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2 

Abstract 28 

T47D_rep2 and b1913e6c1_51720e9cf were two Hi-C samples. They were born and processed at the 29 

same time, yet their fates were very different. The life of b1913e6c1_51720e9cf was simple and fruitful, 30 

while that of T47D_rep2 was full of accidents and sorrow. At the heart of these differences lies the fact 31 

that b1913e6c1_51720e9cf was born under a lab culture of Documentation, Automation, Traceability, 32 

Autonomy and compliance with the FAIR Principles. Their lives are a lesson for those who wish to 33 

embark on the journey of managing high throughput sequencing data. 34 

Keywords: high-throughput sequencing; management and analysis best practices; bioinformatics; FAIR 35 

Principles 36 

 37 

The beginning 38 

Linda worked hard to produce a Hi-C sample in T47D cells. Upon submitting the sample for sequencing, 39 

she remembered the motto of the lab: “Make DATA more FAIR”. The team had established lab-wide 40 

habits of Documentation, Automation, Traceability and Autonomy of experimenters. The old-timers 41 

insisted that human interfaces are always the weak link. “Every time a project fails, someone is typing on 42 

a keyboard… or does not bother to”. The metadata must be accurate, the code must be readable, the 43 

data must be tidy. Technology helps, but this is mostly a matter of attitude. Not only had such attitude 44 

improved the performance of the lab but it also paved the way to meet international quality standards as 45 

those defined by the FAIR Principles [1]. 46 

Linda filled in the metadata on a low-key online Google Form. The lab had chosen this option among 47 

many others because experimenters found it the easiest. Filling the form was quick: they had to click on 48 

items from drop-down lists. As she pressed “Submit”, a shared Google Sheet was immediately updated 49 

and she received the name b1913e6c1_51720e9cf that uniquely identified her sample. These unnatural 50 

names had first left her skeptical, but she could now see the benefits of that system to collect the 51 

metadata and trace sequencing samples. She remembered the meetings with the bioinformaticians in an 52 
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attempt to make the data more FAIR [1]. “A project is as good as its metadata; you will see the benefit 53 

only after a year or two” they kept telling. 54 

Meanwhile in another lab, Pedro also worked hard to produce a Hi-C sample in T47D cells. Things 55 

had gone wrong in the past, but this time all the quality controls looked good. He proudly wrote 56 

“T47D_rep2” on the tube and gave it to the sequencing facility. All the information he considered 57 

relevant was in his notebook. 58 

By a strange coincidence, both Linda and Pedro soon found a new position. They left their respective 59 

institutes without finishing their project. 60 

 61 

Life after turn-over 62 

Simon was the bioinformatician in charge of analyzing T47D_rep2. He was not happy that Pedro left the 63 

institute, because he had questions about the sample. As he meant to save the files in the shared 64 

repository, he realized that there were already four samples called “T47D_rep2” in different directories. 65 

Simon facepalmed and headed for the wet lab. Fortunately, Janet knew something about it: “Some of 66 

these are my experiments; the others are Pedro’s. Despite the modest sequencing coverage, he found 67 

interesting changes in the genome structure when treating with hormone, so he repeated the 68 

experiments to obtain higher coverage”. Looking into Pedro’s notes, Simon saw that indeed the 69 

sequencing quality of the raw reads was very poor, hence the newest sample “T47D_rep2”. At long last, 70 

Simon had an idea of what “T47D_rep2” was… 71 

Meanwhile, Paul, the bioinformatician in charge of analyzing b1913e6c1_51720e9cf pulled the record 72 

from the database where the metadata in the Google Sheet were automatically dumped. The online 73 

spreadsheet was a convenient frontend for the experimenters, but the database offered a more 74 

programmatic access to the metadata — plus it was an additional backup layer. On his end, Paul 75 

launched the mapping pipeline and performed several downstream analyses that Chloe requested. He 76 

documented the procedure in the Jupyter electronic notebook he created for the analysis. The 77 

production code was run in Docker containers and pushed to a GitHub repository. The notebooks 78 

helped him (or anyone else) keep track of the analyses in a readable format, while Docker virtual 79 
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machines allowed him (or anyone else) to run the code on different machines without the hassle of 80 

installing countless libraries. Finally, GitHub was as much a backup as a way to share his work. 81 

Chloe examined the results in the online report she received from Paul and performed some 82 

additional analyses with an R Shiny web application to inspect the Hi-C data processed in the lab. It had 83 

taken some time to implement it, but now the benefits were clear: Paul could focus on other things than 84 

running basic analyses for all the lab members and, meanwhile they were more autonomous. This last 85 

analysis provided further evidence supporting their hypothesis, so Chloe was ready to polish their 86 

manuscript. Each analysis performed by Paul was allocated in a directory with a traceable name, a clear 87 

content structure and permanently accessible in the FTP site of the lab. Therefore, Chloe knew where to 88 

find the figures and tables that she needed, updated the Methods section with the information written in 89 

the report and she was even able to provide the scripts and parameter values used in the analysis as a 90 

GitHub repository — she knew that editors were getting more and more serious about reproducibility. 91 

 92 

The reviews 93 

Chloe was very happy to hear their manuscript received positive comments from the reviewers. The only 94 

obstacle to publication seemed to be Reviewer #3, who asked to replicate the findings in an 95 

independent larger dataset that had been recently published. Tough but fair. Chloe panicked about 96 

having to analyze almost 100 samples in so little time; during the project they had generated a smaller 97 

number of samples and analyzed them over time, so she worried that it would take too long. Paul 98 

reassured her: all she had to do was prepare the metadata for the new dataset, as Linda had done for 99 

b1913e6c1_51720e9cf. Then, a simple command would execute the pipeline for the ~100 samples as 100 

effortlessly as for a single one, and all the required information would be retrieved automatically from the 101 

database of metadata. Running the pipeline could be parallelized in the multiple cores available in the 102 

computing cluster of the institute, so all samples were processed within a few days. In the meantime, he 103 

would start preparing the submission of the data to a public repository: a simple search within the 104 

structured directories allocated for the FASTQ and the contact matrix files as well as a selection of 105 

entries from the database of metadata would do much of the work. Lastly, Paul checked that the 106 
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manuscript complied with the FAIR Principles [1]. Findability and accessibility: the data and metadata 107 

were linked by the unique sample identifier and uploaded to GEO, the code was pushed to GitHub and 108 

the URL to both repositories available in the manuscript. Interoperability: the Docker containers used to 109 

run the pipelines were pushed to Docker Hub. Reusability: the metadata was complete and the data 110 

procedures were well documented. 111 

Meanwhile, Simon was far from publication. Overall, the preliminary results of Pedro were not 112 

confirmed in the new high-coverage samples. Simon scavenged the directories looking for the code 113 

used to generate the plots he had seen, those that indicated a clear effect of hormone treatment on the 114 

genome structure. Unfortunately, the workflow of the analysis and the specific parameter values were 115 

not documented. Perhaps his predecessors had forgotten to remove PCR duplicates? And how did they 116 

correct for multiple testing, if at all? After guessing where to find the older raw data, Simon processed 117 

the initial dataset with his analysis pipeline but the differences between the old and new datasets 118 

remained. Simon facepalmed. He knew too well that trouble was only starting... 119 

 120 

Behind the scene 121 

The human factor is the greatest hurdle to reaching the standard of the FAIR Principles [1]. People 122 

change their mind, they resist change, they follow their own rules and they plan for the short term. As an 123 

insurance against fiasco (Table 1), a scientific team must develop habits and tools for sharing data and 124 

analyses. The main idea is to limit or control human intervention by automating every step. 125 

1. The absolute priority is metadata collection. We propose a scheme for collection and file naming 126 

(Figure 1a and Additional file 1), but any system will do, as long as it is (i) agreed upon and 127 

understood by people using it, (ii) backed up automatically, (iii) future-proof and (iv) there is someone 128 

responsible for maintenance and validation of the metadata. 129 

2. The second priority is to locate the data and the analyses. We propose a hierarchical organization 130 

that can evolve according to future needs (Figure 1b). Again, any scheme with the properties above 131 

will do. 132 
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3. Next, the analyses must be documented. Here a flurry of tools help the analysts keep track of and 133 

organize their work as it unfolds. The most popular are Jupyter for Python and Rstudio for R. Here 134 

we recommend using widely accepted tool kits as this facilitates sharing between the members of 135 

the team and the rest of the world.  136 

4. Such tools partly address the next priority, which is reproducibility. However, today we can go one 137 

step further with virtual machines. In this area, Docker has taken the lead and we recommend 138 

developing ground up production scripts and exploratory analyses in Docker containers.  139 

5. Finally, experimenters should be empowered to perform basic analyses. The most efficient teams 140 

are made of specialists, so researchers should do what they are expert at (or become expert at what 141 

they do). But bioinformatics is fast becoming “common knowledge”. Building interfaces for standard 142 

analyses is a way to free bioinformaticians to focus on the most technical parts of the project, while 143 

allowing all the members to contribute to the analyses. Many modern tools such as R Shiny can help 144 

build such interfaces. Here, the most important is that the developer be proficient with the chosen 145 

tool, and that they users understand how to use the interface. 146 

Data accumulates at a rapid pace in life sciences (Additional file 2), and stories similar to that of 147 

b1913e6c1_51720e9cf and T47D_rep2 have taken place in many research groups (Additional files 3-5). 148 

We propose that data-producing teams focus on Documentation, Automation, Traceability and 149 

Autonomy as main priorities, with the purpose of being “human-proof”. The scheme implemented in our 150 

own projects is shown in Figures 1-2, and the tools are listed in Table 2. To illustrate our 151 

recommendations, we also provide a didactic data set (the actual sample b1913e6c1_51720e9cf) at the 152 

following link: https://github.com/4DGenome/parallel_sequencing_lives. 153 

 154 

Abbreviations 155 

3K RGP: 3,000 Rice Genomes Project; ENCODE: Encyclopedia of DNA Elements; HTS: high-throughput 156 

sequencing; ID: identifier; SRA: Short Read Archive; SQL: Structured Query Language; TCGA: The 157 

Cancer Genome Atlas. 158 
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Figures 209 

Figure 1. A traceable life for b1913e6c1_51720e9cf. (a) The metadata for b1913e6c1_51720e9cf were 210 

collected via an online Google Form and stored both online (Google Sheet) and in a local SQL database. 211 

A good metadata collection system should be (i) short and easy to complete, (ii) instantly accessible by 212 

authorized users and (iii) easy to parse for humans and computers. (b) b1913e6c1_51720e9cf was 213 

sequenced along with other samples, whose raw sequencing data were located in a directory named 214 

after the date of the sequencing run. There one could find the FASTQ files containing the sequencing 215 

reads from b1913e6c1_51720e9cf as well as information about their quality; no modified, subsetted or 216 

merged FASTQ file was stored to ensure that analyses started off from the very same set of reads. In a 217 

first step, the raw data of b1913e6c1_51720e9cf were processed with the Hi-C analysis pipeline, which 218 

created a “b1913e6c1_51720e9cf” directory at the same level where all processed Hi-C samples were 219 

located. “b1913e6c1_51720e9cf” had multiple subdirectories that stored the files generated in each of 220 

the steps of the pipeline, the logs of the programs and the integrity verifications of key files. Moreover, 221 

such subdirectories accounted for variations in the analysis pipelines (e.g. genome assembly version, 222 

aligner) so that data were not overwritten. In a second step, processed data from b1913e6c1_51720e9cf 223 

and other samples were used to perform the downstream analyses Chloe asked Paul. Within the 224 

directory he allocated to her analyses, Paul created a new one called “2017-03-08_hic_validation” with 225 

the description of the analysis along with the scripts used and the tables and figures generated. 226 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2017. ; https://doi.org/10.1101/136358doi: bioRxiv preprint 

https://doi.org/10.1101/136358
http://creativecommons.org/licenses/by-nc/4.0/


10 

Figure 2. Automating the analysis and visualisation of b1913e6c1_51720e9cf data. (a) Scalability, 227 

parallelization, automatic configuration and modularity of analysis pipelines. Paul launched the Hi-C 228 

pipeline for hundreds of samples with a single command (gray rectangle): the submission script 229 

(“*.submit.sh”) generated as many pipeline scripts as samples listed in the configuration file (“*.config”). 230 

The configuration file also contained the hard-coded parameters shared by all samples, such as the 231 

maximum running time Paul underestimated for some samples. Processing hundreds of samples was 232 

relatively fast because (i) the pipeline script for each of the samples was submitted as an independent 233 

job in the computing cluster, where it was queued (orange) and eventually executed in parallel (green), 234 

and (ii) the pipeline code in “*seq.sh” was adapted for running in multiple processors. For further 235 

automation, each process retrieved sample-specific information (e.g. species, read length) from the 236 

metadata SQL database; in addition, metrics generated by the pipeline (e.g. running time, number of 237 

aligned reads) were recorded into the database. Because the pipeline code was grouped into modules, 238 

Paul was able to easily re-run the “generate_matrix” module for those samples that failed in his first 239 

attempt. (b) Interactive web application to visualise Hi-C data. b1913e6c1_51720e9cf alone generated 240 

~70 files of plots and text when passed through the Hi-C pipeline. Inspecting them might have seemed a 241 

daunting task for Chloe: she did not feel comfortable navigating the cluster and lacked the skills to 242 

manipulate them anyway, and even if she did, examining so many files for dozens of samples seemed 243 

endless. Luckily for her, Paul had developed and interactive web application with R Shiny (Table 2) that 244 

allowed her to visualise data and metadata and perform specific analyses in a user-friendly manner. 245 

 246 

  247 
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Tables 248 

Table 1. Challenges associated to the accelerated accumulation of high throughput sequencing 249 

data. As storified with the lives of b1913e6c1_51720e9cf and T47D_rep2, managing and analyzing the 250 

growing amount of sequencing data presents several challenges.  251 

Challenge Impact Consideration 

Mislabelled raw sequencing 
data 

● Underpowered analysis 
● Erroneous results 
● Loss of data, time and resources 

Check unassigned reads and 
sequencing index concordance 

Poor sample description ● Prevents data processing and 
quality control 

● Incorrect analysis and results 
● Lack of reproducibility 
● Delays publication 

Metadata collection 

Unsystematic sample naming ● Duplicated or similar names 
● Ambiguous identification 
● Precludes computational 

treatment 
● Data disclosure 

Sample identifier scheme 

Untidy data organisation ● Data cannot be found 
● Time consumption 
● Inability to automate searches 

Structured and hierarchical data 
organisation 

Yet another analysis ● Repeated manual execution of 
analyses 

● Incapability to deconvolute 
analysis producing different 
results 

● Compulsory linear execution 

Scalability, parallelization, 
automatic configuration and 
modularity 

Undocumented procedures ● Poor understanding of results 
● Irreproducibility 
● Hampers catching errors 

Documentation 

Data overflow ● No access to data 
● Size and number of files make 

individual inspection inefficient 

Interactive web applications 

 252 

  253 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2017. ; https://doi.org/10.1101/136358doi: bioRxiv preprint 

https://doi.org/10.1101/136358
http://creativecommons.org/licenses/by-nc/4.0/


12 

Table 2. Tools used in the story. 254 

Tool Usage Website 

Docker Interoperability https://www.docker.com/  

Docker Hub Repository for Docker containers https://hub.docker.com/  

GEO Repository for high-throughput 
genomics data 

https://www.ncbi.nlm.nih.gov/geo/  

GitHub Version control and backup of code https://github.com/ 

Google Forms and 
Sheets 

Online collection and display of 
metadata 

https://www.google.com/forms/about/ 

Jupyter Notebook Document procedures and perform 
analysis 

http://jupyter.org/ 

R Shiny Deploy web applications https://shiny.rstudio.com/  

R Studio Document procedures and perform 
analysis 

https://www.rstudio.com/  

 255 
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Additional files 256 

Additional file 1. (a) More than reads. FASTQ files may be useless if not coupled with biological, 257 

technical and logistics information (metadata). Metadata are used at several stages of the high 258 

throughput sequencing data. In the initial processing, for instance, the human origin of 259 

b1913e6c1_51720e9cf was needed to determine hg38 as the reference genome sequence to which 260 

reads would be aligned, and the restriction enzyme “DpnII” applied in the Hi-C protocol was used in the 261 

mapping too. Other metadata were used for quality control (e.g. sequencing facility and/or date for 262 

detecting batch effects or rescuing swapped samples using the correct index) or in the downstream 263 

analysis (e.g. cell type, treatment). Furthermore, metadata is critical for data sharing and reproducibility. 264 

(b) Choosing a name. Long before b1913e6c1_51720e9cf was generated, a scheme to name Hi-C 265 

samples was envisioned. First, two sets of either biological or technical fields that unequivocally defined 266 

a sequencing sample were identified. Then, for a given sample the values of the biological fields treated 267 

as text are concatenated and computationally digested into a 9-mer, and the same procedure is applied 268 

to the technical fields. The two 9-mers are combined to form the sample identifier (ID), as happened for 269 

b1913e6c1_51720e9cf. Despite the apparent non-informativeness of this sample ID approach, it easily 270 

allows identifying biological replicates and samples generated in the same batch since they will share, 271 

respectively, the first and second 9-mer. While the specific fields used to generate the sample ID can 272 

vary, it is important that they unambiguously define a sequencing sample (otherwise duplicated 273 

identifiers can emerge) and that they are always combined in the same order to ensure reproducibility. 274 

Indeed, another advantage of this naming scheme is that the integrity of the metadata can be checked, 275 

as altered metadata values will lead to a different sample ID. 276 
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Additional file 2. Rapid accumulation and diversity of high throughput sequencing (HTS) data. The 277 

past decade has witnessed a tremendous increase in sequencing throughput and applications, causing 278 

uncontrolled accumulation of sequencing datasets. (a) For instance, the number of sequences deposited 279 

in the Sequence Read Archive (SRA) [2], a major repository for HTS data, has skyrocketed from ~2 280 

Terabases in 2009 to ~9,000 Terabases (the size of approximately 3 million human genomes) at the 281 

beginning of 2017. Moreover, this is surely an underestimation of the actual amount given that only 282 

sequencing experiments eventually included in a publication are deposited. Although data-intensive 283 

projects like TCGA [3], 1000 Genomes Project [4], ENCODE [5] and 3K RGP [6] are top HTS data 284 

generators [7], such a boost in the number of existing sequences reflects a pervasive use of HTS. (b) As 285 

an example, while sequencing data for >90,000 studies have been submitted to the SRA, the top 10 and 286 

100 contributors in terms of number of bases represent only a part of the archive (~30% and ~60% 287 

respectively). (c) Similarly, while ~80% of SRA data derive from Homo sapiens and Mus musculus, the 288 

central organisms in large sequencing projects, the remaining 20% come from a diverse number of 289 

organisms (~50,000). Data were obtained from [8] and processed as described in the didactic dataset. 290 

Additional file 3. Why T47D_rep2 and b1913e6c1_51720e9cf are not singletons. 291 

Additional file 4. Number of SRA deposited bases grouped by instrument name. Data were obtained 292 

from [8] and processed as described in the didactic dataset. 293 

Additional file 5. Number of SRA deposited bases grouped by the submitter. For the top 25 294 

contributors in terms of number of bases submitted, we searched for instances of multiple entries 295 

probably referring to the same submitter (e.g. ‘ncbi’ and ‘NCBI’). Data were obtained from [8] and 296 

processed as described in the didactic dataset. 297 
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Timestamp SAMPLE_ID CELL_TYPE TREATMENT TREATMENT_TIME
08/10/15 14:13 dc3a1e069_51720e9cf T47D Untreated 0
08/10/15 14:35 b1913e6c1_51720e9cf T47D Progesterone 60
08/10/15 14:38 dc3a1e069_ec92aa0bb T47D Untreated 0
2/22/16 12:35:00 b7fa2d8db_bfac48760 B-cell Untreated 0

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2017. ; https://doi.org/10.1101/136358doi: bioRxiv preprint 

https://doi.org/10.1101/136358
http://creativecommons.org/licenses/by-nc/4.0/


Fig. 2

app.R 

*.config 
samples & 
parameters 

[full]

*submit.sh 

*seq.sh 
pipeline code 

[module 1] 
[module 2] 
[module 3]

SQL 
database

*.sh 

pipeline script 
b1913e6c…

*.sh 

pipeline script 
sample A1

*.sh 

pipeline script 
sample N

…
> *submit.sh *.config

sample A1 
b1913e6c…
sample A3 

…

Processed 
data

sample B1 
sample B2 
sample B3 

…
Shiny 
server

b1913e6c1_51720e9cf

a

b

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 29, 2017. ; https://doi.org/10.1101/136358doi: bioRxiv preprint 

https://doi.org/10.1101/136358
http://creativecommons.org/licenses/by-nc/4.0/

