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Summary 
 
Macroscopic cortical networks are important for cognitive function, but it remains 
challenging to construct anatomically plausible individual structural connectomes from 
human neuroimaging. We introduce a new technique for cortical network mapping, 
based on inter-regional similarity of multiple morphometric parameters measured using 
multimodal MRI. In three cohorts (two human, one macaque), we find that the resulting 
morphometric similarity networks (MSNs) have a complex topological organisation 
comprising modules and high-degree hubs. Human MSN modules recapitulate known 
cortical cytoarchitectonic divisions, and greater inter-regional morphometric similarity 
was associated with stronger inter-regional co-expression of genes enriched for 
neuronal terms. Comparing macaque MSNs to tract-tracing data confirmed that 
morphometric similarity was related to axonal connectivity. Finally, variation in the 
degree of human MSN nodes accounted for about 40% of between-subject variability in 
IQ. Morphometric similarity mapping provides a novel, robust and biologically plausible 
approach to understanding how human cortical networks underpin individual differences 
in psychological functions. 
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Introduction 
 
Despite decades of neuroscience research using magnetic resonance imaging (MRI), 
there is still a lack of validated and widely-accessible tools for mapping the large-scale 
network architecture of anatomically connected regions in an individual human brain. 
There are currently two standard approaches available for imaging anatomical 
connectivity in humans: tractography from diffusion-weighted imaging (DWI) and 
structural covariance network (SCN) analysis. 
  
Diffusion-weighted tractography seeks to reconstruct the trajectory of axonal tracts from 
the principal directions of the diffusion of water molecules, which tend to move in 
parallel to bundles of nerve fibres. This technique applies to data collected from a single 
participant and is a powerful tool for elucidating localised patterns of anatomical 
connectivity. However, it remains challenging to use tractography to map connectivity 
between all brain regions because long distance projections (e.g., between bilaterally 
homologous areas of cortex via the corpus callosum) are systematically under-
recovered (Dauguet et al., 2007; Donahue et al., 2016). Moreover, there is growing 
concern that the statistical analysis of diffusion-weighted data is compromised by head 
movement (Walker et al., 2012) and by a large number of false positive connections 
(Maier-Hein et al., 2016; Thomas et al., 2014). Future improvements seem likely to 
depend, in part, on advances in scanner design and image acquisition methods, which 
may become increasingly the domain of a few highly-specialised centres (Lerch et al., 
2017).  
  
Structural covariance analysis uses simpler measurements to reconstruct whole brain 
networks; but the neurobiological interpretation of structural covariance networks (SCN) 
is problematic and, crucially, this method typically depends on MRI data collected from 
a large number of participants. The basic idea of structural covariance analysis is 
simple: a single morphometric feature, like cortical thickness, is measured at each 
region in multiple images. Then the covariance (usually, in fact, the correlation) between 
regional estimates of cortical thickness is estimated for each possible pair of regions, 
resulting in a single SCN for the whole group (Alexander-Bloch et al., 2013a). Despite 
the existence of methods for generating SCNs in individual subjects (Batalle et al., 
2013; Kong et al., 2015; Li et al., 2017; Tijms et al., 2012), these techniques have been 
restricted to the use of morphometric variables available through standard structural T1-
weighted (T1w) MRI sequences.  
  
Here, we explore a different approach to human cortical network mapping which 
leverages the growing capacity to extract multiple different anatomical indices across 
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multiple imaging modalities (Lerch et al., 2017). Rather than estimating the inter-
regional correlation of a single macro-structural variable (like cortical thickness or 
volume) measured in multiple individuals (structural covariance analysis), we estimated 
the inter-regional correlation of multiple, macro- and micro-structural multimodal MRI 
variables in a single individual (morphometric similarity mapping). This novel strategy 
integrates three complementary strands of research for the first time. 
  
First, there is histological evidence from non-human primates that axo-synaptic 
connectivity is stronger between micro-structurally similar cortical regions than between 
cytoarchitectonically distinct areas (Barbas, 2015; Goulas et al., 2017; Goulas et al., 
2016). Second, there is encouraging evidence that conventional MRI sequences can 
serve as proxy markers of cortical microstructure. Cortical MRI metrics – such as 
magnetization transfer (MT), a marker of myelination - show spatial gradients in humans 
(Glasser et al., 2016) which align closely with known histological gradients in non-
human primates (Wagstyl et al., 2015). Third, there is emerging evidence that structural 
properties of the human cortex are more precisely estimated by the combined analysis 
of more than one MRI morphometric index at each region (e.g. cortical thickness and 
sulcal depth (Vandekar et al., 2016), cortical thickness and myelination (Glasser and 
Van Essen, 2011; Whitaker et al., 2016), or cortical thickness and grey matter volume 
(Sabuncu et al., 2016)). On this basis, we predicted that morphometric similarity 
mapping with multiple MRI morphometric indices could provide a new way of estimating 
the linked patterns of inter-regional histological similarity and anatomical connectivity 
within an individual human brain. 
 
First we demonstrated the feasibility of morphometric similarity mapping and network 
analysis of multi-parameter MRI data, by estimating individual human brain structural 
network properties for each member of a cohort of healthy young people (N=296). Then 
we assessed the robustness of the methods and results to variation in data acquisition 
and pre-processing parameters; and assessed replicability by analysis of a second, 
independent human MRI dataset (N=124). To test the biological validity of human MRI-
based morphometric similarity mapping, we focused on two hypotheses: i) that the 
edges between nodes in each morphometric similarity network (MSN) linked cortical 
areas of the same cytoarchitectonic class; and ii) that MSN edges linked nodes with 
high levels of co-expression of genes specialised for neuronal functions.  We used MRI 
and tract-tracing data of the macaque cortex to demonstrate the generalisability of the 
methods to non-human species and to test a third key biological hypothesis: (iii) that 
MSN edges link nodes that are directly, anatomically connected by an axonal projection 
from one cortical area to another. Finally, on the basis of these critical foundational 
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steps, we tested a fourth hypothesis: iv) that inter-individual differences in human 
morphometric similarity networks are related to differences in intelligence (IQ). 
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Results 
 
Morphometric similarity matrices 
 
To investigate the feasibility of morphometric similarity mapping, we first analysed MRI 
data on 10 morphometric variables measured at each of 308 cortical regions in a 
primary cohort of 296 healthy young adults. These data were collected as part of the 
Neuroscience in Psychiatry Network (NSPN) collaboration between the University of 
Cambridge and University College London (see Methods).  
 
The morphometric similarity analysis pipeline (Figure 1) transformed each individual’s 
set of multimodal MRI feature maps into a morphometric similarity matrix of pair-wise 
inter-regional Pearson correlations of morphometric feature vectors. The strength of 
association (morphometric similarity) between regions decayed exponentially as a 
function of increasing anatomical (Euclidean) distance between areas (median R2

Adjusted
 

across 296 subjects = 0.05, range = 0.02-0.13, σ = 0.02, all P < 0.001). This was also 
the case in the sample mean MSN (R2

Adjusted = 0.15, P < 0.001) (see Figure S4A). 
  
For each individual, we also estimated the morphometric similarity of each region to the 
rest of the regions in the brain, simply by averaging the edge weights connecting it to all 
other nodes (i.e., the average of the off-diagonal elements of a row or column in the 
morphometric similarity matrix). Consistently across individuals, the regions with 
morphometric profiles more similar, on average, to all other regions (i.e., high nodal 
similarity values) were located in frontal and temporal association cortex; whereas 
regions with more distinctive morphometric profiles compared, on average, to other 
regions (i.e., low nodal similarity) were located in occipital cortex (Figure 2A; Figure 
S1). Nodal similarity in the sample mean MSN was also patterned anatomically as in 
typical individual MSNs (Figure 2A; Figure S1), with highest nodal similarity 
concentrated in frontal and temporal cortex (Figure 2B). 
 
Morphometric similarity networks 
  
We thresholded the individual morphometric similarity matrices to generate binary 
graphs or morphometric similarity networks (MSNs). To characterise the topology of 
these MSNs, we calculated graph metrics at a range of connection densities (10-40% in 
5% increments) generated by thresholding the morphometric similarity matrices to 
include varying percentages of the most strongly positive edge weights or pair-wise 
inter-regional correlations (Figure S3A). At all connection densities, the individual 
MSNs consistently demonstrated a repertoire of complex topological features shared by 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2017. ; https://doi.org/10.1101/135855doi: bioRxiv preprint 

https://doi.org/10.1101/135855
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

diverse naturally-occurring networks (Barabási, 2016; Fornito et al., 2016) including: a 
fat-tailed (i.e., right- or positive-skewed) degree distribution, implying the existence of 
hub nodes; small-worldness (near-random path length or global efficiency combined 
with greater-than-random clustering); and a community structure comprising  
hierarchical modules and a rich club (Figure 2). 
 
We next resolved the modular community structure of MSNs by partitioning the sample 
mean MSN from coarse- to fine-grained scales defined by the resolution parameter (γ) 
of a consensus (1000 runs) Louvain modularity algorithm (Lancichinetti and Fortunato, 
2012) (Figure 2C; Figure S2C). At all scales of the modular hierarchy, the community 
structure consists of bilaterally symmetric and spatially contiguous modules tiling the 
cortex in a pattern that respects macro-structural features of the cortical sheet (Figure 
2C). For example, the 6-module solution subdivides the temporal module of the 4-
module solution into anterior, middle, and superior (encompassing the insula) portions 
of temporal cortex (Figure S2C). These results are qualitatively consistent with a prior 
study of the hierarchical patterning of the heritability of cortical surface area (Chen et al., 
2012), suggesting that the topological community structure of morphometric similarity 
could arise, at least in part, from genetic contributions to regional brain morphology.   
 
We also demonstrated another aspect of network community structure – a 
core/periphery organisation comprising a core of highly interconnected hub nodes (a 
rich club). The rich club of the sample mean MSN included hubs that were distributed 
across all network modules (Figure 2C) as has been previously reported for DWI 
networks (van den Heuvel and Sporns, 2011). Individual MSNs typically demonstrated a 
similar community structure (modules and rich club) to that of the sample mean MSN 
(Figure S2D).  
 
Consistency, robustness and replicability of MSNs 
 
First, we established that individual MSNs show moderate-high consistency with the 
group average MSN, both in terms of (i) the average correlation between individual 
MSN edge weights and the sample mean MSN edge weights (average r = 0.60; SD = 
0.05; all P < 0.001), and (ii) the average correlation between individual MSN nodal 
similarities and the sample mean MSN nodal similarities (average r = 0.66; SD = 0.10; 
all P < 0.001) (see Figure 2; Figure S1). 
 
Second, we quantified the robustness of MSNs to methodological variations including (i) 
a reduction in the number of morphometric features available for analysis, i.e. using only 
5 T1-weighted features rather than all 10 features potentially estimated in the NSPN 
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cohort; and (ii) construction of MSNs using MRI data collected at lower magnetic field 
strength (1.5T) in a second, independent cohort and pre-processed using different 
segmentation and parcellation tools.  
 
We re-analysed the NSPN cohort of 296 participants using a reduced set of 5 
morphometric features that can be derived from any T1-weighted MRI scan: cortical 
thickness (CT), surface area (SA), grey matter volume (GM), mean curvature (MC), and 
intrinsic (Gaussian) curvature (IC). We found that the 5-feature MSNs were very similar 
to the 10-feature MSNs: for example, the sample mean edge weights and nodal 
similarities were strongly correlated between the 5-feature and 10-feature MSNs (r = 
0.68, P < 0.001 and r = 0.91, P < 0.001, respectively). However, the standard deviation 
for edge weights and nodal similarity was greater in the 5-feature MSNs (0.506 and 
0.028, respectively) than the 10-feature MSNs (0.346 and 0.016, respectively) (Figure 
S4B), indicating greater precision of MSN estimation based on a larger number of 
parameters or features per regional node.   
 
To test replicability, we used identical methods to construct MSNs from T1-weighted 
MRI data collected at 1.5T field strength from an independent cohort  of 124 healthy 
participants (National Institutes of Health (NIH) MRI Study of Normal Brain Development 
(Evans and Brain Development Cooperative, 2006; Giedd et al., 1999; Giedd et al., 
2015). As shown in Figure S2 and Figure S3, the 5-feature NIH MSNs had comparably 
complex topology to the 5- and 10-feature MSNs from the NSPN cohort (i.e., small-
worldness, hubs, modularity and a rich club). The standard deviation of edge-wise and 
nodal similarity statistics in the NIH 5-feature MSNs (0.431 and 0.028, respectively) was 
approximately the same as the NSPN 5-feature MSNs but greater than the standard 
deviations in the 10-feature MSNs (Figure S4B).  
 
Morphometric similarity and cortical cytoarchitecture 
 
To test the first biological hypothesis that regions connected by an edge in a 
morphometric similarity network are more likely to belong to the same cytoarchitectonic 
class, we compared the anatomical distribution of network edges to the histological 
classification of cortical areas (Solari and Stoner, 2011; Vertes et al., 2016; von 
Economo and Koskinas, 1925; Whitaker et al., 2016). Our adapted cytoarchitectonic 
parcellation of human cortex (Vertes et al., 2016; Whitaker et al., 2016) defines 7 
spatially contiguous and bilaterally symmetric cortical classes that are microscopically 
differentiated by cortical lamination patterns (Figure 3A). At a nodal level of analysis, 
we explored the distribution of nodal similarity in the individual MSNs in relation to the 
cytoarchitectonic classification of each node. Across subjects, there were significant 
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differences in mean nodal similarity between classes (repeated-measures ANOVA, F(1, 
2077) = 796.5, P < 0.001). Cytoarchitectonic classes 1, 2 and 3 (corresponding to motor 
and association cortices) comprised cortical areas with higher nodal similarity and 
degree than cytoarchitectonic classes 4, 5 and 6 (corresponding to primary and 
secondary sensory cortical areas) (Figure 3A). These results confirm that MSN hubs 
are predominantly located in motor and association cortical areas. 
 
The cytoarchitectonic parcellation of cortex also provided a benchmark for triangulating 
the comparison between MSNs and two other MRI-based networks measured in the 
same NSPN cohort: the structural covariance network (SCN) based on inter-regional 
correlations of a single feature (cortical thickness) measured across all 296 participants, 
and the sample mean DWI network based on tractographic reconstruction of white 
matter connections between cortical areas (weighted by mean diffusivity) in each 
participant (see Methods). To compare MSN, DWI and SCN results, we constructed a 
series of sparsely connected graphs (with connection density ranging from 0.5% to 5% 
in 0.5% increments) that represented the most strongly connected edges in each of the 
MRI networks and calculated the percentage of edges that linked areas in the same 
cytoarchitectonic class. For the most sparsely connected MSN (0.5% density), more 
than 90% of edges connected areas in the same class and this declined monotonically 
as a function of increasing density so that about 60% of edges connected areas in the 
same class in the MSN at 5% density. The SCN and DWI networks demonstrated 
similar trends but the percentage of intra-class connectivity was consistently lower for 
both these networks than for the MSN across all connection densities (Friedman χ2(2) = 
40, P < 0.001) (Figure 3B). Only about 60% of edges in the DWI network connected 
areas of the same cytoarchitectonic class, even at the sparsest connection density, 
which was reflected in the relative failure of the DWI tractography to recover long 
distance connections between bilaterally symmetric areas belonging to the same class 
(Figure 3C). These comparative analyses demonstrate that morphometric similarity 
provided a closer approximation to the histological similarity between two cortical 
regions than analysis of either cortical thickness covariance or DWI-measures of white 
matter connectivity. 
 
Morphometric Similarity and Cortical Gene Co-Expression 
 
We tested the second biological hypothesis, that MSN edges link areas with high levels 
of gene co-expression, using two gene sets: i) the approximately complete human 
genome (20,737 genes) and ii) a much smaller subset of 19 HSE (human supragranular 
enriched) genes that are known to be specifically expressed in the supragranular layers 
(cortical lamina II and III) of human cortex (Zeng et al., 2012) that are characteristic of 
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the cytoarchitectonic classes (1-3) with higher nodal similarity scores (Figure S5A). We 
mapped the whole genome transcriptional data on 6 adult human post-mortem brains 
(Hawrylycz et al., 2012) into the same parcellation scheme that was used to define the 
308 nodes of the MSNs (Whitaker and Vértes et al., 2016; Vértes et al., 2016) 
(Methods). Then we could estimate the inter-regional co-expression (Pearson 
correlation) of gene transcriptional profiles for each possible pair of nodes in the same 
anatomical frame of reference as the MSNs.  
 
There was a significant positive correlation between the edge weights of the sample 
mean MSN and inter-regional co-expression of the whole-genome (r = 0.33, P < 0.001), 
meaning that cortical areas with high morphometric similarity also tended to have high 
transcriptional similarity. This correlation was attenuated, but remained statistically 
significant (r = 0.19, P < 0.001) after accounting for shared distance effects on inter-
regional morphometric and transcriptomic similarity (see Methods). 
 
To prioritise genes by the strength of their contribution to the observed association 
between morphometric similarity and whole genome co-expression, we used a leave-
one-out procedure whereby the correlation between MSN edge weights and gene co-
expression was iteratively re-estimated after systematically removing each one of the 
genes in turn. This algorithm allowed us to rank all 20,737 genes in terms of the 
difference their exclusion from the analysis made to the estimated correlation between 
morphometric similarity and gene co-expression (see Supplemental Information for 
the list of genes and their rankings). Gene ontology (GO) enrichment analysis of this 
gene list revealed that high-ranking genes – which made a stronger contribution to the 
association between morphometric and transcriptomic similarity - were enriched for 
annotations related to neuronal structure and signalling (Figure S5C). The HSE gene 
list of interest a priori was also high-ranking, with a median rank that was within the top 
decile of all genes (median HSE gene rank = 1,889/20,737), and significantly greater 
than the median ranks of 10,000 random gene sets of equal size (n=19, P < 0.0001).  
Moreover, nodal similarity of the sample mean MSN was positively correlated with 
regional gene expression (r = 0.34, Pbootstrap = 0.0042) and regional co-expression (r = 
0.48, Pbootstrap = 0.01) of the HSE gene set (Figure S5B); and HSE gene expression 
demonstrated the same distribution across cyotarchitectonic areas as nodal 
morphometric similarity (Figure S5A). Specifically, expression of HSE genes was 
greater in cytoarchitectonic areas 1-3 where the hubs of the morphometric similarity 
networks were also concentrated. In a complementary analysis of phenotype 
enrichment in mammalian gene knockout models (Smith and Eppig, 2012) using Enrichr 
(Chen et al., 2013; Kuleshov et al., 2016), we found  that disruption in animal models of 
high-ranking genes (i.e., those with positive leave-one-out scores) was significantly 
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associated with abnormal synaptic transmission (P < 0.05, FDR corrected). Collectively, 
these results indicate that MSN topology is aligned with spatial expression patterns of 
neuronally-expressed genes that are enriched within human cortical layers mediating 
cortio-cortical connectivity, and genes that are critical for normal neuronal functions.  
 
Morphometric similarity (MRI) compared to tract tracing connectivity in the macaque 
 
To assess the generalisability of MSN methodology to non-human primate MRI 
datasets, and to test the third biological hypothesis, that MSN edges indicate axonal 
connectivity between cortical areas, we analysed a publically-available collection of MRI 
data on a cohort of 31 juvenile rhesus macaque monkeys (16 females, overall age 
range = 0.9-3.0 years) (Young et al., 2017). We constructed MSNs for each monkey as 
described previously for each human participant (Figure 1), using 8 morphometric 
features available from the T1-weighted, T2-weighted and DWI data on each animal. 
We defined 91 nodes of the macaque cortex using a histologically-defined and 
anatomical landmark-based parcellation (Markov et al., 2014) that has been previously 
used to report retrograde axonal tract-tracing experiments on 29 of the 91 nodes  
(Markov et al., 2012; Markov et al., 2014) (see Figure 4B). 
 
Macaque MSNs demonstrated qualitatively the same suite of complex topological 
properties as the human MSNs from both the NSPN and NIH cohorts (Figure 4A, 
Figure S3). There was a significant positive correlation between the edge weights of the 
sample mean macaque MSN and the edge weights of the tract-tracing network 
(Pearson’s r = 0.34, P < 0.001) (Figure 4B/C). To test if this relationship varied as a 
function of MSN edge strength and consistency across individuals, the correlation 
between MSN and tract-tracing edge weights was estimated across a range of MSN 
connection densities (10-30%), and edge consistencies across individuals (50-100%). 
This analysis revealed that edge weights of the individual MSNs, consistently evident in 
the more sparsely connected graphs, were strongly correlated with the anatomical 
connectivity weights derived from axonal tract tracing data (Pearson’s r = 0.36-0.90, 
median r = 0.58, 73% of correlations P < 0.05, 34% of correlations Bonferroni-corrected 
P < 0.05) (Figure 4D). Taken together, these findings indicate that the morphometric 
similarity of two cortical regions is directly related to the strength of monosynaptic 
axonal connectivity between them.  
 
Predicting individual differences in human IQ from differences in nodal degree of 
morphometric similarity networks 
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Having established the technical feasibility, robustness, and biological validity of 
morphometric similarity mapping, we leveraged the ability to MSNs to represent whole 
brain anatomical networks in a single human to investigate relationships between inter-
individual differences in brain network topology and inter-individual differences in 
cognitive and behavioural traits.  
 
We focused on general intelligence (IQ) as the cognitive trait of interest given the broad 
relevance of IQ for adaptive function (Davies et al., 2016; Hagenaars et al., 2016) and 
the wealth of prior research into biological substrates for IQ (Crossley et al., 2013; 
Dehaene and Changeux, 2011; van den Heuvel et al., 2009). We predicted that IQ 
should be positively associated with integrative topological features that promote 
efficient information transfer across the whole network. High degree hub nodes are 
crucial to the global efficiency of the connectome and preferentially impacted by clinical 
brain disorders associated with cognitive impairment (Crossley et al., 2014). On this 
basis, we predicted specifically that individual differences in verbal and non-verbal IQ 
should be related to individual differences in nodal degree.    
 
We used the multivariate technique of partial least squares (PLS) regression to find the 
optimal low-dimensional relationship between a set of predictor variables and response 
variables. In our case, the (292 × 308) predictor variable matrix comprised 
measurements of degree (calculated at 10% connection density) at each of 308 nodes 
in each of 292 participants in the NSPN cohort; the (292 × 2) response variable matrix 
comprised t-scores on the verbal (vocabulary) and non-verbal (matrix reasoning) scales 
of the Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler, 1999), 
standardised for age and gender effects relative to a representative population, and  
measured in the same 292 participants (mean total IQ = 111, SD = 12, range = 76-137). 
Each of the predictor variables (MSN degree) was regressed on the potentially 
confounding effects of age, gender, and age × gender interaction, before the residuals 
were used in the PLS analysis. 
 
The first two components of the PLS explained about 40% of the variance in IQ, and 
this goodness of fit was statistically significant by a non-parametric resampling 
procedure (P = 0.03) (Vértes et al., 2016). These results maintained statistical 
significance (P < 0.05) when the analysis was repeated for nodal degree calculated 
across a range of MSN connection densities (10-25%). We focus our attention on the 
first two PLS components (PLS1 and PLS2), which consistently explained about 25% 
and 15% of the variance in IQ, respectively (Figure 5). 
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The first PLS component was significantly positively correlated with both IQ subscales - 
vocabulary (r = 0.53, P < 0.001) and matrix reasoning (r = 0.45, P < 0.001), as well as 
full-scale IQ (r = 0.61, P < 0.001) (Figure 5B). The second PLS component was only 
significantly positively correlated with matrix reasoning (r = 0.54, P < 0.001) and full-
scale IQ (r = 0.21, P < 0.001), but not vocabulary (r = 0.08, P = 0.168) (Figure 5B). We 
ranked the 308 nodes of the individual MSNs according to their bootstrap standardised 
weight on each PLS component (Vértes et al., 2016). This analysis revealed that the 
high degree hubs that loaded strongly on PLS1, and were positively correlated with 
higher verbal and non-verbal IQ, were located predominantly in left frontal and temporal 
cortical areas; whereas the high degree hubs that loaded strongly on PLS2, and were 
positively correlated with non-verbal IQ, were located predominantly in bilateral occipital 
and frontal cortex. We used Neurosynth, a tool for meta-analysis of the large primary 
literature on task-related fMRI (Yarkoni et al., 2011), to identify which cognitive functions 
were co-localised with the cortical nodes strongly weighted on PLS1 and PLS2. As 
expected, high degree hubs located in frontal and temporal cortex and predictive of 
verbal and non-verbal IQ were enriched for language-related functions; whereas high 
degree hubs located in occipital cortex and predictive of non-verbal IQ were enriched for 
visual and memory functions (Figure 5).  
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Discussion 
 
We have shown how multimodal MRI measurements of human and non-human primate 
cortex can be used to estimate the morphometric similarity between cortical areas and 
the topological properties of the anatomical connectome of a single brain. This robust 
and replicable new method of brain structural network analysis allowed us to test (and 
affirm) three key biological hypotheses about the organisation of individual mammalian 
cortical networks. As theoretically predicted, we found evidence that cortical areas 
connected by an edge in morphometric similarity networks were cytoarchitectonically 
similar and axonally connected to each other, and had high levels of co-expression of 
genes specialised for neuronal functions. These results substantiated the biological 
validity of MSNs, compared to other MRI or DWI-based estimates of the human 
connectome, and motivated us to test (and affirm) a fourth hypothesis: that individual 
differences in IQ are related to individual differences in the hubness or nodal degree of 
cortical nodes in human brain anatomical networks.   
 
Like most spatially embedded real-life networks, including other brain networks, 
morphometric similarity networks had a complex topology (Barabási, 2016; Fornito et 
al., 2016). MSNs were binary graphs with a small-world combination of high clustering 
and short path length; some high degree hub nodes with many connections to the rest 
of the network; and a community structure comprising modules and a rich club. This 
suite of topological properties was robust to variation in species (human and macaque), 
human volunteer samples (NSPN and NIH cohorts), static magnetic field strength for 
MRI (1.5T and 3T), number of morphometric features measured by MRI at each 
regional node (5, 8 or 10 MRI-derived parameters per region), as well as pre-processing 
steps like cortical parcellation. 
 
This robust and replicable network phenotype or connectome, derived from 
morphometric similarity mapping, is qualitatively similar to connectomes previously 
described using comparable graph theoretical metrics in many other neuroimaging and 
neuroscience datasets. A well-rehearsed interpretation of the complex topology of 
connectome organisation is in terms of its supposed advantages for sensory, motor or 
cognitive function. Some topological features, such as clusters and modules, will favour 
segregated processing of specific channels of information, whereas other features, such 
as hubs and a rich club, will favour integrated processing of all information (Bullmore 
and Sporns, 2012; Sporns et al., 2004). This influential hypothesis, linking the topology 
of the human connectome to the psychological capacities of the brain, has some 
experimental support. The evidence is strongest for the link between modular or 
clustered topologies and specialised psychological or information processing functions 
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(Fodor, 1983). At all scales of connectomics, from micro-scale analysis of C. elegans or 
Drosophila to macro-scale analysis of human MRI data (Meunier et al., 2010; Schröter 
et al., 2017), there is evidence for topological modules of spatially co-localised 
(neuronal or areal) nodes with specialised functions. The evidence is not yet so strong 
for the link between integrative topological features – such as hubs and a rich club – 
and global or generalised cognitive functions (we return to this point later).    
 
Morphometric similarity and anatomical similarity  
 
By aligning individual morphometric similarity networks with the classical 
cytoarchitectonic atlas of von Economo and Koskinas, we demonstrated a close 
alignment between MSN topology and this histological classification of cortical areas. 
Morphometric similarity, measured by MRI, was greater between regional nodes that 
were histologically similar in the sense of belonging to the same cytoarchitectonic class. 
This meant that sparse MSNs, representing only a small percentage of the highest 
morphometric similarity statistics, were dominated by intra-class edges between 
regions. Correspondence between morphometric similarity and cytoarchitectonic 
similarity is supportive of the biological validity of the constituent MRI measurements. 
There is also growing evidence that cytoarchitectonic similarity predicts axonal 
connectivity between cortical areas, with greater probability of axonal connectivity 
between histologically similar areas (Goulas et al., 2017; Goulas et al., 2016). Thus, we 
reasoned, alignment of network edges with cytoarchitectonic classes could provide a 
triangulation point to compare MSNs to other MRI-based methods of human 
connectome mapping. Since histologically similar nodes are more likely to be axonally 
connected, then any map of anatomical connectivity derived from MRI should be 
dominated by intra-class edges. 
 
We compared MSNs to two other MRI-based anatomical networks estimated from the 
same sample – a single structural covariance network and a set of individual diffusion 
tractography networks. All three networks had qualitatively and quantitatively similar 
complex topology, but they were not identical. In relation to the benchmark of 
cytoarchitectonic classification, all networks were dominated by a high percentage of 
intra-class edges when graphs were thresholded sparsely to include only the strongest 
connections between regions. However, across all connection densities considered, the 
percentage of intra-class edges was greater for MSNs than for the SCN or DWI 
networks. This indicates that edges in MSNs are more representative of histologically 
similar pairs of regions, which are more likely to be axonally connected to each other, 
than edges in the SCN or DWI networks. One reason for the relatively poor 
performance of DWI networks in aligning to cytoarchitectonic standards seems likely to 
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be the known difficulties in reconstructing long distance axonal connections by 
tractography analysis of DWI data. This would explain why DWI networks, compared to 
both MSNs and the SCN, relatively lacked inter-hemispheric intra-class edges between 
homologous cortical areas in the same cytoarchitectonic class.  
  
Although cytoarchitectonic classification is a well-established and traditional way of 
assessing histological similarity between cortical areas, more generally we can assess 
inter-areal similarity in terms of any locally (spatially) expressed cellular or genomic 
phenotype. Spatial patterns of gene expression in the mammalian cortex are intimately 
tied to regional differences in cortical layering and cell-composition (Bernard et al., 
2012; Hawrylycz et al., 2012). Transcriptomic similarity or gene co-expression was 
greater between regions of the mouse brain that were known to be axonally connected 
by analysis of anterograde tract-tracing data (Fulcher and Fornito, 2016). A functionally 
specialised set of so-called HSE genes, that are over-expressed specifically in 
supragranular layers of human association cortex (Zeng et al., 2012), and known to be 
important for formation of long distance inter-areal axonal connectivity (Hawrylycz et al., 
2012), were more strongly co-expressed by functionally connected brain regions 
(Krienen et al., 2016).  
 
In this context, we predicted that morphometrically similar regions should have high 
levels of gene co-expression in general, as well as high levels of HSE gene co-
expression in particular. Whole genome analysis confirmed that co-expression was 
positively correlated with morphometric similarity and the genes that contributed most 
strongly to the overall association between transcriptional and morphometric similarity 
were specialised for neuronal functions. HSE genes were most strongly expressed in 
cytoarchitectonic classes 1-3 and HSE gene co-expression was positively correlated 
with morphometric similiarity and degree or hubness of MSN nodes.  
 
To this point, we have highlighted results that show morphometric similarity is strongly 
associated with cytoarchitectonic and genomic measures of histological similarity 
between cortical areas. To the extent that histological (cytoarchitectonic or 
transcriptional) similarity is coupled to axonal connectivity between cortical areas 
(Fulcher and Fornito, 2016; Goulas et al., 2017; Goulas et al., 2016), we can therefore 
expect morphometric similarity measured by MRI to be at least an approximate marker 
of axonal connectivity. However, to verify this important interpretation more directly, we 
generalised the MSN approach to analysis of whole brain connectomes in the macaque 
monkey.   
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We observed a strong positive relationship between the edge weights of the macaque 
MSN and the edge weights of the tract-tracing network, especially for the most 
consistently and strongly-weighted edges in the individual macaque MSNs. The 
strength of association between tract-tracing and morphometric similarity networks was 
comparable in magnitude to previous reports of correspondence between tract-tracing 
and DWI-based networks in the macaque (Donahue et al., 2016; van den Heuvel et al., 
2015). We note that the macaque MRI data were collected at 3T and provided only 8 
morphometric variables per cortical region. It is predictable from the human MRI 
datasets we have analysed that MSN metrics (and their alignment to tract-tracing data) 
could be more precisely measured in future macaque MRI experiments at higher field 
strength or using multi-parameter MRI sequences to sample cortical micro-structure 
more comprehensively.  
 
In short, the results of multiple experiments convergently supported all three hypotheses 
linking the topology of morphometric similarity networks to the histological similarity and 
the axonal connectivity between cortical areas.   
 
Morphometric similarity networks and intelligence 
 
The availability of a new method for mapping the anatomical connectome of a single 
human is likely to be helpful in understanding how its network topology relates to the 
cognitive or psychological functions of the brain. As noted earlier, it is particulalrly 
important to understand more clearly how integrative elements of connectome topology 
– like hubs and a rich club – might be linked to cognitive processing.      
 
There is a body of theoretical and experimental work in support of the idea that higher 
order, more effortful conscious processing depends on a global workspace architecture 
that coordinates neuronal activity across anatomically distributed areas of cortex (Baars, 
1997; Dehaene and Changeux, 2011). Conceptually related work has highlighted the 
importance of a multiple demand network of association cortical areas for fluid 
intelligence (Duncan, 2010). In the language of graph theory, this is compatible with the 
prediction that topologically integrative features of the connectome – which “break 
modularity” (Dehaene and Naccache, 2001) - should be important for intelligent 
cognitive function; and there is already some evidence in support of this prediction. For 
example, it has been shown that higher IQ is negatively correlated with the 
characteristic path length of fMRI and DWI networks (Li et al., 2009; van den Heuvel et 
al., 2009); that performance of a cognitively demanding working memory task was 
associated with greater topological efficiency (shorter path length) of MEG networks 
(Kitzbichler et al., 2011); and that the rich club of interconnected hubs in a meta-
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analysis of task-related fMRI data was co-activated by executive tasks demanding both 
cognition and action (Crossley et al., 2013). 
 
On this basis, we predicted that individual differences in IQ should be related to 
variability in the hubness or degree of individual nodes in individual MSNs. We applied 
the multivariate, dimension-reducing method of partial least squares (PLS) to test the 
strength of association between the verbal and non-verbal IQ of 292 healthy 
participants, on one hand, and the degree of 308 cortical nodes in each of 292 
individual MSNs, on the other hand. Remarkably, the first two PLS components 
collectively accounted for approximately 40% of the total variance in IQ. The first PLS 
component defined a set of cortical areas, functionally specialised for language and 
located in left frontal and temporal cortex, where higher degree was strongly predictive 
of higher verbal and non-verbal IQ; the second PLS component defined a distinct set of 
areas, functionally specialised for vision and memory, where higher degree was 
specifically predictive of higher non-verbal IQ.  
 
These results directly support our fourth hypothesis and they provide some of the 
strongest evidence yet available in support of the more general hypothesis that 
topologically integrative features of the human brain connectome are important for 
“higher order” cognitive functions (Deary et al., 2010; Saggar et al., 2015). Indeed the 
strength of association between IQ and MSN nodal degree is large compared to many 
prior studies reporting an association between IQ and other structural MRI phenotypes 
(Reiss et al., 1996; Ritchie et al., 2015; Toga and Thompson, 2005). We predict on this 
basis that morphometric similarity mapping could provide a powerful technical platform 
for measuring the anatomical connectome in vivo and for understanding how the 
cognitive functions of the human brain are related to its topologically complex 
connectome.         
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Figure 1. The morphometric similarity network processing pipeline. A) Multiple 
MRI parameters were available from MRI and DWI data on each subject. B) All MRI 
data were mapped to the same cortical parcellation template, which comprised 308 sub-
regions of the Desikan-Killiany atlas with approximately equal surface area. 10 regional 
morphometric features were estimated and normalised to produce a 10 x 308 feature 
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matrix for each subject. C) The morphometric similarity between each possible pair of 
regions was estimated by the Pearson’s correlation between their morphometric feature 
vectors to produce a 308 x 308 morphometric similarity matrix. D) Morphometric 
similarity networks are binary graphs constructed by thresholding the morphometric 
similarity matrix so that the strongest (supra-threshold) edges are set equal to 1 (and all 
others set equal to 0). The organisation of MSNs can be visualised (from left to right) in 
matrix format, in anatomical space, or in a topological representation where nodes are 
located close to each other if they are connected by an edge. FA = fractional anisotropy, 
MD = mean diffusivity, MT = magnetization transfer, GM = grey matter volume, SA = 
surface area, CT = cortical thickness, IC = intrinsic (Gaussian) curvature, MC = mean 
curvature, CI = curved index, FI = folding index. 
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Figure 2. Morphometric similarity networks. Spatial patterning of an individual (A) 
and group average (B) morphometric similarity matrix. For the individual and group 
matrix, the row means are plotted on the cortical surface of the template brain, 
representing the average morphometric similarity (Pearson’s r) of each node. The 
colour scale represents the mean nodal similarity. C) (Right, top) Modular partitioning of 
the group average morphometric similarity network (MSN), thresholded at 10% 
connection density, using the Louvain modularity algorithm. The γ resolution parameter 
dictates the number of detected modules; γ = 1 yielded four distinct spatially contiguous 
modules, which approximately correspond to the lobes of the brain. (Left) Topological 
representation of the group MSN, thresholded at 10% connection density, highlighting 
the rich club of densely inter-connected hub nodes (opaque). The size of the nodes is 
scaled according to degree, and the thickness of the edges is scaled according to edge 
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weight. (Right, bottom) The rich club nodes are shown in their anatomical location and 
coloured according to modular affiliation. See also Figures S1-3. 
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Figure 3. Comparison of morphometric similarity networks, and other MRI 
networks, to a cytoarchitectonic classification of cortex. A) Average nodal similarity 
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scores for individual MSNs within each of the von Economo and Koskinas (1925) 
cortical classes plus the insula and cingulate cortex. Highest nodal similarity was 
consistently found in classes 1-3 (motor and association cortex) – areas with the most 
pyramidal neurons in supragranular layers of cortex. B) Proportion (percentage) of intra-
class edges in the group MSN as a function of connection density (0.5-10%, 0.5% 
intervals). The MSN has a higher percentage of intra-class edges compared to the SCN 
and DWI networks at all densities, demonstrating the high correspondence of MSN 
topology with cortical cytoarchitectonics. C) Graphs of each of the MRI networks, 
thresholded at 1% density, with nodes and intra-class edges coloured according to 
cytoarchitectonic class and inter-class edges drawn in grey. The MSN shows the 
greatest connectivity between bilaterally symmetric cortical regions, relative to the SCN 
and DWI networks. Lower and upper bounds of the boxplots represent the 1st (25%) and 
3rd (75%) quartiles, respectively.  Left hemisphere = LH, Anterior = A, Posterior = P, 
Superior = S, Inferior = I. 
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Figure 4. Comparison of morphometric similarity to axonal tract tracing in the 
macaque. (Top) The left hemisphere edges of the group average multimodal macaque 
MSN (A) and axonal tract tracing network (B), each thresholded at 20% connection 
density. Nodes in both networks are sized according to degree – calculated as the 
average nodal degree across MSNs (at 66% connection density) and, due to the effects 
of directionality, averaged nodal degree across both efferent and afferent connections in 
the tract tracing network. (Middle) The 29 x 29 group average multimodal macaque 
MSN (A) and the connections of the tract tracing matrix (B). The 29 x 29 tract tracing 
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connectivity matrix is based on retrograde injections in 29 regions of the macaque 
cerebral cortex (Markov et al., 2012), and is 66% dense. Connection weights are based 
on the extrinsic fraction of labelled neurons (FLNe), and are plotted on a base 10 
logarithmic scale. Diagonals in both networks are whited-out. C) For the overlapping 
edges in the two matrices in b), there was a significant positive correlation between the 
edges of the group macaque MSN and the edge weights of the tract tracing network (r = 
0.34, P < 0.001). D) The correspondence between the edge weights of the group MSN 
and those of the tract tracing network. The group MSN was masked using a consensus 
approach, which incorporated the most common edges of the individual MSNs at 
varying connection densities (10-30%). At each connection density and consensus 
threshold (determined by the proportion of subjects at a connection density with 
common supra-thresholded edges) the group MSN and tract tracing network were 
masked and the edge weights were correlated. Generally, we observed a positive 
relationship in connectivity weights across MSN connection densities and consensus 
thresholds (median r = 0.58, range = 0.27-0.82), with the highest correlations found 
using the strongest and most consistent edges in the individual MSNs. Collectively, 
these results not only suggest a relationship between morphometric similarity (derived 
in vivo) and axonal tract weights (derived ex vivo) at the group level, but also reveal a 
possible “core” set of associations (measured in individual MSNs) which closely 
approximate physical anatomical connectivity.  
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Figure 5. Nodal degree of morphometric similarity networks is highly predictive of 
individual differences in intelligence. The first two components (PLS1, PLS2) of a 
partial least squares regression using individual MSN degree (at 10% connection 
density) explained about 40% of the variance in vocabulary and matrix reasoning 
subscales of WASI IQ scores in 292 people. A) The first PLS component (PLS1) was 
correlated with both vocabulary and matrix reasoning (Left) and with the degree or 
hubness of nodes in left-lateralised temporal and bilateral frontal cortical areas (Centre), 
related to language functioning (Right). B) PLS2 was correlated specifically with matrix 
reasoning and degree or hubness of nodes in bilateral primary sensory cortical areas 
(Centre), specialised for visual and sensorimotor processing.  
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Methods 
 
We first summarise methods relevant to the principal human (NSPN) dataset and its 
analysis; then methods relevant to the secondary human (NIH) dataset; and finally 
methods relevant to the macaque monkey dataset. 
 

Study design and MRI data acquisition – primary NSPN cohort 

 

Subjects were recruited as a part of the NeuroScience in Psychiatry Network (NSPN) 
study of normative adolescent development. A subgroup of 300 adolescents and young 
adults aged 14-24 years was stratified into 5 temporally contiguous strata: 14-15 years 
inclusive, 16-17 years, 18-19 years, 20-21 years, and 22-24 years (N=60 subjects per 
bin, 30 males and 30 females). Participants were excluded if they were currently being 
treated for a psychiatric disorder or for drug or alcohol dependence; had a current or 
past history of neurological disorders or trauma including epilepsy, or head injury 
causing loss of consciousness; had a learning disability requiring specialist educational 
support and/or medical treatment; or had a safety contraindication for MRI. Participants 
provided informed written consent for each aspect of the study and parental consent 
was obtained for those aged 14-15 years. The study was ethically approved by the 
National Research Ethics Service and was conducted in accordance with NHS research 
governance standards. 

  

The anatomical MRI data were acquired using the multi-parametric mapping (MPM) 
sequence (Weiskopf et al., 2013) implemented on three identical 3T whole-body MRI 
systems (Magnetom TIM Trio, Siemens Healthcare, Erlangen, Germany; VB17 software 
version), two located in Cambridge and one in London, operating with the standard 32-
channel radio-frequency (RF) receive head coil and RF body coil for transmission. 
Between-site reliability of all MRI procedures was satisfactorily assessed by a pilot 
study of 5 healthy volunteers scanned at each site (Weiskopf et al., 2013). The 
between-site bias was less than 3%, and the between-site coefficient of variation was 
less than 8%, for both the longitudinal relaxation rate (R1 = 1/T1) and MT parameters 
(Weiskopf et al., 2013). R1 and MT were quantified in Matlab (The MathWorks Inc., 
Natick, MA, USA) using SPM8 (www.fil.ion.ucl.ac.uk/spm) and custom tools (Weiskopf 
et al., 2013; Whitaker and Vértes et al. 2016). 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 11, 2017. ; https://doi.org/10.1101/135855doi: bioRxiv preprint 

https://doi.org/10.1101/135855
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 
 

Diffusion weighted imaging (DWI) data were collected in the same scanning session as 
the MPM data. A High-Angular Resolution Diffusion-Weighted Image (HARDI) was 
acquired using a single-shot echo planar imaging sequence consisting of 63 gradient 
directions with a b-value = 1000 mm/s2 along with 5 unweighted B0 images. This 
protocol used 70 consecutive axial slices of thickness 2 mm (FOV=192 x 192 mm, 
TE=90 ms, TR= 8700 ms) resulting in a voxel size of 2.0 mm isotropic.  

 

Human MRI data pre-processing 

 

We used FreeSurfer v5.3.0 software for the data pre-processing pipeline 
(http://surfer.nrm.mgh.harvard.edu). Briefly, the cortical surface for each participant was 
reconstructed from their R1 image by the following steps: skull stripping (Segonne et al., 
2004), segmentation of cortical grey and white matter (Dale et al., 1999), separation of 
the two hemispheres and subcortical structures (Dale et al., 1999; Fischl et al., 2002; 
Fischl et al., 2004); and finally construction of smooth representation of the grey/white 
interface and the pial surface (Fischl et al., 1999). The DWI volumes were aligned to the 
R1 image for each subject. After quality control, 3 participants had to be excluded from 
the analyses due to movement artefacts which prevented accurate surface 
reconstructions, and 1 due to errors in their DWI volume reconstruction, leaving N=296 
(148 males and 148 females) for the final cohort used for the imaging analyses in this 
paper. 

  

Human MRI cortical parcellation  

 

To define the set of nodes, the 68 cortical regions in the Desikan-Killiany atlas (Desikan 
et al., 2006) were sub-parcellated into 308 spatially contiguous regions, of 
approximately equal size (~5 cm2), using a backtracking algorithm as described 
previously (Romero-Garcia et al., 2012). This parcellation was generated once on the 
surface of the FreeSurfer standard anatomical template (fsaverage), and subsequently 
transformed to each individual subject’s surface. Each subject’s surface parcellation 
was then interpolated and expanded to their respective R1, MT, and B0 (DWI) volumes. 

  

Estimation of regional morphometric features  
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A feature matrix consisting of 10 morphometric features measured at each of 308 brain 
regions was estimated from the combined MPM and DWI data available for each 
subject (Figure 1A). Surface- and volume-based features were extracted using the 
respective version of the regional parcellation. For the surface-based features, regional 
values were estimated for cortical thickness (CT), surface area (SA), intrinsic curvature 
(IC), mean curvature (MC), curvature index (CI), and folding index (FI). For the volume-
based features, regional values were estimated for the diffusion metrics (fractional 
anisotropy – FA, and mean diffusivity – MD) as well as grey matter volume (GM) and 
magnetization transfer (MT). The regional MT values were estimated at 70% cortical 
depth (Whitaker and Vértes et al., 2016). 

  

Estimation of morphometric similarity and morphometric similarity networks 

 

Each of the MRI feature vectors in each region of each individual image were 
normalised (z-scored) and then the Pearson product-moment correlation coefficient (r) 
was estimated for each possible regional pair of MRI feature vectors (see Figure 1B/C). 
These pair-wise measures of morphometric similarity were compiled to form a 
morphometric similarity matrix which was thresholded to construct binary graphs of 
arbitrary connection density, also known as morphometric similarity networks (MSNs). 
Explicitly, MSNs were thresholded such that inter-regional correlations less than the 
threshold value were set to 0, and supra-threshold edges were set to 1, in the 
corresponding elements of the individual MSNs.  To create a group level MSN, we 
averaged the individual morphometric similarity matrices and then thresholded the 
mean similarity matrix. 

 

Structural covariance network construction 

  

Cortical thickness (CT) of each of the 308 regions in the 296 subjects was used as the 
morphometric feature for constructing the structural covariance network (SCN), as in 
Whitaker and Vértes et al. (2016). This entailed estimating the set of correlations 
between cortical thickness of each possible pair of regions, over all participants, 
resulting in a single inter-regional CT correlation matrix which was thresholded to 
generate a binary graph representation of the sample mean structural covariance 
network. 

  

DWI network construction 
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The entire DWI image analysis pipeline was performed in AFNI, a freely available MRI 
and DWI analysis software suite (Cox, 1996). For each subject, DWI image volumes 
were de-obliqued and co-registered to the B0 volume to account for head movement. 
The 6 principal direction tensors were then estimated from the DWI image volume using 
the 3dDWItoDT command. Probabilistic tractography for the 308 brain regions was 
performed using the 3dTrackID command, along with tensor uncertainty estimates from 
3dDWUncert to increase robustness (Taylor et al., 2012; Taylor and Saad, 2013). A 
connectivity matrix was estimated for each of the 296 subjects, where each element 
represents the average mean diffusivity (MD) along the axonal tracts connecting two 
regions. We chose the measure for estimating tract weights that maximised the 
proportion of intra-class edges defined by a prior cytoarchitectonic classification (Figure 
3).  
 

Graph theoretic analyses 

  

For each of the individual MSNs (and comparable SCN and DWI networks), a series of 
graphs was constructed and analysed over a range of connection densities (10-40%, 
5% intervals). Summary statistics for the MSNs, as well as for random networks with the 
same number of nodes and edges, are reported using the 7 arbitrary thresholds.  

 

The following graph metrics were calculated in Matlab using the Brain Connectivity 
Toolbox, a freely available graph analysis software package (Rubinov and Sporns, 
2010), as well as in R (R Development Core Team, 2008, http://www.r-project.org/) 
using the igraph package (Csardi and Nepusz, 2006). Graph visualisation was 
performed using custom code written in R and Python (Python Software Foundation, 
http://www.python.org/), as well as using BrainNet Viewer (Xia et al., 2013) 
(http://www.nitrc.org/projects/bnv/).. 

  

The degree, k, of a graph describes the total number of edges of each node. The 
clustering coefficient, C, of node i is the ratio of the number of i’s neighbours that are 
connected to each other with a single edge. As such, the clustering coefficient across 
an entire graph is the average of the clustering coefficients over all nodes, defined as: 

  

                                                  (1) 
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where ki are the neighbours of node i and ki(ki – 1) is the number of possible edges 
between ki (Watts and Strogatz, 1998). The characteristic path length represents the 
mean of shortest paths between all pairs of nodes in a network (Watts and Strogatz, 
1998), defined as: 

  

                                                (2) 

  

where Li is the mean distance between node i and every other node. Global efficiency is 
the inverse of the characteristic path length. Modularity (Q) is a measure of network 
segregation, by which nodes are subdivided into communities, or modules, to maximise 
the number of within-module connections while minimising the number of between-
module connections (Girvan and Newman, 2002; Newman, 2004a, b). It is defined as: 

  

                                               (3) 

  

where mi and mj are the modules containing nodes i and j, respectively. If mi = mj,(i.e. 
nodes i and j are members of the same module) then δmi,mj = 1, but if mi ≠ mj, (i.e. 
nodes i and j are members of different modules), then δmi,mj = 0. The small-world 
coefficient of a network (Humphries and Gurney, 2008) is defined as: 

  

                                                               (4) 

  

where (C/Crand) is the ratio of the average clustering coefficient between the empirical 
network and average values from a set of corresponding randomised networks with 
preserved degree distribution, and (L/Lrand) is the ratio of characteristic path lengths of 
the empirical network and the set of random networks. In this study, 1 random network 
per participant was generated. As such, small-world networks (generally S > 1) have 
high clustering and similar or shorter path lengths compared to random networks.  

 

The rich club coefficient is a property of complex networks and measures the amount of 
inter-connectedness between hubs of a network (Colizza et al., 2006; van den Heuvel 
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and Sporns, 2011), calculated at varying degree cut-offs. The normalised rich club 
coefficient (Φ) is the ratio of the rich club coefficient of the empirical network (i.e., the 
MSNs) relative to that of a random network. Thus the nodes greater than or equal to the 
degree cut-off at which Φ > 1 denotes membership to the rich club. We present the rich 
club results of the MSNs at a 10% connection density. 

 

Digitisation of a cytoarchitectonic atlas 

  

To test the correspondence between morphometric similarity and cytoarchitecture, we 
used an independent modular decomposition depicting the five typical laminar patterns 
of the cortex as proposed by von Economo and Koskinas (1925). We manually 
assigned nodes in our N=308 parcellation to one of the five cortical classes (Solari and 
Stoner, 2011), and, in addition, the insula and cingulate cortex were partitioned into 
separate classes to reflect their distinct cytoarchitectonic profiles, thus producing seven 
distinct modules (Vertes et al., 2016; Whitaker et al., 2016). 

 

Brain gene co-expression estimation 

  

We used the freely available Allen Institute of Brain Sciences (AIBS) transciptomic 
dataset (http://human.brain-map.org/) to estimate gene expression for each region and 
gene co-expression between each pair of regions. This dataset comprises post-mortem 
samples collected from 6 adult male donors (H0351.1009, H0351.1016, H0351.1015, 
H0351.2002, H0351.1012, H0351.2001; 3 Caucasian, 2 African-American, 1 Hispanic; 
mean age = 42.5 years). For a detailed description on the methods of whole genome 
microarray analysis at multiple regional locations, see the AIBS technical white paper 
(http://human.brain-map.org).   

  

To account for the redundancy of the cRNA hybridization probes, which contained 
expression levels for overlapping genes, expression values for the same gene were 
averaged across probes. Probes with unmatched genes were excluded, leaving 20,737 
genes from 3,702 samples. Because of the symmetric gene expression values between 
hemispheres (Pletikos et al., 2014), the AIBS dataset only contains data from both 
hemispheres for two subjects. Thus, because the right hemisphere was under-sampled, 
we performed all analyses on the left hemisphere (N = 152 regions) by reflecting the 
right hemisphere samples. We then mapped the gene expression values of each 
subject to the fsaverage (MNI305) volumetric template space (assigning samples to the 
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nearest centroid of the left hemisphere (N=152 regions) of our parcellation) using the 
individual AIBS subjects’ T1-weighted volumes (Vertes et al., 2016; Whitaker et al., 
2016). 

  

The median regional expression was estimated for each gene across participants (N=6) 
and then each gene’s regional values were normalised (z-scored), resulting in a 152 x 
20,737 matrix of the genome-wide expression data for the 152 regions of the left 
hemisphere. The 152 x 152 gene co-expression matrix (i.e., the upper-left quadrant of 
the group MSN) contained pairwise Pearson correlations, which were computed for 
each of the left hemisphere regions, representing the intra-hemispheric gene co-
expression of two left hemisphere regions across the 20,737 genes. This network, along 
with the set of regional expression values, was used for comparison to the 
corresponding left hemisphere of the group MSN. 

 

The Human Supragranular Enriched (HSE) gene set contains 19 genes that were found 
to be primarily expressed in the upper layers (II/III) of human cortex: BEND5, C1QL2, 
CACNA1E, COL24A1, COL6A1, CRYM, KCNC3, KCNH4, LGALS1, MFGE8, NEFH, 
PRSS12, SCN3B, SCN4B, SNCG, SV2C, SYT2, TPBG and VAMP1 (Zeng et al., 2012). 
The inter-areal co-expression of HSE genes has been related to the emergence of 
cortico-cortical connectivity in humans (Krienen et al., 2016; Zeng et al., 2012). We 
therefore created a gene co-expression network using only the HSE genes.  

 

Gene ontology enrichment analysis was performed using GOrilla (Eden et al., 2007; 
Eden et al., 2009) and visualised using REViGO (Supek et al., 2011), and, in addition, 
replicated using Enrichr (Chen et al., 2013; Kuleshov et al., 2016). 

 

Partial least squares analysis 

  

We assessed the relationship between individual differences in IQ and individual 
differences in nodal degree of each of 308 regions in each of 292 individual MSNs using 
the multivariate method of partial least squares (PLS) regression, as in Whitaker and 
Vértes et al. (2016) and Vértes et al. (2016). This dimensionality reduction technique 
seeks to find the latent variables or PLS components which maximise the correlation 
between a set of collinear predictor variables and a set of response variables. Here, 
normalised scores on the vocabulary and matrix reasoning subscales of the Wechsler 
Abbreviated Scale of Intelligence (WASI) test (Wechsler, 1999) were used as response 
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variables and degree centrality of each node in individual MSNs thresholded at arbitrary 
connection density were used as predictor variables. We used MSN degree so that only 
high strength edges were included in the analysis, and so that the robustness of this 
PLS method could be tested across a range of MSN densities. Four subjects were 
excluded due to unavailability of WASI IQ data (N=292). Bootstrapping (resampling with 
replacement of the 292 individual subjects) was used to estimate the error on the PLS 
weights for each node so that the nodes could be ranked based on their contribution to 
each PLS component (Vértes et al., 2016). 

 

Study design and MRI data acquisition – secondary NIH cohort 

  

To test the reliability and replicability of morphometric similarity, we constructed MSNs 
in an independent cohort of human subjects, using different image analysis software for 
the processing pipeline, a different areal parcellation, and a more limited set of 
morphometric features (N=5). The sample consists of 124 typically developing subjects 
(49 females, mean age = 12.55, σ = 4.27, range = 5.59-25.13; 65 males, mean age = 
13.40, σ = 4.52, range = 5.77-32.04) sampled from the National Institutes of Health 
(NIH) longitudinal study of normative brain development (Evans and Brain Development 
Cooperative, 2006; Giedd et al., 1999; Giedd et al., 2015). Briefly, subjects were 
scanned on a 1.5T GE Signa scanner (axial slice = 1.5 mm, TE = 5 ms, TR = 24 ms, flip 
angle = 45º, matrix = 256x256x124, fov = 24 cm) using a spoiled-gradient recalled echo 
(3D-SPGR) imaging sequence (Giedd et al., 1999). The T1-weighted scans were 
processed using the Montreal Neurological Institute’s CIVET pipeline (Ad-Dab’bagh et 
al., 2006). Each of the scans and surface reconstructions of the 124 subjects were 
subjected to and passed quality-control assessment by three independent raters. Due to 
the lack of MT, DWI, or T2-weighted imaging, only (grey matter) morphometric features 
derived from the T1-weighted scans were estimated (CT, SA, GM, MC, IC). GM values 
were estimated using the T1w volumes of each subject. Vertex-wise CT and SA values 
were estimated using the resultant pial surface reconstructions from CIVET, while MC 
and IC metrics of these surfaces were estimated using the freely available Caret 
software package (Van Essen et al., 2001). The down-sampling of theses surface 
meshes (~80,000 vertices per mesh) into 360 regions was performed (Alexander-Bloch 
et al., 2013b), where the vertex-wise estimates of the features were averaged (for CT, 
MC, and IC) or summed (for SA) within a given region in the parcellation. The surface 
parcellation was projected to the volume for extraction of regional GM for each subject.  

  

Macaque monkey MRI data acquisition 
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We additionally constructed MSNs using an independent cohort of 31 healthy young 
rhesus macaques (13 females; mean age = 1.7 years, range = 0.9 to 3.0 years), whose 
MRI data were collected as part of the UNC-UW longitudinal study at the University of 
North Carolina and the University of Wisconsin (Young et al., 2017). Animals were 
included if they had T1-weighted, T2-weighted and DWI data available at more than one 
time point. Prior to scanning, each animal was anaesthetised following the protocol from 
Young et al. (2017). All animal procedures were conducted in compliance with the 
Institutional Animal Care and Use Committee (IACUC) and the National Institutes of 
Health Guide for the Care and Use of Laboratory Animals.  

 

Briefly, T1-weighted (TR = 8.684 ms, TE = 3.652 ms, FOV = 140 x 140 mm, flip angle = 
12°, matrix = 256 x 256, thickness = 0.8 mm, gap = −0.4 mm, voxel resolution = 0.55 x 
0.55 x 0.8 mm3) and T2-weighted (TR = 2500 ms, TE = 87 ms, FOV = 154 x 154 mm, 
flip angle = 90°, matrix = 256 x 256, thickness = 0.6 mm, gap = 0 mm, voxel resolution = 
0.6 x 0.6 x 0.6 mm3), and diffusion-weighted images (120 gradient directions, TR = 8000 
ms, TE = 65.7 ms, FOV = 16.7 mm, matrix = 128 × 128, thickness  = 2.6 mm , voxel 
resolution = 0.65 × 0.65 × 1.3 mm3) were acquired using a GE MR750 3T scanner with 
an 8-channel human brain array coil (Young et al., 2017). 

 

Following the processing pipeline in, the same 5 morphometric features used to 
construct the NIH human MSNs were estimated for the macaque data using an 
automated analysis pipeline (Seidlitz et al., 2017), which combines tools from AFNI as 
well as from the freely available Advanced Normalization Tools (ANTs) software 
package (Avants et al., 2011) (picsl.upenn.edu/software/ants/). Additionally, we 
estimated MD and FA from the DWI scans, as well as the T1w/T2w ratio (after 
resampling the T2w scans to match the resolution of the T1w scans) (Glasser and Van 
Essen, 2011), generating a total of 8 regional morphometric features for each subject. 
For cross-species comparison of the network properties, and for comparison to 
retrograde viral tract tracing data, we used the 91-region left hemisphere cortical 
parcellation from Markov et al. (2014). The individual 91 x 91 region left hemisphere 
MSNs were averaged to create a group average macaque MSN. 

 

Macaque tract tracing data 
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Connectivity of the group MSN was evaluated against tract tracing connectivity data 
from Markov et al. (2012) (downloaded from core-nets.org). Whereas DWI tractography 
is an in vivo non-invasive indirect approximation of white matter connectivity, “gold 
standard” anatomical tract tracing is an invasive ex vivo method of measuring directed 
connectivity. In retrograde tracing, a tracer (typically a dye, molecule, or radioactively-
tagged amino acid) is injected and physically travels along the axonal projection from its 
termination site (i.e. site of injection) to the soma from which the axon originates. The 
measure of connectivity is reliant upon the labelling of neurons in the areas of interest. 
Markov et al. (2012) generated an index of connectivity called the extrinsic fraction of 
labelled neurons (FLNe). FLNe was calculated as the number of labelled neurons at the 
target site that exist above and beyond the fraction of labelled neurons of that site 
relative to the entire brain and labelled neurons intrinsic to that site (Markov et al., 
2012). Thus, this retrograde tract tracing dataset is a weighted and directed 29 x 91 
matrix (i.e. 29 injection points), where the 29 x 29 subgraph of the matrix contains all 
possible connections between those injection sites. 
  
The distribution of edge weights from the tract tracing network follows a logarithmic 
distribution, thus we transformed the edge weights by the base 10 logarithm function for 
our analyses. We used the 29 x 29 subgraph of the total 29 x 91 connectivity matrix 
(Figure 4B). For comparison with the tract tracing data, the 91 x 91 macaque MSNs 
were matched to the same 29 x 29 dimensions. 
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