell line, fetal tissue, adult tissue) (Fig. 1B). Before gene expression quantification and 328 
quality control to remove lower quality samples we had 110 retina, 85 RPE, 28 cornea, 16 329 
human embryonic stem cell lines (ESC), 6 lens, and 4 eyelid tissue RNA-seq data sets.  330 
 331 
Efficient quantification tools allow for comparison of the eye transcriptome meta-set with dozens 332 
of other human tissues 333 
 334 
 The raw sequence data was obtained from the SRA or European Nucleotide Archive 335 
(ENA) and the transcript counts were quantified with the Salmon pseudo-alignment transcript 336 
quantification (17). To improve reliability of quantification, the transcript level counts were 337 
merged to the gene level (20). We then applied quantile normalization of the TPM (transcripts 338 
per million) values on a per-tissue basis with the qsmooth tool to reduce variability between 339 
different studies (22). Outliers with extremely low median gene counts and individual samples 340 
that clustered very far apart from similar samples were removed, leaving 171 eye samples (Fig. 341 
1A, Supplementary Material, Tables S4 and S5). Voom normalization was then applied to adjust 342 
for different library sequencing depths (23). See methods for further details.  343 

This efficient bioinformatic process also enabled us to bring in 878 samples from the 344 
GTEx project to compare to our eye meta-set (9). We selected, when possible, 10 male and 10 345 
female non-gender specific tissues from the GTEx, ending up with 22 tissues, including blood, 346 
brain, heart, kidney, liver, lung, and thyroid (Supplementary Material, Tables S1 and S5). All 347 
raw data from the collated eye tissues or GTEx were processed identically with the above 348 
workflow. After outlier removal, using the same workflow as the eye tissue set above, we have 349 
853 GTEx samples across 22 tissues.  350 
 351 
Eye tissues from disparate studies cluster according to labelled eye component and tissue or 352 
cell-line origin 353 
 354 

Our first question was whether the collated eye tissues, which potentially have significant 355 
batch effects from merging data from disparate sources, would group together using 356 
dimensionality reduction approaches. We used the Barnes-Hut implementation of the t-357 
Distributed Stochastic Neighbor Embedding (t-SNE), which has been shown to work well in 358 
single-cell RNA-seq study analyses as well as the GTEx study set, to visualize relationships in 359 
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two dimensions between the processed eye tissues (Fig. 2A) (21, 46, 47). The DBSCAN 360 
algorithm was used on the t-SNE coordinates for each sample to identify nine distinct clusters 361 
(48).  362 

The adult tissue retina samples clustered together, though apart from their fetal or cell line 363 
based samples. The ESC-derived retina samples have a variety of time points (37, 47, 67, 90 364 
days) during their differentiation; we found no clustering by those criteria (data not shown) (33). 365 
The fetal and adult cornea samples, grouped closely together, but still clustered independently 366 
(Fig. 2A, clusters 8 and 9). Human embryonic stem cells (ESC), included because they are used 367 
across several studies to differentiate into different eye tissues, clustered together, generally 368 
closer to the cell-line derived samples (Fig. 2A, cluster 5).  369 

RPE is the only tissue for which more than three different sources were available: fetal tissue, 370 
adult tissue immortalized cell-line, and cells differentiated from ESCs. It should be noted that the 371 
adult RPE tissues are a mixture of RPE and choroid tissue, which is a vascular layer of the eye, 372 
providing oxygen and nutrients to the RPE and outer retina. This tissue will be referred to as 373 
adult RPE/choroid. The four sources cluster into three groups, with the few RPE fetal tissues 374 
clustering with the ESC-derived RPE samples (Fig 2A, cluster 1). The RPE derived from ESC 375 
group (Fig 2A, cluster 1) is composed of samples from three studies (31, 36, 41). All three 376 
groups differentiated their RPE cells for about two to four months, according to their method 377 
section. Wu and Zeng et al. gave specific times of differentiation for the exact tissues used in the 378 
SRA metadata (40 or 100 days); we did not see any differences in clustering patterns based on 379 
length of differentiation (data not shown) (41). This close grouping of fetal and ESC-derived 380 
RPE tissues are consistent across multiple runs of t-SNE with different perplexity parameters 381 
ranging from 35-50 (data not shown). The adult RPE/choroid tissue clusters further away from 382 
the cell-line based tissues.  383 

Overall, the t-SNE dimensionality reduction demonstrates that the eye tissues consistently 384 
cluster in unique groups by their tissue and origin. This happens despite a variety of laboratory 385 
origins with disparate culturing conditions, tissue handling, RNA extraction, sequencing cores, 386 
and so on.  387 
 388 
Eye tissues distinct from most human tissues 389 
 390 
 To explore the relationship of eye tissues to other tissues in the human body, we 391 
leveraged the GTEx data we reprocessed to create a pan-human two-dimensional tissue 392 
relationship map with t-SNE (Fig. 2B). DBSCAN was then used, as before, to identify clusters. 393 
‘Tissue’ labels from GTEx metadata in the SRA were used with one exception; fibroblasts are 394 
labelled separately from ‘Skin’ as they consistently group independently of skin-punch tissues. 395 
From the t-SNE visualization (Fig. 2B) we observe most human tissues group close to each 396 
other, with the exception of brain. The eye tissues, except retina, group closer to the non-brain 397 
human tissues. While the cell-line versus tissue derived eye tissue distinctions are maintained 398 
with the pan-human set, the eye-tissues are generally more related to each other than non-eye 399 
tissues.  400 

The t-SNE 1 and 2 dimension coordinates generated by t-SNE are sensitive to the parameter 401 
perplexity, which controls the weighing of local to global relationships (49). Figures 2A and 2B 402 
used perplexities of 35 and 45, respectively. To more consistently demonstrate the pair-wise 403 
relationships between the tissues, the t-SNE dimensions were iteratively generated with 404 
perplexities from 35 to 50. Then means were taken, grouped by sample. The individual samples 405 
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were then grouped by labelled tissue type and the t-SNE coordinates were again averaged. 406 
Hierarchical clustering by Euclidean distance was done to group the tissues and a heatmap was 407 
generated (Fig. 2C) which displays the most closely related tissues. Because the hierarchical 408 
distances between cell-line derived eye tissues were inconsistent, they were removed from this 409 
analysis. We see that retina and brain tissues are individual outliers. We also see that the pituitary 410 
is grouped near RPE tissue and that fibroblasts group closely with the cornea (as denoted by the 411 
height of the dendrogram). 412 
 413 
Differential expression analysis identifies large sets of genes distinguishing separating eye 414 
tissues 415 
 416 
 The eye tissue set collected can be separated on two major axes: tissue type (cornea, 417 
retina, or RPE) and origin (immortalized cell line, stem cell line, fetal tissue, adult tissue). 418 
Labelling each set of tissues by these two criteria gives us ten sets of eye tissues (Fig. 1B). To 419 
compare expression against non-eye tissue, we created a synthetic human ‘body’ expression set, 420 
by evenly combining the 22 GTEx tissues. The total number of body samples was matched to the 421 
total number of eye tissues we have by taking a random set of 8 tissues from each human body 422 
tissue category (e.g. Brain, Pituitary). There are 55 two-way combinations possible among the 11 423 
sets.  424 

To calculate differential expression, we modeled expression with the limma linear fit 425 
function with voom to correct for library size differences. The limma empirical Bayes function 426 
was used to identify statistically significant differentially expressed genes (23, 24). To look for 427 
global changes between the eye tissues and the body, we will first compare all of the eye tissue 428 
groups individually against the synthetic body (Table 1). A second synthetic body set was 429 
created by sampling the un-used GTEx tissues from the first synthetic body set and we found 430 
very similar differential expression values (data not shown).  431 

The differentially expressed genes identified for each test (Table 1) was filtered to retain 432 
only genes with log fold change (logFC) < -2 or > 2 relative to the baseline tissue and with a 433 
false discovery rate (FDR) corrected p-value less than 0.01. A logFC of more than two means 434 
that the detected transcript level is more than four times as much (or one quarter as much) 435 
compared to the body tissue.  436 
 437 
Biological term enrichment identifies eye-specific gene expression biology relating to visual 438 
function and body-specific gene expression relating to immunity and cell adhesion 439 
 440 

As we have hundreds to thousands of genes meeting these stringent differential 441 
expression criteria across the ten comparisons we did Gene Ontology (GO) biological process 442 
term enrichment to identify systems-level patterns. We did the GO term enrichment 443 
independently on the over- and under-expressed gene sets, relative to the synthetic body set; 20 444 
tests were performed. Overall, we found 2796 unique GO term IDs across the tests with an FDR 445 
corrected p value under 0.01 (Supplementary Materials, Table S6).  446 

We took the top forty GO term IDs from the over and under-expressed tests (ranked by p 447 
value) and plotted them in a heatmap to identify shared GO terms among the different 448 
comparisons and to find overall trends in eye tissues gene expression relative to the synthetic 449 
body gene expression set (Figure 3). Clustering was done on both rows and columns to group 450 
together shared patterns. Like the t-SNE based clustering, the retina is an outlier for GO term 451 
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enrichment. The GO terms in the first 20 rows (Fig. 3, Block 1) is driven by genes that are more 452 
highly expressed in the retina relative to other tissues. These over-expressed genes are highly 453 
enriched in GO terms relative to visual perception, light stimulus, synaptic signaling, and 454 
neurogenesis.  455 
 The next group (Fig. 3, Block 2) of enriched GO terms most strongly defines the ESC, 456 
the cornea, and RPE immortalized cell lines and to a lesser extent, fetal cornea and stem cell 457 
retina tissue. These GO terms relate to cell cycle and division as well as DNA packaging and 458 
conformation. The last block (Fig 3., Block 3) is a set of GO IDs related to the body gene 459 
expression being higher than most of the eye tissues. This large block has GO terms involving 460 
migration, organismal process, adhesion, immune process, and stimulus. The full set of 461 
significantly (p < 0.01) enriched GO terms (2796) is available in Supplementary Materials Table 462 
S6. 463 
 464 
Within eye tissue differential expression comparisons identify cornea, retina, RPE, and 465 
RPE/choroid gene sets 466 
 467 

To more directly identify sets of genes enriched in particular eye tissue(s) relative to the 468 
other eye tissues, we compared all eye tissue differential expression pair-wise against each other 469 
and the synthetic body set (55 tests). To identify common gene sets, we used k-means clustering 470 
to group all genes into twenty groups; each group has a different overall gene expression pattern. 471 
We then plotted the relative gene expression for each eye tissue across the twenty k-means 472 
groups (Supplementary Materials, Figure S1). This produces a heatmap which identifies sets of 473 
genes that are more highly (or lowly) expressed in particular eye tissue(s) relative to the other 474 
eye tissues. We use this heatmap to identify genes defining the cornea, retina, RPE, and adult 475 
RPE/choroid and did GO term enrichment on these clusters (Table 2, Supplementary Table S7). 476 
The gene lists for each of the 20 groups are available in Supplementary File S1).  477 
  478 
The cornea is enriched for genes involved in the extracellular matrix and collagen relative to the 479 
other eye tissues 480 
 481 
 In the GO heatmap (Fig. 3) the cornea tissues (immortalized cell line, fetal, adult) lack a 482 
highly distinguishing set of GO terms from the other eye tissues. However, there is a cluster 483 
(Supplementary Materials, Figure S1, cluster 3), with enriched fetal and adult cornea expression 484 
compared to the other tissues. This cluster contains 157 genes and top GO terms enriched for this 485 
set relate to extracellular matrix organization, collagen metabolism, and developmental processes 486 
(Table 2, Supplementary Table S7). 487 
  488 
Adult retina and, to a lesser extent, retina stem cells enriched in visual function genes 489 
 490 
 Compared to the synthetic body set, the adult retina has many GO terms relating to visual 491 
function (Fig. 3, Block 1). This same GO enrichment is seen even when comparing adult retina 492 
against the other eye tissues, focusing on cluster 8 (Supplementary Materials, Figure S1, Table 493 
2). This cluster is very highly expressed in adult retina and somewhat highly expressed in stem 494 
cell derived retina, relative to the other eye tissues.  495 
 496 
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RPE, excluding hTERT RPE, is highly enriched in genes relating to pigmentation and visual 497 
perception,  498 
 499 
 Like cornea, the non-immortalized RPE tissues do not have a distinct block of GO terms 500 
(Fig. 3). In the k-means heatmap (Supplementary Materials, Figure S1) we see that cluster 14 is 501 
more highly expressed in stem cell RPE, fetal RPE, and adult RPE/choroid. The hTERT 502 
immortalized cell line RPE is not highly expressed for this gene set. The 92 genes in this cluster 503 
are enriched in GO terms for visual perception, melanin processing, and vitamin A metabolism 504 
(Table 2).  505 
 506 
Compared to other eye tissues, adult RPE/choroid is enriched for genes involved in immune 507 
function and adhesion 508 
 509 

The cluster with genes highly expressed in adult RPE/choroid compared to the other eye 510 
tissues (number 10), has 229 genes. As this cluster is not highly expressed in the other RPE 511 
tissues, this cluster may define the choroid. These genes are strongly enriched in immune 512 
function and adhesion (Table 2).  513 
 514 
hTERT RPE immortalized cell line has substantial gene expression differences relative to RPE 515 
derived from ESCs 516 
  517 
 As we had seen that the hTERT RPE clusters apart from the other RPE tissues, and there 518 
is a benefit to examining the differences between an immortalized RPE cell line model versus a 519 
differentiated RPE cell line model, we looked directly at differences in expression between 520 
hTERT RPE and stem cell derived RPE. We identified what genes and GO terms make these two 521 
cell lines different. There are over 1323 genes with a more than four-fold expression difference 522 
between RPE derived from human ESCs and the ATCC hTERT RPE immortalized cell line and 523 
1572 with four-fold lower expression (Supplementary Materials, Table S8). The five genes most 524 
highly expressed in RPE derived from human ESCs relative to the ATCC hTERT RPE 525 
immortalized cell line are TTR (Transthyretin), DCT (Dopachrome Tautomerase), KIF1A 526 
(Kinesin Family Member 1A), SFRP5 (Secreted Frizzled Related Protein 5), and NELL2 (Neural 527 
EGFL Like 2). GO terms associated with higher stem cell RPE expression relate to ion transport 528 
and synaptic transmission, suggesting that stem cell derived RPE is a more faithful model of 529 
human biology (Fig. 4).  530 
 531 
Dissection of high expression retina genes with single cell RNA-seq reveals blocks of genes with 532 
retina-cell specific function and candidate signature genes 533 
  534 
 We took advantage of the availability of a retina single cell RNA-seq data set from 535 
normal mouse retina (P14) from Macosko et al. (27). The raw counts from 44,098 individual 536 
dissociated retina cells were filtered down to 10,831 high quality cells,  reanalyzed (see methods) 537 
and clustered with t-SNE (Supplementary Materials, Figure S2). The gene expression was 538 
grouped by the eleven major cell types identified by Macosko et al. and the expression was split 539 
into deciles of expression, with 10 being genes in the top 10% of expression for the cell type. 540 
This 179, 112 row data table is made available on eyeintegration.nei.nih.gov (Data Table -> 541 
Mouse Retina Single Cell RNA-seq Data).  542 
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This expression set was combined with the list of genes expressed highly in retina (adult) 543 
relative to the synthetic body set and this list was further subdivided by whether the gene was 544 
highly expressed in any specific retina cell type. Of the 11,660 genes with > 1 fold change in the 545 
adult retina tissue over the synthetic set 1,913 were expressed in the top decile in one of the 11 546 
retina sub-types. We ran a bootstrap test 10,000 times to calculate which of the 11 cell types 547 
were enriched in the 11,660 gene set, relative to a random set of genes of the same size. We 548 
found that amacrine, bipolar, cones, rods, horizontal, Müller glia, and retinal ganglion cells were 549 
enriched (p < 0.05). 550 

To leverage this more specific gene list to identify functional modules we took the genes 551 
in the top decile expression for each cell type and ran GO enrichment (Supplementary Materials, 552 
Figure SX3). GO terms relating to visual perception and light stimulus are highly enriched in 553 
rods and cones and enriched in amacrine, bipolar, astrocytes, microglia, and Müller glia. Retinal 554 
ganglion cells are enriched in a set of GO processes describing neuron projections, axogenesis, 555 
and microtubule processes. Retinal ganglion, amacrine, and bipolar cells share a set of GO terms 556 
involved with synaptic vesicles, ion regulation, and neurogenesis.  557 

To identify candidate signature genes for each cell type we looked for genes 558 
overexpressed in the bulk retina tissue relative to the synthetic body set, in the top 20% of 559 
expression in a particular retina cell type, and in the bottom 50% for the remaining retina cell 560 
types (Supplemental Table S9). Several examples of these genes are plotted in t-SNE plot of the 561 
clustered single cell retina data, demonstrating how genes like GAD1, PDE6C, and TUBB2B 562 
distinguish amacrine, cones, and retinal ganglion cells from the other retina types 563 
(Supplementary Materials, Figure S4).  564 
 565 
Highly connected genes in retina and RPE gene networks recapitulate known eye biology  566 
 567 

To this point, we have used the full gene expression set to independently cluster samples 568 
by tissue type and origin. We then used differential expression between the eye tissues and the 569 
synthetic body set to highlight differences in GO terms. We delved further by clustering the 570 
differential expression patterns between the eye tissues to find how each eye tissue is different 571 
from the other. We can go even further, by examining the relationships of the genes to each 572 
other, within a tissue, by using gene correlation networks. These networks use correlated 573 
fluctuations of all-by-all pairwise gene expression similarities to build networks of gene-to-gene 574 
relationships.  575 

As we had collected a substantial amount of retina and RPE samples, we were able to 576 
build weighted gene correlation networks with the Weighted Gene Co-Expression Network 577 
Analysis (WGCNA) R tool (25). We also attempted to build a cornea network, but the network 578 
construction failed due to failure to both differentiate the genes cleanly into defined modules and 579 
achieve appropriate network topology within a reasonable parameter space; more cornea samples 580 
are needed (Supplementary Materials, Figure S5). The gene expression TPM values, with the full 581 
set of corrections described earlier for the differential expression analyses, were used as inputs. 582 
All retina and all RPE tissues that passed quality control steps were used to build independent 583 
retina and RPE networks. The parameters used in the WGCNA network construction are 584 
enumerated in the methods.  585 

There are 11,101 and 10,843 genes in the retina and RPE networks, respectively. 9621 of 586 
the genes are shared between the retina and RPE network. The kWithin metric from WGCNA 587 
measures the intramodular connectivity. Genes with higher connectivity are, theoretically, more 588 
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likely to be important in gene regulation as perturbations in them will affect the system more 589 
than less connected genes.  590 

To get a sense of what the biology was of the most connected genes in the retina network, 591 
we took the 1017 genes with a kWithin greater than 20 and did GO enrichment (Supplementary 592 
Materials, Table S9), finding the top five GO terms all relate to visual perception. We did the 593 
same with the RPE network, using the 566 genes with a kWithin greater than 20. The top five 594 
GO terms in this RPE network connected list were related to endoplasmic reticulum function 595 
(Supplementary Materials, Table S10). The most similar modules, calculated by doing 596 
hypergeometric testing of GO terms and gene names, between the retina and RPE networks are 597 
the light cyan retina module and the pink RPE module. Both of these modules, by GO term 598 
enrichment, are involved in protein targeting to the ER (Supplementary Materials, Figure S6). 599 
 600 
Retina network module highly enriched in genes implicated in eye disease and crucial for visual 601 
function  602 
 603 

A key advantage of WGCNA networks over correlation networks is that genes can be 604 
partitioned into modules, presumably with shared biological function within each individual 605 
module. The retina network has 27 modules, with 64 to 1922 genes in each module. The RPE 606 
network has 23 modules, with 90 to 1458 genes in each module (Supplementary Materials, 607 
Figure S7). To determine whether the modules were enriched for known gene to gene 608 
interactions, we loaded each network module gene list into STRING and calculated whether 609 
there were more interactions than expected. For 23/27 retina modules and 20/23 RPE modules, 610 
the STRING p value for interaction enrichment was < 0.01 (Supplementary Materials, Table 611 
S10). We also ran GO term enrichment for each module within each network (Supplementary 612 
Materials, Table S14 and S17). While many modules have highly significant GO term 613 
enrichment, only the ‘green’ module is highly enriched for visual perception terms. Pinelli et al. 614 
built an unweighted retina gene correlation network and identified 14 candidate photoreceptor 615 
genes based upon their network (16). All 14 are in our retina network and 9 of the 14 are in our 616 
green visual function module (p < 2.8 x 10-10) (Supplementary Materials, Table S12).  617 

There are 617 genes within the green retina module and 178 of these have a kWithin 618 
greater than 20. Many of the top connected genes have known visual function or are implicated 619 
in retinal diseases. To demonstrate the strong enrichment of known eye function genes in this 620 
module we divided the genes in the green module into four categories: known to play a role in 621 
eye disease, having GO terms relating to visual function, both, or neither (Fig. 5, Supplementary 622 
Materials, Table S13). From RetNet (http://www.sph.uth.tmc.edu/RetNet/) we have a list of 331 623 
genes that have been implicated in retinal diseases (5). There are 178 genes with kWithin > 20 in 624 
the green module; 14 of those genes are also in RetNet, 17 have a vision GO term, 31 have both, 625 
and the remaining 116 genes are neither in RetNet nor have a vision-related GO term.  626 

The human phenotype ontology (HPO) project is conceptually similar to gene ontology, 627 
except that they map abnormal human phenotype terms onto a graph and match them to genes 628 
(50). This provides a way to identify enrichment of abnormal human phenotypes. As there is no 629 
functioning package in R to systematically calculate HPO enrichment, we did bootstrapping and 630 
hypergeometric testing (see methods), looking for enrichment overall at the module level and for 631 
individual HPO terms within each module, respectively. The green module is highly enriched for 632 
HPO terms relating to eye disease, with terms like nyctalopia, abnormal electroretinogram, 633 
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photophobia, cone-rod dystrophies, and blindness among the top terms (Supplementary 634 
Materials, Table S15).  635 

Other highly significant GO terms in the remaining retina network modules also match 636 
known retina function. GO terms enriched relate to ion transport (greenyellow), developmental 637 
processes (darkorange, greenyellow, tan), mitochondrial function (midnight blue), and 638 
metabolism (turquoise) (Supplementary Materials, Table S14). The retina network darkgrey 639 
module also contains several genes implicated in retina diseases like ELOVL4, OPN1SW, 640 
SLC24A1, and PDE6A (see Supplementary Materials, Table S16 for full list). Additionally, the 641 
green, tan, brown, and blue modules are, overall, enriched for HPO disease terms 642 
(Supplementary Materials, Figure S8). 643 
 644 
Differentially expressed, high connectivity RPE genes are highly expressed in functional pure 645 
RPE cells 646 
 647 
 To experimentally validate whether our differential RPE gene expression data and RPE-648 
choroid network connectivity could identify important genes in functional RPE we first made a 649 
short list of highly expressed and high connectivity RPE genes (see methods). We then compared 650 
expression of the genes in human iPSC-derived RPE, purified using an RPE-specific TYR 651 
enhancer coupled to a GFP transgene. Differentiating cells were then sorted using flow 652 
cytometry to purify the GFP positive cells in the population. We find that 17 of our 19 genes are 653 
more highly expressed in the GFP+ RPE (Supplementary Materials, Figure S9). 14 of the 19 654 
genes are 0.5 log2 fold change greater than the in the purified RPE population (hypergeometric p 655 
< 0.0002, see methods).  656 
 657 
Retina green module identifies visual transduction pathway and core upstream regulators 658 
 659 

The green module was further analyzed for known biological networks components, 660 
which were generated through the use of Ingenuity Pathways Analysis (Ingenuity® Systems, 661 
www.ingenuity.com). Visual transduction was the most significant pathway present, with 16 662 
components present in the green module. These components function predominantly in rod and 663 
cone photoreceptors in the conversion of photic energy to neural signaling in the retina 664 
(Supplementary Materials, Figure S11A and data not shown), as confirmed by the single cell 665 
RNA-seq dataset. Regulatory component analysis projected that CRX and NRL were predicted 666 
among the regulators of gene expression in the green module, upstream of several genes 667 
implicated in retinal photoreceptor degeneration also present in the green module 668 
(Supplementary Materials, Figure S11B). These two transcription factors drive rod photoreceptor 669 
differentiation and maintenance beginning in embryogenesis, and dysfunction of either of these 670 
is associated with retinal degeneration (51). In sum, the green module is enriched for 671 
photoreceptor function and recapitulates specific components of known biological and gene 672 
regulatory networks that are important causes of retinal disease. 673 

 674 
RPE/choroid network contains many modules related to cell metabolism 675 
 676 
 Unlike the retina network, there are no strongly associated GO terms relating to visual 677 
function. However, there are numerous modules with strongly significant GO terms relating to 678 
metabolic processes and active transcription and translation (blue, brown, dark turquoise, green, 679 
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light cyan, light green, red, turquoise). One module (yellow) relates to catabolism, one to 680 
immune function (tan), one to the endoplasmic reticulum (ER) (pink), and two the mitochondria 681 
(dark green, dark yellow) (Supplementary Materials, Table S16). Among the top HPO terms 682 
across the RPE modules are ones relating to anemia (pink), optic disc pallor (green), and 683 
respiration (dark green). Overall, the green, midnightblue, turquoise, lightyellow, magenta, and 684 
brown RPE modules are enriched for HPO terms (Supplementary Materials, Figure S9).  685 
  686 
Single-cell RNA-seq confirms many network modules represent specific retina cell types 687 
 688 
 Because the GO terms are distinct between the different WGCNA modules some of them 689 
should be enriched in genes distinguishing different types of retinal cells. We took the Macosko 690 
et at retina single cell sequencing data and looked at the expression profile for each labelled cell 691 
type grouped by retina network module color (Supplementary Materials, Figure S10). We see 692 
that many modules have very similar expression profiles across the twelve retina cell types (see 693 
black, blue, brown, darkgreen). 694 

However, we also see that several modules have strongly divergent expression patterns 695 
between different cell types (Figure 5a). For example, the green module is enriched in genes with 696 
strong expression in rods, cones, and bipolar cells. The greenyellow and salmon modules have 697 
genes with high expression in retinal ganglion cells. The darkorange and tan modules are 698 
enriched for genes expressed highly in Müller  glia and astrocytes.  699 
 700 
Retina and RPE networks in retinal diseases and AMD 701 
 702 
 Higher connected genes are theoretically more important in the function of the retina and 703 
RPE. From RetNet we have  a list of 331 genes that are associated with retinal diseases (though 704 
some unknown proportion affect the retina via the RPE). From a recent large AMD GWAS 705 
study, there is a list of 33 loci strongly associated with AMD, and thus likely related to RPE or 706 
choroid dysfunction (8). To see whether these retina or RPE gene lists have higher connectivity 707 
relative to the other genes in the networks we used density plots of the kWithin value to see 708 
whether we see any left-ward (less connectivity) or right-ward (more connectivity) shifts in our 709 
gene list kWithin connectivity.  710 
 We see that the RetNet gene list has a higher connectivity than non-RetNet genes in the 711 
retina module; this right-ward shift is highly significant (p = 3.26 x 10-8). The connectivity of the 712 
RetNet gene list in the RPE network is significantly different than the non-RetNet genes (p = 713 
0.28). 53 RetNet genes are in the green retina module, which is a 4.1 fold enrichment over 714 
chance. The darkgrey module has a similar enrichment in RetNet genes with 10, which is a 3.8 715 
fold enrichment over chance.  716 

The 33 genes associated with AMD have a higher connectivity the remaining genes in the 717 
RPE network; this right-ward shift is also significant (p = 0.049). Like the RetNet retinal disease 718 
gene list in the RPE network, the 33 AMD genes are not significantly more connected than the 719 
other genes in the retina network (p = 0.49) (Supplementary Materials, Figure S12).  720 
  721 
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Discussion 722 
 723 

We collected all publicly available human eye RNA-seq datasets creating the largest pan-724 
eye collection to date, and carefully performed a lengthy series of normalization and quality 725 
control procedures to robustly quantify gene expression within three major eye tissues and 726 
between the eye and other human tissues. Gene expression data can be used to accurately cluster 727 
samples by tissue and origin. We used differential gene expression analysis with GO term 728 
enrichment to identify biological processes that best distinguish the eye tissues both from each 729 
other and from a synthetic human expression set. We then leveraged the large sets of retina and 730 
RPE tissues to build the first human weighted gene correlation networks for retina and RPE, 731 
confirming with single cell RNA-seq data that several of the retina modules have cell-type 732 
specific expression. We demonstrated the power of the networks to highlight genes known to be 733 
crucial in eye biology. Finally, we make the data and analyses available in a powerful web 734 
application (https://eyeIntegration.nei.nih.gov).  735 
 The structures of the eye are epithelial, neuroepithelial, and neural crest in origin. We 736 
were expecting some of the eye tissues to cluster closely with the skin, but instead we found that 737 
the retina was a very unique tissue, that transformed fibroblasts most closely matched the cornea, 738 
and the RPE was nearest the pituitary. Embryologic origins and specialized functions likely 739 
create these similarities and divisions, respectively. Cornea is derived from the same surface 740 
ectoderm as skin and from neural crest cells, while retina and RPE are derived from the neural 741 
tube epithelium from the ventral diencephalon, along with the hypothalamus and posterior 742 
pituitary. Corneal epithelium is replenished by limbal stem cells that remain into adulthood, 743 
which may explain the proximity of corneal and ESC clusters. This also may reflect that the 744 
majority of our corneal dataset is derived from cultured corneal epithelium. That retina was 745 
separated from other ocular and non-ocular tissues likely related to the exclusivity and high 746 
expression burden of the visual transduction cycle in cone and rod photoreceptors.  747 
 The systems-level study of differential gene expression across cornea, retina, RPE, and 748 
RPE-choroid tissue highlights core functions of these tissues. Cornea-specific genes specify the 749 
structural aspect of the cornea with extracellular matrix organization and collagen metabolism 750 
and catabolism. The corneal epithelium is replenished continuously with limbal stem cells, which 751 
may be reflected in the enrichment of GO terms relating to development. The retinal tissues are 752 
strongly defined by genes involved in visual processes. The RPE and RPE-choroid tissues are 753 
also distinguished, with the former being more involved in visual processes and pigmentation 754 
while the latter is involved with immune system processes.   755 
 The creation of the first human retina and RPE weighted gene correlation networks has 756 
allowed us to identify dozens of modules with co-regulated genes. It is important to stress that 757 
these networks were built only with gene expression information and were optimized using 758 
network-specific metrics, such as how well the topological overlap matrix placed genes into 759 
well-defined modules. Only afterwards did we evaluate the significance of connected genes and 760 
modules to GO terms and known eye biology.  761 

It is striking that the some of the most significant GO terms, by p-value and enrichment, 762 
in the retina network are associated with a single 617-gene module underlying visual function. 763 
This module represents the visual transduction pathway, which is relatively unique to the retina 764 
and is associated with isolated and nonsyndromic retinal degenerative conditions. Single-cell 765 
RNA-seq data demonstrated that the genes in this module are expressed more highly in the rods, 766 
cones, and bipolar cells.  767 
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 As the RPE has a high-energy role in transferring nutrients and clearing waste products 768 
for the photoreceptors of the retina, it is not surprising that a plurality of the modules are 769 
enriched for genes important in RNA translation, protein modification and production, 770 
catabolism, and mitochondrial function. The enrichment of highly connected AMD associated 771 
genes in the RPE network further emphasizes the value of this network.  772 
 Finally, the value of this extensive and carefully curated data-set is enhanced by the 773 
creation of the eyeIntegration web app (http://eyeIntegration.nei.nih.gov; Supplementary 774 
Materials, Figure S13). The site serves two roles, first as an interactive extension of this 775 
manuscript and second as a platform for researchers to identify interesting genes in eye function 776 
via searchable gene expression plots across many tissues, 55 pair-wise differential expression 777 
tests, and two gene networks. We also make the source code and accompanying data-sets fully 778 
and freely available for other researchers (see methods) and will periodically refresh the data. 779 
The unravelling of eye biology and function has been furthered by genetic eye diseases, animal 780 
models, and functional assays. We hope that this open data sharing and powerful web application 781 
will provide a fourth way to decipher eye biology in health and disease. 782 
   783 
 784 
  785 
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Figures 937 

 938 
Figure 1 939 
Identifying 177 unique human eye and ESC samples across 16 studies and four tissue types 940 
 941 

A. Counts for unique cornea, ESC, retina, and RPE (choroid) human RNA-seq samples by 942 
study accession 943 

B. Counts by tissue and origin. * is adult RPE – choroid 944 
  945 
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 946 
Figure 2 947 
Gene expression information sufficient to both accurately cluster eye and GTEx tissue 948 
independently and demonstrates that eye tissues are generally more closely related to other than 949 
other body tissues 950 

A. Dimensionality reduction by t-SNE of human eye tissues and ESC, colored by clustering 951 
assignment, and labelled by tissues in cluster. Shape of point corresponds to tissue origin 952 

B. Eye tissues with GTEx tissues, colored by clustering assignment, labelled by tissues in 953 
cluster 954 

C. Pair-wise euclidean distance between each tissue. Closer tissues have a smaller height in 955 
the dendrogram and are more yellow in color. More distant tissues have a larger height in 956 
the dendrogram and are more blue.  957 

 958 
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 959 
Figure 3 960 
Major differences in systems relating to visual function, active cell division, adhesion, and 961 
immunity between the eye tissues and the other tissues in the human body 962 
 Top 80 GO Terms (40 with eye > body and 40 with body > eye) across eye-tissue to body 963 
differential expression tests. Yellow is more significant, blue is less. Hierarchical clustering of 964 
both rows and columns place more related GO terms and tissue comparison sets together.  965 
  966 
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 967 
Figure 4 968 
Genes crucial in eye function are highly differentially expressed between stem cell derived RPE 969 
and hTERT RPE 970 

A. The top 5 genes overexpressed in ESC-derived RPE and immortalized cell line hTERT 971 
RPE 972 

B. Word cloud of enriched GO terms 973 
  974 
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 975 
Figure 5 976 
Retina network green module highly enriched for important visual function genes 977 

A. Density plot showing expression of retina network module genes across different 978 
retina cell types in single cell mouse retina RNA-seq. Group differences in mean 979 
expression and variance are shown by the line colors in the density plot.   980 

B. Top 50 connected genes in green module in the retina network. Colored by group (see 981 
C.) 982 

C. Word cloud of top GO terms in green retina module 983 
D. kWithin connectivity (higher is more connected) for top 20 connected genes, labelled 984 

to indicate whether the gene is in RetNet, has a GO term relating to visual function, 985 
both, or none.  986 
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Tables 988 
 989 
Table 1 990 
 991 

  Log Fold Change 

Comparison < -2 > 2 

Cornea (adult) vs Body (adult) 1969 1249 

Cornea (fetal) vs Body (adult) 172 873 

Cornea (immortalized cell) vs Body (adult) 2611 1475 

ESC (stem cell) vs Body (adult) 2738 2177 

Retina (adult) vs Body (adult) 2607 1978 

Retina (stem cell) vs Body (adult) 3443 2622 

RPE - choroid (adult) vs Body (adult) 1200 1258 

RPE (fetal) vs Body (adult) 1510 1402 

RPE (immortalized cell) vs Body (adult) 2446 1398 

RPE (stem cell) vs Body (adult) 2270 1308 

 992 
Many genes are differentially expressed between the eye tissues and the synthetic body 993 
 994 
 Number of genes with logFC < -2 or > 2 (0.25 or 4 fold, p value < 0.01) between each 995 
eye tissue against the synthetic body set  996 
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Table 2 997 
 998 

Tissue(s)-Specific Set Cluster GO BP ID 
P value 
(FDR) 

Odds 
Ratio 

Term 

Cornea 3 GO:0030198 1.16e-13 11.27 extracellular matrix organization 

Cornea 3 GO:0030574 1.07e-11 30.51 collagen catabolic process 

Cornea 3 GO:0032502 1.50e-09 3.20 developmental process 

Adult Retina 8 GO:0050953 8.43e-65 38.80 sensory perception of light stimulus 

Adult Retina 8 GO:0007601 1.50e-62 37.74 visual perception 

Adult Retina 8 GO:0060041 3.87e-19 17.14 retina development in camera-type eye 

non-immortalized RPE 14 GO:0007601 1.57e-10 18.39 visual perception 

non-immortalized RPE 14 GO:0042438 1.70e-07 104.91 melanin biosynthetic process 

non-immortalized RPE 14 GO:0006776 1.39e-05 163.77 vitamin A metabolic process 

Adult RPE - choroid 10 GO:0002376 1.35e-20 5.06 immune system process 

Adult RPE - choroid 10 GO:0006952 5.03e-18 5.39 defense response 

Adult RPE - choroid 10 GO:0007155 1.64e-13 4.25 cell adhesion 

 999 
Top GO terms for tissue-specific cluster groups relate to eye tissue specific function 1000 
 1001 
 Three representative GO terms were selected for GO term enrichment done on the 1002 
differentially expressed K means cluster sets 3, 8, 10, and 14 (see Supplementary Materials, 1003 
Figure S1) which represent over-expressed genes in cornea, adult retina, adult RPE/choroid, and 1004 
non-immortalized RPE, respectively 1005 
  1006 
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Abbreviations 1007 
Age-related macular degeneration (AMD) 1008 
Human Embryonic Stem Cells (ESCs) 1009 
Gene Ontology (GO) 1010 
Gene Tissue Expression Project (GTEx) 1011 
Human Phenotype Ontology (HPO) 1012 
Induced Pluripotent Stem Cell (iPSC) 1013 
log Fold Change (logFC) 1014 
Retinal Pigment Epithelium (RPE) 1015 
Sequence Read Archive (SRA) 1016 
length-scaled Transcripts Per Million (TPM) 1017 
t-Distributed Stochastic Neighbor Embedding (t-SNE) 1018 
Weighted Gene Co-Expression Network Analysis (WGCNA) 1019 

 1020 
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