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Abstract

T47D_rep2 and b1913e6¢1_51720e9cf were two Hi-C samples. They were born and processed at the
same time, yet their fates were very different. The life of b1913e6¢1_51720e9cf was simple and fruitful,
while that of T47D_rep2 was full of accidents and sorrow. At the heart of these differences lies the fact
that b1913e6¢1_51720e9cf was born under a lab culture of Documentation, Automation, Traceability,
Autonomy and compliance with the FAIR Principles. Their lives are a lesson for those who wish to
embark on the journey of managing high throughput sequencing data.

Keywords: high-throughput sequencing; management and analysis best practices; bioinformatics; FAIR

Principles

The beginning

Linda worked hard to produce a Hi-C sample in T47D cells. Upon submitting the sample for sequencing,
she remembered the motto of the lab: “Make DATA more FAIR”. The team had established lab-wide
habits of Documentation, Automation, Traceability and Autonomy of experimenters. The old-timers
insisted that human interfaces are always the weak link. “Every time a project fails, someone is typing on
a keyboard... or does not bother to”. The metadata must be accurate, the code must be readable, the
data must be tidy. Technology helps, but this is mostly a matter of attitude. Not only had such attitude
improved the performance of the lab but it also paved the way to meet international quality standards as
those defined by the FAIR Principles [1].

Linda filled in the metadata on a low-key online Google Form. The lab had chosen this option among
many others because experimenters found it the easiest. Filling the form was quick: they had to click on
items from drop-down lists. As she pressed “Submit”, a shared Google Sheet was immediately updated
and she received the name b1913e6¢1_51720e9cf that uniquely identified her sample. These unnatural
names had first left her skeptical, but she could now see the benefits of that system to collect the

metadata and trace sequencing samples. She remembered the meetings with the bioinformaticians in an
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attempt to make the data more FAIR [1]. “A project is as good as its metadata; you will see the benefit
only after a year or two” they kept telling.

Meanwhile in another lab, Pedro also worked hard to produce a Hi-C sample in T47D cells. Things
had gone wrong in the past, but this time all the quality controls looked good. He proudly wrote
“T47D_rep2” on the tube and gave it to the sequencing facility. All the information he considered
relevant was in his notebook.

By a strange coincidence, both Linda and Pedro soon found a new position. They left their respective

institutes without finishing their project.

Life after turn-over

Simon was the bioinformatician in charge of analyzing T47D_rep2. He was not happy that Pedro left the
institute, because he had questions about the sample. As he meant to save the files in the shared
repository, he realized that there were already four samples called “T47D_rep2” in different directories.
Simon facepalmed and headed for the wet lab. Fortunately, Janet knew something about it: “Some of
these are my experiments; the others are Pedro’s. Despite the modest sequencing coverage, he found
interesting changes in the genome structure when treating with hormone, so he repeated the
experiments to obtain higher coverage”. Looking into Pedro’s notes, Simon saw that indeed the
sequencing quality of the raw reads was very poor, hence the newest sample “T47D_rep2”. At long last,
Simon had an idea of what “T47D_rep2” was...

Meanwhile, Paul, the bioinformatician in charge of analyzing b1913e6c¢c1_51720e9cf pulled the record
from the database where the metadata in the Google Sheet were automatically dumped. The online
spreadsheet was a convenient frontend for the experimenters, but the database offered a more
programmatic access to the metadata — plus it was an additional backup layer. On his end, Paul
launched the mapping pipeline and performed several downstream analyses that Chloe requested. He
documented the procedure in the Jupyter electronic notebook he created for the analysis. The
production code was run in Docker containers and pushed to a GitHub repository. The notebooks

helped him (or anyone else) keep track of the analyses in a readable format, while Docker virtual
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80 machines allowed him (or anyone else) to run the code on different machines without the hassle of
81 installing countless libraries. Finally, GitHub was as much a backup as a way to share his work.

82 Chloe examined the results in the online report she received from Paul and performed some
83 additional analyses with an R Shiny web application to inspect the Hi-C data processed in the lab. It had
84 taken some time to implement it, but now the benefits were clear: Paul could focus on other things than
85 running basic analyses for all the lab members and, meanwhile they were more autonomous. This last
86 analysis provided further evidence supporting their hypothesis, so Chloe was ready to polish their
87 manuscript. Each analysis performed by Paul was allocated in a directory with a traceable name, a clear
88 content structure and permanently accessible in the FTP site of the lab. Therefore, Chloe knew where to
89 find the figures and tables that she needed, updated the Methods section with the information written in
90 the report and she was even able to provide the scripts and parameter values used in the analysis as a
91 GitHub repository — she knew that editors were getting more and more serious about reproducibility.

92

93 The reviews

94 Chloe was very happy to hear their manuscript received positive comments from the reviewers. The only
95 obstacle to publication seemed to be Reviewer #3, who asked to replicate the findings in an
96 independent larger dataset that had been recently published. Tough but fair. Chloe panicked about
97 having to analyze almost 100 samples in so little time; during the project they had generated a smaller
98 number of samples and analyzed them over time, so she worried that it would take too long. Paul
99 reassured her: all she had to do was prepare the metadata for the new dataset, as Linda had done for
100 b1913e6¢1_51720e9cf. Then, a simple command would execute the pipeline for the ~100 samples as
101 effortlessly as for a single one, and all the required information would be retrieved automatically from the
102 database of metadata. Running the pipeline could be parallelized in the multiple cores available in the
103 computing cluster of the institute, so all samples were processed within a few days. In the meantime, he
104 would start preparing the submission of the data to a public repository: a simple search within the
105  structured directories allocated for the FASTQ and the contact matrix files as well as a selection of

106 entries from the database of metadata would do much of the work. Lastly, Paul checked that the
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107 manuscript complied with the FAIR Principles [1]. Findability and accessibility: the data and metadata
108 were linked by the unique sample identifier and uploaded to GEO, the code was pushed to GitHub and
109 the URL to both repositories available in the manuscript. Interoperability: the Docker containers used to
110 run the pipelines were pushed to Docker Hub. Reusability: the metadata was complete and the data
111 procedures were well documented.

112 Meanwhile, Simon was far from publication. Overall, the preliminary results of Pedro were not
113 confirmed in the new high-coverage samples. Simon scavenged the directories looking for the code
114 used to generate the plots he had seen, those that indicated a clear effect of hormone treatment on the
115  genome structure. Unfortunately, the workflow of the analysis and the specific parameter values were
116 not documented. Perhaps his predecessors had forgotten to remove PCR duplicates? And how did they
117  correct for multiple testing, if at all? After guessing where to find the older raw data, Simon processed
118 the initial dataset with his analysis pipeline but the differences between the old and new datasets
119 remained. Simon facepalmed. He knew too well that trouble was only starting...

120

121 Behind the scene

122 The human factor is the greatest hurdle to reaching the standard of the FAIR Principles [1]. People
123 change their mind, they resist change, they follow their own rules and they plan for the short term. As an
124 insurance against fiasco (Table 1), a scientific team must develop habits and tools for sharing data and
125 analyses. The main idea is to limit or control human intervention by automating every step.

126 1. The absolute priority is metadata collection. We propose a scheme for collection and file naming

127 (Figure 1a and Additional file 1), but any system will do, as long as it is (i) agreed upon and
128 understood by people using it, (i) backed up automatically, (iii) future-proof and (iv) there is someone
129 responsible for maintenance and validation of the metadata.

130 2. The second priority is to locate the data and the analyses. We propose a hierarchical organization
131 that can evolve according to future needs (Figure 1b). Again, any scheme with the properties above

132 will do.
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3. Next, the analyses must be documented. Here a flurry of tools help the analysts keep track of and
organize their work as it unfolds. The most popular are Jupyter for Python and Rstudio for R. Here
we recommend using widely accepted tool kits as this facilitates sharing between the members of
the team and the rest of the world.

4. Such tools partly address the next priority, which is reproducibility. However, today we can go one
step further with virtual machines. In this area, Docker has taken the lead and we recommend
developing ground up production scripts and exploratory analyses in Docker containers.

5. Finally, experimenters should be empowered to perform basic analyses. The most efficient teams
are made of specialists, so researchers should do what they are expert at (or become expert at what
they do). But bioinformatics is fast becoming “common knowledge”. Building interfaces for standard
analyses is a way to free bioinformaticians to focus on the most technical parts of the project, while
allowing all the members to contribute to the analyses. Many modern tools such as R Shiny can help
build such interfaces. Here, the most important is that the developer be proficient with the chosen
tool, and that they users understand how to use the interface.

Data accumulates at a rapid pace in life sciences (Additional file 2), and stories similar to that of

b1913e6¢1_51720e9cf and T47D_rep2 have taken place in many research groups (Additional files 3-5).

We propose that data-producing teams focus on Documentation, Automation, Traceability and

Autonomy as main priorities, with the purpose of being “human-proof”. The scheme implemented in our

own projects is shown in Figures 1-2, and the tools are listed in Table 2. To illustrate our

recommendations, we also provide a didactic data set (the actual sample b1913e6¢c1_51720e9cf) at the

following link: https://github.com/4DGenome/parallel_sequencing_lives.

Abbreviations

3K RGP: 3,000 Rice Genomes Project; ENCODE: Encyclopedia of DNA Elements; HTS: high-throughput
sequencing; ID: identifier; SRA: Short Read Archive; SQL: Structured Query Language; TCGA: The

Cancer Genome Atlas.
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209 Figures

210 Figure 1. A traceable life for b1913e6¢c1_51720e9cf. (a) The metadata for b1913e6¢1_51720e9cf were
211 collected via an online Google Form and stored both online (Google Sheet) and in a local SQL database.
212 A good metadata collection system should be (i) short and easy to complete, (ii) instantly accessible by
213 authorized users and (jiii) easy to parse for humans and computers. (b) b1913e6¢c1_51720e9cf was
214 sequenced along with other samples, whose raw sequencing data were located in a directory named
215  after the date of the sequencing run. There one could find the FASTQ files containing the sequencing
216 reads from b1913e6¢1_51720e9cf as well as information about their quality; no modified, subsetted or
217 merged FASTQ file was stored to ensure that analyses started off from the very same set of reads. In a
218 first step, the raw data of b1913e6¢1_51720e9cf were processed with the Hi-C analysis pipeline, which
219 created a “b1913e6¢1_51720e9cf” directory at the same level where all processed Hi-C samples were
220 located. “b1913e6¢1_51720e9cf” had multiple subdirectories that stored the files generated in each of
221 the steps of the pipeline, the logs of the programs and the integrity verifications of key files. Moreover,
222 such subdirectories accounted for variations in the analysis pipelines (e.g. genome assembly version,
223 aligner) so that data were not overwritten. In a second step, processed data from b1913e6¢1_51720e9cf
224 and other samples were used to perform the downstream analyses Chloe asked Paul. Within the
225 directory he allocated to her analyses, Paul created a new one called “2017-03-08_hic_validation” with

226 the description of the analysis along with the scripts used and the tables and figures generated.
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227 Figure 2. Automating the analysis and visualisation of b1913e6¢c1_51720e9cf data. (a) Scalability,
228 parallelization, automatic configuration and modularity of analysis pipelines. Paul launched the Hi-C
229 pipeline for hundreds of samples with a single command (gray rectangle): the submission script
230 (“*.submit.sh”) generated as many pipeline scripts as samples listed in the configuration file (“*.config”).
231 The configuration file also contained the hard-coded parameters shared by all samples, such as the
232 maximum running time Paul underestimated for some samples. Processing hundreds of samples was
233 relatively fast because (i) the pipeline script for each of the samples was submitted as an independent
234  job in the computing cluster, where it was queued (orange) and eventually executed in parallel (green),
235 and (ii) the pipeline code in “*seq.sh” was adapted for running in multiple processors. For further
236 automation, each process retrieved sample-specific information (e.g. species, read length) from the
237 metadata SQL database; in addition, metrics generated by the pipeline (e.g. running time, number of
238 aligned reads) were recorded into the database. Because the pipeline code was grouped into modules,
239 Paul was able to easily re-run the “generate_matrix” module for those samples that failed in his first
240 attempt. (b) Interactive web application to visualise Hi-C data. b1913e6¢1_51720e9cf alone generated
241 ~70 files of plots and text when passed through the Hi-C pipeline. Inspecting them might have seemed a
242 daunting task for Chloe: she did not feel comfortable navigating the cluster and lacked the skills to
243 manipulate them anyway, and even if she did, examining so many files for dozens of samples seemed
244 endless. Luckily for her, Paul had developed and interactive web application with R Shiny (Table 2) that
245 allowed her to visualise data and metadata and perform specific analyses in a user-friendly manner.

246

247
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248 Tables

249 Table 1. Challenges associated to the accelerated accumulation of high throughput sequencing
250 data. As storified with the lives of b1913e6¢1_51720e9cf and T47D_rep2, managing and analyzing the

251 growing amount of sequencing data presents several challenges.

Challenge Impact Consideration
Mislabelled raw sequencing e Underpowered analysis Check unassigned reads and
data ® Erroneous results sequencing index concordance

e | oss of data, time and resources

Poor sample description ® Prevents data processing and Metadata collection
quality control

® Incorrect analysis and results

e | ack of reproducibility

® Delays publication

Unsystematic sample naming | e Duplicated or similar names Sample identifier scheme

e Ambiguous identification

® Precludes computational
treatment

® Data disclosure

Untidy data organisation e Data cannot be found Structured and hierarchical data
® Time consumption organisation
® [nability to automate searches

Yet another analysis e Repeated manual execution of Scalability, parallelization,
analyses automatic configuration and
® Incapability to deconvolute modularity
analysis producing different
results

e Compulsory linear execution

Undocumented procedures ® Poor understanding of results Documentation
® [rreproducibility
® Hampers catching errors

Data overflow e No access to data Interactive web applications
® Size and number of files make
individual inspection inefficient

252

253

11


https://doi.org/10.1101/136358
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/136358; this version posted August 29, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC 4.0 International license.

254 Table 2. Tools used in the story.

Tool Usage Website
Docker Interoperability https://www.docker.com/
Docker Hub Repository for Docker containers https://hub.docker.com/
GEO Repository for high-throughput https://www.ncbi.nlm.nih.gov/geo/
genomics data
GitHub Version control and backup of code | https://github.com/
Google Forms and Online collection and display of https://www.google.com/forms/about/
Sheets metadata
Jupyter Notebook Document procedures and perform | http://jupyter.org/
analysis
R Shiny Deploy web applications https://shiny.rstudio.com/
R Studio Document procedures and perform | https://www.rstudio.com/
analysis

255

12
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256  Additional files

257  Additional file 1. (a) More than reads. FASTQ files may be useless if not coupled with biological,
258  technical and logistics information (metadata). Metadata are used at several stages of the high
259 throughput sequencing data. In the initial processing, for instance, the human origin of
260 b1913e6c¢c1_51720e9cf was needed to determine hg38 as the reference genome sequence to which
261 reads would be aligned, and the restriction enzyme “Dpnll” applied in the Hi-C protocol was used in the
262 mapping too. Other metadata were used for quality control (e.g. sequencing facility and/or date for
263 detecting batch effects or rescuing swapped samples using the correct index) or in the downstream
264 analysis (e.g. cell type, treatment). Furthermore, metadata is critical for data sharing and reproducibility.
265 (b) Choosing a name. Long before b1913e6¢c1_51720e9cf was generated, a scheme to name Hi-C
266 samples was envisioned. First, two sets of either biological or technical fields that unequivocally defined
267  a sequencing sample were identified. Then, for a given sample the values of the biological fields treated
268 as text are concatenated and computationally digested into a 9-mer, and the same procedure is applied
269 to the technical fields. The two 9-mers are combined to form the sample identifier (ID), as happened for
270 b1913e6¢1_51720e9cf. Despite the apparent non-informativeness of this sample ID approach, it easily
271 allows identifying biological replicates and samples generated in the same batch since they will share,
272 respectively, the first and second 9-mer. While the specific fields used to generate the sample ID can
273 vary, it is important that they unambiguously define a sequencing sample (otherwise duplicated
274 identifiers can emerge) and that they are always combined in the same order to ensure reproducibility.
275 Indeed, another advantage of this naming scheme is that the integrity of the metadata can be checked,

276 as altered metadata values will lead to a different sample ID.

13
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277 Additional file 2. Rapid accumulation and diversity of high throughput sequencing (HTS) data. The
278 past decade has witnessed a tremendous increase in sequencing throughput and applications, causing
279 uncontrolled accumulation of sequencing datasets. (a) For instance, the number of sequences deposited
280 in the Sequence Read Archive (SRA) [2], a major repository for HTS data, has skyrocketed from ~2
281 Terabases in 2009 to ~9,000 Terabases (the size of approximately 3 million human genomes) at the
282 beginning of 2017. Moreover, this is surely an underestimation of the actual amount given that only
283 sequencing experiments eventually included in a publication are deposited. Although data-intensive
284 projects like TCGA [3], 1000 Genomes Project [4], ENCODE [5] and 3K RGP [6] are top HTS data
285 generators [7], such a boost in the number of existing sequences reflects a pervasive use of HTS. (b) As
286 an example, while sequencing data for >90,000 studies have been submitted to the SRA, the top 10 and
287 100 contributors in terms of number of bases represent only a part of the archive (~30% and ~60%
288 respectively). (¢) Similarly, while ~80% of SRA data derive from Homo sapiens and Mus musculus, the
289 central organisms in large sequencing projects, the remaining 20% come from a diverse number of
290 organisms (~50,000). Data were obtained from [8] and processed as described in the didactic dataset.
291 Additional file 3. Why T47D_rep2 and b1913e6¢1_51720e9cf are not singletons.

292 Additional file 4. Number of SRA deposited bases grouped by instrument name. Data were obtained
293 from [8] and processed as described in the didactic dataset.

294 Additional file 5. Number of SRA deposited bases grouped by the submitter. For the top 25
295 contributors in terms of number of bases submitted, we searched for instances of multiple entries
296 probably referring to the same submitter (e.g. ‘ncbi’ and ‘NCBI’). Data were obtained from [8] and

297 processed as described in the didactic dataset.
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