

# 1 Evolutionary rescue over a fitness landscape

2 Yoann Anciaux<sup>1</sup>; Luis-Miguel Chevin<sup>2</sup>; Ophélie Ronce<sup>1</sup>; Guillaume Martin<sup>1</sup>

3 <sup>1</sup> ISEM, Université de Montpellier, CNRS, IRD, EPHE, Montpellier, France

4 <sup>2</sup> CEFÉ UMR 5175, CNRS - Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, 1919 route de Mende, 34293 Montpellier,  
5 CEDEX 5, France

6 **Contact :** yoann.anciaux@umontpellier.fr

7 **Keywords :** Antibiotic resistance; Evolutionary rescue; Fisher's Geometric Model; Fitness  
8 landscape; Mutation

9

## 10 ABSTRACT

11 Evolutionary rescue describes a situation where adaptive evolution prevents the extinction  
12 of a population facing a stressing environment. Models of evolutionary rescue could in principle  
13 be used to predict the level of stress beyond which extinction becomes likely for species of  
14 conservation concern, or conversely the treatment levels most likely to limit the emergence of  
15 resistant pests or pathogens. Stress levels are known to affect both the rate of population  
16 decline (demographic effect) and the speed of adaptation (evolutionary effect), but the latter  
17 aspect has received less attention. Here, we address this issue using Fisher's Geometric Model  
18 of adaptation. In this model, the fitness effects of mutations depend both on the genotype and  
19 the environment in which they arise. In particular, the model introduces a dependence  
20 between the level of stress, the proportion of rescue mutants, and their costs before the onset  
21 of stress. We obtain analytic results under a strong-selection-weak-mutation regime, which we  
22 compare to simulations. We show that the effect of the environment on evolutionary rescue  
23 can be summarized into a single composite parameter quantifying the effective stress level,  
24 which is amenable to empirical measurement. We describe a narrow characteristic stress  
25 window over which the rescue probability drops from very likely to very unlikely as the level of  
26 stress increases. This drop is sharper than in previous models, as a result of the decreasing  
27 proportion of stress-resistant mutations as stress increases. We discuss how to test these  
28 predictions with rescue experiments across gradients of stress.

29

30

## INTRODUCTION

31      Understanding the persistence or decline to extinction of populations facing environmental  
32      stress is a crucial challenge both for the conservation of biodiversity and the eradication of  
33      pests or pathogens (Gonzalez *et al.* 2013; Carlson *et al.* 2014; Alexander *et al.* 2014; Bell 2017).  
34      In evolutionary biology, environmental stress describes any conditions in the environment that  
35      induces a reduction in individual fitness (Koehn and Bayne 1989; Bijlsma and Loeschke 2005).  
36      Here, we will focus on the case where environmental stress causes a reduction of population  
37      mean fitness that is harsh enough to trigger a decline in abundance (Hoffmann and Parsons  
38      1997). In such a stressful environment, if heritable variation in fitness is available or arises by  
39      mutation, adaptive evolution may allow the population to escape extinction. This phenomenon  
40      has been called evolutionary rescue (ER) (Gomulkiewicz and Holt 1995). Evolutionary rescue is  
41      of particular importance for understanding the emergence of genetic resistance to drugs or  
42      treatments in medicine and agronomy (Davies and Davies 2010).

43      Empirical evidence supports the idea that stress levels critically determine ER probabilities  
44      (Samani and Bell 2010; Moser and Bell 2011; Lindsey *et al.* 2013). For example, the probability  
45      that bacteria evolve antibiotic resistance (that is, the probability of avoiding antibiotic-induced  
46      extinction through ER) typically declines sharply, in a strongly non-linear way, with increasing  
47      drug concentration (Drlica 2003). Evolutionary rescue thus shifts from being highly likely to  
48      highly unlikely over a narrow window of stress levels. This critical range of stress depends on  
49      the strain, especially on its evolutionary history with respect to exposure to the stress (Gonzalez  
50      and Bell 2013). Stress level, as controlled by drug concentration, has also been shown to affect  
51      the genetic basis of resistance (e.g. Harmand *et al.* 2017), with a wider diversity of genes and  
52      alleles conferring resistance at low than at high doses. However, the underlying causes for the  
53      relationship between stress level and ER are still poorly understood. Our aim here is to derive  
54      new analytical predictions for this relationship. In particular, we want to predict the critical  
55      window of stress levels above which ER is very unlikely, allowing direct comparison with  
56      experimental data.

57      In the theoretical literature (reviewed in Alexander *et al.* 2014), most ER models predict that  
58      ER probability decreases with increasing stress level, measured by the decay rate of the  
59      stressed population. Indeed, a faster decay of the population leaves less time for adaptation to  
60      occur before extinction (e.g. Gomulkiewicz and Holt 1995). But beyond this direct demographic

61 effect, stress level may also have indirect effects on ER. Indeed, a stressful environment may  
62 not only affect the demographic properties of the population, but also its rate of adaptation,  
63 by modifying the determinants of genetic variance in fitness (Hoffmann and Parsons 1997; De  
64 Visser and Rozen 2005; Agrawal and Whitlock 2010). First, the rate of mutations and the  
65 distribution of their effects on fitness change across environments (Martin and Lenormand  
66 2006b; Wang *et al.* 2009; Agrawal and Whitlock 2010; Wang *et al.* 2014). In particular, the  
67 fraction of beneficial mutations was found to increase in stressful environments (Remold and  
68 Lenski 2001, 2004). Standing genetic variation for quantitative traits (notably fitness  
69 components), also frequently depends on the environment (Hoffmann and Merilä 1999; Sgrò<sup>70</sup>  
and Hoffmann 2004; Charmantier and Garant 2005). Finally, the initial frequency of preexisting  
71 variants able to rescue the population from extinction in a stressful environment may depend  
72 on their selective cost in the past environment. In light of this empirical evidence, it seems clear  
73 that progress towards understanding and predicting ER across stress levels requires addressing,  
74 in a quantitative way, the joint effect of stress on the demography and genetic variation in  
75 fitness of a population exposed to stressful conditions. This is our goal in the present article.

76 To do so, we develop a model that is a hybrid between two modeling traditions in ER theory,  
77 summarized by Alexander *et al.* (2014): discrete genetic models, and quantitative genetic  
78 models. Discrete genetic models assume a narrow genetic basis for adaptation (and ER),  
79 whereby a single beneficial mutation can rescue an otherwise monomorphic population (Orr  
80 and Unckless 2008; Martin *et al.* 2013; Uecker *et al.* 2014; Orr and Unckless 2014; Uecker and  
81 Hermisson 2016). This approach was initially proposed for ER by Gomulkiewicz and Holt (1995),  
82 and later extended to account for (i) evolutionary and demographic stochasticity (e.g. Orr and  
83 Unckless 2008), and (ii) variation in the selection coefficients of mutations that may cause  
84 rescue, with an arbitrary distribution of fitness effects (Martin *et al.* 2013). However, such  
85 models do not predict how the distribution of fitness effects of mutations vary along gradients  
86 of stress level. For this reason, they make it difficult to jointly address the two fundamental  
87 components of stress mentioned above. On the contrary, quantitative genetics models of ER  
88 inherently address the influence of stress on the rate of adaptation by assuming that adaptation  
89 (and ER) is caused by evolution of a quantitative trait whose optimum changes with the  
90 environment (Lynch *et al.* 1991; Burger and Lynch 1995; Gomulkiewicz and Holt 1995). In these  
91 models, both the rate of population decline and the rate of adaptation under stress depend on

92 the distance between the phenotypic optima in the past and present environments. However,  
93 analytical predictions are derived assuming a broad, polygenic basis for adaptation with a stable  
94 genetic variance of the quantitative trait. The population genetic processes underlying  
95 adaptation are not explicitly modelled, and the stochasticity involved in fixation and  
96 establishment of mutations neglected. These complications are only explored by simulations  
97 (e.g. Gomulkiewicz *et al.* 2010).

98 In order to take the best of both approaches, we rely on Fisher's (1930) Geometrical Model  
99 (hereafter "FGM"). Fitness variation in the FGM is assumed to emerge from variation in multiple  
100 putative phenotypic traits undergoing stabilizing selection that depends on the environment.  
101 This model is analytically tractable, while retaining various aspects of realism (reviewed in  
102 Tenaillon 2014). In particular, it accurately predicts how fitness effects of mutations change  
103 across environments (Martin and Lenormand 2006b; Hietpas *et al.* 2013; Harmand *et al.* 2017)  
104 or genetic backgrounds (Martin *et al.* 2007; MacLean *et al.* 2010; Trindade *et al.* 2012). The  
105 FGM naturally relates environmental stress to (i) the rate of population decline, (ii) the rate and  
106 effect of rescue mutants, and (iii) their potential costs in the past environment. Here, we  
107 combine this FGM with population dynamic approaches that account for demographic and  
108 evolutionary stochasticity (Martin *et al.* 2013), in a regime where selection is strong relative to  
109 the rate of mutation. We consider rescue in asexual populations, stemming either from *de novo*  
110 mutations or standing genetic variance. Interestingly, we show that all effects of stress on  
111 demography and on the distribution of the fitness effects of mutations can be summarized into  
112 a single composite measure of effective stress level. Evolutionary rescue shifts abruptly from  
113 very likely to very unlikely over a narrow window of effective stress level, which can be  
114 predicted from empirically measurable quantities.

115

116

## METHODS

117 We here detail the ecological (environmental), genetic, and demographic assumptions of  
118 the model, and the approximations used for its mathematical analysis.

119

120     **Abrupt environmental shift:** We define two environments: (1) a non-stressful one, denoted  
121     as “previous environment”, in which the population has a positive mean growth rate, and a  
122     large enough population size that demographic stochasticity can be ignored; and (2) a stressful  
123     one, denoted “new environment”, in which the population initially has a negative mean growth  
124     rate, and the population size is subject to demographic stochasticity. Conditions shift abruptly  
125     from the previous to the new environment at  $t = 0$ , at which time the population size is  $N_0$ .

126

127     **Eco-evolutionary dynamics:** Extinction or rescue ultimately depends on details of the  
128     stochastic population dynamics of each genotype. These are assumed to be mutually  
129     independent (no density or frequency-dependence, see Chevin 2011), and sufficiently ‘smooth’  
130     (moderate growth or decay) that they can be approximated by a Feller diffusion (Feller 1951),  
131     following Martin *et al.* (2013). This approximation reduces all the complexity of the life cycle  
132     into two key parameters for each genotype  $i$ : its expected growth rate  $r_i$  (our fitness here),  
133     and its variance in reproductive output  $\sigma_i$ . Our simulations below are performed for discrete  
134     generations with Poisson offspring distributions. In this case,  $\sigma_i = 1 + r_i \approx 1$  for any genotype,  
135     as long as their growth rate is not too large ( $r_i \ll 1$  per-generation, see **Appendix section I**  
136     **subsection 1 and 2** and Martin *et al.* (2013)). Note that the approximation extends to various  
137     other forms of reproduction (see Martin *et al.* 2013).

138     To cause a rescue, a resistant mutant ( $r_i > 0$ ) must establish, by avoiding extinction when  
139     rare. The probability that this happens, for a lineage with growth rate  $r_i > 0$  starting from a  
140     single copy is  $1 - e^{-2r_i}$  (still assuming  $r_i \ll \sigma_i$ , with  $\sigma_i \approx 1$  in the example used in simulations).  
141     The number of individuals from which such mutations can arise declines in time, and we ignore  
142     stochasticity in these decay dynamics. This is accurate as long as the population has large initial  
143     size, of order  $N_0 \gg 1$  (Martin *et al.* 2013).

144     Finally, we assume that mutation rates per capita per unit time are constant over time. This  
145     is exact in models with discrete generations. In continuous-time models, where mutations  
146     occur during birth events, mutation rates vary between genotypes with different birth rates,  
147     and over time as these genotypes change in frequency. However, the constant mutation rate  
148     model can still be approximately valid (see Martin *et al.* 2013).

149

150     **ER from standing variance versus *de novo* mutation:** At the onset of stress ( $t = 0$ ), the  
151     population either consists of a single ancestral clone, or is polymorphic at mutation-selection  
152     balance in the previous environment. In the first case, we must derive the distribution of fitness  
153     effects, in the new environment, of mutants arising from the ancestral clone. In the second  
154     case, we must also describe the potential rescue variants already present in the previous  
155     environment.

156

157     **Mutations under Fisher's geometrical model (FGM):** We assume that the expected growth  
158     rate of a given genotypic class (its Malthusian fitness, or log-multiplicative fitness in discrete-  
159     time models), is a quadratic function of its phenotype for  $n$  quantitative (continuous) traits.  
160     Denoting as  $\mathbf{z} \in \mathbb{R}^n$  the vector of breeding values (heritable components) for all traits, and as  
161      $\mathbf{o}$  the single optimum phenotype with maximal growth  $r_{max}$ , the expected growth rate is

$$r(\mathbf{z}) = r_{max} - \|\mathbf{z} - \mathbf{o}\|^2/2, \quad (1)$$

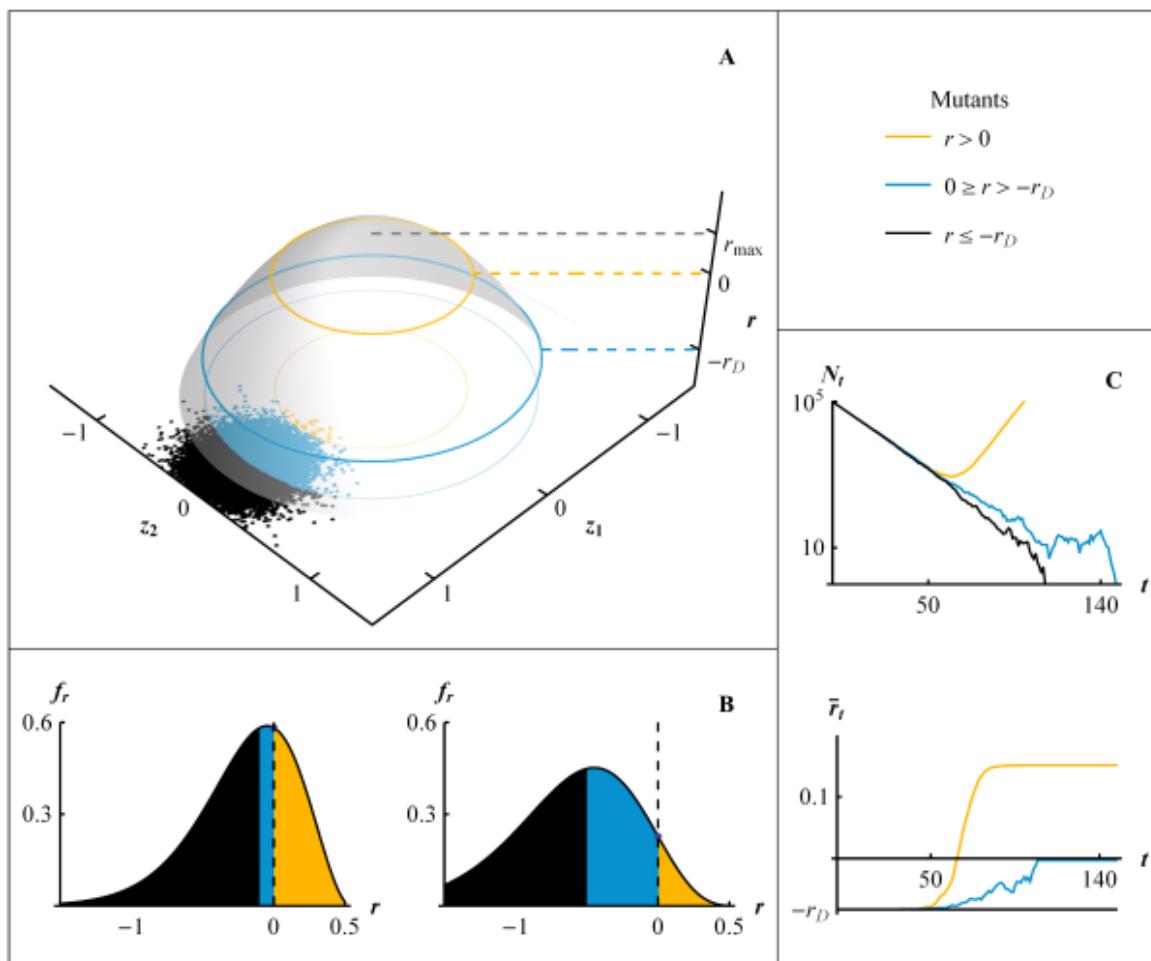
162     while the stochastic variance in reproductive success is assumed constant across genotypes.

163     The key assumption of our model is that the optimum depends on the environment. Without  
164     loss of generality, we set the phenotypic origin at the optimum in the new environment, in  
165     which  $\mathbf{o} = \mathbf{0}$ . In the previous environment, the optimum coincides with the mean phenotype  
166     of the ancestral population ('A'):  $\mathbf{o} = \mathbf{z}_A = \mathbb{E}(\mathbf{z})$ , which implies that the ancestral population  
167     was well-adapted in its original environment. The fitness of the mean ancestral phenotype  $\mathbf{z}_A$   
168     in the new environment is thus  $r(\mathbf{z}_A) = r_{max} - \|\mathbf{z}_A\|^2/2 = -r_D < 0$ , where  $r_D$  is its rate of  
169     decay, and the phenotypic magnitude of the stress-induced shift of the optimum phenotype  
170     (from  $\mathbf{o} = \mathbf{z}_A$  to  $\mathbf{o} = \mathbf{0}$ ) is  $\|\mathbf{z}_A\| = \sqrt{2(r_D + r_{max})}$ .

171     Mutations occur as a Poisson process with rate  $U$  per unit time per capita, constant over  
172     time and across genotypes, but potentially variable across environments. Each mutation adds  
173     a random perturbation  $\mathbf{dz}$  to the phenotype, drawn from an unbiased and isotropic  
174     multivariate Gaussian distribution  $\mathbf{dz} \sim N(\mathbf{0}, \lambda \mathbf{I}_n)$ , where  $\mathbf{I}_n$  is the identity matrix in  $n$   
175     dimensions and  $\lambda$  is a scale parameter. Note that, since traits are not our main interest here,  
176     we choose to measure mutation effects on them in units that directly relate to their fitness  
177     effects. Therefore,  $\lambda$  can be understood as the variance of mutational effects on traits,  
178     standardized by the strength of selection (see **Appendix section II subsection 1** for more details).

179 Note that mutation effects are additive on *phenotypes* (no epistasis), but not on *fitness*,  
 180 because  $r(\mathbf{z})$  is nonlinear (Martin *et al.* 2007).

181 **Fig.1** illustrates the rescue process in the FGM. At the onset of stress ( $t = 0$ ), the optimum  
 182 shifts abruptly to a new position, such that the mean growth rate becomes negative with  $-r_D <$   
 183 0 (**Fig.1.C**). Meanwhile, the population size starts to drop from an initial value  $N_0$  (**Fig.1.C**), facing  
 184 extinction in the absence of evolution. However, one or several mutants or pre-existing variants  
 185 may be close enough to the new optimum to have a positive growth rate ("resistant  
 186 genotypes", **Fig.1.A, 1.B**). These may then establish, and ultimately rescue the population  
 187 ("rescue genotypes" **Fig.1.A, 1.B**).



188

**Figure 1:** Evolutionary rescue in Fisher's geometric model. In all panels, black refers to deleterious and neutral mutations ( $-r_D \geq r$ ), blue to beneficial but not resistant mutations ( $-r_D < r \leq 0$ ) and orange to resistant mutations ( $r > 0$ ), around the dominant genotype of the ancestral population with phenotype  $z_A \neq 0$ . (A) Fitness landscape (FGM) with growth rate  $r$  (z-axis) determined by two phenotypic traits  $z_1$  and  $z_2$ . Dots represent the distribution of random mutant phenotypes around the dominant genotype of the ancestral population. The growth rate of this dominant genotype, in the stressful environment, is  $-r_D$ , and  $r_{max}$  is the maximal fitness at the

phenotypic optimum. (B) Distribution of growth rates among random mutants arising from the dominant genotype (distribution of mutation effects on fitness) for two decay rates  $r_D = 0.1$  (left) and  $r_D = 0.5$  (right). (C) Dynamics of the population size  $N_t$  and mean fitness  $\bar{r}_t$  of a population starting from a clone at  $-r_D = -0.083$  at size  $N_0 = 10^5$ . The black line represents the case without fixation of a beneficial mutation, the blue line the case with extinction in spite of the fixation of a beneficial, but non-resistant, mutation, and the orange line the case of a rescue. Parameters for the simulations are  $r_{max} = 1.5$ ,  $U = 2 * 10^{-5}$ ,  $n = 4$  and  $\lambda = 5 * 10^{-3}$ .

189 Within the context of the FGM, increasing stress level may have different effects, also  
190 discussed in Harmand *et al.* (2017). First, stronger stress may cause a larger shift in the position  
191 of the optimum phenotype, resulting in a larger initial drop in fitness (higher  $r_D$ ), as assumed in  
192 most models of adaptation to a changing environment (Kopp and Matuszewski 2014). In  
193 addition, the maximal possible fitness  $r_{max}$  may also be lower in the new than in the previous  
194 environment (reduced environmental quality). Moreover, the mutational parameters ( $U$  and  
195  $\lambda$ ) may change with stress, causing shifts in evolvability. Note that a change in  $\lambda$  may reflect a  
196 change in the phenotypic effects of mutations, of the strength of stabilizing selection, or both.  
197 For instance, higher stress may release cryptic genetic variance on underlying phenotypic traits  
198 (Scharloo 1991; Hermisson and Wagner 2004), or cause increased mutation rates via SOS  
199 responses in bacteria (Foster 2007). Finally, although less easy to conceptualize, some  
200 environments may change the effective dimensionality of the landscape. However, in the  
201 present paper, we only consider such changes in dimensionality in the context of rescue from  
202 *de novo* mutations (where it can readily be handled by studying the effect of the parameter  $n$ ).

203 As we will see, all our results can be expressed in terms of five parameters  
204 ( $N_0, U, r_D, r_{max}, \lambda, n$ ). **Table 1** summarizes all notations in the article.

205

| Notation   | Description                                                                                                                                                  | Formula                                                |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| $N_t, N_0$ | $N_t$ : population size at time $t$ after the onset of the stress.<br>$N_0$ : initial population size at the onset of the stress.                            |                                                        |
| $U$        | Mutation rate <i>per</i> individual <i>per</i> unit time.                                                                                                    |                                                        |
| $n$        | Number of traits under stabilizing selection, or phenotypic dimensionality.                                                                                  |                                                        |
| $\lambda$  | Variance of mutational effects: variance of the phenotypic effects of mutations, per trait, in a trait space scaled by the strength of stabilizing selection | $\mathbf{dz} \sim N(\mathbf{0}, \lambda \mathbf{I}_n)$ |

|                              |                                                                                                                                                          |                                                                                                   |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| $U_c$                        | Critical mutation rate below which the SSWM regime is valid.                                                                                             | $U_c = n^2 \lambda/4$                                                                             |
| $\mathbf{z}$                 | $n$ -dimensional vector $\mathbf{z} \in \mathbb{R}^n$ of (breeding values for) phenotype                                                                 |                                                                                                   |
| $\mathbf{z}_A, \mathbf{0}$   | $\mathbf{0}$ : optimal phenotype in a given environment<br>$\mathbf{z}_A$ : average phenotype of the ancestral population (before the onset of stress)   | $\mathbf{0} = \mathbf{0}$ : new environment<br>$\mathbf{0} = \mathbf{z}_A$ : previous environment |
| $r, \sigma$                  | Growth rate ( $r$ ) and reproductive variance ( $\sigma$ ) of a given genotype, in the new environment.                                                  | Eq.(1)                                                                                            |
| $r_{max}$                    | Maximum possible growth rate in the new environment.                                                                                                     | $r(\mathbf{0}) = r_{max}$                                                                         |
| $r_D$                        | Rate of decay of the ancestral phenotype $\mathbf{z}_A$ in the new environment.                                                                          | $r(\mathbf{z}_A) = r_{max} - \ \mathbf{z}_A\ ^2/2 = -r_D$                                         |
| $c$                          | Cost of a mutation: selective disadvantage of the mutant, relative to the optimal phenotype, in the previous environment.                                | $c = \ \mathbf{z} - \mathbf{z}_A\ ^2/2$                                                           |
| $c_H(y)$                     | Harmonic mean of the cost $c y$ among <i>de novo</i> mutations with scaled growth rate $y$ in the new environment                                        | Eq.(3)                                                                                            |
| $y$                          | Growth rate of a genotype, in the new environment, scaled by $r_{max}$ .                                                                                 | $y = r/r_{max} \in [-\infty, 1]$                                                                  |
| $f_y(y)$                     | Probability density function of $y$ among random single step mutations                                                                                   | Eq.(2)                                                                                            |
| $y_D$                        | Rate of decay scaled by $r_{max}$ .                                                                                                                      | $y_D = r_D/r_{max}$                                                                               |
| $\psi_D$                     | Alternative measure of $y_D$                                                                                                                             | $\psi_D = 2(\sqrt{1 + y_D} - 1)$ (Eq.(6))                                                         |
| $\alpha$                     | Effective stress level                                                                                                                                   | Eq.(6)                                                                                            |
| $\alpha_c, r_D^c$            | Characteristic stress level ( $\alpha_c$ ) or decay rate ( $r_D^c$ ) beyond which ER probability drops below 1/2.                                        | Eq.(8)                                                                                            |
| $g(\alpha)$                  | Function driving the dependence of rescue probabilities on stress levels.                                                                                | Eq.(7)                                                                                            |
| $\omega_{DN}, \omega_{DN}^*$ | $\omega_{DN}$ : rate of rescue from <i>de novo</i> mutations scaled by $N_0$<br>$\omega_{DN}^*$ : corresponding approximation when $\lambda \ll r_{max}$ | Eqs.(5), (7)                                                                                      |
| $\omega_{SV}, \omega_{SV}^*$ | $\omega_{SV}$ : rate of rescue from standing variance scaled by $N_0$<br>$\omega_{SV}^*$ : corresponding approximation when $\lambda \ll r_{max}$        | Eqs.(5),(10)                                                                                      |
| $P_R$                        | Probability of rescue.                                                                                                                                   | $P_R = 1 - e^{-N_0 \omega_R}$                                                                     |
| $\phi_{SV}$                  | Proportion of rescue events caused by standing variants                                                                                                  | Eq. (10)                                                                                          |

**Table 1:** Notations

207     **Strong selection and weak mutation (SSWM) regime:** The FGM described in the previous  
208 section, produces epistasis for fitness between different mutations which makes the problem  
209 highly intractable in general. To make analytical progress, we assume a regime of strong  
210 selection and weak mutation (SSWM, Gillespie 1983), which allows neglecting multiple mutants  
211 and epistasis. This regime arises when mutation rates are small relative to their typical fitness  
212 effect (as detailed below). In our context, this assumption implies that most rescue variants  
213 (pre-existing or *de novo*) are only one mutational step away from the ancestral genotype,  
214 allowing for two key simplifications. First, with a purely clonal ancestral populations, we can  
215 ignore ER by genotypes that have accumulated multiple *de novo* mutations. Second, in  
216 populations initially at mutation-selection balance, we can consider that all mutations arise  
217 from a single dominant genotype, optimal in the previous environment. Indeed, in the SSWM  
218 regime at mutation-selection balance, most segregating phenotypes remain within a narrow  
219 neighborhood of the optimum (relative to the magnitude of mutation effects on traits), so the  
220 mutation-selection balance is well-approximated by assuming that all mutations originate from  
221 the optimum phenotype. This is essentially the House-of-Cards approximation (Turelli 1984)  
222 extended to the FGM of arbitrary dimensionality (Martin and Roques 2016).

223     Overall, the SSWM assumption implies that the evolutionary aspects of ER are entirely  
224 determined by a single joint distribution of fitness, in the previous and new environment. This  
225 distribution corresponds to that of mutants arising from the optimal genotype of the previous  
226 environment. We thus apply the results of Martin *et al.* (2013), to this particular distribution.

227     Note that the SSWM approximations used in this article should apply even when multiple  
228 single-step mutants co-segregate (generating “soft selective sweeps”, as detailed in Wilson *et*  
229 *al.* 2017). Indeed, the probability of ER, as computed for example in Orr and Unckless (2008) or  
230 Martin *et al.* (2013) and used here, is one minus the probability that no *single* mutant arises  
231 that ultimately causes ER. This means that we ignore ER requiring multiple mutational steps,  
232 but allow several single-step rescue mutations to co-segregate. Consistently, our simulations  
233 did not show any particular deviation from the theory at very mild stress, where such co-  
234 segregation of several single-step mutants is expected.

235

236     **Maximal mutation rate for the SSWM regime:** We conjecture that the SSWM approximation  
237 should be accurate below some threshold mutation rate  $U_C$ , i.e. whenever  $U < U_C = n^2 \lambda/4$ .

238 Indeed, Martin and Roques (2016) found that as long as  $U \leq U_C$ , the fitness distribution at  
239 mutation-selection balance corresponds exactly to that expected under the House of cards  
240 approximation (with a dominant optimal genotype plus its deleterious mutants). Whether this  
241 same condition is sufficient for most rescue events to stem from single-step mutations is not  
242 justified theoretically, and was simply tested by extensive stochastic simulations.  
243 **Supplementary Fig.1** further explores the range of validity of this approximation. It shows, in a  
244 rescued population, the proportion of wild-type, single mutant, double mutant, and so on, as a  
245 function of the mutation rate.

246

247 **Distribution of single-step mutation fitness effects in the new environment:** Let  $s$  be the  
248 selection coefficient (difference in growth rate), in the new environment, of a random mutant  
249 (with phenotype  $\mathbf{z}$ ) relative to its ancestor (with phenotype  $\mathbf{z}_A$ ). The distribution of  $s = r(\mathbf{z}) -$   
250  $r(\mathbf{z}_A) = r + r_D$  among random mutants has a known exact form in the isotropic FGM (Martin  
251 2014; Martin and Lenormand 2015), from which the distribution of growth rates ( $r = s - r_D$ )  
252 in the new environment is readily obtained. It proves simpler and sufficient (see **Appendix**  
253 **section II subsection 2**) to consider the scaled (and unitless) growth rate  $y = r/r_{max} \in [-\infty, 1]$ ,  
254 such that  $y_D = r_D/r_{max} \in [0, +\infty]$  is the decay rate of the ancestor scaled to the maximum  
255 possible growth rate. The scaled growth rates  $y = r/r_{max}$  have the following probability  
256 density function:

$$f_y(y) = \exp\left(-\frac{r_{max}(2 + y_D - y)}{\lambda}\right) \left(\frac{r_{max}}{\lambda}\right)^{n/2} (1 - y)^{n/2-1} \frac{{}_0F_1\left(\frac{n}{2}, \left(\frac{r_{max}}{\lambda}\right)^2 (1 + y_D)(1 - y)\right)}{\Gamma(n/2)}, \quad (2)$$

$$y \in ]-\infty, 1]$$

257 where  ${}_0F_1(.,.)$  is the confluent hypergeometric function and  $\Gamma(z)$  is the gamma function. In  
258 the SSWM regime, this probability density function approximately describes *de novo* mutations  
259 produced after the onset of stress by the whole population, be it initially clonal or at mutation-  
260 selection balance.

261

262     **Fitness cost of single-step pre-existing mutants in the previous environment:** Consider the  
 263     subset of random mutations, among those that arise from the dominant genotype of the  
 264     ancestral population, that have a scaled growth rate within the infinitesimal class  $[y, y + dy]$   
 265     in the new environment. We introduce the conditional random variable  $c|y$ , which is the cost,  
 266     in the previous environment, of a random mutant within this subset (thus, conditional on  $y$ ).  
 267     This cost is equal to the negative of the selection coefficient of the mutation relative to the  
 268     dominant genotype with phenotype  $\mathbf{z}_A$ . More precisely, the cost of a mutant with phenotype  $\mathbf{z}$   
 269     is  $c = \|\mathbf{z} - \mathbf{z}_A\|^2/2$  (using eq.(1), with  $\mathbf{o} = \mathbf{z}_A$  for the previous environment). Note that,  
 270     because the mutation-selection balance in the previous environment is fully characterized by  
 271     relative fitnesses, which do not depend on the maximal growth rate in this environment, the  
 272     latter may differ from  $r_{max}$  without impacting the distribution of the costs  $c|y$  and our results.  
 273     Importing results from Martin *et al.* (2013) for the SSWM regime, the total number of pre-  
 274     existing variants within the class  $[y, y + dy]$  is Poisson distributed with mean  $N_0 U f_y(y)/$   
 275      $c_H(y)dy$ , where  $c_H(y) = 1/\mathbb{E}_c(1/c|y)$  is the harmonic mean of the cost  $c|y$  among  
 276     mutations with effect  $y$  in the new environment. This conditional harmonic mean depends on  
 277     the joint distribution of mutation effects on fitness  $(c, y)$  across two environments in the FGM  
 278     (given in Martin and Lenormand 2015). In our context, the dominant genotype of the ancestral  
 279     population is optimal in the previous environment and far from the optimum in the new  
 280     environment. In this case, using Eq.(9) in Martin and Lenormand (2015), the resulting  
 281     conditional harmonic mean  $c_H(y)$  takes a tractable form (see Eq.(A6) for  $n \geq 2$  and (A8) for  
 282      $n = 1$  in **Appendix section II subsection 4 and 5**):

$$c_H(y) = 1/\mathbb{E}_c\left(\frac{1}{c}|y\right) = \begin{cases} \frac{\lambda v(y)}{e^{v(y)} E_{(n-1)/2}(v(y))}, & n \geq 2 \\ \frac{\lambda v(y)}{n}, & n = 1 \end{cases}, \quad (3)$$

$$\text{with } v(y) = \frac{r_{max}}{\lambda} \left( 2 + y_D - 2\sqrt{(1 + y_D)(1 - y)} - y \right)$$

283     where  $E_k(z) = \int_1^\infty e^{-z t} / t^k dt$  is the exponential integral function. In most of the article we  
 284     focus on the case  $n \geq 2$ , when considering ER from standing variance. The distributions of  
 285     mutation effects on fitness in both the previous (Eq.(3)) and the new environment (Eq.(2)) can  
 286     then be integrated to yield the probability of ER, as we show next.

287

288     **General expression and assumptions for the rescue probability:** Extinction occurs when no  
289     resistant mutation manages to establish (i.e. to avoid stochastic loss). For compactness, we  
290     define a rate of rescue  $\omega$  per individual present at the onset of stress (i.e., scaled by  $N_0$ ), such  
291     that, following Martin *et al.* (2013), ER probabilities take the general form (similar to that in  
292     e.g. Orr and Unckless 2008):

$$P_R = 1 - e^{-N_0 \omega}. \quad (4)$$

293     The rate of rescue from *de novo* mutations alone is  $\omega_{DN}$  ('DN' for *de novo*), while that from  
294     pre-existing variance alone is  $\omega_{SV}$  ('SV' for standing variants). For a purely clonal population,  
295     the rate of rescue is  $\omega = \omega_{DN}$ , while for a population initially at mutation-selection balance, it  
296     is  $\omega = \omega_{DN} + \omega_{SV}$  in the SSWM regime assumed here (Martin *et al.* 2013). Applied to the  
297     context of the FGM using Eqs.(2) and (3), the rates  $\omega_{DN}$  and  $\omega_{SV}$  are given by (see **Appendix**  
298     Eq.(A5) and (A7) ):

$$\begin{aligned} \omega_{DN} &= \frac{U}{r_D} \int_0^1 \pi(y) f_y(y) dy \\ \omega_{SV} &= U \int_0^1 \frac{\pi(y)}{c_H(y)} f_y(y) dy \quad , \\ \text{with } \pi(y) &= 1 - e^{-2y r_{max}/\sigma} \end{aligned} \quad (5)$$

299     where  $c_H(y)$ , and  $E_{(n-1)/2}(\cdot)$  are defined in Eq.(3) and  $\pi(y)$  is the probability of establishment  
300     of a resistant genotype with scaled growth rate  $y > 0$  in the new environment.  $\omega_{DN}$  in Eq.(5)  
301     is simply the average establishment probability of *de novo* resistant mutants times the genomic  
302     mutation rate, divided by the rate of decay. In previous ER models (e.g. Orr and Unckless 2008;  
303     Martin *et al.* 2013), which we denote "context-independent", the probability of rescue takes  
304     the exact same form as Eq.(4). The expressions for the rates of rescue per capita also take a  
305     form similar to Eq.(5): for *de novo* mutations,  $\omega_{DN} = U q_R / r_D$ , and for standing variance,  
306      $\omega_{SV} = U q_R / c_H$ , where  $q_R$  is the proportion of rescuers among random mutations ( $q_R =$   
307      $\int_0^1 \pi(y) f_y(y) dy$  in Eq.(5)) and  $c_H$  is again the harmonic mean of the cost of rescue mutations.  
308     The important difference is that in previous models,  $q_R$  and  $c_H$  do not depend on  $r_D$ , while the  
309     corresponding quantities in Eq.(5) do depend on the rate of decay, through its effect on  $f_y(y)$   
310     and  $c_H(y)$ .

311     The linearity of ER rates with the mutation rate  $U$  ( $\omega \propto U$ ) arises here because of the SSWM  
312     regime, where multiple mutations are ignored: it might not hold at higher mutation rates

313 (when  $U > U_c$ ). As such, Eq.(5) makes no further assumption than the SSWM regime ( $U < U_c$ );  
314 it can easily be evaluated numerically to provide a general testable theory for rescue  
315 probabilities across stress levels, in the FGM. Yet, in order to gain more quantitative/intuitive  
316 insight into the effects of stress, we study approximate closed forms for the rates in Eq.(5).

317

318 **Small mutational effects approximation (SME):** Although selection is assumed to be strong  
319 relative to mutation ( $U < U_c$ , SSWM regime), it is still fairly realistic to assume that mutation  
320 effects on traits (and thus fitness) are weak relative to the maximal growth rate in the new  
321 environment, namely that  $\lambda \ll r_{max}$ . Taking a limit where  $\lambda/r_{max} \rightarrow 0$ , simpler expressions for  
322 Eq. (5) are derived in the **Appendix section III**.

323 With this approximation, single-step resistance mutations are still rare and of large phenotypic  
324 effect, in that they pertain to the tail of the mutant phenotype distribution. However, even  
325 resistance mutations typically remain far from the optimum in the new environment, so that  
326 their scaled growth rate is small:  $y = r/r_{max} \ll 1$ . Overall, mutation effects must fall within  
327 the range:  $4U/n^2 < \lambda \ll r_{max}$  for both the SSWM and the SME (small mutational effects)  
328 approximation to apply (see **Appendix section III**). In the appendix, we study the convergence,  
329 as  $\lambda/r_{max}$  decreases, of the results from Eq.(5) to their asymptotic limit (**Supplementary Figs.3**  
330 and **4**).

331

332 **Stochastic simulations of a discrete-time model:** We checked the robustness of our  
333 assumptions and approximations using stochastic simulations, where we tracked the  
334 population size and genetic composition of a population across discrete, non-overlapping  
335 generations. The size  $N_{t+1}$  of population at generation  $t + 1$  was drawn as a Poisson number  
336  $N_{t+1} \sim Poisson(N_t \bar{W})$ , with  $\bar{W} = \overline{e^r}$  the mean multiplicative fitness ( $W = e^r$ ) and  $N_t$  the  
337 population size, in the previous generation. The genotypes forming this new generation were  
338 then sampled with replacement from the previous one with weight  $W_i = e^{r_i}$ . This is faster and  
339 exactly equivalent to drawing independent Poisson reproductive outputs for each individual, or  
340 genotype. Because of the underlying assumptions of the simulations, the corresponding  
341 analytical approximation for the stochastic reproductive variance in Eq.(1) is  $\sigma_i = \sigma \approx 1$   
342 (assuming small growth rates  $r_i \ll 1$ ). Mutations occurred according to a Poisson process, with  
343 a constant rate  $U$  per capita per generation. Mutation phenotypic effects were drawn from a

344 multivariate normal distribution  $N(\mathbf{0}, \lambda \mathbf{I}_n)$ , with multiple mutants having additive effects on  
 345 phenotype, and their fitness computed according to the FGM (Eq.(1)).

346     Rescue probability was estimated by running 1000 replicate simulations until either  
 347 extinction or rescue occurred. A population was considered rescued when it reached a  
 348 population size  $N_t$  and mean growth rate  $\bar{r}_t$  such that its ultimate extinction probability, if it  
 349 were monomorphic, would lie below  $10^{-12}$  ( $\exp(-2 N_t \bar{r}_t) < 10^{-12}$ ). This is a conservative  
 350 criterion: once  $\bar{r}_t$  has become positive, we expect it to remain so, yielding further increases in  
 351 population size and thus further decreasing the probability of future extinction. We checked on  
 352 a subset of simulations that the above procedure gave the same rescue probabilities as  
 353 obtained in simulations performed until the population rebounded back to its (large) initial  
 354 size  $N_0$ .

355 For rescue from populations at mutation-selection balance, 8 replicate initial equilibrium  
 356 populations were generated, each by starting from an optimal clone and running the same  
 357 algorithm with fixed population size ( $N_t = 10^6$ ) until the mean growth rate had visually  
 358 stabilized to a fixed value (close to its theoretical equilibrium value  $\bar{r}_{eq} = r_{max} - U$  (for  $U <$   
 359  $U_c$ ) for more than 1000 generations. Then the optimum was shifted by  $\sqrt{2(r_D + r_{max})}$   
 360 phenotypic units, and 1000 replicate ER simulations were performed (same algorithm as for *de*  
 361 *novo* rescue), from each of the 8 replicate equilibrium populations.

362 All simulations and mathematical derivations were performed in *MATHEMATICA v. 9.0*  
363 (Wolfram Research 2012).

364

## RESULTS

366 The ER rates in Eq.(5) are analytical but only implicit functions of the model parameters. In  
367 a small mutational effects (SME) limit, they take simpler closed form (indicated by a '\*)'. As we  
368 will see below, these simpler forms mostly depend on the following two compound variables,  
369 which summarize the various effects of stress on the fitness landscape:

$$\begin{aligned} \psi_D &= 2 \left( \sqrt{1 + r_D/r_{max}} - 1 \right) \\ \alpha &= \frac{\psi_D^2 r_{max}}{4 \lambda} \quad . \end{aligned} \quad (6)$$

370 Both  $\psi_D$  and  $\alpha$  increase with the decay rate  $r_D$ , decrease with increasing peak height  $r_{max}$ , and  
371 are independent of  $n$ . The parameter  $\alpha$  further increases with decreasing variance of  
372 mutational effects  $\lambda$ . We can already see how  $\alpha$  qualitatively reflects an “effective stress level”:  
373 stress is harder to cope with if decay rate is larger, the maximum growth rate is lower, and  
374 mutation effects are smaller.

375

376 **Rescue from *de novo* mutations:** Under the SME approximation and in the SSWM regime  
377 ( $4U/n^2 < \lambda \ll r_{max}$ ) the rate of *de novo* rescue (Eq.(5)), converges to (Eq. (A12) in the  
378 **Appendix**):

$$\omega_{DN} \underset{\lambda \ll r_{max}}{\approx} \omega_{DN}^* = U \frac{(1 + \psi_D/2)^{(1-n)/2}}{1 + \psi_D/4} g(\alpha) \quad (7a)$$

$$\omega_{DN}^* \underset{\psi_D/2 \rightarrow 0}{\rightarrow} U g(\alpha) \quad (7b), \quad (7)$$

$$\text{with } g(\alpha) = \frac{e^{-\alpha}}{\sqrt{\pi \alpha}} - \text{erfc}(\sqrt{\alpha})$$

379 where  $\text{erfc}(\cdot)$  is the complementary error function. Eq.(7)b. gives the approximate closed form  
380 of Eq.(7)a. for mild stress ( $\psi_D/2 \rightarrow 0$ ). Note that this approximation converges faster (with  
381 decreasing  $\psi_D$ ) with fewer dimensions, due to the faster vanishing of the factor  $(1 +$   
382  $\psi_D/2)^{(1-n)/2}$  (in the limit  $n = 1$  it vanishes for all  $\psi_D$ ). We now discuss the biological  
383 implications of these expressions.

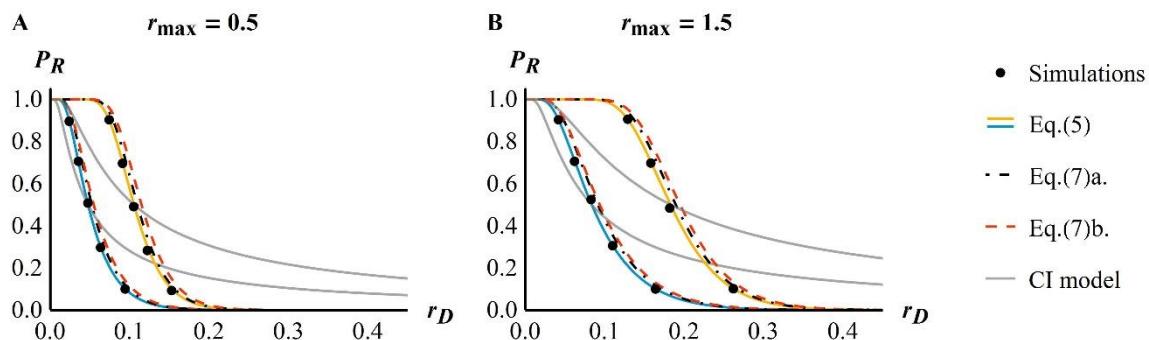
384

385 **Effect of FGM parameters on rescue:** The partial derivatives of  $\omega_{DN}^*$  in Eq.(7) with respect to  
386 the FGM parameters ( $r_D, r_{max}, \lambda, n$ ) quantify the sensitivities of ER probability to each of them  
387 (**Appendix section III subsection 4**). First, note that  $g(\cdot)$  is a strictly decreasing function of  $\alpha$ .  
388 When  $n > 1$  and with mild stress ( $\psi_D \ll 2$ ), Eq.(7)b. applies and  $\omega_{DN} \approx U g(\alpha)$ . ER then  
389 becomes less likely with a higher decay rate  $r_D$ , a lower peak  $r_{max}$  and a smaller variance of  
390 mutational effects  $\lambda$ , and is independent of dimensionality  $n$ . For stronger stress levels, Eq.(7)a.  
391 applies: these qualitative dependencies to the parameters still hold, except that ER probability  
392 now decreases with increasing dimensionality.

393

394 **Sharp drop of ER probability with stress levels:** Fig.2 shows the agreement between  
 395 simulations (stochastic discrete-time demographic model, see Methods) and the analytical  
 396 expressions in Eqs.(5) and (7), over a wide range of stress levels (quantified by  $r_D$ ), and for two  
 397 values of  $r_{max}$  and  $U$  (Supplementary Fig.3 further explores the range of validity of the  
 398 approximation). Interestingly, ER probability drops sharply with stress levels (with decay rate  
 399  $r_D$  here), which is well captured by the term  $g(\alpha)$  alone (Eq.(7)b., dashed red lines in Fig.2).  
 400 This drop is much more pronounced than in a context-independent model (gray lines in Fig.2),  
 401 where stress does not affect the distribution of mutation effects. The difference between  
 402 context-independent models and the FGM is that, in the latter, increased stress implies both  
 403 faster decay (as in the former), and fewer and weaker resistance mutations. In the FGM, these  
 404 effects on the properties of rescue mutations are the main drivers of ER probabilities across  
 405 stress levels.

406



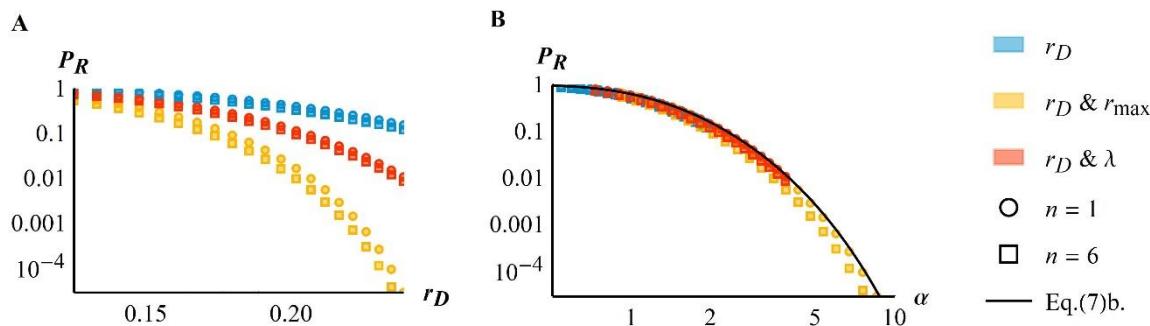
407

**Figure 2:** Rescue probability from *de novo* mutations. The ER probability as a function of stress levels, expressed as the initial mean decay rate of the population, is given for various values of the mutation rate  $U = 10^{-3} U_c$  (blue) or  $U = 10^{-2} U_c$  (orange) and the maximal fitness reachable in new the environment  $r_{max} = 0.5$  (A) or 1.5 (B). Dots give the results from simulations and solid lines (blue and orange) show the corresponding theory computed numerically (Eq.(5)). The black dot-dashed (respectively red dashed) lines give the corresponding analytical approximations Eq.(7)a. (respectively Eq.(7)b.). The gray lines correspond to an equivalent theory without the FGM (named context-independent model as described in the Method section, “CI”) modified from Orr and Unckless (2008). This last model was computed using a fixed proportion of resistant mutations equal to the one in Eq.(5) for a rescue probability of 0.5 (which explains why the two curves cross exactly at  $P_R = 0.5$ ). Other parameters are  $n = 4$ ,  $N_0 = 10^5$ ,  $\lambda = 0.005$ .

408

409 **Composite parameter  $\alpha$  describing an effective stress level:** The results in Eqs.(6)-(7) suggest  
 410 that a single composite parameter ( $\alpha$  in Eq.(6)) can capture the various ways in which stress  
 411 may alter the parameters of the fitness landscape, that is, fitness peak height  $r_{max}$ , variance of  
 412 mutational effects  $\lambda$ , or distance to the optimum  $r_D$ . We denote this parameter the “effective  
 413 stress level”. In **Fig.2**, considering the effect of stress only via  $\alpha$  (Eq.(7)b.) is equally accurate as  
 414 using the more complex Eq.(7)a., or the numerical computation from Eq.(5).

415 This simplification is further illustrated in **Fig.3**, where we use exact numerical computations  
 416 from Eq. (5) to explore different possible effects of stress. Regardless of whether stress affects  
 417 only the maladaptation of the ancestral clone ( $r_D$ , blue symbols), or also the quality of the  
 418 environment (joint change in  $r_D$  and  $r_{max}$ , orange symbols) or the variance of mutational  
 419 effects (joint change in  $r_D$  and  $\lambda$ , red symbols), its effect on the rescue probability is accurately  
 420 predicted by  $\alpha$  (**Fig.3B**, black line). As predicted by Eq.(7)b., the relationship between rescue  
 421 probability and  $\alpha$  is approximately independent of dimensionality (compare circles  $n = 1$  and  
 422 squares  $n = 6$  in **Fig.3B**). We also note that Eq.(7)b. slightly overestimates the ‘exact’ numerical  
 423 computations of the ER probability from Eq.(5), so it provides a conservative bound when  
 424 considering the control of resistant pathogens.



425

**Figure 3: The effective stress level.** Rescue probability for clonal populations versus initial decay rate  $r_D$  (A) or the effective stress level  $\alpha$  (B). In both panels the axes are in logarithmic scale, symbols show Eq.(5) and colors refer to different effects of increased stress level: blue symbols show only  $r_D$  increasing (with  $r_{max} = 1.5$  and  $\lambda = 0.005$ ), orange symbols  $r_D$  increasing and  $r_{max}$  decreasing linearly with  $r_D$  (according to  $r_{max} = 1.5 - 5 r_D$ , with  $\lambda = 0.005$ ) and red symbols  $r_D$  increasing and  $\lambda$  decreasing linearly with  $r_D$  (according to  $\lambda = 0.005 - 10^{-2} r_D$ , with  $r_{max} = 1.5$ ). In each case, the results for both  $n = 1$  (circles) and  $n = 6$  (squares) are shown. The black plain line on the right panel gives the result from Eq.(7)b.: a single composite measure of stress ( $\alpha$ ) approximately

captures the impact of stress-induced variations in the various parameters ( $r_D, r_{max}, \lambda, n$ ). Other parameters are  $N_0 = 10^6$  and  $U = 2 * 10^{-5}$ .

426  
427     **Characteristic stress level:** Fig.2 shows that ER drops from highly likely to highly unlikely  
428 around a “characteristic stress level”, which we can be characterized analytically (as detailed in  
429 the **Appendix section IV subsection 1**). Consider the set of values of parameters  
430 ( $N_0, U, r_{max}, r_D, \lambda, n$ ) for which the rescue probability is of given value  $p \in [0,1]$ . From Eq.(7)b.,  
431 this corresponds to the set ( $r_{max}, r_D, \lambda$ ) for which  $\alpha = g^{-1}(-\log(1-p)/N_0U)$ . Using the  
432 approximation  $g(\alpha) \approx \alpha^{-3/2}e^{-\alpha}/(2\sqrt{\pi})$  (from Eq.(7) with  $\alpha \gg 1$ ), the corresponding  $\alpha$  can  
433 be derived explicitly (Eq.(A17)). In particular for  $p = 1/2$ , the characteristic stress level  $\alpha_c$  at  
434 which the ER probability is 1/2 is (Eq. (A19) in the **Appendix**):

$$\alpha_c \underset{N_0U \gg 1}{\approx} g^{-1}\left(\frac{\log(2)}{N_0U}\right) \underset{N_0U \gg 1}{\approx} 0.9 \log(N_0U) - 2.7. \quad (8)$$

435 Under the conditions of the SME approximation (detailed in Methods), Eq.(8) applies for large  
436  $N_0U$  (approximately when  $N_0U \geq 5.10^4$ ), a necessary condition for this equation to be self-  
437 consistent (detailed in **Appendix section IV subsection 2**).

438     The characteristic stress level  $\alpha_c$  that a population can typically withstand increases only log-  
439 linearly with population size and mutation rate. Consider the characteristic decay rate  $r_D^c$  for  
440 which the rescue probability is  $P_R = 1/2$ , i.e. the decay rate that populations can overcome  
441 half of the times. From Eq.(8) with  $\alpha_c \propto (r_D^c)^2$  (Eq.(6)), this decay rate is  $r_D^c \propto \sqrt{\log(N_0U)}$  for  
442 large  $N_0U$ . For comparison, we would have  $r_D^c = q_R N_0U / \log(2)$ , which is linear in  $N_0U$ , in a  
443 context-independent model where the proportion  $q_R$  of random mutations causing a rescue is  
444 independent of  $r_D$ . The difference in the effect of  $N_0U$  on rescue probability thus stems from  
445 the strong non-linearity (i.e. sharp drop) of rescue probability with stress level (decay rate)  
446 under the FGM. In the FGM, overcoming a given environmental harshness requires much more  
447 mutational input than in a context-independent model.

448  
449     **Characteristic stress window:** It is also important to predict how sharply the ER probability  
450 drops around the characteristic stress level. This drop can be characterized by a “characteristic  
451 stress window” of  $\alpha$  over which the ER probability drops from 75% to 25%. The width  $\Delta\alpha$  of this

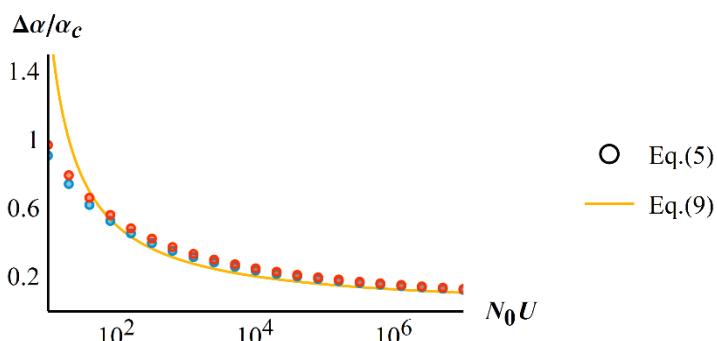
452 window can be scaled by the value of the characteristic stress level  $\alpha_c$ , to get a scale-free  
 453 measure of its steepness (i.e., how sharp the drop in ER probability is, relative to the stress level  
 454 around which it occurs). This gives (from Eq.(A20) in the **Appendix**):

$$\frac{\Delta\alpha}{\alpha_c} \underset{N_0U \gg 1}{\approx} \frac{1}{1 + 0.7\alpha_c}. \quad (9)$$

455 The width  $\Delta\alpha$  increases with increasing  $N_0U$  until it saturates (at  $\sim 1.5$ ) (see **Appendix section**  
 456 **IV subsection 3** for further details). However, when scaled by the center of the window ( $\alpha_c$ ),  
 457 the width of this scaled characteristic stress window drops below 1 as  $\alpha_c$  increases (and hence  
 458 with increasing  $N_0U$ , from Eq.(8)). This result shows formally that the drop in ER probability  
 459 with increasing stress  $\alpha$  gets proportionally sharper (relative to the position where it occurs)  
 460 as  $N_0U$  increases, but this is entirely driven at large  $N_0U$  by shifts of a window with constant  
 461 absolute width. This is illustrated in **Fig.4**, which also shows the accuracy of Eq.(9) compared to  
 462 ‘exact’ numerical computations from Eq.(5) (as expected, the exact result deviates from Eq.(9)  
 463 for smaller  $N_0U$ ).

464

465



**Figure 4:** Scaled width of the characteristic stress window  $\Delta\alpha/\alpha_c$  versus the population-scale mutation rate  $N_0U$ . The dots are obtained by numerical inversion of the ‘exact’ Eq.(5) with two values of  $r_{max} = 2$  (blue) and  $r_{max} = 0.1$  (red). The orange line shows the approximate scaled width of the characteristic stress window derived in Eq.(9). Other parameters are  $n = 4$ ,  $\lambda = 0.005$ .

466 Interestingly, Eq.(9) provides a scale-free measure that may be compared across  
 467 experiments, as it only depends on the genomic mutational input  $N_0U$  (via  $\alpha_c$ ). However, like  
 468 all results so far, Eq.(9) only considers ER from *de novo* mutation. We now turn to ER from  
 469 standing genetic variation.

470

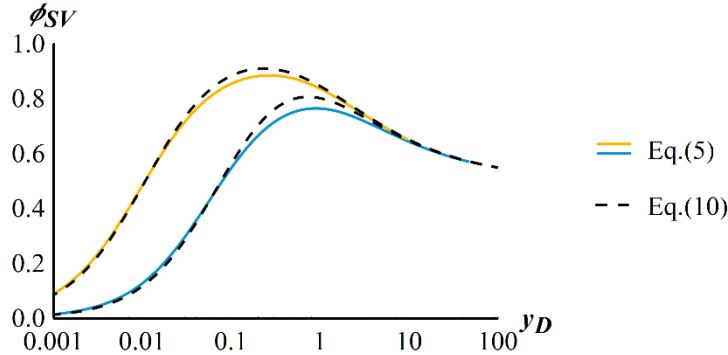
471     **Rate of rescue from a population at mutation-selection balance:** In the SSWM regime, and for  
472     a population at mutation-selection balance in the previous environment, each rescue event can  
473     be tracked back to either a pre-existing variant, or a *de novo* mutation (Orr and Unckless 2008;  
474     Martin *et al.* 2013; Orr and Unckless 2014). The proportion  $\phi_{SV}$  of rescue events caused by  
475     standing variance is then simply given by  $\phi_{SV} = \omega_{SV}/(\omega_{SV} + \omega_{DN})$ . A simple expression can  
476     be obtained again under the SME for  $n \geq 2$  (see Eq.(A21) in the **Appendix**), but the  
477     approximation ( $\phi_{SV}^*$ ) now further requires that decay rates are not vanishingly small ( $\lambda \ll$   
478      $r_{max} \psi_D^2/4$ ).

$$\phi_{SV} = \frac{\omega_{SV}}{\omega_{SV} + \omega_{DN}} \underset{\lambda \ll r_{max} \psi_D^2/4}{\approx} \phi_{SV}^* = \frac{1 + \psi_D/4}{\epsilon/\psi_D + 1 + \psi_D/2} \text{ where } \epsilon = \lambda \frac{n-1}{2 r_{max}} , \quad (10)$$

479 where  $\psi_D$  is defined in Eq.(6).

480     Eq.(10) captures the main features of how standing variance contributes to ER across (non-  
481     vanishing) stress levels (here, decay rate). Contrary to context-independent models, this  
482     contribution changes non-monotonically with increasing stress level (**Fig.5**). At very mild decay  
483     rate  $r_D$ , rescue relies on mild-effect mutations. The cost of such mutations - and hence their  
484     frequency before stress - is roughly independent of  $r_D$  (Martin and Lenormand 2015), while  
485     their rate of production by *de novo* mutation decreases as  $1/r_D$  (demographic effect), so the  
486     contribution of standing variance to ER increases with  $r_D$  at small  $r_D$ . In contrast at large stress  
487     levels, rescue stems from strong effect mutations. These mutations pay a substantial  
488     “incompressible cost” before stress that increases faster than  $r_D$  (Martin and Lenormand 2015),  
489     while their rate of *de novo* production still decreases as  $1/r_D$ , so the contribution of standing  
490     variance to ER decreases with  $r_D$  at large  $r_D$ . In the limit of very large  $y_D$ , the distance between  
491     the two optima is very large and makes most of both the cost and decay rate, so that  $c_H(y) \approx$   
492      $r_D$  for all mutations. Hence, *de novo* mutations and standing variants contribute equally to ER  
493     in this limit ( $\phi_{SV} \rightarrow 1/2$ ).

494



**Figure 5:** relative contribution of standing genetic variation to ER. The proportion of ER from standing variance is shown across scaled decay rates  $y_D$ . The numerical computation for  $\phi_{SV}$  (using Eq.(5) and (10)), for two values of  $r_{max} = 0.1$  (blue) and  $r_{max} = 0.7$  (orange), is compared to the approximate  $\phi_{SV}^*$  (Eq. (10), black dashed line). Other parameters as in Fig.2.

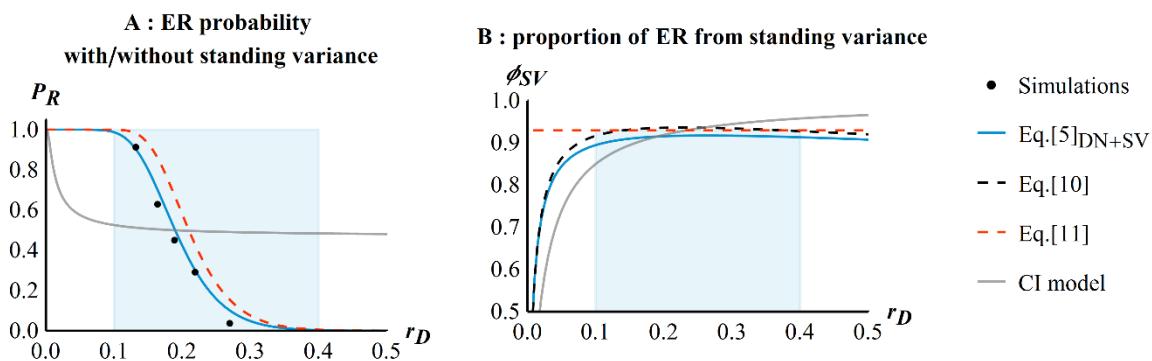
495 These different behaviors are illustrated in Fig.5, showing the variation of  $\phi_{SV}$  over a very  
 496 wide range of scaled decay rates  $y_D$ . The limit  $\phi_{SV} \rightarrow \phi_{SV}^*$  in Eq.(10) provides a fairly accurate  
 497 approximation across the full range of stress levels. The limits when  $y_D \rightarrow 0$  and  $y_D \rightarrow \infty$  are  
 498 in fact of limited biological interest, as they correspond to stress levels where ER becomes *de*  
 499 *facto* certain or impossible, respectively. When focusing on the more biologically relevant range  
 500 corresponding to the characteristic stress window, which occurs near the peak in  $\phi_{SV}$  in Fig.5  
 501 (see **Appendix Section IV subsection 4**), the variation of  $\phi_{SV}$  across stress levels becomes  
 502 negligible. As illustrated in Fig.6B,  $\phi_{SV}$  remains close to  $1 - \sqrt{\epsilon}$  (see **Appendix Eq.(A22)**) as  $y_D$   
 503 varies over a range where ER probabilities span several orders of magnitude (see **Appendix**  
 504 **Section IV subsection 5**). Note that this behavior arises when stress only shifts the optimum  
 505 (effect on  $r_D$ ), but does not affect peak height ( $r_{max}$ ) or the variance of mutational effects ( $\lambda$ ).

506 Therefore the rate of rescue in the presence of standing variance is approximately  
 507 proportional to that with only *de novo* mutation, with proportionality constant largely  
 508 independent of the decay rate:

$$\omega = \omega_{DN} + \omega_{SV} \approx \omega_{DN}^* / \sqrt{\epsilon}, \quad (11)$$

509 where  $\epsilon$  is defined in Eq.(10). The rough constancy of  $\phi_{SV}$  also means that all the results  
 510 obtained previously for ER from *de novo* mutations apply in the presence of standing variance,  
 511 when stress only shifts the optima (as long as  $n \geq 2$ ).

512 The ER probability profile across stress levels (shown in **Fig.6A**) is the same as that from *de*  
 513 *novo* mutations alone (**Fig.2**), but with a higher characteristic stress ( $\alpha_c \underset{N_0 U \gg 1}{\approx} 0.9 \log(X) - 2.7$   
 514 from Eq.(8) with  $X \approx N_0 U / \sqrt{\epsilon}$ ). Moreover, when considering the contribution from standing  
 515 variance, the difference between the FGM and context-independent models (gray line on  
 516 **Fig.6A**) is striking. Indeed in the latter, the ER rate from standing variance ( $\omega_{SV}$ ) is independent  
 517 of the decay rate, hence  $P_R$  saturates with stress to a constant value  $1 - \exp(-N_0 U q_R / c_H)$ ,  
 518 where all ER events stem from standing variance.



519

**Figure 6:** ER probability in the presence of standing genetic variation. In each panel, stress only affects the decay rate  $r_D$  (shifting optimum). In both panels, blue solid lines show the theory for *de novo* and standing variance ('DN'+SV') computed numerically (Eq.(5)) and the gray lines correspond to an equivalent theory without the FGM (named context-independent model as described in the Method section, "CI") modified from Orr and Unckless (2008). This last model was computed using a fixed proportion of resistant mutations equal to the one in Eq.(5) for a rescue probability of 0.5 (which explains why the two curves cross exactly at  $P_R = 0.5$ ). The dashed red line gives the simpler expression for the overall rescue rate:  $\omega \approx \omega_{DN}^* / \sqrt{\epsilon}$ . (Eq.(11)) with  $\epsilon$  given in Eq.(10) and  $\omega_{DN}^*$  by Eq.(7). (A) ER probability in the presence of standing genetic variation as a function of  $r_D$ . The dots give the results from simulations. (B) Proportion  $\phi_{SV}$  of rescue from standing variance as a function of  $r_D$ . The black dashed-line give the approximate theory from Eq. (10) and the dashed red line  $\max(\phi_{SV}^*) \approx 1 - \sqrt{\epsilon}$  from Eq.(11). The shaded area shows the range of  $r_D$  for which the ER probability drops from 0.99 to  $10^{-3}$ . Other parameters as in **Fig.2**.

520 Finally, note that when considering rescue from preexisting variance,  $U$  may change across  
 521 environments, from  $U_P$  (for previous) to  $U_N$  (for new). For example, a stress-induced increase  
 522 in DNA copy error would yield  $U_N > U_P$ . Accounting for such shifts in mutation rate at the onset  
 523 of stress, the total ER rate simply becomes  $\omega \approx \omega_{DN}^* (1 + U_P/U_N (1 - \sqrt{\epsilon})/\sqrt{\epsilon})$  (from  
 524 Eq.(11)).

525

526

## DISCUSSION

527     **Main results:** We investigated the persistence of a population of asexual organisms under an  
528 abrupt environmental alteration. We assumed that this stress causes a shift in a  
529 multidimensional fitness landscape with a single peak (Fisher's Geometrical Model - FGM -),  
530 which the population must 'climb' to avoid extinction. In such a landscape, faster population  
531 decline (due to stress-induced increase in the decay rate  $r_D$ ) necessarily means that resistance  
532 mutations are fewer, have lower growth rates in the presence of stress and higher costs in its  
533 absence. We believe that this constraint, not included in previous studies, adds a key element  
534 of realism to evolutionary rescue (ER) models. In our model, variation in stress levels may affect  
535 the landscape in various ways: shifting the optimum, changing the peak height, or altering the  
536 phenotypic scale of mutations (or the strength of stabilizing selection). Under a strong selection  
537 and weak mutation (SSWM) regime and assuming small mutational effects (SME), all these  
538 effects of stress on the distribution of mutation fitness effects are approximately captured by  
539 the variation, across stress levels, of a single composite parameter  $\alpha$ , which is approximately  
540 independent of the dimensionality of the organism (number of orthogonal traits under  
541 selection). The probability of ER drops sharply with this effective stress level, more so than in  
542 previous ER models where the rate of population decline is decoupled from the input of  
543 resistant mutations. The characteristic stress window over which this drop occurs only depends  
544 on the initial population size  $N_0$  and genomic rate of mutation  $U$ . As  $N_0U$  gets large, the  
545 characteristic stress window reaches an asymptotic width ( $\Delta\alpha$  in Eq.(9)) while its center (the  
546 characteristic stress level  $\alpha_c$  in Eq.(8)) shifts towards higher values, approximately as  $\log(N_0U)$ .

547     When standing variance is available (population at mutation-selection balance before  
548 stress), its contribution to ER is dominant, and approximately constant across a wide range of  
549 stress levels that encompasses the characteristic stress window.

550     In **Table 2**, we summarize how these features compare to properties of previous ER models.  
551 We consider only the situation where stress shifts the position of the optimum, affecting  $r_D$  (as  
552 in previous models), because other effects of stress we investigate here ( $r_{max}$  and  $\lambda$ ) are not  
553 treated in previous models.

|                                                                      | Context-independent model                                        | FGM rescue model                                               |
|----------------------------------------------------------------------|------------------------------------------------------------------|----------------------------------------------------------------|
| Impact of decay rate $r_D$                                           | $\omega_{DN} \propto r_D^{-1}$ , $\omega_{SV} = \text{constant}$ | $\omega \propto e^{-r_D^2} r_D^{-3}$ (1)                       |
| Impact of mutational input $N_0 U$                                   | $\omega \propto N_0 U$                                           | $\omega \propto N_0 U$                                         |
| “Characteristic decay rate” ( $r_D^c$ ) for DN rescue versus $N_0 U$ | $r_D^c \propto N_0 U$                                            | $r_D^c \propto \sqrt{\log(N_0 U)}$                             |
| Relative contribution of standing variance to ER                     | Increases with $r_D$<br>$\phi_{SV} \approx \frac{r_D}{r_D + c}$  | ~ Stable with $r_D$<br>$\phi_{SV} \approx 1 - \sqrt{\epsilon}$ |

**Table 2:** Main results of “context-independent” models (Orr and Unckless 2008; Martin *et al.* 2013; Orr and Unckless 2014) and the present model (FGM) when stress only affects  $r_D$  (only shifts the optimum position in our model). When the dependence to the parameters is given for the overall rate of rescue  $\omega$ , it applies to both the rate of rescue from *de novo* mutations  $\omega_{DN}$  and from pre-existing variance  $\omega_{SV}$ . (1) derived from the approximate expression  $g(\alpha) \approx \alpha^{-3/2} e^{-\alpha}/(2\sqrt{\pi})$ .

554

555     **Genetic basis of ER patterns across environments:** Our model allows identification of three  
 556 ranges of stress levels that yield different eco-evolutionary patterns, despite all leading to  
 557 extinction in the absence of evolution. First at low stress levels ( $\alpha \ll \alpha_c$ ), although evolutionary  
 558 change is required for persistence and demographic dynamics typical of ER may be observed  
 559 (decay /rebounce), extinctions are *de facto* undetectable (ER is pervasive,  $P_R \approx 1$ ). In this  
 560 regime, we expect several resistance mutations to establish and co-segregate (frequent “soft  
 561 sweeps” as in Wilson *et al.* 2017). Their number is predictable ( $\approx N_0 \omega_R$ ), but the ultimate  
 562 composition of the population in asexuals will depend on more complex clonal interference  
 563 dynamics. Second, at intermediate stress levels ( $\alpha = O(\alpha_c)$ ), small variation in stress  
 564 conditions has large impact on the probability of population survival. Over this range,  $P_R \approx 1/2$   
 565 so the expected overall number of rescue mutations in the population is less than one ( $N_0 \omega_R \approx$   
 566  $-\log(P_R) = 0.7$ ). Therefore, “hard sweeps” (including from standing variation) should be the  
 567 most frequent: a single mutation typically establishes and rescues the population. Finally, at  
 568 higher stress levels ( $\alpha \gg \alpha_c$ ), very few populations overcome the imposed stress, and when  
 569 they do it is typically through a hard sweep ( $N_0 \omega_R \ll 1$ ).

570

571     **Estimating parameters and testing the model:** Studies on the emergence of resistance to  
 572 controlled stress (e.g. antibiotics, fungicides, chemotherapy in cancer), especially in microbes,

573 can generate a set of estimates of  $P_R$  (the probability of resistance emergence), across stress  
574 levels. In general, to test (or use) predictions from ER models, it is critical to empirically relate  
575 physical measures of stress level (e.g. concentrations, temperatures, salinities, etc.) with  
576 demographic measures (e.g. decay rates). If we assume that the main effect of stress is to shift  
577 optimum positions, given a set of measurements of  $r_D$  ("dose-kill curves", Regoes *et al.* 2004),  
578 the change in ER probability with stress can be predicted via Eq.(7). This simple scenario of  
579 optimum shifting is the one that is considered by most of the literature on evolutionary ecology  
580 across environmental gradients, so it would seem natural to test it first. Furthermore, this  
581 scenario has received empirical support from an analysis of a few experimental studies of  
582 distribution of mutation effects on fitness across stress levels (Martin and Lenormand 2006b).  
583 However, these studies used mild stresses, which reduce growth without causing population  
584 decay. A more recent study on bacteria facing lethal doses of antibiotics, i.e. in the presence of  
585 decay (Harmand *et al.* 2017), suggests that factors other than the position of the optimum may  
586 also change with stress ( $\lambda, r_{max}, n$ ). Estimating these extra parameters across environments can  
587 be challenging. The variance of mutational effects  $\lambda$  and the dimensionality  $n$  can be estimated  
588 by fitting the distributions of single random mutation effects on fitness (Martin and Lenormand  
589 2006b; Perfeito *et al.* 2014), in a single environment if it is to be assumed constant, or in each  
590 environment otherwise. The maximal growth rate in the stress could be measured on lines well-  
591 adapted to the environment considered.

592 The effective stress level  $\alpha$  is also amenable to empirical measurement and circumvents the  
593 issue of measuring joint changes in  $(r_D, r_{max}, \lambda)$  with stress. Consider a set of  $P_R$  estimates  
594 across a range of empirically controlled stress levels, and some knowledge of the genomic  
595 (non-neutral) mutation rate (e.g. as estimated by mutation accumulation experiments) of the  
596 species and environment under study ( $U$ ). The initial population size  $N_0$  is easily controlled by  
597 the experimenter. Then Eq.(7)b. suggests a simple estimator of  $\alpha$  in each environment:  $\hat{\alpha} =$   
598  $g^{-1}(-\log(1 - P_R)/N_0 U)$ .

599 Finally, it is also possible to circumvent the problem of stress-induced variation in the  
600 parameters of the fitness landscape by considering multiple genetic backgrounds, in a single  
601 environment. Each background would have a given measurable decay rate  $r_D$ , and other  
602 parameters ( $\lambda, r_{max}, n, U$ ) would be held fixed: while  $\lambda, n$  and  $U$  may change with the genetic  
603 background, this seems less likely than with the environment. The isotropic FGM assumes a

604 strict equivalence between shifts in optima (multiple environments) from a given ancestor  
605 phenotype (single genetic background), and shifts in ancestor phenotypes (multiple genetic  
606 backgrounds) with a fixed optimum (single environment). The model could thus be applied and  
607 tested in this context. This could yield useful insights into the effect of epistasis (background  
608 dependence) on resistance emergence, an issue of notable importance when considering the  
609 fate of horizontally transferred resistance or multidrug resistance (as discussed in Wong 2017)

610

611 **Potential implications for resistance management:** Our results suggest that stress levels have  
612 a strongly nonlinear impact on ER probabilities (**Fig.2**), at least in the context of abrupt  
613 environmental changes, in asexuals. This context may be particularly relevant to the chemical  
614 treatment of pathogens (cancer therapy, antivirals, antibiotics, fungicides, herbicides, etc.). In  
615 particular, the non-linear impact of stress on ER, if empirically confirmed, can provide insights  
616 regarding the optimization of treatment regimens or the quantification of the effect of poor  
617 treatment adherence on resistance emergence (e.g. in HIV, Harrigan *et al.* 2005). Our results  
618 point to the risk that even a slight lowering of drug doses (below prescribed treatment levels)  
619 could radically change the outcome of the treatment (making it *de facto* inefficient). On the  
620 contrary, a slight increase in prescribed doses could sometimes prove sufficient to allow  
621 efficient eradication.

622

623 **Limits and possible extensions :**

624 Density-dependence and competitive release: Our model ignores density dependence, but  
625 some form may be easily introduced by considering a single density dependence coefficient  
626 (common to all genotypes) and using logistic diffusion approximations (Lambert 2005). This  
627 would potentially allow for “competitive release” (Read *et al.* 2011), whereby higher stresses  
628 may favor the emergence of resistance by rapidly depleting the sensitive wild-type population,  
629 thus releasing limiting resources for resistant genotypes. Previous models on competitive  
630 release assumed that the number of standing resistant mutants is independent of stress level  
631 (Read *et al.* 2011; Day and Read 2016). In this case, stress mostly limits *de novo* rescue  
632 mutation, with limited impact on the contribution from standing variance. On the contrary, the  
633 FGM imposes a similar drop, with stress, in the rate of rescue from *de novo* and preexisting  
634 mutants. The positive effects of competitive release on ER probability may thus be less

635 important, in the FGM, than predicted from these previous models. Note however that more  
636 generally, the effect of density dependence on ER is more safely investigated by accounting  
637 explicitly for the effect of stress on the density-independent intrinsic rate of increase on the  
638 one hand (as done here in a density-independent model), versus on the competition  
639 component on growth (e.g. carrying capacity) on the other hand, than by compounding their  
640 effects into an overall density-dependent decay rate (e.g. Chevin and Lande 2010). This would  
641 require modeling the effect of stress on both the intrinsic rate of increase and the competition  
642 component, possibly through a landscape with two fitness functions, describing each  
643 component.

644 Anisotropy and parallel evolution in drug resistance: The present model is isotropic: all  
645 directions in phenotype space are equivalent (in terms of mutation and selection). In contrast,  
646 module-dependent anisotropy (where particular genes mutate along favored directions) can  
647 lead to substantial parallel evolution in the FGM (Chevin *et al.* 2010). Parallel evolution of  
648 resistance, whereby some (portions or sets of) genes contribute most of the resistance  
649 mutations, is often observed among drug-resistance alleles, and can increase with stress  
650 (Harmand *et al.* 2017), contrary to parallel evolution in a growing population, which is expected  
651 to decrease with increasing maladaptation (Chevin *et al.* 2010). Although not explored here,  
652 we conjecture that our model may accommodate mild anisotropy. Indeed, mild anisotropy  
653 (even environment-dependent) might have limited impact. If mutational covariances between  
654 traits merely “turn”, “shrink” or “expand” the phenotypic mutant cloud, this would  
655 approximately amount to a mere change in  $\lambda$  in an equivalent isotropic landscape (Martin and  
656 Lenormand 2006a; Martin 2014). However, a particular form of strong anisotropy may also  
657 arise where mutant phenotypes (in a given module) spread along a single favored direction  
658 (Martin 2014). Only this level of anisotropy would generate clear parallel evolution, and it will  
659 likely require implementing a fully anisotropic model.

660 High mutation rates: Our results relied on a strong selection and weak-mutation (SSWM)  
661 approximation. When the mutation rate is higher (e.g. viruses or mutator bacterial strains),  
662 multiple mutants must be accounted for as a source of ER. These can in principle be introduced  
663 in the framework used here (Martin *et al.* 2013) but, especially when applied to the FGM, the  
664 results quickly become intractable. Alternative population genetics assumptions would then  
665 have to be used, but this is beyond the scope of the present work.

666

667       **Conclusion:** Recently, the FGM has received renewed interest for its ability to provide  
668 testable, quantitative, and often accurate predictions regarding patterns of mutation effects  
669 on fitness, across various species and contexts (Tenaillon 2014). The present model is an  
670 attempt to extend its scope to model the evolution of resistance to stress. We hope that future  
671 experimental tests will evaluate its accuracy and potential to tackle various pressing applied  
672 issues.

673

674       **Acknowledgments:** We thank the editor Joachim Hermisson and the reviewers for their help  
675 in improving this manuscript. In particular we thank Michael Kopp for extensive and very useful  
676 comments on our manuscript. This work benefited from discussions with S. Gandon, R.  
677 Gomulkiewicz, O. Tenaillon, F. Débarre and L. Roques. This work was supported by the French  
678 Ministry of Higher Education, Research and Innovation (MESRI allocation doctorale to Y.A.),  
679 Agence Nationale de la Recherche (ANR-13-ADAP-0016 “Silentadapt” to G.M. and ANR-13-  
680 ADAP-0006 “MeCC” to O.R.) and European Research Council (ERC-2015-STG-678140-FluctEvol  
681 to LMC). This is ISEM publication ISEM 2018-032.

682

## BIBLIOGRAPHY

Agrawal A. F., Whitlock M. C., 2010 Environmental duress and epistasis: how does stress affect the strength of selection on new mutations? *Trends Ecol. Evol.* 25: 450–458.

Alexander H. K., Martin G., Martin O. Y., Bonhoeffer S., 2014 Evolutionary rescue: linking theory for conservation and medicine. *Evol. Appl.* 7: 1161–1179.

Bell G., 2017 Evolutionary Rescue. *Annu. Rev. Ecol. Evol. Syst.* 48: 605–627.

Bijlsma R., Loeschke V., 2005 Environmental stress, adaptation and evolution: an overview. *J. Evol. Biol.* 18: 744–749.

Burger R., Lynch M., 1995 Evolution and Extinction in a Changing Environment: A Quantitative-Genetic Analysis. *Evolution* 49: 151.

Carlson S. M., Cunningham C. J., Westley P. A. H., 2014 Evolutionary rescue in a changing world. *Trends Ecol. Evol.* 29: 521–530.

Charmantier A., Garant D., 2005 Environmental quality and evolutionary potential: lessons from wild populations. *Proc. R. Soc. B Biol. Sci.* 272: 1415–1425.

Chevin L.-M., Lande R., 2010 When Do Adaptive Plasticity and Genetic Evolution Prevent Extinction of a Density-Regulated Population? *Evolution* 64: 1143–1150.

Chevin L.-M., Martin G., Lenormand T., 2010 Fisher’s Model and the Genomics of Adaptation: Restricted Pleiotropy, Heterogenous Mutation, and Parallel Evolution. *Evolution* 64: 3213–3231.

Chevin L.-M., 2011 On measuring selection in experimental evolution. *Biol. Lett.* 7: 210–213.

Davies J., Davies D., 2010 Origins and Evolution of Antibiotic Resistance. *Microbiol. Mol. Biol. Rev.* 74: 417–433.

Day T., Read A. F., 2016 Does High-Dose Antimicrobial Chemotherapy Prevent the Evolution of Resistance? *PLoS Comput. Biol.* 12: e1004689.

De Visser J. a. G. M., Rozen D. E., 2005 Limits to adaptation in asexual populations. *J. Evol. Biol.* 18: 779–788.

Drlica K., 2003 The mutant selection window and antimicrobial resistance. *J. Antimicrob. Chemother.* 52: 11–17.

Feller W., 1951 Diffusion processes in genetics. In: *Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability*,

Foster P. L., 2007 Stress-Induced Mutagenesis in Bacteria. *Crit. Rev. Biochem. Mol. Biol.* 42: 373–397.

Gillespie J. H., 1983 Some Properties of Finite Populations Experiencing Strong Selection and Weak Mutation. *Am. Nat.* 121: 691–708.

Gomulkiewicz R., Holt R. D., 1995 When does Evolution by Natural Selection Prevent Extinction? *Evolution* 49: 201.

Gomulkiewicz R., Holt R. D., Barfield M., Nuismer S. L., 2010 Genetics, adaptation, and invasion in harsh environments. *Evol. Appl.* 3: 97–108.

Gonzalez A., Bell G., 2013 Evolutionary rescue and adaptation to abrupt environmental change depends upon the history of stress. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 368: 20120079.

Gonzalez A., Ronce O., Ferriere R., Hochberg M. E., 2013 Evolutionary rescue: an emerging focus at the intersection between ecology and evolution. *Philos. Trans. R. Soc. B Biol. Sci.* 368: 20120404–20120404.

Harmand N., Gallet R., Jabbour-Zahab R., Martin G., Lenormand T., 2017 Fisher's geometrical model and the mutational patterns of antibiotic resistance across dose gradients. *Evolution* 71: 23–37.

Harrigan P. R., Hogg R. S., Dong W. W. Y., Yip B., Wynhoven B., *et al.*, 2005 Predictors of HIV drug-resistance mutations in a large antiretroviral-naïve cohort initiating triple antiretroviral therapy. *J. Infect. Dis.* 191: 339–347.

Hermission J., Wagner G. P., 2004 The Population Genetic Theory of Hidden Variation and Genetic Robustness. *Genetics* 168: 2271–2284.

Hietpas R. T., Bank C., Jensen J. D., Bolon D. N. A., 2013 Shifting Fitness Landscapes in Response to Altered Environments. *Evolution* 67: 3512–3522.

Hoffmann A. A., Parsons P. A., 1997 *Extreme environmental change and evolution*. Cambridge University Press, Cambridge; New York.

Hoffmann A. A., Merilä J., 1999 Heritable variation and evolution under favourable and unfavourable conditions. *Trends Ecol. Evol.* 14: 96–101.

Koehn R. K., Bayne B. L., 1989 Towards a physiological and genetical understanding of the energetics of the stress response. *Biol. J. Linn. Soc.* 37: 157–171.

Kopp M., Matuszewski S., 2014 Rapid evolution of quantitative traits: theoretical perspectives. *Evol. Appl.* 7: 169–191.

Lambert A., 2005 The branching process with logistic growth. *Ann. Appl. Probab.* 15: 1506–1535.

Lindsey H. A., Gallie J., Taylor S., Kerr B., 2013 Evolutionary rescue from extinction is contingent on a lower rate of environmental change. *Nature* 494: 463–467.

Lynch M., Gabriel W., Wood A. M., 1991 Adaptive and demographic responses of plankton populations to environmental change. *Limnol. Oceanogr.* 36: 1301–1312.

MacLean R. C., Perron G. G., Gardner A., 2010 Diminishing Returns From Beneficial Mutations and Pervasive Epistasis Shape the Fitness Landscape for Rifampicin Resistance in *Pseudomonas aeruginosa*. *Genetics* 186: 1345–1354.

Martin G., Lenormand T., 2006a A General Multivariate Extension of Fisher's Geometrical Model and the Distribution of Mutation Fitness Effects Across Species. *Evolution* 60: 893–907.

Martin G., Lenormand T., 2006b The Fitness Effect of Mutations Across Environments: A Survey in Light of Fitness Landscape Models. *Evolution* 60: 2413–2427.

Martin G., Elena S. F., Lenormand T., 2007 Distributions of epistasis in microbes fit predictions from a fitness landscape model. *Nat. Genet.* 39: 555–560.

Martin G., Aguilée R., Ramsayer J., Kaltz O., Ronce O., 2013 The probability of evolutionary rescue: towards a quantitative comparison between theory and evolution experiments. *Philos. Trans. R. Soc. Lond. B. Biol. Sci.* 368: 20120088.

Martin G., 2014 Fisher's geometrical model emerges as a property of complex integrated phenotypic networks. *Genetics* 197: 237–255.

Martin G., Lenormand T., 2015 The fitness effect of mutations across environments: Fisher's geometrical model with multiple optima. *Evolution* 69: 1433–1447.

Martin G., Roques L., 2016 The Non-stationary Dynamics of Fitness Distributions: Asexual Model with Epistasis and Standing Variation. *Genetics*: genetics.116.187385.

Moser C., Bell G., 2011 Genetic correlation in relation to differences in dosage of a stressor. *J. Evol. Biol.* 24: 219–223.

Orr H. A., Unckless R. L., 2008 Population extinction and the genetics of adaptation. *Am. Nat.* 172: 160–9.

Orr H. A., Unckless R. L., 2014 The Population Genetics of Evolutionary Rescue. *PLOS Genet.* 10: e1004551.

Perfeito L., Sousa A., Bataillon T., Gordo I., 2014 Rates of Fitness Decline and Rebound Suggest Pervasive Epistasis. *Evolution* 68: 150–162.

Read A. F., Day T., Huijben S., 2011 The evolution of drug resistance and the curious orthodoxy of aggressive chemotherapy. *Proc. Natl. Acad. Sci.* 108: 10871–10877.

Regoes R. R., Wiuff C., Zappala R. M., Garner K. N., Baquero F., et al., 2004 Pharmacodynamic Functions: a Multiparameter Approach to the Design of Antibiotic Treatment Regimens. *Antimicrob. Agents Chemother.* 48: 3670–3676.

Remold S. K., Lenski R. E., 2001 Contribution of individual random mutations to genotype-by-environment interactions in *Escherichia coli*. *Proc. Natl. Acad. Sci. U. S. A.* 98: 11388–11393.

Remold S. K., Lenski R. E., 2004 Pervasive joint influence of epistasis and plasticity on mutational effects in *Escherichia coli*. *Nat. Genet.* 36: 423–426.

Samani P., Bell G., 2010 Adaptation of experimental yeast populations to stressful conditions in relation to population size. *J. Evol. Biol.* 23: 791–796.

Scharloo W., 1991 Canalization: genetic and developmental aspects. *Annu. Rev. Ecol. Syst.* 22: 65–93.

Sgrò C. M., Hoffmann A. A., 2004 Genetic correlations, tradeoffs and environmental variation. *Heredity* 93: 241–248.

Tenaillon O., 2014 The Utility of Fisher's Geometric Model in Evolutionary Genetics. *Annu. Rev. Ecol. Evol. Syst.* 45: 179–201.

Trindade S., Sousa A., Gordo I., 2012 Antibiotic Resistance and Stress in the Light of Fisher's Model. *Evolution* 66: 3815–3824.

Turelli M., 1984 Heritable genetic variation via mutation-selection balance: Lerch's zeta meets the abdominal bristle. *Theor. Popul. Biol.* 25: 138–193.

Uecker H., Otto S. P., Hermisson J., 2014 Evolutionary Rescue in Structured Populations. *Am. Nat.* 183: E17–E35.

Uecker H., Hermisson J., 2016 The Role of Recombination in Evolutionary Rescue. *Genetics* 202: 721–732.

Wang A. D., Sharp N. P., Spencer C. C., Tedman-Aucoin K., Agrawal A. F., 2009 Selection, Epistasis, and Parent-of-Origin Effects on Deleterious Mutations across Environments in *Drosophila melanogaster*. *Am. Nat.* 174: 863–874.

Wang A. D., Sharp N. P., Agrawal A. F., 2014 Sensitivity of the Distribution of Mutational Fitness Effects to Environment, Genetic Background, and Adaptedness: A Case Study with *Drosophila*. *Evolution* 68: 840–853.

Wilson B. A., Pennings P. S., Petrov D. A., 2017 Soft Selective Sweeps in Evolutionary Rescue. *Genetics* 205: 1573–1586.

Wolfram Research I., 2012 *Mathematica*. Wolfram Research, Inc, Champaign, Illinois.

Wong A., 2017 Epistasis and the Evolution of Antimicrobial Resistance. *Front. Microbiol.* 8.