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Abstract

BACKGROUND: Targeted therapies specifically act by blocking the activity of proteins that are encoded by

genes critical for tumorigenesis. However, most cancers acquire resistance and long-term disease remission
is rarely observed. Understanding the time course of molecular changes responsible for the development of

acquired resistance could enable optimization of patients’ treatment options. Clinically, acquired therapeutic

resistance can only be studied at a single time point in resistant tumors. To determine the dynamics of these
molecular changes, we obtained high throughput omics data weekly during the development of cetuximab

resistance in a head and neck cancer in vitro model.

RESULTS: An unsupervised algorithm, CoGAPS, was used to quantify the evolving transcriptional and
epigenetic changes. Applying a PatternMarker statistic to the results from CoGAPS enabled novel heatmap-
based visualization of the dynamics in these time course omics data. We demonstrate that transcriptional
changes result from immediate therapeutic response or resistance, whereas epigenetic alterations only occur
with resistance. Integrated analysis demonstrates delayed onset of changes in DNA methylation relative to

transcription, suggesting that resistance is stabilized epigenetically.

CONCLUSIONS: Genes with epigenetic alterations associated with resistance that have concordant
expression changes are hypothesized to stabilize resistance. These genes include FGFR1, which was
associated with EGFR inhibitor resistance previously. Thus, integrated omics analysis distinguishes the
timing of molecular drivers of resistance. Our findings provide a relevant towards better understanding of the
time course progression of changes resulting in acquired resistance to targeted therapies. This is an
important contribution to the development of alternative treatment strategies that would introduce new drugs

before the resistant phenotype develops.
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BACKGROUND

Recent advances to identification of gene regulation in cancer has enabled the selection of targeted therapies
to inhibit specific regulators of oncogenic signaling pathways essential for tumor development and
maintenance [1]. These therapies prolong survival but are not curative, since most patients develop acquired
resistance within the first few years of treatment [2]. Although a wide variety of molecular alterations that
confer resistance to the treatment have been described, the mechanisms and timing of their evolution are still
poorly characterized [3,4]. As serial biopsies along the treatment period are impractical due to the
invasiveness and high costs of the procedure, the molecular alterations associated with acquired resistance
are only known when resistance has already developed, and little is known about which changes occur at
earlier or later time points in the course of the targeted therapy. The lack of adequate in vitro and in vivo time
course datasets makes it challenging to delineate the two predominant hypotheses for how therapeutic
resistance develops: (1) the presence of small populations of resistant cells that will survive the treatment and
repopulate the tumor; or (2) the development of de novo resistance mechanisms by the tumor cells [4,5].
Characterization of the dynamics of genomic alterations induced during acquired resistance can identify
targetable oncogenic drivers and determine the best time point to introduce alternative therapeutic strategies

to avoid resistance establishment [6].

Epidermal Growth Factor Receptor (EGFR) inhibitors represent a common class of targeted therapeutics.
Cetuximab, a monoclonal antibody against EGFR, is FDA approved for the treatment of metastatic colorectal
cancer and head and neck squamous cell carcinoma (HNSCC) [7]. As with other targeted therapies, stable
response is not observed for a long period and virtually all patients invariably develop acquired resistance [8].
Recent advances in the establishment of in vitro models of acquired cetuximab resistance [9] provide a
unique opportunity to study the time course of genetic events resulting in acquired resistance. Cell lines
chronically exposed to the targeted agent develop resistance and can be sequentially collected during the
course of treatment to evaluate the progressive molecular changes. Previous studies to assess the
mechanisms of acquired cetuximab resistance have been limited to comparing the genomic profile of the
parental intrinsic sensitive cell line to stable clones with acquired resistance [9-11]. Therefore, these studies

fail to capture the dynamics of acquired molecular alterations during the evolution of therapeutic resistance.


https://doi.org/10.1101/136564
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/136564; this version posted February 27, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.
The development of in vitro time course data to determine the molecular drivers of therapeutic resistance is
crucial. These experimental systems have the further advantage that time course data can also be generated
for untreated controls, enabling the distinction of the molecular mechanisms associated with acquired
resistance from those that would occur due to the long term culturing over the time period that resistance

develops.

Along with novel time course datasets, inferring the specific and targetable signaling changes that drive
therapeutic resistance also requires new bioinformatics pipelines to analyze and visualize these data. The
bioinformatics pipelines must integrate genetic, epigenetic, and transcriptional changes from multiple-high
throughput platforms to infer the complex gene regulatory mechanisms that are responsible for acquired
resistance. Current supervised bioinformatics algorithms that find time course patterns in genomic data adjust
linear models to correlate molecular profiles with known temporal patterns [12—15]. Many unknown variables
such as culture conditions, immediate response to cetuximab, and adaptive changes may have confounding
effects on known covariates of therapeutic response such as growth rates, colony size, or apoptosis rates.
Unsupervised bioinformatics algorithms learn the dynamics directly from the high-throughput data, and
therefore do not require a priori knowledge of the complex dynamics associated with therapeutic response.
Some unsupervised algorithms [16—21] seek breaking points of coherent, regulatory relationships to infer the
dynamics along pathways. Many of these algorithms trace individual phenotypes or individual genomics
platforms. Their ability to determine drivers of gene expression associated with acquired resistance from time
course data in multiple experimental conditions and multiple genomics data modalities is emerging [22].
Further extensions are needed to contrast the dynamics of signaling response to therapy to the dynamics of
control conditions to distinguish the specific molecular processes that are unique to resistance. Matrix
factorization algorithms are unsupervised, and can distinguish the relative molecular changes in each
experimental condition over time without requiring prior knowledge of gene regulation. We have found that
Bayesian, non-negative matrix factorization algorithms such as Coordinate Gene Activity in Pattern Sets
(CoGAPS) [23] can extend beyond clustering to robustly quantify the dynamics and infer the gene regulatory

networks directly from the input time course data [24]. The COGAPS error model can also be modified to
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enable data-driven inference in distinct molecular platforms for inference of epigenetic regulation of gene

expression [25].

In this study, we developed a new bioinformatics analysis pipeline for integrated analysis of gene expression
and DNA methylation changes that occur during the time course progression of resistance to targeted
therapies using CoGAPS. Genes uniquely associated with these changes were selected using a
PatternMarker statistics [26] to enable novel visualization of molecular alterations dynamics inferred with
CoGAPS. In order to benchmark our new bioinformatics pipeline, we used an in vitro HNSCC cell line model
to induce resistance and measure the molecular changes using high throughput assays while the resistant
phenotype developed. Gene expression and DNA methylation changes were screened weekly while acquired
cetuximab resistance was induced in SCC25 cell line (intrinsic sensitive to cetuximab) and compared to the
status of the untreated controls at the same culturing time point. CoGAPS [26] inferred specific patterns of
expression and DNA methylation that are associated with the gradual establishment of acquired cetuximab
resistance. The onset of methylation changes associated with resistance is temporally delayed relative to
expression changes suggesting that epigenetic alterations stabilize the transcriptional changes relevant to the
resistant phenotype. This analysis found anti-correlated changes between DNA methylation and gene
expression in FGFR1 during acquired therapeutic resistance. Up-regulation of FGFR1 has previously been
associated as a mechanism of acquired cetuximab resistance in HNSCC patients [27—-29]. The identification
of a canonical marker of resistance to EGFR inhibitors in this present study corroborates the efficacy of our
experimental model and analytical algorithm to identify mechanisms of resistance. To our knowledge, this is
the first demonstration of the anti-correlation between FGFR1 methylation and expression suggestive of its
epigenetic regulation in acquired resistance to cetuximab. Thus, this pipeline can identify mechanisms of
gene regulation in acquired resistance from high-throughput, multi-platform time course data. The resulting
bioinformatics pipeline is poised to infer the dynamics of acquired resistance from emerging time course data

with other cancer types and therapeutics.

METHODS
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Cell lines and materials

SCC25 cells were purchased from American Type Culture Collection (ATCC). Cells were cultured in
Dulbecco’s Modified Eagle’s medium and Ham’s F12 medium supplemented with 400ng/mL hydrocortisone
and 10% fetal bovine serum and incubated at 37°C and 5% carbon dioxide. The parental cell line SCC25 and
the late cetuximab and PBS generation 10 were authenticated using short tandem repeat (STR) analysis kit
PowerPlex16HS (Promega, Madison, WI) through the Johns Hopkins University Genetic Resources Core

Facility. Cetuximab (Lilly, Indianapolis, IN) was purchased from the Johns Hopkins Pharmacy.
Induction of cetuximab resistance and time course sample collection

The HNSCC cell line SCC25 (intrinsically sensitive to cetuximab) was treated with 100nM cetuximab every
three days for 11 weeks (generations G1 to G11). On the eighth day, cells were harvested. Sixty thousand
cells were replated for another week of treatment with cetuximab and the remaining cells were separately
collected for: (1) RNA isolation (gene expression analysis); (2) DNA isolation (DNA methylation analysis); (3)
proliferation assay and (4) storage for future use. All steps were repeated for a total of 11 weeks. In parallel
with the cetuximab treated cells, we generated controls that received the same correspondent volume of PBS
(phosphate buffered saline). Cells were plated in several replicates each time at the same initial density. The
replicates were then harvested and pooled to provide enough cells for genetic, epigenetic and proliferation
assays. To achieve adequate final cell confluence and number of cells for the experimental analysis of each
generation, cetuximab and PBS treated cells were plated in different flask sizes. Cells treated with cetuximab
were plated in multiple T75 (75cm?) flasks (60,000 cells/flask) that were combined on the eighth day. PBS
treated cells were plated in a single T175 (175cm?) flask (60,000 cells). This design was selected considering
the growth inhibition of the earliest cetuximab generations and to control confluence of the PBS controls at

the collection time (Supplemental Fig. 1).
Cell proliferation and colony formation assays

Cell proliferation events were measured using the Click-iT Plus EAU Flow Cytometry Assay Kit Alexa Fluor
488 Picolyl Azide (Life Technologies, Carlsbad, CA) according to manufacturer’s instructions. The cetuximab

generations were considered resistant when the frequency of proliferating cells was higher than in the PBS
A
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control generations. Proliferation curves were generated using locally weighted polynomial regression

(lowess) in R.

Anchorage-independent growth assay was used to further confirm the development of resistance. The
parental SCC25 and the late G10 resistant cells were treated with different concentrations of cetuximab
10nM, 100nM and 1000nM. Number of colonies was compared to the same cells treated with PBS. Colony
formation assay in Matrigel (BD Biosciences, Franklin Lakes, NJ) was performed as described previously

[30].

Stable SCC25 cetuximab resistant single clones (CTXR clones)

Resistance to cetuximab was induced in an independent passage of SCC25 cells. After resistance was
confirmed, single cells were isolated and grown separately to generate the isogenic resistant single cell
clones (CTXR). In total, 11 CTXR clones were maintained in culture without addition of cetuximab. With the
exception of one clone (CTXR®6), all CTXR clones presented substantial survival advantage compared to the
parental SCC25, as reported by Cheng et al. (2015) [31]. Each of these clones was authenticated using STR

analysis kit GenePrint 10 (Promega) through the JHU-GRCF, as previously published [31].

Proliferation assay was performed to confirm cetuximab resistance in the CTXR clones compared to the
parental SCC25. A total of 1000 cells were seeded in 96-well plates in quadruplicate for each condition. PBS
or cetuximab (10nM, 100nM or 1000nM) was added after 24 and 72 hours and cells were maintained in
culture for 7 days. AlamarBlue reagent (Invitrogen, Carlsbad, CA) at a 10% final concentration was incubated
for 2 hours and fluorescence was measured according to the manufacturer's recommendations (545nm
excitation, 590nm emission). Resistance in the CTXR clones was confirmed when the proliferation rates were

higher than in the PBS treated SCC25 cells.

RNA-sequencing (RNA-seq) and data normalization

RNA isolation and sequencing were performed for the parental SCC25 cells (G0) and each of the cetuximab
and PBS generations (G1 to G11) and the CTXR clones at the Johns Hopkins Medical Institutions (JHMI)

Deep Sequencing & Microarray Core Facility. RNA-seq was also performed for two additional technical
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replicates of parental SCC25 cell line to distinguish technical variability in the cell line from acquired
resistance mechanisms. Total RNA was isolated from a total of 1x10° cells using the AllPrep DNA/RNA Mini
Kit (Qiagen, Hilden, Germany) following manufacturer’s instructions. The RNA concentration was determined
by the spectrophotometer Nanodrop (Thermo Fisher Scientific, Waltham, MA) and quality was assessed
using the 2100 Bioanalyzer (Agilent, Santa Clara, CA) system. An RNA Integrity Number (RIN) of 7.0 was
considered as the minimum to be used in the subsequent steps for RNA-seq. Library preparation was
performed using the TrueSeq Stranded Total RNAseq Poly A1 Gold Kit (lllumina, San Diego, CA), according
to manufacturer’'s recommendations, followed by mRNA enrichment using poly(A) enrichment for ribosomal
RNA (rRNA) removal. Sequencing was performed using the HiSeq platform (lllumina) for 2X100bp
sequencing. Reads were aligned to hg19 with MapSplice [32] and gene expression counts were quantified
with RSEM [33]. Gene counts were upper-quartile normalized and log transformed for analysis following the

RSEM v2 pipeline used to normalize TCGA RNA-seq data [34]. All RNA-seq data from this study is available

from GEO (GSE98812) as part of SuperSeries GSE98815.
DNA methylation hybridization array and normalization

Genome-wide DNA methylation analysis was performed on the same samples as RNA-seq using the Infinium
HumanMethylation450 BeadChip platform (lllumina) at the JHMI Sidney Kimmel Cancer Center Microarray
Core Facility. Briefly, DNA quality was assessed using the PicoGreen DNA Kit (Life Technologies) and 400ng
of genomic DNA was bisulfite converted using the EZ DNA Methylation Kit (Zymo Research, Irvine, CA)
following manufacturer’'s recommendations. A total volume of 4uL of bisulfite-converted DNA was denatured,
neutralized, amplified and fragmented according to the manufacturer’s instructions. Finally, 12uL of each
sample were hybridized to the array chip followed by primer-extension and staining steps. Chips were image-
processed in the lllumina iScan system. Data from the resulting iDat files were normalized with funnorm
implemented in the R/Bioconductor package minfi (version 1.16.1) [35]. Methylation status of each CpG site
was computed from the signal intensity in the methylated probe (M) and unmethylated probe (U) as a 8 value

as follows:
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Annotations of the 450K probes to the human genome (hg19) were obtained from the R/Bioconductor
package FDb.InfiniumMethylation.hg19 (version 2.2.0). Probes on sex chromosomes or annotated to SNPs
were filtered from analysis. The CpG island probe located closest to the transcription start site was selected
for each gene. Genes with CpG island probes less than 200bp from the transcription start site were retained
to limit analysis to CpG island promoter probes for each gene. Probes were said to be unmethylated for

B < 0.1 and methylated for § > 0.3 based upon thresholds defined in TCGA analyses [34]. All DNA

methylation data from this study is available from GEO (GSE98813) as part of SuperSeries GSE98815.

Hierarchical clustering and CoGAPS analysis

Unless otherwise specified, all genomics analyses were performed in R and code for these analyses is

available from https://sourceforge.net/projects/scc25timecourse.

The following filtering criterion for genes from the profiling of the time course data from generations of
cetuximab treated cells was used. Genes from RNA-seq data were selected if they had log fold change
greater than 1 between any two time points of the same condition and less than 2 between the replicate
control samples at time zero (5,940 genes). CpG island promoter probes for each gene were retained if the
gene switched from unmethylated (f < 0.1) to methylated (8 > 0.3) in any two samples of the time course
(1,087 genes). We used the union of the sets of genes retained from these filtering criteria on either data

platform for analysis, leaving a total of 6,445 genes in RNA-seq and 4,703 in DNA methylation.

Hierarchical clustering analysis was performed with Pearson correlation dissimilarities between genes and
samples on all retained genes. CoGAPS analysis was performed on both log transformed RNA-seq data and

DNA methylation g values, independently using the R/Bioconductor package CoGAPS [23] (version 2.9.2).

CoGAPS decomposes a matrix of data D according to the model

p
Di,j ~ N(;Az‘,k})k,j’zi,jJ )
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where N represents a univariate normal distribution, matrices A and P are learned from the data for a

specified number of dimensions p, z is an estimate of the standard deviation of each row and column of

the data matrix D, and i represents each gene and j each sample. In this decomposition, each row of the
pattern matrix P quantifies the relative association of each sample with a continuous vector of relative gene
expression changes in the corresponding column of A . That is each row of P provides a relative magnitudes
across samples are called patterns and quantify the separation of distinct experimental conditions. These
relative gene weights in the columns of A represent the degree to which each gene is associated with an
inferred pattern, and called meta-pathways. Together, these matrices provide a low-dimensional
representation that reconstructs the signal of the input genomics data. A single gene may have non-zero
magnitude in several distinct gene sets, representing the fact that a single gene can have distinct roles in
different biological processes (such as immediate therapeutic response and acquired resistance). A recently
developed PatternMarker statistics [26] selects the genes that are unique to each of the inferred patterns, and

therefore represent biomarkers unique to the corresponding biological process.

In the CoGAPS analysis of the data in this study, the standard deviation of the expression data was 10% of
the signal with a minimum of 0.5. The standard deviation of DNA methylation data under the assumption that

B values follow a beta distribution is

CoGAPS was run for a range of 2 to 10 dimensions p for expression and 2 to 5 for DNA methylation.
Robustness analysis with ClutrFree [36] determined that the optimal number of dimensions p for expression
was 5. DNA methylation was run in 4 parallel sets using GWCoGAPS [26]. In DNA methylation, the maximum
number of patterns that modeled resistance mechanisms over and above technical variation in replicate
samples of SCC25 was three. Gene sets representative of the meta-pathway were derived for each pattern
using the PatternMarkers statistics [26]. Comparisons between DNA methylation and gene expression values

for PatternMarkerGenes or from CoGAPS patterns and amplitudes were computed with Pearson correlation.

10
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Gene set analysis of cetuximab resistance signatures, the EGFR network, and pathways

Gene set activity was estimated with the gene set statistic implemented in calcCoGAPSStat of the CoGAPS
R/Bioconductor package [23]. Analyses were performed on three gene sets: resistance signatures, gene
targets of transcription factors in the EGFR network, and canonical pathways. Resistance signatures were
defined based on previous literature. Specifically, in a previous study, CoGAPS learned a meta-pathway from
gene expression data corresponding to overexpression of the HRASY?"'?® in the HaCaT model of HPV-
HNSCC premalignancy. That study associated the CoOGAPS HaCaT-HRAS meta-pathway with gene
expression changes in acquired cetuximab resistance in the HNSCC cell line UMSCC1 [23]. In the current
study, we applied the PatternMarkers statistics [26] to the previously published CoGAPS analysis of these
data to derive a gene set from this meta-pathway called HACAT_HRAS_CETUXIMAB_RESISTANCE or
HACAT_RESISTANCE. In addition, we searched MSigDB [37] (version 5.2) for all gene sets associated with
resistance to EGFR inhibition. In this search, we found the gene sets
COLDREN_GEFITINIB_RESISTANCE_DN and COLDREN_GEFITINIB_RESISTANCE_UP representing
resistance to the EGFR inhibitor gefitinib in non-small-cell lung cancer (NSCLC) cell lines [38]. Gene sets of
transcription factor targets were obtained from experimentally validated targets annotated in the TRANSFAC
[39] professional database (version 2014.1). Canonical pathways were obtained from the C2 set of MSigDB

[37] (version 6.1).

Sources and analysis of additional in vitro and human tumor genomics data

Genomics analyses of TCGA were performed on level 3 RNA-seq and DNA methylation data from the 243
HPV-negative HNSCC samples from the freeze set for publication [36]. DNA methylation data was analyzed
for the same CpG island promoter probes obtained in the cell line studies. Pearson correlation coefficients

were computed in R to associate different molecular profiles.

Additional analysis was performed on Affymetrix Human Genome U133 plus 2.0 GeneChip arrays for the
SCC1/1CC8 isogenic cetuximab sensitive and resistant cell line pair described previously (GEO GSE21483
[30]). Additional gene expression data from SCC25 generated from the same platform in the same lab was
also used for analysis, using fRMA for normalization [40] to control for batch effects as described previously

11
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[41]. Analysis was also performed on gene expression data measured with lllumina HumanHT-12 WG-DASL
V4.0 R2 expression beadchip arrays on samples from patients treated with cetuximab from Bossi et al [42],
using expression normalization and progression-free survival groups as described in the study. Data were

obtained from the GEO GSE65021 series matrix file.

DNA samples from eight human tumor surgical specimen post cetuximab treatment from the sample cohort in
Schmitz et al (2015) [43] were obtained for methylation profiling. Specifically, for each tumor one FFPE slide
was stained with hematoxylin and eosin and tumor burden was evaluated. When the tumor content was lower
than 50%, the adjacent unstained FFPE slides were macrodissected in order to enrich the tumor burden. A
double code was assigned to each sample by Biorepository. DNA was then extracted from two unstained
slides using the QlAamp DNA FFPE Tissue kit. Briefly, slides were dipped into a xylene bath until paraffin
was melted. Then slides were washed with ethanol 100%, and tissue was harvested for extraction with
QIAGEN affinity columns. The extracted DNA was quantified by NanoDrop spectrophotometer. DNA
methylation was measured with the lllumina MethylationEPIC BeadChip (850K) array. Array data were
normalized with NOOB method [44] and converted to virtual 450K arrays using the R/Bioconductor package
minifi version 1.22.1 and are available from GEO (in process). Two samples had DNA content below 250ng
and clustered separately from the remaining samples. These samples were filtered as low quality and
excluded from the analysis, leaving 6 total tumor samples with DNA methylation data. Probes selected for the
in vitro lllumina 450K DNA methylation data were used for subsequent analyses. Gene expression data from
biopsy samples prior to cetuximab treatment and surgical samples post cetuximab treatment were obtained
from the previous Schmitz et al [43] study and normalized as described previously [41] and available from

GEO (in process).

We performed t-tests and projections in R on the probe that had the highest standard deviation of expression
values for each gene. CoGAPS signatures were also projected into these gene expression data using the
methods described in Fertig et al. [23] with the ProjectR package version 0.99.15 available from Github
(https://github.com/genesofeve/projectR). We also performed t-tests in R to compare the long and short term

progression free survival groups based on the values obtained from this projection.

12
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HNSCC samples and patient information collection were approved by the Independent Ethics Committee and
the Belgian Health Authorities and conducted in accordance with the Declaration of Helsinki (October 2000).
It was prospectively planned to perform translational research and patients gave their informed consent for

repeated biopsies.

RESULTS

Prolonged exposure to cetuximab induces resistance

Cetuximab resistance was induced by treating the SCC25 cells for a period of eleven weeks (CTX-G1 to —
G11). SCC25 cells treated with PBS were used as time-matched controls (PBS-G1 to —G11). Response to
cetuximab was determined by comparing the proliferation rates between CTX and PBS generations.
Proliferation of the PBS generations is stable throughout the eleven weeks (G1 to G11). Conversely,
proliferation of the CTX generations progressively increases over each week (Figure 1). Relative to the
untreated controls, the growth of the treated cells is initially (CTX-G1) inhibited until CTX-G3. Starting at CTX-
G4, the absolute proliferation values are equal at this week, but the fit to the data across all time points
suggests that the cells become resistant to the anti-proliferative effects of cetuximab and gain stable growth

advantages compared to the untreated controls (CTX-G8 to -G11).

Comparison of proliferation rates between generations of CTX treated cells relative to generations of cells
treated with PBS enabled us to conclude that cell growth advantages arise from chronic cetuximab treatment
and are associated with resistance rather than prolonged cell culturing. We mirrored the changes in
proliferation rates with clinical responses seen in HNSCC tumors treated with cetuximab (Figure 1, lower
panel). The lower growth rates in CTX-G1 to —G3 may be an equivalent to the initial effects of the clinical
treatment when the cancer cells are sensitive to cetuximab and reduction of the tumor size is observable.
Even with gain in cell proliferation at CTX-G3 and —G4, our model still corresponds to response to the
treatment since the treated generations are not growing more than the controls (clinical stable tumor size).
Finally, from CTX-G4 the higher proliferation even with cetuximab treatment is a representation of acquired

resistance noticeable in the HNSCC patients as tumor recurrence or increase in tumor size.
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Higher proliferation in treated than in untreated cells starts at CTX-G4 and we established this time point to
call as the moment at which cetuximab resistance is stably acquired and all subsequent time points continue
to develop acquired stable cetuximab resistance. To confirm this hypothesis, we evaluated the ability of the
resistant CTX-G10 to anchorage-independent growth. Even under different concentrations of cetuximab,
CTX-G10 presents enhanced anchorage-independent growth compared to the parental SCC25 (GO) (two-

way Anova with multiple comparisons p-value < 0.01 for each concentration, Supplemental Fig. 2),

demonstrating the stabilization of cetuximab resistance in later generations.

Treatment vs. control gene expression changes governs clustering and immediate therapeutic

response is confounded with changes from acquired resistance

RNA-seq data for the parental SCC25 cell line (G0) and from each generation of CTX- and PBS-treated cells
were collected to characterize the gene expression changes occurring as cells acquired cetuximab
resistance. Gene expression changes between treated (cetuximab) and untreated (PBS) cells and over
generations of treated cells are apparent in time-ordered RNA-seq data (Fig. 2A). Additional clustering
analysis of the samples accounting for the treatment time point (generations/columns) (Supplemental Fig. 3)
distinguish three clusters of samples: those with cetuximab sensitivity (CTX-G1 to CTX-G3), with early
cetuximab resistance (CTX-G4 to CTX-G8), and those with late or stable cetuximab resistance (CTX-G9 to
CTX-G11). The group of cetuximab sensitive samples corresponds to the time points at which the CTX
generations present lower proliferation rates than the PBS controls (shown in Figure 1). The two groups of
samples resistant to cetuximab are represented by a progressive increase in proliferation that is more
significant than in the untreated controls (weeks 4 to 8) and by the stabilization in the proliferation rates
(weeks 9 to 11), but still higher than in the PBS generations. The expression changes at the distinct time
points during development of acquired resistance are shared among numerous genes. Although the
clustering was able to separate cetuximab from PBS treated cells, it was not possible to discriminate the
alterations related to an immediate therapeutic response (not relevant to the resistant phenotype) from

resistance-specific gene expression changes.
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Similar separation of the phases of cetuximab response is observed in clustering analysis of gene signatures
previously described in HNSCC and NSCLC cell line models resistant to cetuximab or gefitinib (anti-EGFR
small molecule), respectively [38,41] (Supplemental Fig. 4). For these genes, changes during early phases
of resistance clusters for CTX-G4 to CTX-G6 as distinct from later generations CTX G7-11. Nevertheless,
these signatures also cluster samples with gene expression changes at early phases (CTX-G1 to G3) as
distinct from samples from PBS treated generations. However, these analyses were insufficient to quantify

the relative dynamics of genes associated with immediate response to therapy or subsequent acquired

resistance.

CoGAPS analysis of gene expression distinguishes patterns of acquired resistance from immediate

therapeutic response

To define gene expression signatures for treatment effect and cetuximab resistance, we applied CoGAPS
[26] Bayesian matrix factorization algorithm to the time course gene expression data. CoGAPS decomposes
the input data into two matrices: a pattern matrix with relative sample weights along rows and an amplitude
matrix with relative gene weights along columns. Each row of the pattern matrix quantifies the extent of
transcriptional changes within the genes in the corresponding column of the amplitude matrix, and provides a
low dimensional representation of the biological process in that data. In this analysis, we identified five
CoGAPS patterns (Expression Patterns — EP) (Supplemental Fig. 5) in the time course gene expression
dataset. A gene can have high amplitude in multiple patterns, modeling multiple regulation of genes but
complicating visualization of the inferred patterns. A recently developed PatternMarker statistic defines genes
that are uniquely associated with each of these patterns. Limiting the heatmap to these genes enables

visualization of the dynamics of gene expression changes in our time course dataset (Supplemental Fig. 5).

In this heatmap of CoGAPS PatternMarker genes, we observe that only three patterns (EP1, EP2 and EP3)
distinguish the experimental conditions (cetuximab vs. PBS) (top three patterns on Supplemental Fig.5). The
other two patterns, EP4 and EP5, represent changes in gene expression from the parental cell lines and
subsequent generations or an expression pattern that is constant and corresponds to signature of highly

expressed genes (lower two patterns on Supplemental Fig. 5), respectively. We note that highly expressed
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genes associated with EP5 may also have dynamic changes due to treatment, and are filtered in the
PatternMarker analysis of all patterns in Supplemental Figure 5. EP4 represents expression changes
between treated cells and the parental cell line, which have a technical effect on gene expression. Notably,
even the exclusion the flat pattern for highly expressed genes (EP5) still retains highly expressed genes in
the signature. Retaining the technical pattern (EP4) in this calculation filters genes with expression changes
from technical artifacts in the experimental conditions. The resulting set of PatternMarker genes for EP1 —

EP3 enable visualization of the expression changes dynamics that are associated with cetuximab response

(Fig 2B) and allow the definition of a gene signature associated with that response (Supplemental Table 1).

Similar to the separation seen with clustering (Supplemental Fig. 5), the CoGAPS pattern EP1 distinguishes
cetuximab from PBS at every generation (Fig. 2B and Fig. 2C, top). These genes present an immediate
transcriptional up-regulation in response to cetuximab treatment. Gene set analysis to determine the function
of COGAPS patterns was performed with an enrichment analysis on all gene weights in the amplitude matrix
obtained from the CoGAPS analysis. By performing the analysis on gene weights and not only the
PatternMarker genes, as shown in Fig. 2B, we account for multiple regulation of genes in pathways.
Specifically, we performed gene set analysis on published resistance signatures [38,41], transcription factors
previously associated with the EGFR signaling network during cetuximab response in HNSCC [39,41], and
canonical pathways from MSigDB [37,45] (Supplemental Fig. 6; Supplemental Table 2). Gene set analysis
confirms that published resistance signatures [38,41] are significantly enriched in EP1 (Supplemental Fig. 6;
one-sided p-values of 0.002 and 0.003 for resistance gene sets COLDREN_GEFITINIB_RESISTANCE_DN
and HACAT_HRAS_CETUXIMAB_RESISTANCE, respectively). However, the transcriptional changes in this
pattern are not associated with acquired resistance to cetuximab, and even decrease modestly as resistance
developed. Further, enrichment by transcription factor AP-2alpha targets (TFAP2A; one-sided p-value of
0.05) confirms previous work indicating that transcription by AP-2alpha is induced as an early feedback
response to EGFR inhibition [39]. There are 84 significant canonical pathways from MSigDB, including
notably pathways associated with the immune system, extracellular matrix, ERBB4 signaling, and VEGF

signaling (Supplemental Table 2). Based upon these findings, we concluded that EP1 is associated with
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immediate response to cetuximab although it includes genes that are also associated with cetuximab

resistance in previous studies.

The second CoGAPS expression pattern (EP2) quantifies divergence of the cetuximab treated cells from
controls at generation CTX-G4 (Fig. 2B and Fig. 2C, middle) which is the time point that cetuximab treated
cells present significant and stable growth advantage over PBS controls (Fig. 1). Therefore, EP2 contains
gene expression signatures associated consistently with the development of cetuximab resistance. Gene set
statistics of transcription factor targets of EGFR on CoGAPS gene weights are significantly down-regulated in
this acquired resistance pattern (Supplemental Fig. 6). One striking exception is c-Myc, which trends with
acquired resistance (p-value of 0.06), consistent with the role of this transcription factor in cellular growth.
Resistance signature COLDREN_GEFITINIB_RESISTANCE_DN is significantly down-regulated in EP2 (p-
value of 0.04). There are 32 statistically significant canonical pathways associated with this pattern, including

notably telomerase, PI3K, and cell cycle pathways (Supplemental Table 2).

The third CoOGAPS expression pattern (EP3) represents a gradual repression of gene expression with
cetuximab treatment (Fig. 2B and Fig. 2C, bottom). This expression pattern trends to significant enrichment
in the COLDREN_GEFITINIB_RESISTANCE_DN resistance signature (Supplemental Fig. 6, one-sided p-
value 0.12) and down-regulated in the HACAT_HRAS_CETUXIMAB_RESISTANCE resistance signature
(Supplemental Fig. 6, one-sided p-value 0.09). This confirms that EP3 is associated with repression of gene
expression during acquired cetuximab resistance. There are also 29 statistically significant canonical
pathways associated with this pattern, including cell lineage, metabolic, WNT, and GSK3 pathways

(Supplemental Table 2).

Changes in DNA methylation inferred with CoGAPS are associated with resistance to cetuximab, but

not the immediate response to treatment observed in gene expression

To determine the timing of the methylation changes associated with acquired resistance, we also measured
DNA methylation in each cetuximab generation of SCC25 cells and PBS controls (Fig. 3A). Application of the
CoGAPS matrix factorization algorithm with the PatternMarker statistics to the methylation data reveals a
total of 3 methylation patterns (MP) (Fig. 3BC; Supplemental Table 1): gradual increase of DNA methylation
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in controls (MP1, Fig. 3B middle); rapid demethylation in CTX generations starting at CTX-G4 (MP2, Fig. 3B
bottom); and rapid increase in DNA methylation in CTX generations starting at CTX-G4 (MP3, Fig. 3B top). In
contrast to the gene expression data, there is no immediate shift in DNA methylation resulting from cetuximab
treatment. Gene set analysis was performed on canonical pathways from MSigDB (Supplemental Table 3),
and found 26 statistically significant pathways for MP1, 29 for MP2, and 27 for MP3. In contrast to gene
expression, the majority of canonical pathways is shared by the three methylation patterns and include

notably the cytokine (PID-IL8-CXCR2 and IL8-CXCR1 pathways) and FGFR (Reactome Signaling by FGFR3

mutants) signaling pathways.

Comparing the CoGAPS patterns from gene expression and DNA methylation reveals strong anti-correlation
between gene expression and DNA methylation in resistant patterns (Supplemental Fig. 7A). We observed
that the gene expression changes associated with acquired resistance occur gradually and are evident in
early generations (Fig. 2C). The DNA methylation is consistent in cetuximab treatment and control PBS in
DNA methylation patterns MP2 and MP3 during early generations. Then, rapid accumulation in DNA
methylation changes starts after generations CTX-G4 and CTX-G5 in both MP2 and MP3 (Fig. 3C),

concurrent with the onset of the observed growth advantage over the PBS control (Fig. 1).

While the patterns themselves are anti-correlated, the gene weights that define meta-pathways and are
inferred in the amplitude matrix corresponding to each pattern with CoGAPS are not (Supplemental Fig.
7B). We also observed little overlap between the PatternMarker genes from methylation patterns and gene
expression. Changes in DNA methylation are delayed relative to those of gene expression in acquired
cetuximab resistance as can be noted in Fig. 4, where direct comparison of the expression and methylation
patterns previously shown (Fig. 2C and 3C, respectively) enable visualization of the time point when changes
between cetuximab and PBS generations are significant in each pattern. These dynamics explain the
discrepancy between the genes associated with each pattern and suggest that DNA methylation stabilizes

the gene expression signatures crucial to the maintenance of acquired cetuximab resistance.

Gene expression and methylation profile of SCC25 single-cell clones with acquired cetuximab

resistance demonstrates cell heterogeneity
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The little overlap between the gene expression and DNA methylation PatternMarker genes and non-specific
DNA methylation pathways may arise due to the development of different resistant sub-clones with specific
gene signatures of acquired resistance in bulk data. In order to address this issue and to delineate whether
our presumptive drivers resulted from clonal expansion of resistant cells or from the development of new
epigenetic alterations to drive resistance, we measured DNA methylation and gene expression on a panel of
eleven isogenic stable cetuximab resistant clones (CTXR1 to CTXR11) derived from SCC25 cells in a
previous study [31]. Despite being derived from the parental SCC25 cells after chronic exposure to
cetuximab, the CTXR clones and the time course generations display widespread differences. Significantly
greater heterogeneity is observed among the CTXR clones in both expression and methylation profiles
(Supplemental Fig. 8 and 9, respectively) and cellular morphology (Supplemental Fig. 10). Fig. 5A and 5B
demonstrate that higher heterogeneity among single cell clones is also observed in the epigenetically
regulated PatternMarker genes from the CoGAPS analysis. These results suggest that different mechanisms
of resistance may arise in the same HNSCC cell line as a result of intra-heterogeneity, resulting in the

detection of a wide-range of expression signatures with higher or lower correlation with the methylation profile

depending on the size of each specific cell population.

FGFR1 over-expression and demethylation are associated with acquired cetuximab resistance in the

time course and in stable cetuximab resistant clones

To ascertain potential drivers of the stable cetuximab resistant phenotype induced by DNA methylation, we
defined genes that are PatternMarkers [26] of the DNA methylation patterns associated with stable acquired
cetuximab resistance (MP2 and MP3). We then applied correlation analysis to determine genes that were
epigenetically regulated. Specifically, we performed correlation analysis between DNA methylation and gene
expression for each of the DNA methylation PatternMarker genes (Fig. 5). This analysis identified FGFR1 as
one of the genes with significant anti-correlation between expression and methylation, suggesting potential
epigenetic regulation during cetuximab resistance acquisition. This finding is consistent with previous studies
that associate differential expression of FGFR1 with resistance to EGFR inhibitors, including cetuximab, in
HNSCC and other tumor types in vitro and in vivo [27,46—48]. However, none of these studies demonstrate

an association between FGFR1 up-regulation and hypomethylation. Given the tight temporal regulation of

19


https://doi.org/10.1101/136564
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/136564; this version posted February 27, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available
under aCC-BY-NC-ND 4.0 International license.
these genes and the previous work on FGFR1, we hypothesize that this set of genes represents epigenetic

drivers of acquired resistance.

We hypothesize that epigenetically regulated genes shared along the time course patterns and resistant
single-cell clones might implicate common mechanisms acquired during evolution of the stable resistance
phenotype. To test this assumption, we also performed correlation analysis for each of the epigenetically
regulated genes in our resistant set (Fig. 5) in the resistant single cell clones and parental cell lines. Nine of
the epigenetically regulated PatternMarker genes also have significantly anti-correlated gene expression and
DNA methylation in the stable cetuximab resistant clones (Supplemental Fig. 11). Of these, only FGFR1 is
demethylated and re-expressed in a CTXR clone relative to the parental SCC25 cell line (Fig. 6). In this
analysis, over-expression and de-methylation of FGFR1 expression occurs in only one of the resistant clones
(CTXR10). This clone is one of the fastest growing under cetuximab treatment (Supplemental Fig. 12). This
observation suggests that the bulk data from the time course captured clonal outgrowth of a cetuximab
resistant clone with similar molecular features (FGFR1 hypomethylation) to CTXR10, and that clonal

outgrowth is the dominant mechanism of resistance in our model.

Observed FGFR1 dynamics in vitro recapitulates relationships from in vivo tumor genomics and

acquired cetuximab resistance

In order to confirm that the mechanisms we found with our in vitro approach are present in HNSCC samples
pre- and post-cetuximab treatment, we further investigate the pattern of expression and methylation of
FGFR1 and EGFR in publicly available datasets. Using gene expression and DNA methylation data from The
Cancer Genome Atlas (TCGA) for 243 HPV-negative HNSCC pretreatment samples [36], we verified that the
up-regulation of EGFR and FGFR1 is not concomitant (Pearson correlation coefficient = -0.06, p value =
0.33, Fig. 7A). Additionally, the negative correlation of FGFR1 gene expression and DNA methylation status
is statistically significant (Pearson correlation r of -0.32, p value < 0.0001, Fig. 7B), suggesting that FGFR1
transcription is associated with demethylation in some HPV-negative HNSCC tumors. Since there is no
treatment information available for the TCGA dataset, we could not make assumptions related to cetuximab

resistance and whether FGFR1 methylation is a consequence of the treatment. To assess this question, we
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collected new DNA methylation data for six HNSCC tumors after cetuximab treatment from a cohort of
HNSCC tumor samples described previously [43]. All six samples have low DNA methylation values for
FGFR1 (B-values ranging from 0.04 to 0.08, with a mean of 0.05), suggesting that the gene is unmethylated
in these samples. While there was insufficient DNA to quantify DNA methylation prior to treatment in these
patients, FGFR1 gene expression increases after treatment in four of the six tumor samples (Supplemental

Figure 13). While this cohort is small, these data and TCGA suggest that FGFR1 methylation is potentially

associated with its reexpression in HNSCC tumor samples in response to cetuximab treatment.

To determine whether FGFR1 is associated with cetuximab response, we used gene expression data from
HNSCC patients before cetuximab treatment available from Bossi et al. [42]. After follow-up, the patients
were separated in short- (SPFS, median 3 months survival) or long-progression-free survival (LPFS, median
19 months survival) according to time of recurrence or metastasis development. Using this dataset, we
confirmed that EGFR expression in SPFS is significantly lower than in the LPSF group (Fig. 7C) (log fold
change -1.0, t-test p-value 0.0003). The opposite was observed for FGFR1, with overexpression in SPFS vs.
LPSF (Fig. 7D, log fold change 0.9, t-test p-value 0.003). However, Bossi et al. [42] study lacks DNA
methylation data to assess whether FGFR1 was epigenetically regulated in these samples. Most patients with
SPFS in this dataset also had intrinsic resistance to cetuximab, instead of acquired resistance studied in our
in vitro model. Nonetheless, these findings suggest that similar molecular mechanisms may contribute to both

mechanisms (intrinsic and acquired) of cetuximab resistance in HNSCC.

CoGAPS signatures of resistance and therapeutic response replicate in an independent in vitro

system and significantly stratified patient samples with long vs. short progression free survival

To further illustrate that the results are reflective of HNSCC in a general fashion, we evaluated the behavior
of the two additional cell lines and human tumors in the CoGAPS signatures using gene expression data
available from previously published studies. The HNSCC cell lines SCC1 and 1CC8 were chosen as the
cetuximab resistant 1CC8 was generated from the cetuximab sensitive SCC1 in a similar protocol used to
establish the single cell clones [30]. Data from SCC25 was also included as a reference. It is important to

note that the treatment time for the SCC1 and 1CC8 pair is on the order of hours vs. weeks, as used to
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generate the time course data. By projecting these data into the CoGAPS signatures, the relationship
between the sensitive SCC1 and resistant 1CC8 recapitulates the relationship between PBS and CTX time
course generations (respectively) in treatment driven signatures (Fig. 8A,B,E,F). Conversely, CoOGAPS
signatures related to culture specific conditions failed to produce meaningful differences between the lines
(Fig. 8C,D). Projections of the expression patterns from CoGAPS into the cell line gene expression data were
also anti-correlated with projections of the methylation signatures in these same data. Gene expression data
from HNSCC tumors from patients prior to their treatment with cetuximab described in Bossi et al [42] were
also analyzed. Projection into both the CoGAPS signatures of resistance and therapeutic response
significantly stratified long vs. short progression free survival (p-value=5.2x10° and 3.1x107®, respectively,

(Fig- 8G,H). Conversely, projection in to the CoGAPS signature associated with culturing was not significant

(p-value = 0.50, Figure 8I).

DISCUSSION

Although numerous short time course genomics studies of therapeutic response have been performed [49—
51], this is the first time that genetic and epigenetic changes were measured for a prolonged exposure (11
weeks) to a targeted therapeutic agent. Using our novel robust time course integrated analysis approach, we
characterized the molecular alterations during the development of acquired cetuximab resistance using a
HNSCC in vitro model. Cell proliferation, gene expression, and DNA methylation high throughput analysis
were performed weekly in equivalent cultures (cetuximab and PBS control generations) as resistance
developed. Over the course of 11 weeks, it was possible to compare treated (CTX) and untreated (PBS) cells
grown under the same conditions. Applying robust bioinformatics algorithms we discriminated changes
associated with acquired resistance from those related to adaptive response to the cell culturing process and
treatment. The SCC25 cell line model was the chosen since this is one of the only two HNSCC cell lines
previously used to generate isogenic cetuximab resistant cell lines [10]. However, this is the first study to our

knowledge to enable characterization of the transcriptional and epigenetic dynamics at the early phases of
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therapeutic resistance, which cannot be measured in patients due to the complexity of early detection of

resistance and obtaining repeated biopsy samples.

Determining the dynamics of the molecular alterations responsible for resistance requires integrated, time
course bioinformatics analysis to quantify these alterations. Based upon previous performance of Bayesian,
non-negative matrix factorization algorithms in inferring dynamic regulatory networks for targeted therapeutics
[49,50], we selected CoGAPS [23] for analysis of gene expression data from our time course experiment.
CoGAPS have already proven highly effective in relating gene expression changes to patterns related to
EGFR inhibition [41], perturbation of nodes in the EGFR network [39], and time course dynamics of targeted
therapeutics. In this dataset, CoGAPS analysis of gene expression data from cetuximab resistant clones
distinguished the patterns for immediate gene expression changes and patterns for long-term changes
associated with acquired resistance. Gene expression signatures for resistance to EGFR inhibitors in two
additional cell lines (one HNSCC and one NSCLC) from previous studies [38,41] were significantly enriched
in both types of COGAPS patterns. Since these previous resistance signatures were learned from case-
control studies without multiple time point measurements, we concluded that our time course data is
instrumental in discriminating the signatures of immediate therapeutic response from signatures of acquired

resistance.

In spite of the complexities of the data integration, the weight of each sample in patterns inferred by CoGAPS
reflects the dynamics of the process in each data modality. These patterns are learned completely
unsupervised from the data, and do not require any gene selection or comparison between time points
relative to any reference control. The CoGAPS analysis of the time course data demonstrates that applying
matrix factorization algorithms for genomics can reconstruct signals associated with phenotypes from time
course, omics data. The genes associated with CoGAPS patterns had weights that were non-zero in multiple
patterns. The PatternMarker statistics [26] enables further selection of the genes that are uniquely associated
with each pattern. Creating a heatmap of the genomics profiles for these genes enabled novel, heatmap-
based visualization of the temporal dynamics in the omics data. CoGAPS analysis of gene expression data
contains a flat pattern (EP5), which includes all highly expressed genes. These genes may also change in

association with the experimental conditions, albeit to a lesser degree than lowly expressed genes. Because
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the PatternMarker statistics includes genes that are uniquely associated with each inferred biological
process, these highly expressed genes would be filtered from associations with the dynamic conditions. To
include these genes in the signatures defined in this study, EP5 was filtered from the calculation of the
PatternMarker statistics. Such filtering process is not required for heatmap-based visualization and filtering of
flat patterns is recommend when defining gene signatures containing sets of genes that are most strongly
associated with dynamic changes. Patterns that reflect technical artifacts in the data, such as EP4, should be
retained in the PatternMarker analysis to limit the signatures associated with inferred processes to retain only
biologically relevant genes. We note that these PatternMarker statistics are similar to the D-scores proposed
in Zhu et al [52] and that application of this statistic may require similar filtering to retain highly expressed
genes. In the case of DNA methylation, these PatternMarker genes also include genes representing driver
alterations in resistance. The DNA methylation data did not require filtering when applying the PatternMarker
statistics since no flat pattern was detected. However, transcriptional regulation by epigenetic alterations or in
pathways involves simultaneous co-regulation of multiple genes. This co-regulation is reflected in the reuse of
genes in CoOGAPS gene weights associated with each pattern. Therefore, estimates of pathway dynamics
from transcriptional data require accounting for all genes with gene set enrichment statistics instead of the
PatternMarker statistics. Thus, we hypothesize that the PatternMarker statistics is robust for visualization and
biomarker identification. On the other hand, gene set enrichment of the CoGAPS gene weights corresponding

to each pattern and stored in the amplitude matrix are essential for characterization of functional alterations in

pathways.

Collecting treated and untreated cells to obtain paired measurements of methylation and gene expression
enabled us to evaluate whether changes in DNA methylation impact gene expression. Including a PBS
control at every time point also enabled the discrimination of the changes that result from an adaptive
response to therapy from changes that result from maintaining cells in culture. CoOGAPS analysis of DNA
methylation data denotes only changes associated with acquired resistance, in contrast to the immediate
expression changes observed with cetuximab treatment. Thus, while therapeutic response can drive massive
changes in gene expression, only the subset of expression changes associated with the development of

resistance have corresponding epigenetic signatures, suggesting that the methylation landscape is important
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for the development of acquired resistance. The CoGAPS patterns in gene expression that are associated
with acquired cetuximab resistance gradually change over the time course (EP1 and EP2). On the other
hand, the CoGAPS patterns for DNA methylation changes have a sharp transition at the generation at which
resistance is acquired (CTX-G4). These patterns (MP1 and MP2) reflect a delayed but more rapid change in
DNA methylation. The time delays between alterations in DNA methylation and gene expression pose a
further computational challenge for integrated, time course genomics analyses. The vast majority of
integrated analysis algorithms assume one-to-one mapping of genes in different data platforms or seek
common patterns or latent variables across them [53]. Such approaches would fail to capture the early
changes from cetuximab treatment that impact only gene expression; time delays between DNA methylation
and gene expression patterns; and different gene usage in each pattern. It is essential to develop new
integrated algorithms to simultaneously distinguish both patterns that are shared across data types and that
are unique to each platform. For time course data analysis, these algorithms must also model regulatory
relationships that may give rise to timing delays, such as epigenetic silencing of gene expression. However,
as we observed with the unanticipated changes in DNA methylation following and not preceding gene

expression, they must also consider delays resulting from larger phenotypic changes such as the stability of

the therapeutic resistant phenotype.

The relative timing of change in DNA methylation and gene expression is consistent with previous
observations that gene expression changes precede DNA methylation alterations in genes critical for cancer

progression. P16

and GSTP1 are tumor suppressor genes for which transcription silencing was found to
occur prior to DNA hypermethylation and chromatin changes. The temporal delay observed between
expression and methylation patterns in our time course provides transcriptome wide evidence of this
phenomenon. Specifically, that epigenetic changes are necessary to stabilize gene expression aberrant
profile and will be followed by modification into a silenced methylation state, resulting in tumor progression
[54,55]. Our integrated RNA-seq and DNA methylation analysis corroborates the fact that gene expression
changes occur earlier to epigenetic alterations and suggests that DNA methylation is essential to maintain the

changes in gene expression in this acquired cetuximab resistance model. Additional time course data tracing

other in vitro and in vivo models of HNSCC are essential to generalize the relative timing of molecular
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changes, and thus mechanisms of gene regulation, associated with acquired therapeutic resistance. Future
investigation into the chromatin remodeling mechanisms will also test whether chromatin alterations follow
the changes in expression and occur in combination with altered methylation patterns to drive epigenetic

regulation of resistance.

Besides the immediate changes in gene expression followed by the gradual methylation switch, it is also
interesting to note these effects in the proliferation rates during the 11 weeks of treatment. Initially, the
proliferation of the population of cetuximab sensitive cells is slower when compared to the untreated controls,
reflecting therapy effectiveness. Early and progressively, the cells develop molecular changes to overcome
the EGFR blockade. However, this process starts in just a small number of clones and the increase in
proliferation is still not enough to surpass the growth rate of the untreated cells. As soon as the population of
resistant cells is larger than the number of sensitive cells, the proliferation rate is now higher than in the
untreated controls. At some point, we observe the stabilization of the proliferation rates in the cetuximab
treated cells probably due to the fact the culture is now dominated by the population of resistant clones.
Although stable, proliferation rate of these resistant clones is significantly higher than that of the untreated
cells. This increased proliferation rate is consistent with the rapid increase in tumor volume observed clinically
once patients develop resistance to therapy. Tracing the increase in the population of resistant cells and their
proliferation rates in vivo require novel techniques to biopsy or image tumors at intermediate time points of

treatment.

In a recent study, gene expression changes were associated with a transient resistant phenotype present in
melanoma cell lines prior to vemurafenib administration [56]. Once the melanoma cells were exposed to the
drug, additional changes in gene expression are detected and are later accompanied by changes in
chromatin structure [56]. These findings, together with our time course observations, suggest that in the
heterogeneous tumor environment the existence of some cells expressing specific marker genes can trigger
cellular reprogramming as soon as the targeted therapy is initiated. Upon drug administration, the number of
genes with aberrant expression increases, and is followed by other epigenetic and genetic changes that will
shift the transient resistant state into a stable phenotype. This finding on acquired resistance development

could dramatically change the course of treatment with targeted therapeutic agents. The precise
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characterization of resistant gene signatures and their timing are crucial to determine the correct point during
the patients’ clinical evolution to introduce alternative therapeutic strategies. This way, secondary
interventions would start before the stable resistant phenotype is spread among the tumor cells resulting in

prolonged disease control and substantial increase in overall survival.

Among the genes we identified with the canonical relationship between expression and methylation, FGFR1
present with increased gene expression accompanied by loss of CpG methylation. FGFR1 is a receptor
tyrosine kinase that regulates downstream pathways, such as PI3K/AKT, and RAS/MAPK, that are also
regulated by EGFR [57]. Its overexpression has been previously associated with resistance to EGFR
inhibitors in other cancer types including HNSCC [27-29]. To our knowledge this is the first study showing
that epigenetic alterations are associated with changes in FGFR1 expression in HNSCC during the
development acquired cetuximab resistance. FGFR1 up-regulation combined with promoter hypomethylation
was previously described in rhabdomyosarcomas [58]. Other studies described that FGFR1 increased levels
is a common feature in different tumor types, such as glioblastoma [59] and cancers of the breast [60], lung
[61], prostate [62], bladder [63], ovarian [64], colorectal [27] and HNSCC [29,65,66]. FGFR1 is involved in
resistance mechanisms against EGFR inhibitors [27,46—48], such as cetuximab and gefitinib. Together, the
TCGA and Bossi et al. datasets analysis corroborate our findings that FGFR1 gene expression is regulated
by epigenetic changes in HNSCC. Altogether, the epigenetic alteration of FGFR1 represents a candidate
biomarker of resistance to cetuximab and further studies are critical to identify combination therapies for

HNSCC patients that develop acquired cetuximab resistance.

The increased levels of FGFRs and FGFs are believed to play a role in an autocrine mechanism in HNSCC
and NSCLC cell lines with intrinsic resistance to the EGFR inhibitor, gefitinib. Using public available gene
expression microarray datasets, Marshall et al. [47] and Marek et al. [46] verified concomitant increased
levels of FGFRs and their specific FGFs ligands. Particularly, FGFR1 and FGF2 up-regulation were observed
in the same resistant cell lines and hypothesized to be the mechanism behind resistance. This was
corroborated by functional experiments showing that cells treated with pan-FGFR inhibitor were less prone to
anchorage-independent growth. Also FGF2 silencing or FGFR1 inhibition resulted in phospho-ERK

decreased expression that was restored when FGF2 was added to the culture, suggesting that an autocrine
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FGF-FGFR pathway is one of the mechanisms of resistance to gefitinib. However, the cell lines evaluated in
both studies were intrinsically resistant to gefitinib. In our model, we induced resistance to cetuximab and
observed FGFR1 gain of expression and significant anti-correlation with the DNA methylation. We
additionally evaluated the expression of other FGFRs and FGFs that were identified by the PatternMarker
statistics. Although it is not found as a PatternMarker in our analysis pipeline, FGF2 is up-regulated in the
cetuximab generations when compared to the PBS generations as observed with FGFR1 (Supplemental
Fig.14). Thus, our data corroborates and extends this previous evidence from intrinsically resistant lines that
one of the mechanisms driving resistance to EGFR inhibition is the FGF-FGFR autocrine pathway. This

observation adds another evidence that the computational approach used in this study is robust once it is

capable of identifying mechanisms previously described in other models resistant to EGFR blockade.

Our previously developed bioinformatics algorithms for the identification of gene expression and epigenetic
patterns progression over time proved to be consistent, since they also detected canonical changes found to
be driving this mechanism among innumerous new potential candidates for acquired resistance. The
integrated computational analysis were possible due to an experimental approach developed to account for
molecular changes due to adaptive responses to the culturing system and the immediate addition of
cetuximab. Here, we present a novel integrated analysis protocol to evaluate molecular changes measured
by different high throughput techniques over a prolonged time of treatment with an FDA approved targeted
therapeutic agent. The lack of in vivo experimentation to validate our findings was compensated by the
analysis of two public datasets of HNSCC, showing that our in vitro findings were also present in patients’
samples. Our findings, together with Marshall et al. [47] and Marek et al. [46], are a strong evidence that
FGFR1 plays a crutial role in a significant proportion of cases that are resistant to cetuximab or gefitinib. The
translational implications are immense since FGFR1 inhibition can be used in combination with EGFR
blockade to retard acquired resistance or overcome intrinsic resistance. It is important to mention that FGFR
inhibitors are being currently evaluated by clinical trials and could soon become a potential new therapeutic
option for many cancer patients [57]. Future work evaluating how these combinations impact the timing of
acquired resistance are essential to determine the molecular mechanisms that shift dominant signaling

pathways in cancer and thereby drive resistance.
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The main limitation of the current study was the use of a single cell line model. SCC25 is intrinsically sensitive
to cetuximab and from this single cell line model, we generated two groups of samples (CTX and PBS
generations) over the course of 11 weeks. High throughput measurements and analysis were performed for a
total of 22 samples. The collection of multiple data points in the analysis had to be accounted for when
determining the number of cell lines to be included in the study. We nonetheless compared our data to gene
signatures from the other isogenic HNSCC resistant model 1CC8 [10], an independent resistant model to an
EGFR inhibitor in non-small cell lung cancer [38], and human tumor data from HNSCC patients prior to
cetuximab treatment [42]. Besides the number of samples, we also had to take into consideration the
potential batch and technical effects of broad cross-platform profiling. Nevertheless, the analysis of
pretreatment HNSCC patient samples from TCGA [36] and another study [42] confirmed that our finding that

FGFR1 is up-regulated and demethylated in HNSCC and associated with acquired resistance to cetuximab is

also a mechanism involved in intrinsic resistance to the targeted therapy.

The in vitro protocol for time course sampling developed in this study has the additional advantage of
aggregating potentially heterogeneous mechanisms of resistance increasing the signal of changes in any
cetuximab resistant subclone. For example, we observed demethylation and over-expression of FGFR1 in
the pooled cells, but only a single stable clone generated from the same SCC25 cell line in a previous study
(CTXR10) had upregulation of FGFR1 [31]. This finding suggests that tumor heterogeneity also plays a role
in acquired resistance to targeted therapies and enables different pathways to be used to bypass the silenced
target within the same tumor. Heterogeneity of SCC25 cetuximab-resistant clones has been observed
previously [31]. Recent single cell RNA-sequencing data of SCC25 has shown that there is considerable
transcriptional heterogeneity in this cell line prior to treatment [67]. Other cancer therapies are influenced by
heterogeneity and outgrowth of resistant clones, as was observed in single cell clones isolated from the
HNSCC cell line FaDu when treated with cisplatin [68]. These data and the intrinsic sensitivity of SCC25 to
FGFR inhibition suggests that therapeutic resistance results from random selection of a pre-existing resistant
clone. The heterogeneity in methylation profiles reflected the complexity of the resistance mechanisms that
can arise from combination therapies in heterogeneous tumors. Future work extending these protocols to in

vivo models is essential to determine the role of the microenvironment in inducing therapeutic resistance.
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Developing in vivo models with acquired therapeutic resistance presents numerous technical challenges that
must first be addressed before such time course sampling is possible [9]. Pinpointing precise molecular
predictors of therapeutic resistance will facilitate the identification of unprecedented biomarkers and reveal
the mechanisms by which to overcome acquired therapeutic resistance to most therapies used to treat

cancer.

CONCLUSIONS

By developing a novel bioinformatics pipeline for integrated time course analysis, we measured the changes
in gene expression and DNA methylation during the progression from an intrinsic cetuximab responsive state
to the acquired resistant phenotype using an in vitro HNSCC cell line model. Specifically, this pipeline
includes (1) CoGAPS analysis of each platform independently; (2) gene selection with the PatternMarker
statistics for visualization and CoGAPS gene set analysis of the CoGAPS gene profiles for pathway analysis;
(3) comparisons of patterns to known phenotypes infer their relative timing; (4) anti-correlation between DNA
methylation patterns and gene expression to infer epigenetically regulated genes; and (5) evaluation of
PatternMarker genes and projection of the CoGAPS gene profiles to learn relevance of inferred gene
signatures in new datasets. This pipeline revealed massive changes in gene expression and identified and
discriminated the different patterns associated with resistance or cell culturing conditions. This analysis
demonstrates that compressed sensing matrix factorization algorithms can identify gene signatures
associated with the dynamics of phenotypic changes from genomics fata collected over the time course. In
this case, the gene expression patterns relevant to resistance were later followed by epigenetic alterations.
Our main conclusion is that using our bioinformatics approach we are able to determine that the resistant
phenotype is driven by gene expression changes that would confer the cancer cells adaptive advantages to
the treatment with cetuximab. Finally, the integrated analysis show that the stability of the resistant state is
dependent on epigenetic changes that will make these new gene signatures heritable to expand the
phenotype to the daughter cells. The bioinformatics pipeline we developed is also significant to clinical

practice, since it pointed the time course of molecular changes associated with acquired cetuximab
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resistance and suggests that the resistant phenotype can be reversed if alternative interventions are
introduced before epigenetic alterations to the genes driving acquired resistance. Most importantly the
computational approach we describe here can be applied to time course studies using other tumor type

models and targeted therapies.
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FIGURES LEGENDS

Figure 1 — In vitro time course reflects clinical evolution of cetuximab response and
evolution of acquired resistance. Intrinsic cetuximab sensitive HNSCC cell line SCC25 was
treated with cetuximab (red) or PBS (black) for 11 generations to develop acquired resistance.
Proliferation assay (flow) of cetuximab treatment (red line) and PBS treated cells (black line)
measured cetuximab response for all SCC25 generations (bottom). Treatment response was
divided into three stages based upon the measured proliferation rates and clinical stages (top).
While proliferation of the PBS generations was stable throughout the eleven weeks, proliferation of
the CTX generations progressively increased over each week. Relative to the untreated controls,
the growth of the treated cells was initially (CTX-G1) inhibited until CTX-G3. Starting at CTX-G4, the
cells became resistant to the anti-proliferative effects of cetuximab and gained stable growth

advantages compared to the untreated controls.

Figure 2 — CoGAPS analysis identifies signatures of resistance to EGFR inhibitors and
separate resistant and control generations. (A) Heatmap of gene expression values in 11
generations of SCC25 cells treated with 100nM of cetuximab (red columns) to acquire resistance
and with PBS as control (black columns). (B) Heatmap of gene expression values for PatternMarker
genes identified with CoGAPS analysis of gene expression data from 11 generations of SCC25 cells
treated with PBS as control (black columns) and with 100nM of cetuximab (red columns) to acquire
resistance. Rows are colored according to which CoGAPS pattern the PatternMarker statistic
assigned each gene, and sorted by the PatternMarker statistic. (C) CoGAPS patterns inferred from
gene expression data over generations of PBS control (black lines) or treatment with 100nM of

cetuximab (red lines).

Figure 3 — Dynamics of DNA methylation alterations and association with gene expression
patterns in acquired cetuximab resistance. (A) Heatmap of DNA methylation values in 11
generations of SCC25 cells treated with PBS as control (black columns) and with 100nM of
cetuximab (red columns) to acquire resistance. (B) Heatmap of DNA methylation values for genes
selected by CoGAPS DNA methylation patterns analysis in the same SCC25 cetuximab and PBS
generations. (C) CoGAPS patterns inferred from DNA methylation data over generations of PBS
control (black lines) or treatment with 100nM of cetuximab (red lines).
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Figure 4 — DNA methylation and expression CoGAPS patterns demonstrate delayed onset of
epigenetic changes in acquired resistance. COGAPS patterns for gene expression (top) and DNA
methylation (bottom) of patterns associated with acquired cetuximab resistance in SCC25
cetuximab generations (red) relative to PBS generations (black). Vertical dashed line represents
time at which patterns for SCC25 generation separated from pattern for PBS generations. The
timing of methylation changes distinguishing cetuximab resistant generations was delayed in DNA
methylation relative to that of gene expression.

Figure 5 — Clonal heterogeneity does not reflect signature of epigenetically regulated genes
observed in bulk time course analysis. (A) Heatmap of gene expression values for DNA
methylation PatternMarker genes for acquired resistance that were anti-correlated between
expression and DNA methylation (Fig. 4). Data includes 11 generations of SCC25 cells treated with
PBS as control (black columns labeled PBS) and with 100nM of cetuximab (red columns labeled
cetuximab) to acquire resistance and gene expression data from independent, stable cetuximab
resistant clones in absence of cetuximab treatment (CTX resistant clones). Gene expression
heatmap on a red-yellow scale indicated in the color key. (B) Heatmap of DNA methylation data in

conditions described in (a), on a blue-yellow scale indicated in the color key.

Figure 6 — Overexpression and de-methylation of FGFR1 in acquired cetuximab resistance is
confirmed in stable SCC25 resistant clones. (A) Expression of FGFR1 gene expression relative
to DNA methylation in stable cetuximab resistant clones. (B) QRT-PCR of FGFR1 gene expression
in CTXR10 relative to the parental cell line (greater than 30 fold change). (C) Western blot
comparing FGFR1, phosphor-FGFR1, EGFR, and phospho-EGFR in CTXR10 relative to the
parental SCC25 cell line. In the resistant cell clone, increased levels of FGFR1 were associated with

increased levels of phospho-FGFR1 and decrease in EGFR and phospho-EGFR.

Figure 7 — FGFR1 gene expression and DNA methylation patterns were confirmed in
independent HNSCC tumor samples datasets. (A) Scatter plot of gene expression for EGFR and
FGFR1 in HPV-negative HNSCC samples from TCGA demonstrated that only a few HNSCC cases
present increased levels of both genes and that there is no significant correlation between the
expression of both genes concomitantly. (B) DNA methylation of FGFR1 was anti-correlated with
FGFR1 expression in HPV-negative HNSCC TCGA samples, suggesting that up-regulation of
FGFR1 might be a result of promoter hypomethylation in primary tumors. (C) EGFR expression was
significantly overexpressed in a group of HNSCC patients with long progression free survival relative

to patients with short progression free survival in gene expression data from Bossi et al. (D) FGFR1
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was significantly overexpressed in patients with short progression free survival relative to patients

with long progression free survival in this same dataset.

Figure 8 - CoGAPS gene signatures confirmed in independent in vitro and in vivo
expression data. (A-C) Box plots of sample weights for HNSCC cetuximab sensitive cell lines
SCC25, SCC1 and resistant 1CC8 in CoOGAPS expression signatures. (D-F) Box plots of sample
weights for HNSCC cetuximab sensitive cell lines SCC25, SCC1 and resistant 1CC8 in COGAPS
methylation signatures. (G-H) Box plots of tumor gene expression profiles from relapsed HNSCC
patients projected into CoGAPS expression signatures. Patient samples are stratified by length of

progression free survival.

Supplementary Figures and Tables Captions

Supplemental Figure 1 — Time course approach to induce resistance to cetuximab and
measure gene expression and DNA methylation changes. Intrinsic cetuximab sensitive HNSCC
cell line SCC25 were treated with cetuximab (red) or PBS (black) for 7 days. In the eighth day, cells
were collected and pooled from multiple replicate cultures to provide adequate amounts for total
RNA isolation for RNA-seq, genomic DNA isolation for DNA methylation array, proliferation assay
(flow), for storage (frozen) and to be plated again to continue treatment until resistance to cetuximab
developed. Each collection point was called a generation (from CTX-GO0 to CTX-G11).

Supplemental Figure 2 — Colony formation assay in matrigel for anchorage-independent growth
confirmed acquired cetuximab resistance of CTX-G10 (red) relative to the parental cell line (CTX-
GO, black) at different concentrations of cetuximab (OnM, 10nM, 100nM and 1000nM).

Supplemental Figure 3 — Heatmap and hierarchical clustering of gene expression values in 11
generations of SCC25 cells treated with PBS as control (black columns) and with 100nM of

cetuximab (red columns) to acquire resistance.

Supplemental Figure 4 — A. Heatmap of gene expression values in 11 generations of SCC25 cells

treated with 100nM of cetuximab (red columns) to acquire resistance and with PBS as control (black
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columns). Genes selected for visualization were associated with cetuximab resistance from previous
gene expression studies comparing sensitive and resistant cells without regard for timing. These
studies provided three gene sets, colored along rows of the heatmap. B. Average of z-score gene
expression values for genes in each of the resistance signatures over generations of PBS control
(black lines) or treatment with 100nM of cetuximab (red lines).

Supplemental Figure 5 — Expected gene expression values for genes in each CoGAPS pattern
inferred from gene expression data over generations of PBS control (black lines) or treatment with
100nM of cetuximab (red lines). Patterns included a pattern reflecting technical artifacts between
untreated controls at time 0 and subsequent generations (pattern 4) and a flat pattern for highly
expressed genes (pattern 5), excluded from analysis in main figures. Heatmap of gene expression
values for PatternMarker genes identified for all of these patterns. Rows were colored according to
which CoGAPS pattern the PatternMarker statistic assigned each gene, and sorted by the

PatternMarker statistic.

Supplemental Figure 6 — Heatmap of gene set analysis scores for targets of transcription factors in
the EGFR network, targets of the AP-2alpha transcription factors associated with cetuximab
response, and cetuximab resistance signatures in CoGAPS patterns. A score of 100 indicated
upregulation of the targets with a p-value of 0 and -100 downregulation with p-values of 0. Matrix
elements with a star indicated p-values below 0.05 for either up or down-regulation of the gene set.
Gene expression heatmap was colored on a red-green scale where as the gene set statistics
heatmap was colored on a blue-red scale, with values indicated in the respective color keys.

Supplemental Figure 7 — A. Heatmap of Pearson correlation coefficients between CoGAPS gene
expression and DNA methylation patterns. Row colors for expression patterns match the colors for
patterns in Figure 2,3. The column colors for methylation patterns are selected to match the color of
the corresponding expression pattern with maximum anti-correlation. B. As in A for CoGAPS gene
weights (meta-pathway values) corresponding to patterns in DNA methylation (columns) and gene

expression (rows).

Supplemental Figure 8 — Heatmap of gene expression values for 11 generations of SCC25 cells
treated with PBS as control (black columns labeled PBS) and with 100nM of cetuximab (red
columns labeled cetuximab) to acquire resistance and gene expression data from independent,
stable cetuximab resistant clones in absence of cetuximab treatment (CTX resistant clones).
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Supplemental Figure 9 — Heatmap of DNA methylation values for 11 generations of SCC25 cells
treated with PBS as control (black columns labeled PBS) and with 100nM of cetuximab (red
columns labeled cetuximab) to acquire resistance and gene expression data from independent,

stable cetuximab resistant clones in absence of cetuximab treatment (CTX resistant clones).

Supplemental Figure 10 — Brightfield microscopy images of the representative clones’ morphology

above with corresponding clone specific CoGAPS patterns of DNA methylation above.

Supplemental Figure 11 — Epigenetically regulated pattern marker genes associated with
resistance having significant anti-correlation between gene expression and DNA methylation in the

cetuximab single cell resistant clones.

Supplemental Figure 12 — Cell proliferation assay using AlamarBlue (Invitrogen, Carlsbad, CA) to
compare proliferation rates under different concentrations of cetuximab in the resistant single cell
clones (CTXR4, 7, 10 and 11) and the parental SCC25 cell line to confirm resistance when treated

with different concentrations of cetuximab.

Supplemental Figure 13 — Heatmap of FGF family genes methylation (A) and expression (B) in
time course data for treated and control samples.

Supplemental Figure 14 — Bar plot of FGFR1 expression in human tumor samples pre (black) and
post (red) treatment with cetuximab.

Supplemental Table 1 — PatternMarker genes for the expression and methylation CoGAPS
patterns and list of genes with significant anti-correlation between gene expression and methylation.

Supplemental Table 2 — P-values of MSigDB hallmark pathways for CoOGAPS Expression patterns
calculated with the permutation-based statistic in calcCoGAPSStat.

Supplemental Table 3 — P-values of MSigDB hallmark pathways for COGAPS DNA Methylation
patterns calculated with the permutation-based statistic in calcCoGAPSStat.
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FIGURE 1

A Proliferation assay
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FIGURE 2
A Clustering of gene expression data CoGAPS analysis of gene expression data
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FIGURE 3

A Clustering of DNA methylation data
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FIGURE 4

Timing of separation in CTX and PBS
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FIGURE 5

PatternMarker genes for CoOGAPS methylation patterns that are anti-correlated with expression in time course data

A Gene expression in time course and resistant clones B DNA methylation in time course and resistant clones
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FIGURE 6
A FGFR1 gene expression vs DNA methylation in resistant clones
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FIGURE 7

A FGFR1 and EGFR gene expression in HNSCC B FGFR1 gene expression and DNA methylation
and normal samples (TCGA) in HNSCC and normal samples (TCGA)
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HNSCCCellline gene expression projected into CoGAPS expression signatures
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