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Abstract

The human eyeis built from several specialized tissues which direct, capture, and pre-
process information to provide vision. The gene expression of the different eye tissues has been
extensively profiled with RNA-seq across numerous studies. Large consortium projects have also
used RNA-seq to study gene expression patterning across many different human tissues, minus
the eye. There has not been an integrated study of expression patterns from multiple eye tissues
compared to other human body tissues. We have collated all publicly available healthy human
eye RNA-seq datasets as well as dozens of other tissues. We use this fully integrated dataset to
probe the biological processes and pan expression relationships between the cornes, retina, RPE-
choroid complex, and the rest of the human tissues with differential expression, clustering, and
GO term enrichment tools. We also leverage our large collection of retinaand RPE-choroid
tissues to build the first human weighted gene correlation networks and use them to highlight
known biological pathways and eye gene disease enrichment. We also have integrated publicly
available single cell RNA-seq data from mouse retinainto our framework for validation and
discovery. Finally, we make all these data, analyses, and visualizations available via a powerful
interactive web application (https://eyeintegration.nei.nih.gov/).
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I ntroduction

The human eye is a highly specialized organ using several distinct tissuesto focus and
capture light and begin processing it into visual information. Light passes through the cornea and
the lens which focus the light onto the retina (1). The rod and cone photoreceptors of the retina
capture the light and transmits visual information that is processed by a network of retinal
synapses and passed through the optic nerve to the brain (2). The retinal pigment epithelium
(RPE) isresponsible for absorbing scattered light and providing nutrition, maintaining ionic
homeostasi s, and waste product processing for the photoreceptors, as well as mediating immune
function for the retinaand eye (3). The RPE and outer neural retinais supported by and
connected to the vascular system of the body viathe choroid (4).

Many genetic disorders affect the function of the various eye tissues and cause vision
perturbation or loss. The genetics of eye diseases range from monogenic Mendelian disorders to
complex multi-gene system perturbations that are modified by environmental influences. While
at least 316 identified genes underlying retinal diseases have been identified, recent
comprehensive next generation sequencing studies fail to find the cause of a variety of inherited
retinal diseases like cone-rod dystrophies or retinitis pigmentosa 40-60% of thetime (5-7). In an
example of complex disease, age-related macular degeneration (AMD), which is believed to be
caused by dysfunction of the RPE and choroid, genome-wide association studies (GWAYS) have
identified dozens of genomic locations associated with the disease. Still it isvery difficult to
pinpoint the causative gene or genes (8).

An valuable tool in understanding basic biology and unravelling the causes of disease has
been the analysis of gene expression profiles. The Genotype-Tissue Expression

(GTEX) Project has compiled nearly 10,000 individual tissue human RNA-seq samples and
shared the data via a powerful and easy-to-use web portal (9). GTEXx data has been used to help
filter variantsin GWAS studies, to build networks to identify candidate testis cancer genes, to
help identify pathogenic mutations in an epilepsy cohort, and to identify a genetic variant linking
folate homeostasisto warfarin response (10-14). Notably, the eye was not included as a tissue
for this project. Because the vision community has been adopting RNA-seq for profiling
different components of the eye, thereisalarge and growing set of useful transcriptome data.
However, each study uses different bioinformatic processes to analyze their transcriptomes and
the full genome-wide expression values are difficult to obtain, analyze, and visualize across
studies. Therefore, utility of these resources ought to be optimized to similar effect as for other
tissues.

We have collated all publicly available human eye tissue RNA-seq data and processed it
with arobust and consi stent bioinformatics process. We also have brought in a substantial
portion of the GTEX project RNA-seq data to provide a comparison set to the eye tissues. Our
full data-set holds 1027 samples. This comprehensive and consistently processed pan-eye and
human data set allows for several novel analyses. first, to probe the relationships within cornea,
retina, and RPE tissues and between eye tissues and other human tissues; second, to look for
overarching patterns in gene expression and shared biology in differentially expressed genes
between the eye tissues; and, third, we use the large collated retina and RPE samples to build
gene correlation networks for both. A single cell mouse RNA-seq retina dataset has also been
integrated to validate the retina gene correlation networks.

To maximize utility of this project to all researchers, we have also created afreely
available web application that allows quick and powerful access to the expression profiles of
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77  nearly 20,000 genes across 177 human eye tissue RNA-seq sets and 853 GTEX tissue RNA-seq
78  sets, the two gene networks, and the 10,000 plus cdlls of the mouse retina single cell dataset
79  (https://eyelntegration/nei.nih.gov/).
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80 Materialsand Methods

81

82 Identification of normal human eye RNA-seq data-sets and tissue labelling

83

84 The entire SRA dataset was downloaded as a SQL file on January 19", 2017 with the

85 SRAdb R package. The following keywords were used in a partial-matching case-insensitive

86 (eg. ‘retina would match ‘RETINAL’) search: ‘RPE’, ‘macula’, ‘fovea’, ‘retina, ‘choroid’,

87 ‘sclerda, ‘iris, ‘lens’, ‘corned’, and ‘eye.” These keywords were matched against the following

88 fiddsinthe SRA: ‘study abstract’, ‘experiment_name', ‘study name’, ‘sample ID’,

89 ‘sample name, ‘study title', ‘study description’ in human sampleswith a‘library_source’ of

90 ‘transcriptomic’ and filtering out miRNA studies. Study titles, abstracts, and other fields were

91 checked by hand for inclusion in this study for whether they were genuine eye studies of normal

92 (non-disease, non-mutated, no chemical modification) human eye tissue. The SRA metadata for

93 the GTEX project was also pulled by searching for the study accession ‘ SRP012682." Our script

94  enabling search of the SRA for eyetissuesisprovided as‘sraDB_search_select.R’

95 For reproducibility, the meta-data for each sample was parsed with our script

96 ‘parse sample attribute.R’ to label the eye tissue (corneg, lens, eye-lid, retina, RPE, ESC) and

97 itsorigin (immortalized cdll-line, cell-line derived from ESC, fetal tissue, or adult tissue). This

98  script has been written to handle the wide variety of metadata usage by the 21 research projects

99  andthe script likely would need to be modified to handle new eye samples. The GTEX tissue
100 werelabeled by tissue or sub tissue by parsing the GTEx SRA metadata for ‘ histological type
101 and ‘body site’, respectively with the *parse_sample_attribute.R" script.

102

103  Efficient quantification of gene expression across 1027 samples

104

105 Two studies had their raw RNA-seq data accessioned with dbGaP (9, 15). We obtained

106  accessto these studies under dbGaP study #115588. Raw sequence data for these two studies
107  were pulled and converted to fastq with the sratoolkit (2.8.0) fastg-dump tool. The remaining raw
108 fastq data was pulled from NCBI via ftp, with the wget calls created by the script

109 ‘gra to fastq.R’. The one exception was the E-M TAB-4377 resource which was only available
110 inthe bam format as of January 19" 2017 from European Bioinformatics Institutes ArrayExpress
111  archive (16). The bam files were downloaded, then converted to fastq with the Picard

112 SamToFastq (2.1.1) program (https.//broadinstitute.github.io/picard/).

113 The raw fastq read files were loaded into salmon (0.7.2) with —segBias and —gcBias flags
114  against the Gencode Release 25 protein-coding transcript sequences fastafile to perform

115 transcript-level quantification (17, 18). The Gencode gene names are used across this study. To
116  improve specificity of the gene expression, transcripts with low abundance across all tissues

117  wereremoved from the fasta file, and Salmon was re-run as per Soneson et. a (19). Thefiltered
118 fastafileisprovided in the source code as ‘ gencode.v25.pc_transcripts.commonTx.fa.gz.” and
119 the Salmon script as ‘run_salmon.sh.” To improve sensitivity and specificity, the transcript-level
120 quantifications were merged to the gene-level and the length scaled transcripts per kilobase

121 million (TPM) calculations were done with the R library tximport (1.2.0) (20) in our

122 ‘calculate lengthScaledTPM.R’ script.

123

124 Multi-step process to remove samples with low overall gene expression counts, quantile

125 normalize samples by tissue, then cluster to identify outliers
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126 A multi-stage process was then used on the full data set to remove outlier samples (either
127  because of overall low gene expression levels or from clustering with the incorrect tissue group).
128  Geneswith zero to extremely low expression across the entire data-set were removed. While we
129 found several mislabeled GTEx samples, this has been noticed before (21). Samples with a

130 median TPM value < 50 were removed as these were outliers in terms of overall gene expression
131 coverage. This step alone removed all of the lens samples, 20 RPE, 15 retina, and 16 ESC

132  samples (Supplementary Materials, Table S1, S2 and Figure S2). To alleviate potential batch
133  effects between the samples from different studies, the TPM values were quantile normalized
134 within tissues and globally simultaneously with the gsmooth algorithm (22) (Supplementary

135 Materials, Figure S7).

136 Finally, the remaining samples were dimensionality reduced with t-SNE, then clustered
137  with DBSCAN. The performance of t-SNE is sensitive to the perplexity parameter, which

138 weighslocal versus global relationships. We found for our study that perplexities ranging from
139  30-50 performed the most reliably (data not shown). For the all-sample t-SNE we used a

140 perplexity of 45. For the eye-only sample t-SNE, we used a perplexity of 35. Thet-SNE

141  coordinates were clustered by DBSCAN with the eps parameter set to 1.3. The cluster

142  assignments from DBSCAN were then aggregated to the tissue and origin level, to identify small
143  numbers of samplesthat clustered with other tissues; these are likely sample swaps. These

144  outliers were removed. The script for this processis ‘outlier_identification.Rmd.’

145

146  Differential gene expression analysis with pair-wise testing

147

148 A synthetic pan-human gene expression set was created by randomly sampling 8 tissues
149  from each of the 22 GTEXx tissue samples. This was used with the nine different eye tissue-origin
150 sample sets and the ESC set, totaling 11 different groups. All 55 pair-wise tests (11 choose 2
151 equals55) were done with the [imma package with voom library size normalization, using the
152 quantile-normalized TPM values as the input (23, 24). The script ‘differential_expression.Rmd’
153 containsthe code for these steps.

154

155 GO, HPO, and STRING enrichment

156

157 For GO enrichment, the biomaRt package was used, in R, to get the entrez IDs from the

158 ‘dec2016’ ‘hsapiens gene ensembl’ mart. The GOstats package, in R, was used to calculate GO
159  enrichment by the hypergeometric test, only keeping over-enriched terms. The background gene
160 list acrossthe different tests was defined as all genesin the original TPM expression matrix. The
161 function for thisanalysisis provided as‘GO_enrichment.R.’

162 For HPO enrichment, no working R package was available. To identify modules that
163  mapped to a higher than expected number of HPO terms we used bootstrapping, comparing the
164 number of HPO terms mapped to a module (proportional to its size) against a bootstrap

165 didribution of the same metric. To analyze overabundance of HPO terms in a module we used
166  hypergeometric testing, comparing the number of HPO terms in amodule against the

167  background of all genes and their associated HPO terms. The

168 ‘ALL_SOURCES FREQUENT_FEATURES genes to phenotype.txt’ file from ‘Build #124’
169  was downloaded on April 4", 2017 from

170  http://compbio.charite.de/jenking/job/hpo.annotations.monthly/lastStableBuild/ . Thisfile links
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171  genenamesto HPO terms. The script that did the hypergeometric testing is provided as
172  ‘HPO_enrichment_function.R.’
173 STRING enrichment p-values were computed with the STRINGdb R package. We placed
174  all genesin each module, up to 400 (the max input possible for STRINGdb). For modules with
175 morethan 400 genes (7 retina modules and 10 RPE modules), we used the 400 genesin the
176  module with the highest kWithin connectivity. The script for thisis ‘stringDB.R.’
177
178  Tissue-leve gene block analysis with KMeans clustering and gene ontol ogy enrichment
179
180 The differential gene expression patterns across the 55 pair-wise tests were grouped into
181 twenty clusters, each holding groups of genes with shared expression patterns. The grouping was
182  done with the k-means algorithm, in R, with 10,000 iterations and the ‘MacQueen’ algorithm.
183 Thecluster assignments for each gene was joined with the eye-tissue TPM values for the gene.
184 The TPM values were averaged for each eye tissue, then the overall gene expression in each
185 cluster was averaged. The TPM values, averaged by tissue, then cluster, were plotted in a
186 heatmap. The code for thisanaysisisin ‘kmeans_de cluster_heatmap.Rmd’ and the cluster
187 assignmentsfor each gene are available as ‘DE_Kmeans _cluster_ Gene_Lists.zip'.
188
189  Gene network construction with WGCNA
190
191 Weighted co-expression networks were constructed separately on both retina and RPE
192  samples using the Weighted Gene Co-Expression Network Analysis (WGCNA) framework with
193 the corresponding WGCNA R package. TPM expression matrices were used for the construction
194  of both networks. Genes with consistently low levels of expression (less than 30 TPM in at least
195 5% of samplesfor the retina network, less than 40 TPM in at least 5% of samples for the RPE
196 network) were removed prior to network construction. We found that less stringent cut-offs for
197 low expression resulted in poor clustering of these genes (data not shown).
198 Average-linkage hierarchical clustering and t-distributed Stochastic Neighbor Embedding
199  (t-SNE) were used to assess batch issues stemming from sample origin and study source, using
200 the WGCNA and Rtsne R packages, respectively. Following the observation of batch effects, the
201 ComBat R package was used to correct for batch issues stemming from an interaction variable
202  between sample origin and study source. Following batch correction, alog,-transformation was
203  applied to each expression matrix. the following transformation was applied to each expression
204  matrix:

f(sTPM) = log,(IsTPM + 1)
205 WGCNA identifies co-expression patterns using a weighted correlation matrix. The un-
206  weighted correlation matrix is raised to a soft-thresholding power (f) in order to satisfy the
207  scale-freelaw (25). Thismeansthat p(i), the probability that a node has degree i, follows a
208  power law distribution p(i)~i~™. In choosing B for each of the networks, it is suggested by the
209 WGCNA developersto choose a f§ which produces a negative correlation between log(i) and
210 log(p(i)), with R? > 0.8. Using the pickSoftThreshold function in the WGCNA R package, a
211  range of soft-thresholding powers (5) were evaluated for both networks. The suggested criteria
212  were met with soft-thresholding powers of 4 and 7 for the retina and RPE networks, respectively.
213  Each co-expression network was constructed in the following manner using the log,-transformed
214  expression matrices:
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215 1. Compute a Pearson correlation matrix of all gene pairs: S = [S;;], where S;; =
216 |cor(i,j)|, where i and j are distinct genes.
217 2. Compute an adjacency matrix as.
218 A= [aij], where al'j = power(Sij,ﬁ) = [SU]B
219 3. Compute an unsigned topological overlap matrix (TOM) as:
ajj+Yuzij inluj _ —
220 TOM;; = W ywherek; = Yo Gy, ad K = Y0 gy,
221 4. Defineadissimilarity matrix asd;; = 1 — TOM;;. Use average-linkage hierarchical
222 clustering on the dissimilarity matrix to cluster the genes.
223 5. Usethe cutreeDynamic function to place genes into distinct modules. For this function,
224 parameters of degpSplit = 0 and minClusterSze = 30 were used.
225 The script used to generate the networks is provided as ‘WGCNA _networks.Rmd.’
226
227  ldentifying Smilar Modules Across Retina and RPE Networks
228
229 Similarities in module compositions between the retina and RPE networks were assessed.

230 Thiswas performed through pair-wise cross-network comparison of retinaand RPE modulesin
231 termsof the genesthat were assigned to each pair of modules, as well as the GO terms that were
232  associated with the modules being compared. For each cross-network module comparison, the
233  number of overlapping genes was calculated and subjected to a hypergeometric test to assess
234  dignificance. This process was repeated with examining overlap in GO terms between modules.
235  In both analyses, p-values were adjusted using the FDR correction method.

236

237  Processing of Macosko et al. single cell RNA-seq dataset

238

239 The counts from study GSE63472 were downloaded asfile

240 GSE63472 Pl4Retina merged_digital_expression.txt.gz and processed with Seurat (2.3) (26).
241  Thefull script is made available as process macosko.R. Outlier cells were filtered out by

242  removing ones which had more than 6000 or fewer than 900 genes expressed. This reduced the
243  number of cdlsfrom 44,098 to 10,831 cells. The expression values were normalized with

244 ‘LogNormalize and scaled against mitochondrial percentage and nUMI with the negative-

245  binomial regression. t-SNE dimensionality reduction was done to visualize the expression data.
246  The cluster assignments for each cell from Macosko et al. was downloaded from

247  http://mccarrolllab.com/wp-content/upl oads/2015/05/retina._clusteridentities.txt.

248

249  Comparison of sScRNA-seq with bulk RNA

250

251 Thelists of genesin each retina WGCNA network module were pulled and their cell-type
252  gpecific expression in the Macosko et al. mouse retina single cell dataset was calculated (27).
253  High variance expression was identified by setting retina network — cell type expression with
254  variance > 9. A fake dataset was created by randomizing the assignment of cellsto retina

255  network clusters. Thisfake set was used as the control group for the wilcox t test to determine
256  whether aretinanetwork — cell type group expression was significantly different. The code for
257 thisanalysisis made availablein scripts.zip as ‘single_cdll_retina_network_comparison.Rmd.’
258
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259  Sdection of candidate functional RPE genes and differentiation of human induced pluripotent
260 stemcells (iPSC) into RPE cells

261

262 We took genes which: 1. were much more highly expressed in fetal RPE and stem cell
263 RPE relative to the synthetic body set, 2. were more highly expressed in fetal RPE relative to the
264  retinaand adult RPE-choroid, and 3. had an RPE network kWithin score > 10. This produced a
265  list of 36 genes (Supplemental Materials, Table S2). 17 of these genes were randomly selected
266 and we also added SLC13A3 and GDF11 as these genes were common RPE network partners of
267 theshort list. Bestl, MITF-Pan, MITF-M, and MITF-A were included as positives controls.

268 To calculate the hypergeometic p value, we counted the number of genes which were
269  abs(0.5log2 Fold Change) different in RPE stem cell derived relative to RPE fetal tissue (6096
270  out of 19128 total genes). The phyper function in R was used as 1 - phyper(14, 6906, 19128-
271 6906, 19).

272 Tyr-GFP 3D1, an RPE-specific reporter hiPSC line was grown in complete Essential 8™
273  Medium (Life Technologies, cat# A1517001) on vitronectin (Life Technologies, cat# A14700)
274  coated tissue culture plates at 37°C in a humidified atmosphere of 5% CO.. Differentiation of
275  Tyr-GFP 3D1 cellsinto RPE was performed according to previously described protocols (28,
276  29). Differentiated RPE cells were maintained in RPE medium: MEM apha (Life Technologies,
277  cat # 12571-063) with 5% FBS (Hyclone; cat # SH30071-03), 1% CTS™ N-2 supplement (Life
278 Technologies; cat # A13707-01), 0.1 mM MEM non-essential amino acid solution (Life

279  Technologies; cat # 11140),1 mM Sodium Pyruvate (Life Technologies; cat # 11360-070), 250
280 ug/mL Taurine (Sigma; cat # T4571), 20 ug/L Hydrocortisone (Sigma; cat # H6909), 0.013 ug/L
281  3,3,5-Triiodo-L-thyronine sodium salt (Sigma; cat # T5516).

282

283 RNA isolation and TagMan® real-time PCR

284

285 GFP-positive and GFP-negative RPE cells were sorted using FACSDiva 8.0.1 cdll sorter

286 (BD Bioscience) and lysed with TRIzol reagent (Thermo Fisher Scientific; cat # 15596026).
287  Total RNA was isolated using the Direct-zol ™ RNA Miniprep Kit (Zymo Research, Irvine, CA)
288  and one-microgram of total RNA was reverse-transcribed using High Capacity cONA Reverse
289  Transcription Kit (Applied Biosystem). TagMan probe/primer set for the target genes were

290 designed and gene expression was performed on the cDNA using TagMan® Universal PCR

291 Mager Mix on StepOne Plus Real-Time PCR instrument (Thermo Fisher Scientific/Applied
292  Biosystems) (Supplementary Material, Table S3).

293

294  Web app, other tools, and source code

295

296 The fastq file transfer and salmon quantification were run in the bash environment. The

297  salmon-based RNA-seq quantification used the computational resources of the NIH HPC

298  Biowulf cluster (http://hpc.nih.gov).

299 All other statistical analyses and visualization was done in the R environment (see

300 ‘session_info_R.txt’ for packages used and versions). The heatmaps were made with the

301  superheat package. All other figures were made with ggplot2.

302 The interactive web application was built with the R Shiny framework and hosted on aR
303  Shiny Server (https.//shiny.rstudio.com) installation at NEI. ggiraph was used to turn ggplot
304 imagesinto interactive images. The visNetwork R package was used to visualize the network



https://doi.org/10.1101/136960
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/136960; this version posted May 7, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

305 modules. For the purpose of limiting the number of edges to a number that would be tractable for
306 interactive visualization, the network edges were filtered so that each node would haveits k-

307  nearest within-module genes (k-strongest edges to genes in the same module) remain in the

308 network, for arange of k values.

309 The source code and links to the data for the web application is available at

310 https://gitlab.com/davemcg/Human_eyelntegration_App. The scripts mentioned in the methods
311 underlying the data processing and analysis for this paper are available as supplemental file

312  scripts.zip and the data used in the scriptsis available at Zenodo (10.5281/zenodo.569870).

313

10
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314 Results

315

316 Hundredsof individual human eye tissue RNA-seq datasets publicly available across twenty-one
317  research studies

318

319 To identify all publicly available human eye tissue RNA-seq datasets, the Sequence Read
320 Archive (SRA) was queried on January 19" 2017 with the R package SRAdb for human

321  transcriptomic studies with the keywords *RPE’, ‘macula, ‘fovea, ‘retina’, ‘ choroid’, ‘sclera’,
322 ‘'iris, ‘lens, ‘cornea’, and ‘ey€e across numerous fieldsin the SRA (30). Thisinclusive search
323 identified 603 samples across 53 studies. Hand searching the studiesto identify human eye tissue
324  samplesthat did not have chemical, pharmacological, or genetic modifications or known eye-
325 disease pared theinitial search down to 219 samples across 21 studies (Supplementary Materials
326 TableSl, Fig. 1A) (15, 16, 29-43) . The metadata of the remaining eye samples was queried
327 and parsed to label each sample by tissue (cornea, retina, RPE) and origin (immortalized cell
328 line, stem cdll line, fetal tissue, adult tissue) (Fig. 1B). Before gene expression quantification and
329 quadlity control to remove lower quality samples we had 110 retina, 85 RPE, 28 cornea, 16

330  human embryonic stem cell lines (ESC), 6 lens, and 4 eyelid tissue RNA-seq data sets.

331

332  Efficient quantification tools allow for comparison of the eye transcriptome meta-set with dozens
333  of other human tissues

334

335 The raw sequence data was obtained from the SRA or European Nucleotide Archive

336 (ENA) and the transcript counts were quantified with the Salmon pseudo-alignment transcript
337 quantification (17). To improve reliability of quantification, the transcript level counts were

338 merged to the gene level (20). We then applied quantile normalization of the TPM (transcripts
339 per million) values on a per-tissue basi s with the gsmooth tool to reduce variability between

340 different studies (22). Outliers with extremely low median gene counts and individual samples
341 that clustered very far apart from similar samples were removed, leaving 171 eye samples (Fig.
342 1A, Supplementary Material, Tables S4 and S5). Voom normalization was then applied to adjust
343  for different library sequencing depths (23). See methods for further details.

344 This efficient bioinformatic process also enabled us to bring in 878 samples from the
345  GTEX project to compare to our eye meta-set (9). We selected, when possible, 10 male and 10
346 female non-gender specific tissues from the GTEX, ending up with 22 tissues, including blood,
347  brain, heart, kidney, liver, lung, and thyroid (Supplementary Material, Tables S1 and S5). All
348 raw datafrom the collated eye tissues or GTEX were processed identically with the above

349  workflow. After outlier removal, using the same workflow as the eye tissue set above, we have
350 853 GTEx samples across 22 tissues.

351

352  Eyetissues from disparate studies cluster according to labelled eye component and tissue or

353 cdl-lineorigin

354

355 Our first question was whether the collated eye tissues, which potentially have significant
356  batch effects from merging data from disparate sources, would group together using

357 dimensionality reduction approaches. We used the Barnes-Hut implementation of thet-

358 Distributed Stochastic Neighbor Embedding (t-SNE), which has been shown to work well in
359 single-cell RNA-seq study analyses as well asthe GTEX study set, to visualize relationshipsin
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360 two dimensions between the processed eyetissues (Fig. 2A) (21, 46, 47). The DBSCAN

361  algorithm was used on the t-SNE coordinates for each sample to identify nine distinct clusters
362  (48).

363 The adult tissue retina samples clustered together, though apart from their fetal or cell line
364  based samples. The ESC-derived retina samples have a variety of time points (37, 47, 67, 90

365 days) during their differentiation; we found no clustering by those criteria (data not shown) (33).
366 Thefetal and adult cornea samples, grouped closely together, but still clustered independently
367 (Fig. 2A, clusters 8 and 9). Human embryonic stem cells (ESC), included because they are used
368 across severa studiesto differentiate into different eye tissues, clustered together, generally

369 closer to the cell-line derived samples (Fig. 2A, cluster 5).

370 RPE is the only tissue for which more than three different sources were available: fetal tissue,
371  adult tissue immortalized cell-line, and cells differentiated from ESCs. It should be noted that the
372  adult RPE tissues are a mixture of RPE and choroid tissue, which isavascular layer of the eye,
373  providing oxygen and nutrients to the RPE and outer retina. Thistissue will be referred to as
374  adult RPE/choroid. The four sources cluster into three groups, with the few RPE fetal tissues
375 clustering with the ESC-derived RPE samples (Fig 2A, cluster 1). The RPE derived from ESC
376  group (Fig 2A, cluster 1) is composed of samples from three studies (31, 36, 41). All three

377  groups differentiated their RPE cells for about two to four months, according to their method
378  section. Wu and Zeng et al. gave specific times of differentiation for the exact tissues used in the
379  SRA metadata (40 or 100 days); we did not see any differences in clustering patterns based on
380 length of differentiation (data not shown) (41). This close grouping of fetal and ESC-derived
381 RPE tissues are consstent across multiple runs of t-SNE with different perplexity parameters
382  ranging from 35-50 (data not shown). The adult RPE/choroid tissue clusters further away from
383  thecdll-line based tissues.

384 Overal, the t-SNE dimensionality reduction demonstrates that the eye tissues consistently
385 cluster in unique groups by their tissue and origin. This happens despite a variety of laboratory
386 originswith disparate culturing conditions, tissue handling, RNA extraction, sequencing cores,
387 and soon.

388

389 Eyetissuesdistinct from most human tissues

390

391 To explore the relationship of eye tissues to other tissues in the human body, we

392 leveraged the GTEX data we reprocessed to create a pan-human two-dimensional tissue

393 reationship map with t-SNE (Fig. 2B). DBSCAN was then used, as before, to identify clusters.
394 ‘Tissue labelsfrom GTEx metadatain the SRA were used with one exception; fibroblasts are
395 labelled separately from ‘ Skin' asthey consistently group independently of skin-punch tissues.
396 From thet-SNE visualization (Fig. 2B) we observe most human tissues group close to each

397  other, with the exception of brain. The eye tissues, except retina, group closer to the non-brain
398  human tissues. While the cell-line versus tissue derived eye tissue distinctions are maintained
399  with the pan-human set, the eye-tissues are generally more related to each other than non-eye
400  tissues.

401 Thet-SNE 1 and 2 dimension coordinates generated by t-SNE are sensitive to the parameter
402  perplexity, which controls the weighing of local to global relationships (49). Figures 2A and 2B
403  used perplexities of 35 and 45, respectively. To more consistently demonstrate the pair-wise
404  relationships between the tissues, the t-SNE dimensions were iteratively generated with

405 perplexities from 35 to 50. Then means were taken, grouped by sample. The individual samples
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406  werethen grouped by labelled tissue type and the t-SNE coordinates were again averaged.

407  Hierarchical clustering by Euclidean distance was done to group the tissues and a heatmap was
408 generated (Fig. 2C) which displays the most closdly related tissues. Because the hierarchical
409  distances between cell-line derived eye tissues were inconsi stent, they were removed from this
410 anaysis. We see that retina and brain tissues are individual outliers. We also see that the pituitary
411  isgrouped near RPE tissue and that fibroblasts group closely with the cornea (as denoted by the
412  height of the dendrogram).

413

414  Differential expression analysisidentifies large sets of genes distinguishing separating eye

415  tissues

416

417 The eye tissue set collected can be separated on two major axes: tissue type (cornea,

418 reting, or RPE) and origin (immortalized cell line, stem cell line, fetal tissue, adult tissue).

419 Labelling each set of tissues by these two criteria gives us ten sets of eye tissues (Fig. 1B). To
420 compare expression against non-eye tissue, we created a synthetic human ‘body’ expression set,
421 by evenly combining the 22 GTEX tissues. The total number of body samples was matched to the
422  total number of eye tissues we have by taking a random set of 8 tissues from each human body
423  tissue category (e.g. Brain, Pituitary). There are 55 two-way combinations possible among the 11
424 sts.

425 To calculate differential expression, we modeled expression with the limmallinear fit
426  function with voom to correct for library size differences. The limma empirical Bayes function
427  was used to identify statistically significant differentially expressed genes (23, 24). To look for
428  global changes between the eye tissues and the body, we will first compare all of the eye tissue
429  groupsindividually against the synthetic body (Table 1). A second synthetic body set was

430 created by sampling the un-used GTEX tissues from the first synthetic body set and we found
431  very similar differential expression vaues (data not shown).

432 The differentially expressed genesidentified for each test (Table 1) wasfiltered to retain
433  only genes with log fold change (logFC) < -2 or > 2 relative to the baseline tissue and with a
434  falsediscovery rate (FDR) corrected p-value less than 0.01. A logFC of more than two means
435 that the detected transcript level is more than four times as much (or one quarter as much)

436  compared to the body tissue.

437

438 Biological term enrichment identifies eye-specific gene expression biology relating to visual
439  function and body-specific gene expression relating to immunity and cell adhesion

440

441 As we have hundreds to thousands of genes meeting these stringent differential

442  expression criteria across the ten comparisons we did Gene Ontology (GO) biological process
443  term enrichment to identify systems-level patterns. We did the GO term enrichment

444  independently on the over- and under-expressed gene sets, relative to the synthetic body set; 20
445  tests were performed. Overall, we found 2796 unique GO term IDs across the tests with an FDR
446  corrected p value under 0.01 (Supplementary Materials, Table S6).

447 We took the top forty GO term IDs from the over and under-expressed tests (ranked by p
448  vaue) and plotted them in a heatmap to identify shared GO terms among the different

449  comparisons and to find overall trends in eye tissues gene expression relative to the synthetic
450 body gene expression set (Figure 3). Clustering was done on both rows and columns to group
451  together shared patterns. Like the t-SNE based clustering, the retinais an outlier for GO term
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452  enrichment. The GO termsin thefirst 20 rows (Fig. 3, Block 1) isdriven by genes that are more
453  highly expressed in the retina relative to other tissues. These over-expressed genes are highly
454  enriched in GO terms relative to visual perception, light stimulus, synaptic signaling, and

455  neurogenesis.

456 The next group (Fig. 3, Block 2) of enriched GO terms most strongly defines the ESC,
457  the cornea, and RPE immortalized cell lines and to alesser extent, fetal cornea and stem cell

458  retinatissue. These GO terms relate to cell cycle and divison as well as DNA packaging and
459  conformation. Thelast block (Fig 3., Block 3) isaset of GO IDs related to the body gene

460  expression being higher than most of the eye tissues. Thislarge block has GO terms involving
461  migration, organismal process, adhesion, immune process, and stimulus. The full set of

462  significantly (p < 0.01) enriched GO terms (2796) is available in Supplementary Materials Table
463 6.

464

465  Within eye tissue differential expression comparisons identify cornea, retina, RPE, and

466  RPE/choroid gene sets

467

468 To more directly identify sets of genes enriched in particular eye tissue(s) relative to the
469  other eyetissues, we compared all eye tissue differential expression pair-wise against each other
470  and the synthetic body set (55 tests). To identify common gene sets, we used k-means clustering
471  togroup al genesinto twenty groups, each group has adifferent overall gene expression pattern.
472  Wethen plotted the relative gene expression for each eye tissue across the twenty k-means

473  groups (Supplementary Materials, Figure S1). This produces a heatmap which identifies sets of
474  genesthat are more highly (or lowly) expressed in particular eye tissue(s) relative to the other
475  eyetissues. We use this heatmap to identify genes defining the cornea, retina, RPE, and adult
476  RPE/choroid and did GO term enrichment on these clusters (Table 2, Supplementary Table S7).
477  Thegenelistsfor each of the 20 groups are available in Supplementary File S1).

478

479  Thecorneaisenriched for genesinvolved in the extracellular matrix and collagen relative to the
480  other eyetissues

481

482 In the GO heatmap (Fig. 3) the corneatissues (immortalized cell line, fetal, adult) lack a
483  highly distinguishing set of GO terms from the other eye tissues. However, there is a cluster

484  (Supplementary Materials, Figure S1, cluster 3), with enriched fetal and adult cornea expression
485 compared to the other tissues. This cluster contains 157 genes and top GO terms enriched for this
486  set relate to extracellular matrix organization, collagen metabolism, and developmental processes
487  (Table 2, Supplementary Table S7).

488

489  Adult retina and, to a lesser extent, retina stem cells enriched in visual function genes

490

491 Compared to the synthetic body set, the adult retina has many GO terms relating to visual
492  function (Fig. 3, Block 1). This same GO enrichment is seen even when comparing adult retina
493  against the other eyetissues, focusing on cluster 8 (Supplementary Materials, Figure S1, Table
494  2). Thiscluster isvery highly expressed in adult retina and somewhat highly expressed in stem
495  cell derived retina, relative to the other eye tissues.

496
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497 RPE, excluding hTERT RPE, is highly enriched in genesrelating to pigmentation and visual
498  perception,

499

500 Like cornea, the non-immortalized RPE tissues do not have a distinct block of GO terms
501 (Fig. 3). In the k-means heatmap (Supplementary Materials, Figure S1) we see that cluster 14 is
502  more highly expressed in stem cell RPE, fetal RPE, and adult RPE/choroid. The hTERT

503 immortalized cell line RPE is not highly expressed for this gene set. The 92 genesin this cluster
504 areenriched in GO termsfor visual perception, melanin processing, and vitamin A metabolism
505 (Table2).

506

507 Compared to other eye tissues, adult RPE/choroid is enriched for genes involved in immune
508 function and adhesion

509

510 The cluster with genes highly expressed in adult RPE/choroid compared to the other eye
511 tissues (number 10), has 229 genes. Asthis cluster is not highly expressed in the other RPE

512  tissues, this cluster may define the choroid. These genes are strongly enriched in immune

513 function and adhesion (Table 2).

514

515 hTERT RPE immortalized cell line has substantial gene expression differences relative to RPE
516  derived fromESCs

517

518 As we had seen that the hTERT RPE clusters apart from the other RPE tissues, and there
519 isabenefit to examining the differences between an immortalized RPE cell line model versus a
520 differentiated RPE cdll line model, we looked directly at differences in expression between

521 hTERT RPE and stem cell derived RPE. We identified what genes and GO terms make these two
522  cdl linesdifferent. There are over 1323 genes with a more than four-fold expression difference
523  between RPE derived from human ESCs and the ATCC hTERT RPE immortalized cell line and
524 1572 with four-fold lower expression (Supplementary Materials, Table S8). The five genes most
525  highly expressed in RPE derived from human ESCs relative to the ATCC hTERT RPE

526  immortalized cell line are TTR (Transthyretin), DCT (Dopachrome Tautomerase), KIF1A

527  (Kinesin Family Member 1A), SFRP5 (Secreted Frizzled Related Protein 5), and NELL2 (Neural
528 EGFL Like 2). GO terms associated with higher stem cell RPE expression relate to ion transport
529  and synaptic transmission, suggesting that stem cell derived RPE isamore faithful model of
530 human biology (Fig. 4).

531

532  Dissection of high expression retina genes with single cell RNA-seq reveal s blocks of genes with
533 retina-cell specific function and candidate signature genes

534

535 We took advantage of the availability of aretinasingle cell RNA-seq data set from

536  normal mouse retina (P14) from Macosko et a. (27). The raw counts from 44,098 individual
537 dissociated retina cells were filtered down to 10,831 high quality cells, reanalyzed (see methods)
538 and clustered with t-SNE (Supplementary Materials, Figure S2). The gene expression was

539  grouped by the eleven major cell types identified by Macosko et al. and the expression was split
540 into deciles of expression, with 10 being genesin the top 10% of expression for the cell type.
541 This179, 112 row data table is made available on eyeintegration.nei.nih.gov (Data Table ->

542  Mouse Retina Single Cell RNA-seq Data).
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543 This expression set was combined with the list of genes expressed highly in retina (adult)
544  relative to the synthetic body set and thislist was further subdivided by whether the gene was
545  highly expressed in any specific retina cell type. Of the 11,660 genes with > 1 fold changein the
546  adult retinatissue over the synthetic set 1,913 were expressed in the top decile in one of the 11
547  retina sub-types. We ran abootstrap test 10,000 times to calculate which of the 11 cell types
548 wereenriched in the 11,660 gene set, relative to arandom set of genes of the same size. We

549  found that amacrine, bipolar, cones, rods, horizontal, MUller glia, and retinal ganglion cells were
550 enriched (p < 0.05).

551 To leverage this more specific gene list to identify functional modules we took the genes
552  inthetop decile expression for each cell type and ran GO enrichment (Supplementary Materials,
553  Figure SX3). GO terms relating to visual perception and light stimulus are highly enriched in
554  rods and cones and enriched in amacrine, bipolar, astrocytes, microglia, and Mller glia Retinal
555  ganglion cells are enriched in a set of GO processes describing neuron projections, axogenesis,
556  and microtubule processes. Retinal ganglion, amacrine, and bipolar cells share a set of GO terms
557  involved with synaptic vesicles, ion regulation, and neurogenesis.

558 To identify candidate signature genes for each cell type we looked for genes

559  overexpressed in the bulk retina tissue relative to the synthetic body set, in the top 20% of

560 expressioninaparticular retinacell type, and in the bottom 50% for the remaining retina cell
561 types (Supplemental Table S9). Several examples of these genes are plotted in t-SNE plot of the
562 clustered single cell retina data, demonstrating how genes like GAD1, PDE6C, and TUBB2B
563  distinguish amacrine, cones, and retinal ganglion cells from the other retina types

564 (Supplementary Materials, Figure $4).

565

566  Highly connected genesin retina and RPE gene networ ks recapitul ate known eye biology

567

568 To this point, we have used the full gene expression set to independently cluster samples
569 by tissuetype and origin. We then used differential expression between the eye tissues and the
570 synthetic body set to highlight differencesin GO terms. We delved further by clustering the

571 differential expression patterns between the eye tissues to find how each eye tissue is different
572  from the other. We can go even further, by examining the relationships of the genesto each

573  other, within atissue, by using gene correlation networks. These networks use correlated

574  fluctuations of all-by-all pairwise gene expression similarities to build networks of gene-to-gene
575 relationships.

576 As we had collected a substantial amount of retina and RPE samples, we were able to
577  build weighted gene correlation networks with the Weighted Gene Co-Expression Network

578 Anaysis (WGCNA) R tool (25). We also attempted to build a cornea network, but the network
579  construction failed dueto failure to both differentiate the genes cleanly into defined modules and
580 achieve appropriate network topology within a reasonable parameter space; more cornea samples
581 areneeded (Supplementary Materials, Figure S5). The gene expression TPM values, with the full
582  set of corrections described earlier for the differential expression analyses, were used as inputs.
583 All retinaand all RPE tissues that passed quality control steps were used to build independent
584  retinaand RPE networks. The parameters used in the WGCNA network construction are

585  enumerated in the methods.

586 There are 11,101 and 10,843 genes in the retina and RPE networks, respectively. 9621 of
587  the genes are shared between the retina and RPE network. The kWithin metric from WGCNA
588 measuresthe intramodular connectivity. Genes with higher connectivity are, theoretically, more

16


https://doi.org/10.1101/136960
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/136960; this version posted May 7, 2018. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633

aCC-BY 4.0 International license.

likely to be important in gene regulation as perturbations in them will affect the system more
than less connected genes.

To get a sense of what the biology was of the most connected genes in the retina network,
we took the 1017 genes with a kWithin greater than 20 and did GO enrichment (Supplementary
Materials, Table S9), finding the top five GO terms all relate to visual perception. We did the
same with the RPE network, using the 566 genes with a kWithin greater than 20. The top five
GO termsin this RPE network connected list were related to endoplasmic reticulum function
(Supplementary Materials, Table S10). The most similar modules, calculated by doing
hypergeometric testing of GO terms and gene names, between the retina and RPE networks are
the light cyan retina module and the pink RPE module. Both of these modules, by GO term
enrichment, are involved in protein targeting to the ER (Supplementary Materials, Figure S6).

Retina network module highly enriched in genes implicated in eye disease and crucial for visual
function

A key advantage of WGCNA networks over correlation networks isthat genes can be
partitioned into modules, presumably with shared biological function within each individual
module. The retina network has 27 modules, with 64 to 1922 genes in each module. The RPE
network has 23 modules, with 90 to 1458 genes in each module (Supplementary Materials,
Figure S7). To determine whether the modules were enriched for known gene to gene
interactions, we loaded each network module gene list into STRING and calculated whether
there were more interactions than expected. For 23/27 retina modules and 20/23 RPE modules,
the STRING p value for interaction enrichment was < 0.01 (Supplementary Materias, Table
S10). We also ran GO term enrichment for each module within each network (Supplementary
Materials, Table S14 and S17). While many modules have highly significant GO term
enrichment, only the ‘green’ moduleis highly enriched for visual perception terms. Pinelli et al.
built an unweighted retina gene correlation network and identified 14 candidate photoreceptor
genes based upon their network (16). All 14 arein our retina network and 9 of the 14 arein our
green visual function module (p < 2.8 x 10™°) (Supplementary Materials, Table S12).

There are 617 genes within the green retina module and 178 of these have a kWithin
greater than 20. Many of the top connected genes have known visual function or are implicated
in retinal diseases. To demonstrate the strong enrichment of known eye function genesin this
module we divided the genes in the green module into four categories: known to play arolein
eye disease, having GO termsrelating to visual function, both, or neither (Fig. 5, Supplementary
Materials, Table S13). From RetNet (http://www.sph.uth.tmc.edu/RetNet/) we have alist of 331
genes that have been implicated in retinal diseases (5). There are 178 genes with kWithin > 20in
the green module; 14 of those genes are also in RetNet, 17 have avision GO term, 31 have both,
and the remaining 116 genes are neither in RetNet nor have a vision-related GO term.

The human phenotype ontology (HPO) project is conceptually similar to gene ontology,
except that they map abnormal human phenotype terms onto a graph and match them to genes
(50). This provides away to identify enrichment of abnormal human phenotypes. Asthereisno
functioning package in R to systematically calculate HPO enrichment, we did bootstrapping and
hypergeometric testing (see methods), looking for enrichment overall at the module level and for
individual HPO terms within each module, respectively. The green module is highly enriched for
HPO terms relating to eye disease, with terms like nyctalopia, abnormal electroretinogram,
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photophobia, cone-rod dystrophies, and blindness among the top terms (Supplementary
Materials, Table S15).

Other highly significant GO terms in the remaining retina network modules also match
known retina function. GO terms enriched relate to ion transport (greenyellow), devel opmental
processes (darkorange, greenyellow, tan), mitochondrial function (midnight blue), and
metabolism (turquoise) (Supplementary Materials, Table S14). The retina network darkgrey
module also contains several genesimplicated in retina diseases like ELOVL4, OPN1SW,
S.C24A1, and PDEGA (see Supplementary Materials, Table S16 for full list). Additionally, the
green, tan, brown, and blue modules are, overall, enriched for HPO disease terms
(Supplementary Materials, Figure S8).

Differentially expressed, high connectivity RPE genes are highly expressed in functional pure
RPE cells

To experimentally validate whether our differential RPE gene expression data and RPE-
choroid network connectivity could identify important genes in functional RPE we first made a
short list of highly expressed and high connectivity RPE genes (see methods). We then compared
expression of the genes in human iPSC-derived RPE, purified using an RPE-specific TYR
enhancer coupled to a GFP transgene. Differentiating cells were then sorted using flow
cytometry to purify the GFP positive cells in the population. We find that 17 of our 19 genes are
more highly expressed in the GFP+ RPE (Supplementary Materials, Figure S9). 14 of the 19
genes are 0.5 log2 fold change greater than the in the purified RPE population (hypergeometric p
< 0.0002, see methods).

Retina green module identifies visual transduction pathway and core upstream regulators

The green module was further analyzed for known biological networks components,
which were generated through the use of Ingenuity Pathways Analysis (Ingenuity® Systems,
www.ingenuity.com). Visual transduction was the most significant pathway present, with 16
components present in the green module. These components function predominantly in rod and
cone photoreceptors in the conversion of photic energy to neural signaling in the retina
(Supplementary Materials, Figure S11A and data not shown), as confirmed by the single cell
RNA-seq dataset. Regulatory component analysis projected that CRX and NRL were predicted
among the regulators of gene expression in the green module, upstream of several genes
implicated in retinal photoreceptor degeneration also present in the green module
(Supplementary Materials, Figure S11B). These two transcription factors drive rod photoreceptor
differentiation and maintenance beginning in embryogenesis, and dysfunction of either of these
is associated with retinal degeneration (51). In sum, the green moduleis enriched for
photoreceptor function and recapitulates specific components of known biological and gene
regulatory networks that are important causes of retinal disease.

RPE/choroid network contains many modules related to cell metabolism
Unlike the retina network, there are no strongly associated GO terms relating to visual

function. However, there are numerous modules with strongly significant GO terms relating to
metabolic processes and active transcription and translation (blue, brown, dark turquoise, green,
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680 light cyan, light green, red, turquoise). One module (yellow) relates to catabolism, one to

681 immune function (tan), oneto the endoplasmic reticulum (ER) (pink), and two the mitochondria
682  (dark green, dark yellow) (Supplementary Materials, Table S16). Among the top HPO terms
683  across the RPE modules are ones relating to anemia (pink), optic disc pallor (green), and

684  respiration (dark green). Overall, the green, midnightblue, turquoise, lightyellow, magenta, and
685  brown RPE modules are enriched for HPO terms (Supplementary Materials, Figure S9).

686

687  Sngle-cell RNA-seq confirms many network modules represent specific retina cell types

688

689 Because the GO terms are distinct between the different WGCNA modules some of them
690 should be enriched in genes distinguishing different types of retinal cells. We took the Macosko
691 et at retinasingle cell sequencing data and looked at the expression profile for each labelled cell
692  type grouped by retina network module color (Supplementary Materials, Figure S10). We see
693 that many modules have very similar expression profiles across the twelve retina cell types (see
694  black, blue, brown, darkgreen).

695 However, we also see that several modules have strongly divergent expression patterns
696  between different cell types (Figure 5a). For example, the green module is enriched in genes with
697  strong expression in rods, cones, and bipolar cells. The greenyellow and salmon modules have
698  geneswith high expression in retinal ganglion cells. The darkorange and tan modules are

699  enriched for genes expressed highly in Mller gliaand astrocytes.

700

701 Retina and RPE networksin retinal diseases and AMD

702

703 Higher connected genes are theoretically more important in the function of the retina and

704  RPE. From RetNet we have alist of 331 genesthat are associated with retinal diseases (though
705  some unknown proportion affect the retina viathe RPE). From arecent large AMD GWAS

706  study, thereisalist of 33 loci strongly associated with AMD, and thus likely related to RPE or
707  choroid dysfunction (8). To see whether these retina or RPE gene lists have higher connectivity
708 relativeto the other genes in the networks we used densty plots of the kWithin value to see

709  whether we see any left-ward (less connectivity) or right-ward (more connectivity) shiftsin our
710  genelist KWithin connectivity.

711 We see that the RetNet gene list has a higher connectivity than non-RetNet genesin the
712 retinamodule; this right-ward shift is highly significant (p = 3.26 x 10°®). The connectivity of the
713  RetNet genelist in the RPE network is significantly different than the non-RetNet genes (p =
714  0.28). 53 RetNet genes are in the green retinamodule, which isa4.1 fold enrichment over

715  chance. The darkgrey module has a similar enrichment in RetNet genes with 10, whichisa 3.8
716  fold enrichment over chance.

717 The 33 genes associated with AMD have a higher connectivity the remaining genesin the
718 RPE network; thisright-ward shift isaso significant (p = 0.049). Like the RetNet retinal disease
719 genelist in the RPE network, the 33 AMD genes are not significantly more connected than the
720  other genesin the retina network (p = 0.49) (Supplementary Materials, Figure S12).

721
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722  Discussion

723

724 We collected al publicly available human eye RNA-seq datasets creating the largest pan-
725  eyecollection to date, and carefully performed a lengthy series of normalization and quality

726  control procedures to robustly quantify gene expression within three major eye tissues and

727  between the eye and other human tissues. Gene expression data can be used to accurately cluster
728  samples by tissue and origin. We used differential gene expression analysis with GO term

729  enrichment to identify biological processes that best distinguish the eye tissues both from each
730 other and from a synthetic human expression set. We then leveraged the large sets of retinaand
731 RPEtissuesto build the first human weighted gene correlation networks for retinaand RPE,
732 confirming with single cell RNA-seq data that several of the retina modules have cell-type

733  gpecific expression. We demonstrated the power of the networks to highlight genes known to be
734  crucia in eye biology. Finally, we make the data and analyses available in a powerful web

735  application (https.//eyelntegration.nei.nih.gov).

736 The structures of the eye are epithelial, neuroepithelial, and neural crest in origin. We
737  were expecting some of the eye tissues to cluster closely with the skin, but instead we found that
738 theretinawas avery unique tissue, that transformed fibroblasts most closely matched the cornes,
739  and the RPE was nearest the pituitary. Embryologic origins and specialized functions likely

740  createthese similarities and divisions, respectively. Corneais derived from the same surface
741  ectoderm as skin and from neural crest cells, while retina and RPE are derived from the neural
742  tube epithelium from the ventral diencephalon, along with the hypothalamus and posterior

743  pituitary. Corneal epithelium is replenished by limbal stem cells that remain into adulthood,

744 which may explain the proximity of corneal and ESC clusters. This also may reflect that the
745  magjority of our corneal dataset is derived from cultured corneal epithelium. That retina was

746  separated from other ocular and non-ocular tissues likely related to the exclusivity and high

747  expression burden of the visual transduction cycle in cone and rod photoreceptors.

748 The systems-level study of differential gene expression across cornea, retina, RPE, and
749  RPE-choroid tissue highlights core functions of these tissues. Cornea-specific genes specify the
750  structural aspect of the cornea with extracellular matrix organization and collagen metabolism
751  and catabolism. The corneal epithelium is replenished continuously with limbal stem cells, which
752  may bereflected in the enrichment of GO terms relating to development. The retinal tissues are
753  strongly defined by genesinvolved in visual processes. The RPE and RPE-choroid tissues are
754  also distinguished, with the former being more involved in visual processes and pigmentation
755  whilethelatter isinvolved with immune system processes.

756 The creation of the first human retinaand RPE weighted gene correlation networks has
757  alowed usto identify dozens of modules with co-regulated genes. It isimportant to stress that
758  these networks were built only with gene expression information and were optimized using

759  network-specific metrics, such as how well the topological overlap matrix placed genesinto
760  well-defined modules. Only afterwards did we evaluate the significance of connected genes and
761 modulesto GO terms and known eye biology.

762 It is striking that the some of the most significant GO terms, by p-value and enrichment,
763  inthe retinanetwork are associated with a single 617-gene module underlying visual function.
764  This module represents the visual transduction pathway, which is relatively unique to the retina
765 andisassociated with isolated and nonsyndromic retinal degenerative conditions. Single-cell
766 RNA-seq data demonstrated that the genes in this module are expressed more highly in the rods,
767  cones, and bipolar cells.
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768 As the RPE has a high-energy role in transferring nutrients and clearing waste products
769  for the photoreceptors of the reting, it isnot surprising that a plurality of the modules are

770  enriched for genes important in RNA tranglation, protein modification and production,

771  catabolism, and mitochondrial function. The enrichment of highly connected AMD associated
772  genesinthe RPE network further emphasizes the value of this network.

773 Finally, the value of this extensive and carefully curated data-set is enhanced by the

774  creation of the eyelntegration web app (http://eyelntegration.nel.nih.gov; Supplementary

775 Materials, Figure S13). The site serves two roles, first as an interactive extension of this

776  manuscript and second as a platform for researchers to identify interesting genesin eye function
777  viasearchable gene expression plots across many tissues, 55 pair-wise differential expression
778  tests, and two gene networks. We aso make the source code and accompanying data-sets fully
779 and freely available for other researchers (see methods) and will periodically refresh the data.
780 Theunravelling of eye biology and function has been furthered by genetic eye diseases, animal
781 models, and functional assays. We hope that this open data sharing and powerful web application
782  will provide afourth way to decipher eye biology in health and disease.

783

784
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GO:0032501 multicellular organismal process
G0:0048584 positive regulation of response to stimulus
GO 0048583 regulation of response to stimulus.

single ism cell

GO 0022610 biological adhesion
G0:0007155 cell adhesion
GO:0007166 cell surface receptor signaling pathway
G0:0007165 signal transduction

GO:0002684 positive regulalm of immune system proces:
GO 0001775 cell activation

0:0006952 defense response

GO 0002682 regulation of immune system process

Block 1

Block 2

Block 3

GO:0006955 immune response
G0:0002376 immune system process
GO:0050836 response to stimulus.

> Body (adi
> Body (ad

RPE - choroid (adul

959
960 Figure3

961 Major differencesin systemsrelating to visual function, active cell division, adhesion, and

962 immunity between the eye tissues and the other tissues in the human body

963 Top 80 GO Terms (40 with eye > body and 40 with body > eye) across eye-tissue to body
964 differential expression tests. Yellow is more significant, blueisless. Hierarchical clustering of
965  both rows and columns place more related GO terms and tissue comparison Sets together.

966
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967
968 Figure4
969 Genescrucial in eye function are highly differentially expressed between stem cell derived RPE

970 and hTERT RPE

971 A. Thetop 5 genes overexpressed in ESC-derived RPE and immortalized cell line hTERT
972 RPE

973 B. Word cloud of enriched GO terms
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976 Figure5
977  Retinanetwork green module highly enriched for important visual function genes
978 A. Density plot showing expression of retina network module genes across different
979 retina cell typesin single cell mouse retina RNA-seq. Group differences in mean
980 expression and variance are shown by the line colors in the density plot.
981 B. Top 50 connected genes in green module in the retina network. Colored by group (see
982 C)
983 C. Word cloud of top GO termsin green retina module
984 D. kWithin connectivity (higher is more connected) for top 20 connected genes, labelled
985 to indicate whether the gene isin RetNet, has a GO term relating to visual function,
986 both, or none.
987

32


https://doi.org/10.1101/136960
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/136960; this version posted May 7, 2018. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

988 Tables

989

990 Tablel

991

L og Fold Change

Comparison <-2 >2
Cornea (adult) vs Body (adult) 1969 1249
Cornea (fetal) vs Body (adult) 172 873
Cornea (immortalized cell) vs Body (adult) 2611 1475
ESC (stem cell) vs Body (adult) 2738 2177
Retina (adult) vs Body (adult) 2607 1978
Retina (stem cell) vs Body (adult) 3443 2622
RPE - choroid (adult) vs Body (adult) 1200 1258
RPE (fetal) vs Body (adult) 1510 1402
RPE (immortalized cell) vs Body (adult) 2446 1398
RPE (stem cell) vs Body (adult) 2270 1308

992

993 Many genes are differentially expressed between the eye tissues and the synthetic body

994

995 Number of genes with logFC < -2 or > 2 (0.25 or 4 fold, p value < 0.01) between each
996 eyetissue against the synthetic body set
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997
998

999
1000
1001
1002
1003
1004
1005
1006

Table 2
Tissue(s)-Specific Set  Cluster GO BPID (PF\I/DaIl{l;e CR)gt?g Term
Cornea 3 G0:0030198 1.16e-13  11.27 extracellular matrix organization
Cornea 3 GO0:0030574 1.07e-11 3051 collagen catabolic process
Cornea 3 GO0:0032502 150e-09 3.20 developmental process
Adult Retina 8 GO:0050953 8.43e65 38.80 sensory perception of light stimulus
Adult Retina 8 GO:0007601 150e-62 37.74 visual perception
Adult Retina 8 G0:0060041 3.87¢19 17.14 retina development in camera-type eye
non-immortalized RPE 14 GO0:0007601 157¢-10 18.39 visual perception
non-immortalized RPE 14 G0:0042438 1.70e-07 104.91 melanin biosynthetic process
non-immortalized RPE 14 GO:0006776 1.3%9e-05 163.77 vitamin A metabolic process
Adult RPE - choroid 10 G0:0002376 1.35e-20 5.06 immune system process
Adult RPE - choroid 10 GO0:0006952 5.03e-18 5.39 defense response
Adult RPE - choroid 10 GO:0007155 164e-13 4.25 cell adhesion

Top GO terms for tissue-specific cluster groups relate to eye tissue specific function

Three representative GO terms were selected for GO term enrichment done on the

differentially expressed K means cluster sets 3, 8, 10, and 14 (see Supplementary Materials,

Figure S1) which represent over-expressed genes in cornea, adult retina, adult RPE/choroid, and
non-immortalized RPE, respectively
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1007 Abbreviations

1008 Age-related macular degeneration (AMD)

1009 Human Embryonic Stem Célls (ESCs)

1010 Gene Ontology (GO)

1011 Gene Tissue Expression Project (GTEX)

1012 Human Phenotype Ontology (HPO)

1013 Induced Pluripotent Stem Cdll (iPSC)

1014 log Fold Change (logFC)

1015 Retinal Pigment Epithelium (RPE)

1016 Sequence Read Archive (SRA)

1017 length-scaled Transcripts Per Million (TPM)

1018 t-Distributed Stochastic Neighbor Embedding (t-SNE)
1019 Weighted Gene Co-Expression Network Analysis (WGCNA)
1020
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G0:0050877 neurological system process
GO:0007600 sensory perception

G0:0050953 sensory perception of light stimulus
G0:0007601 visual perception

G0:0003008 system process

G0:0009583 detection of light stimulus
G0:0007267 cell-cell signaling

G0:0098916 anterograde trans-synaptic signaling
G0:0007268 chemical synaptic transmission
G0:0099536 synaptic signaling

G0:0099537 trans-synaptic signaling
G0:0048858 cell projection morphogenesis
G0:0048812 neuron projection morphogenesis
G0:0031175 neuron projection development
G0:0030030 cell projection organization
G0O:0030182 neuron differentiation
G0:0022008 neurogenesis

GO0:0048699 generation of neurons
G0:0048666 neuron development
G0:0007399 nervous system development
G0:1903047 mitotic cell cycle process
G0O:0000278 mitotic cell cycle

G0:0022402 cell cycle process

G0:0048285 organelle fission

G0O:0000280 nuclear division

GO:0007067 mitotic nuclear division
G0:0007059 chromosome segregation

G0:0098813 nuclear chromosome segregation
G0:0007049 cell cycle

G0O:0051276 chromosome organization
G0:0031497 chromatin assembly

G0:0006334 nucleosome assembly
G0:0006333 chromatin assembly or disassembly
G0:0071103 DNA conformation change
G0:0006323 DNA packaging

G0:0016477 cell migration

G0:0001568 blood vessel development

G0:0044707 single-multicellular organism process

G0:0032501 multicellular organismal process

G0:0048584 positive regulation of response to stimulus

G0:0048583 reqgulation of response to stimulus
G0:0098602 single organism cell adhesion
G0:0022610 biological adhesion

GO:0007155 cell adhesion

G0:0007166 cell surface receptor signaling pathway

G0:0007165 signal transduction

G0:0002684 positive regulation of immune system process
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G0:0006952 defense respunse

G0:0002682 regulation of immune system process

G0:0006955 immune response
G0:0002376 immune system process
G0O:0050896 response to stimulus
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