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ABSTRACT 10 

Evolutionary rescue describes a situation where adaptive evolution prevents the extinction 11 

of a population facing a stressing environment. Models of evolutionary rescue could in principle 12 

be used to predict the level of stress beyond which extinction becomes likely for species of 13 

conservation concern, or conversely the treatment levels most likely to limit the emergence of 14 

resistant pests or pathogens. Stress levels are known to affect both the rate of population 15 

decline (demographic effect) and the speed of adaptation (evolutionary effect), but the latter 16 

aspect has received less attention. Here, we address this issue using Fisher’s Geometric Model 17 

of adaptation. In this model, the fitness effects of mutations depend both on the genotype and 18 

the environment in which they arise. In particular, the model introduces a dependence 19 

between the level of stress, the proportion of rescue mutants, and their costs before the onset 20 

of stress. We obtain analytic results under a strong-selection-weak-mutation regime, which we 21 

compare to simulations. We show that the effect of the environment on evolutionary rescue 22 

can be summarized into a single composite parameter quantifying the effective stress level, 23 

which is amenable to empirical measurement. We describe a narrow characteristic stress 24 

window over which the rescue probability drops from very likely to very unlikely as the level of 25 

stress increases. This drop is sharper than in previous models, as a result of the decreasing 26 

proportion of stress-resistant mutations as stress increases. We discuss how to test these 27 

predictions with rescue experiments across gradients of stress. 28 

 29 
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INTRODUCTION  30 

Understanding the persistence or decline to extinction of populations facing environmental 31 

stress is a crucial challenge both for the conservation of biodiversity and the eradication of 32 

pests or pathogens (Gonzalez et al. 2013; Carlson et al. 2014; Alexander et al. 2014; Bell 2017). 33 

In evolutionary biology, environmental stress describes any conditions in the environment that 34 

induces a reduction in individual fitness (Koehn and Bayne 1989; Bijlsma and Loeschcke 2005). 35 

Here, we will focus on the case where environmental stress causes a reduction of population 36 

mean fitness that is harsh enough to trigger a decline in abundance (Hoffmann and Parsons 37 

1997). In such a stressful environment, if heritable variation in fitness is available or arises by 38 

mutation, adaptive evolution may allow the population to escape extinction. This phenomenon 39 

has been called evolutionary rescue (ER) (Gomulkiewicz and Holt 1995). Evolutionary rescue is 40 

of particular importance for understanding the emergence of genetic resistance to drugs or 41 

treatments in medicine and agronomy (Davies and Davies 2010). 42 

Empirical evidence supports the idea that stress levels critically determine ER probabilities 43 

(Samani and Bell 2010; Moser and Bell 2011; Lindsey et al. 2013). For example, the probability 44 

that bacteria evolve antibiotic resistance (that is, the probability of avoiding antibiotic-induced 45 

extinction through ER) typically declines sharply, in a strongly non-linear way, with increasing 46 

drug concentration (Drlica 2003). Evolutionary rescue thus shifts from being highly likely to 47 

highly unlikely over a narrow window of stress levels. This critical range of stress depends on 48 

the strain, especially on its evolutionary history with respect to exposure to the stress (Gonzalez 49 

and Bell 2013). Stress level, as controlled by drug concentration, has also been shown to affect 50 

the genetic basis of resistance (e.g. Harmand et al. 2017), with a wider diversity of genes and 51 

alleles conferring resistance at low than at high doses. However, the underlying causes for the 52 

relationship between stress level and ER are still poorly understood. Our aim here is to derive 53 

new analytical predictions for this relationship. In particular, we want to predict the critical 54 

window of stress levels above which ER is very unlikely, allowing direct comparison with 55 

experimental data. 56 

In the theoretical literature (reviewed in Alexander et al. 2014), most ER models predict that 57 

ER probability decreases with increasing stress level, measured by the decay rate of the 58 

stressed population. Indeed, a faster decay of the population leaves less time for adaptation to 59 

occur before extinction (e.g. Gomulkiewicz and Holt 1995). But beyond this direct demographic 60 
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effect, stress level may also have indirect effects on ER. Indeed, a stressful environment may 61 

not only affect the demographic properties of the population, but also its rate of adaptation, 62 

by modifying the determinants of genetic variance in fitness (Hoffmann and Parsons 1997; De 63 

Visser and Rozen 2005; Agrawal and Whitlock 2010). First, the rate of mutations and the 64 

distribution of their effects on fitness change across environments (Martin and Lenormand 65 

2006b; Wang et al. 2009; Agrawal and Whitlock 2010; Wang et al. 2014). In particular, the 66 

fraction of beneficial mutations was found to increase in stressful environments (Remold and 67 

Lenski 2001, 2004). Standing genetic variation for quantitative traits (notably fitness 68 

components), also frequently depends on the environment (Hoffmann and Merilä 1999; Sgrò 69 

and Hoffmann 2004; Charmantier and Garant 2005). Finally, the initial frequency of preexisting 70 

variants able to rescue the population from extinction in a stressful environment may depend 71 

on their selective cost in the past environment. In light of this empirical evidence, it seems clear 72 

that progress towards understanding and predicting ER across stress levels requires addressing, 73 

in a quantitative way, the joint effect of stress on the demography and genetic variation in 74 

fitness of a population exposed to stressful conditions. This is our goal in the present article.  75 

To do so, we develop a model that is a hybrid between two modeling traditions in ER theory, 76 

summarized by Alexander et al. (2014): discrete genetic models, and quantitative genetic 77 

models. Discrete genetic models assume a narrow genetic basis for adaptation (and ER), 78 

whereby a single beneficial mutation can rescue an otherwise monomorphic population (Orr 79 

and Unckless 2008; Martin et al. 2013; Uecker et al. 2014; Orr and Unckless 2014; Uecker and 80 

Hermisson 2016).  This approach was initially proposed for ER by Gomulkiewicz and Holt (1995), 81 

and later extended to account for (i) evolutionary and demographic stochasticity (e.g. Orr and 82 

Unckless 2008), and (ii) variation in the selection coefficients of mutations that may cause 83 

rescue, with an arbitrary distribution of fitness effects (Martin et al. 2013). However, such 84 

models do not predict how the distribution of fitness effects of mutations vary along gradients 85 

of stress level. For this reason, they make it difficult to jointly address the two fundamental 86 

components of stress mentioned above. On the contrary, quantitative genetics models of ER 87 

inherently address the influence of stress on the rate of adaptation by assuming that adaptation 88 

(and ER) is caused by evolution of a quantitative trait whose optimum changes with the 89 

environment (Lynch et al. 1991; Burger and Lynch 1995; Gomulkiewicz and Holt 1995). In these 90 

models, both the rate of population decline and the rate of adaptation under stress depend on 91 
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the distance between the phenotypic optima in the past and present environments. However, 92 

analytical predictions are derived assuming a broad, polygenic basis for adaptation with a stable 93 

genetic variance of the quantitative trait. The population genetic processes underlying 94 

adaptation are not explicitly modelled, and the stochasticity involved in fixation and 95 

establishment of mutations neglected. These complications are only explored by simulations 96 

(e.g. Gomulkiewicz et al. 2010). 97 

In order to take the best of both approaches, we rely on Fisher's (1930) Geometrical Model 98 

(hereafter “FGM”). Fitness variation in the FGM is assumed to emerge from variation in multiple 99 

putative phenotypic traits undergoing stabilizing selection that depends on the environment. 100 

This model is analytically tractable, while retaining various aspects of realism (reviewed in 101 

Tenaillon 2014). In particular, it accurately predicts how fitness effects of mutations change 102 

across environments (Martin and Lenormand 2006b; Hietpas et al. 2013; Harmand et al. 2017) 103 

or genetic backgrounds (Martin et al. 2007; MacLean et al. 2010; Trindade et al. 2012). The 104 

FGM naturally relates environmental stress to (i) the rate of population decline, (ii) the rate and 105 

effect of rescue mutants, and (iii) their potential costs in the past environment. Here, we 106 

combine this FGM with population dynamic approaches that account for demographic and 107 

evolutionary stochasticity (Martin et al. 2013), in a regime where selection is strong relative to 108 

the rate of mutation. We consider rescue in asexual populations, stemming either from de novo 109 

mutations or standing genetic variance. Interestingly, we show that all effects of stress on 110 

demography and on the distribution of the fitness effects of mutations can be summarized into 111 

a single composite measure of effective stress level. Evolutionary rescue shifts abruptly from 112 

very likely to very unlikely over a narrow window of effective stress level, which can be 113 

predicted from empirically measurable quantities. 114 

 115 

METHODS 116 

We here detail the ecological (environmental), genetic, and demographic assumptions of 117 

the model, and the approximations used for its mathematical analysis.  118 

 119 
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Abrupt environmental shift: We define two environments: (1) a non-stressful one, denoted 120 

as “previous environment”, in which the population has a positive mean growth rate, and a 121 

large enough population size that demographic stochasticity can be ignored; and (2) a stressful 122 

one, denoted “new environment”, in which the population initially has a negative mean growth 123 

rate, and the population size is subject to demographic stochasticity. Conditions shift abruptly 124 

from the previous to the new environment at 𝑡 = 0, at which time the population size is 𝑁0. 125 

 126 

Eco-evolutionary dynamics: Extinction or rescue ultimately depends on details of the 127 

stochastic population dynamics of each genotype. These are assumed to be mutually 128 

independent (no density or frequency-dependence, see Chevin 2011), and sufficiently ‘smooth’ 129 

(moderate growth or decay) that they can be approximated by a Feller diffusion (Feller 1951), 130 

following Martin et al. (2013). This approximation reduces all the complexity of the life cycle 131 

into two key parameters for each genotype 𝑖: its expected growth rate 𝑟𝑖  (our fitness here), 132 

and its variance in reproductive output 𝜎𝑖. Our simulations below are performed for discrete 133 

generations with Poisson offspring distributions. In this case, 𝜎𝑖 = 1 + 𝑟𝑖 ≈ 1 for any genotype, 134 

as long as their growth rate is not too large (𝑟𝑖 ≪ 1 per-generation, see Appendix section I 135 

subsection 1 and 2 and Martin et al. (2013)). Note that the approximation extends to various 136 

other forms of reproduction (see Martin et al. 2013).   137 

To cause a rescue, a resistant mutant (𝑟𝑖 > 0) must establish, by avoiding extinction when 138 

rare. The probability that this happens, for a lineage with growth rate 𝑟𝑖 > 0 starting from a 139 

single copy is 1 − 𝑒−2 𝑟𝑖 (still assuming 𝑟𝑖 ≪ 𝜎𝑖, with 𝜎𝑖 ≈ 1 in the example used in simulations). 140 

The number of individuals from which such mutations can arise declines in time, and we ignore 141 

stochasticity in these decay dynamics. This is accurate as long as the population has large initial 142 

size, of order 𝑁0 ≫ 1 (Martin et al. 2013). 143 

Finally, we assume that mutation rates per capita per unit time are constant over time. This 144 

is exact in models with discrete generations. In continuous-time models, where mutations 145 

occur during birth events, mutation rates vary between genotypes with different birth rates, 146 

and over time as these genotypes change in frequency. However, the constant mutation rate 147 

model can still be approximately valid (see Martin et al. 2013). 148 

 149 
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ER from standing variance versus de novo mutation: At the onset of stress (𝑡 = 0), the 150 

population either consists of a single ancestral clone, or is polymorphic at mutation-selection 151 

balance in the previous environment. In the first case, we must derive the distribution of fitness 152 

effects, in the new environment, of mutants arising from the ancestral clone. In the second 153 

case, we must also describe the potential rescue variants already present in the previous 154 

environment.  155 

 156 

Mutations under Fisher’s geometrical model (FGM): We assume that the expected growth 157 

rate of a given genotypic class (its Malthusian fitness, or log-multiplicative fitness in discrete-158 

time models), is a quadratic function of its phenotype for 𝑛 quantitative (continuous) traits. 159 

Denoting as 𝐳 ∈ ℝ𝑛 the vector of breeding values (heritable components) for all traits, and as 160 

𝐨 the single optimum phenotype with maximal growth 𝑟𝑚𝑎𝑥, the expected growth rate is  161 

 𝑟(𝒛) = 𝑟𝑚𝑎𝑥 − ‖𝒛 − 𝐨‖2 2⁄  , (1) 

while the stochastic variance in reproductive success is assumed constant across genotypes. 162 

The key assumption of our model is that the optimum depends on the environment. Without 163 

loss of generality, we set the phenotypic origin at the optimum in the new environment, in 164 

which 𝐨 = 𝟎. In the previous environment, the optimum coincides with the mean phenotype 165 

of the ancestral population (‘A’): 𝐨 = 𝐳𝐴 = 𝔼(𝐳), which implies that the ancestral population 166 

was well-adapted in its original environment. The fitness of the mean ancestral phenotype 𝐳𝐴 167 

in the new environment is thus 𝑟(𝐳𝐴) = 𝑟𝑚𝑎𝑥 − ‖𝒛𝑨‖2 2⁄ = −𝑟𝐷 < 0, where 𝑟𝐷 is its rate of 168 

decay, and the phenotypic magnitude of the stress-induced shift of the optimum phenotype 169 

(from 𝐨 = 𝐳𝐴 to 𝐨 = 𝟎) is ‖𝐳𝐴‖ = √2(𝑟𝐷 + 𝑟𝑚𝑎𝑥) . 170 

Mutations occur as a Poisson process with rate 𝑈 per unit time per capita, constant over 171 

time and across genotypes, but potentially variable across environments. Each mutation adds 172 

a random perturbation 𝐝𝐳 to the phenotype, drawn from an unbiased and isotropic 173 

multivariate Gaussian distribution 𝐝𝐳 ~ 𝑁(𝟎, 𝜆 𝐈𝒏), where 𝐈𝑛 is the identity matrix in 𝑛 174 

dimensions and 𝜆 is a scale parameter. Note that, since traits are not our main interest here, 175 

we choose to measure mutation effects on them in units that directly relate to their fitness 176 

effects. Therefore, 𝜆 can be understood as the variance of mutational effects on traits, 177 

standardized by the strength of selection (see Appendix section II subsection 1 for more details). 178 
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Note that mutation effects are additive on phenotypes (no epistasis), but not on fitness, 179 

because 𝑟(𝐳) is nonlinear (Martin et al. 2007) . 180 

Fig.1 illustrates the rescue process in the FGM. At the onset of stress (𝑡 = 0), the optimum 181 

shifts abruptly to a new position, such that the mean growth rate becomes negative with −𝑟𝐷 <182 

0 (Fig.1.C). Meanwhile, the population size starts to drop from an initial value 𝑁0 (Fig.1.C), facing 183 

extinction in the absence of evolution. However, one or several mutants or pre-existing variants 184 

may be close enough to the new optimum to have a positive growth rate (“resistant 185 

genotypes”, Fig.1.A, 1.B). These may then establish, and ultimately rescue the population 186 

(“rescue genotypes” Fig.1.A, 1.B). 187 

 188 

Figure 1: Evolutionary rescue in Fisher’s geometric model. In all panels, black refers to deleterious and neutral 

mutations (−𝑟𝐷 ≥  𝑟), blue to beneficial but not resistant mutations (−𝑟𝐷 < 𝑟 ≤ 0) and orange to resistant 

mutations (𝑟 > 0), around the dominant genotype of the ancestral population with phenotype 𝑧𝐴 ≠ 0. (A) Fitness 

landscape (FGM) with growth rate 𝑟 (z-axis) determined by two phenotypic traits 𝑧1 and 𝑧2 . Dots represent the 

distribution of random mutant phenotypes around the dominant genotype of the ancestral population. The 

growth rate of this dominant genotype, in the stressful environment, is –𝑟𝐷, and 𝑟𝑚𝑎𝑥  is the maximal fitness at the 
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phenotypic optimum. (B) Distribution of growth rates among random mutants arising from the dominant genotype 

(distribution of mutation effects on fitness) for two decay rates 𝑟𝐷 = 0.1 (left) and 𝑟𝐷 = 0.5 (right). (C) Dynamics 

of the population size 𝑁𝑡 and mean fitness  𝑟̅𝑡 of a population starting from a clone at – 𝑟𝐷 = −0.083 at size 𝑁0 =

105. The black line represents the case without fixation of a beneficial mutation, the blue line the case with 

extinction in spite of the fixation of a beneficial, but non-resistant, mutation, and the orange line the case of a 

rescue. Parameters for the simulations are 𝑟𝑚𝑎𝑥 = 1.5, 𝑈 = 2 ∗ 10−5, 𝑛 = 4 and 𝜆 = 5 ∗ 10−3. 

Within the context of the FGM, increasing stress level may have different effects, also 189 

discussed in Harmand et al. (2017). First, stronger stress may cause a larger shift in the position 190 

of the optimum phenotype, resulting in a larger initial drop in fitness (higher 𝑟𝐷), as assumed in 191 

most models of adaptation to a changing environment (Kopp and Matuszewski 2014). In 192 

addition, the maximal possible fitness 𝑟𝑚𝑎𝑥 may also be lower in the new than in the previous 193 

environment (reduced environmental quality). Moreover, the mutational parameters (𝑈 and 194 

𝜆) may change with stress, causing shifts in evolvability. Note that a change in 𝜆 may reflect a 195 

change in the phenotypic effects of mutations, of the strength of stabilizing selection, or both. 196 

For instance, higher stress may release cryptic genetic variance on underlying phenotypic traits 197 

(Scharloo 1991; Hermisson and Wagner 2004), or cause increased mutation rates via SOS 198 

responses in bacteria (Foster 2007). Finally, although less easy to conceptualize, some 199 

environments may change the effective dimensionality of the landscape. However, in the 200 

present paper, we only consider such changes in dimensionality in the context of rescue from 201 

de novo mutations (where it can readily be handled by studying the effect of the parameter 𝑛). 202 

As we will see, all our results can be expressed in terms of five parameters 203 

(𝑁0𝑈 , 𝑟𝐷 , 𝑟𝑚𝑎𝑥  , 𝜆, 𝑛). Table 1 summarizes all notations in the article. 204 

 205 

Notation Description Formula 

𝑁𝑡 , 𝑁0 
𝑁𝑡: population size at time 𝑡 after the onset of the stress. 
𝑁0: initial population size at the onset of the stress. 

 

𝑈 Mutation rate per individual per unit time.  

𝑛 
Number of traits under stabilizing selection, or phenotypic 
dimensionality. 

 

𝜆 
Variance of mutational effects: variance of the phenotypic 
effects of mutations, per trait, in a trait space scaled by 
the strength of stabilizing selection  

𝐝𝐳 ~ 𝑁(𝟎, 𝜆 𝐈𝑛) 
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𝑈𝑐  
Critical mutation rate below which the SSWM regime is 
valid. 

𝑈𝐶  =  𝑛2 𝜆/4 

𝐳 
𝑛-dimensional vector 𝐳 ∈ ℝ𝑛 of (breeding values for) 
phenotype 

 

𝒛𝐴, 𝐨 

𝐨: optimal phenotype in a given environment 

𝐳𝐴: average phenotype of the ancestral population 
(before the onset of stress) 

𝐨 = 𝟎: new environment 

𝐨 = 𝐳𝐴: previous environment  

𝑟, 𝜎 
Growth rate (𝑟) and reproductive variance (𝜎) of a given 
genotype, in the new environment. 

Eq.(1) 

𝑟𝑚𝑎𝑥  Maximum possible growth rate in the new environment. 𝑟(𝟎) = 𝑟𝑚𝑎𝑥  

𝑟𝐷 
Rate of decay of the ancestral phenotype 𝐳𝐴 in the new 
environment. 

𝑟(𝐳𝐴) = 𝑟𝑚𝑎𝑥 − ‖𝒛𝑨‖2 2⁄ = −𝑟𝐷 

𝑐 
Cost of a mutation: selective disadvantage of the mutant, 
relative to the optimal phenotype, in the previous 
environment. 

𝑐 = ‖𝐳 − 𝐳𝐴‖𝟐/2 

𝑐𝐻(𝑦) 
Harmonic mean of the cost 𝑐|𝑦 among de novo mutations 
with scaled growth rate 𝑦 in the new environment 

Eq.(3) 

𝑦 
Growth rate of a genotype, in the new environment, 
scaled by 𝑟𝑚𝑎𝑥. 

𝑦 = 𝑟 𝑟𝑚𝑎𝑥 ∈ [−∞, 1]⁄  

𝑓𝑦(𝑦) 
Probability density function of 𝑦 among random single 
step mutations 

Eq.(2)  

𝑦𝐷  Rate of decay scaled by 𝑟𝑚𝑎𝑥 . 𝑦𝐷 = 𝑟𝐷 𝑟𝑚𝑎𝑥⁄  

𝜓𝐷 Alternative measure of 𝑦𝐷  𝜓𝐷 = 2(√1 + 𝑦𝐷 − 1) (Eq.(6)) 

𝛼 Effective stress level Eq.(6) 

𝛼𝑐 , 𝑟𝐷
𝑐  

Characteristic stress level (𝛼𝑐) or decay rate (𝑟𝐷
𝑐) beyond 

which ER probability drops below 1/2. 
Eq.(8) 

𝑔(𝛼) 
Function driving the dependence of rescue probabilities 
on stress levels. 

Eq.(7) 

 𝜔𝐷𝑁 , 𝜔𝐷𝑁
∗  

𝜔𝐷𝑁: rate of rescue from de novo mutations scaled by 𝑁0 

𝜔𝐷𝑁
∗ : corresponding approximation when 𝜆 ≪ 𝑟𝑚𝑎𝑥  

Eqs.(5), (7) 

 𝜔𝑆𝑉 , 𝜔𝑆𝑉
∗  

𝜔𝑆𝑉: rate of rescue from standing variance scaled by 𝑁0 

𝜔𝑆𝑉
∗ : corresponding approximation when 𝜆 ≪ 𝑟𝑚𝑎𝑥  

Eqs.(5),(10) 

𝑃𝑅  Probability of rescue. 𝑃𝑅 = 1 − 𝑒−𝑁0 𝜔𝑅  

𝜙𝑆𝑉 Proportion of rescue events caused by standing variants Eq. (10) 

Table 1: Notations 

 206 
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Strong selection and weak mutation (SSWM) regime: The FGM described in the previous 207 

section, produces epistasis for fitness between different mutations which makes the problem 208 

highly intractable in general. To make analytical progress, we assume a regime of strong 209 

selection and weak mutation (SSWM, Gillespie 1983), which allows neglecting multiple mutants 210 

and epistasis. This regime arises when mutation rates are small relative to their typical fitness 211 

effect (as detailed below). In our context, this assumption implies that most rescue variants 212 

(pre-existing or de novo) are only one mutational step away from the ancestral genotype, 213 

allowing for two key simplifications. First, with a purely clonal ancestral populations, we can 214 

ignore ER by genotypes that have accumulated multiple de novo mutations. Second, in 215 

populations initially at mutation-selection balance, we can consider that all mutations arise 216 

from a single dominant genotype, optimal in the previous environment. Indeed, in the SSWM 217 

regime at mutation-selection balance, most segregating phenotypes remain within a narrow 218 

neighborhood of the optimum (relative to the magnitude of mutation effects on traits), so the 219 

mutation-selection balance is well-approximated by assuming that all mutations originate from 220 

the optimum phenotype. This is essentially the House-of-Cards approximation (Turelli 1984) 221 

extended to the FGM of arbitrary dimensionality (Martin and Roques 2016). 222 

Overall, the SSWM assumption implies that the evolutionary aspects of ER are entirely 223 

determined by a single joint distribution of fitness, in the previous and new environment. This 224 

distribution corresponds to that of mutants arising from the optimal genotype of the previous 225 

environment. We thus apply the results of Martin et al. (2013), to this particular distribution. 226 

Note that the SSWM approximations used in this article should apply even when multiple 227 

single-step mutants co-segregate (generating “soft selective sweeps”, as detailed in Wilson et 228 

al. 2017). Indeed, the probability of ER, as computed for example in Orr and Unckless (2008) or 229 

Martin et al. (2013) and used here, is one minus the probability that no single mutant arises 230 

that ultimately causes ER. This means that we ignore ER requiring multiple mutational steps, 231 

but allow several single-step rescue mutations to co-segregate. Consistently, our simulations 232 

did not show any particular deviation from the theory at very mild stress, where such co-233 

segregation of several single-step mutants is expected. 234 

 235 

Maximal mutation rate for the SSWM regime: We conjecture that the SSWM approximation 236 

should be accurate below some threshold mutation rate 𝑈𝐶, i.e. whenever 𝑈 < 𝑈𝐶  =  𝑛2 𝜆/4. 237 
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Indeed, Martin and Roques (2016) found that as long as 𝑈 ≤ 𝑈𝐶, the fitness distribution at 238 

mutation-selection balance corresponds exactly to that expected under the House of cards 239 

approximation (with a dominant optimal genotype plus its deleterious mutants). Whether this 240 

same condition is sufficient for most rescue events to stem from single-step mutations is not 241 

justified theoretically, and was simply tested by extensive stochastic simulations. 242 

Supplementary Fig.1 further explores the range of validity of this approximation. It shows, in a 243 

rescued population, the proportion of wild-type, single mutant, double mutant, and so on, as a 244 

function of the mutation rate. 245 

 246 

Distribution of single-step mutation fitness effects in the new environment: Let 𝑠 be the 247 

selection coefficient (difference in growth rate), in the new environment, of a random mutant 248 

(with phenotype 𝐳) relative to its ancestor (with phenotype 𝐳𝐴). The distribution of 𝑠 = 𝑟(𝐳) −249 

𝑟(𝐳𝐴) = 𝑟 + 𝑟𝐷 among random mutants has a known exact form in the isotropic FGM (Martin 250 

2014; Martin and Lenormand 2015), from which the distribution of growth rates (𝑟 = 𝑠 − 𝑟𝐷) 251 

in the new environment is readily obtained. It proves simpler and sufficient (see Appendix 252 

section II subsection 2) to consider the scaled (and unitless) growth rate 𝑦 = 𝑟 𝑟𝑚𝑎𝑥⁄ ∈ [−∞, 1], 253 

such that 𝑦𝐷 = 𝑟𝐷 𝑟𝑚𝑎𝑥⁄ ∈ [0, +∞] is the decay rate of the ancestor scaled to the maximum 254 

possible growth rate. The scaled growth rates 𝑦 = 𝑟/𝑟𝑚𝑎𝑥  have the following probability 255 

density function: 256 

 

𝑓𝑦(𝑦) = 

exp (− 
𝑟𝑚𝑎𝑥(2 + 𝑦𝐷 − 𝑦)

𝜆
) (

𝑟𝑚𝑎𝑥

𝜆
)

𝑛/2

(1 − 𝑦)𝑛/2−1
0𝐹1 (

𝑛
2

 , (
𝑟𝑚𝑎𝑥

𝜆
)

2
(1 + 𝑦𝐷)(1 − 𝑦))

Γ(𝑛/2)
 , 

 𝑦 ∈ ] − ∞, 1] 

(2) 

where 0𝐹1(. , . ) is the confluent hypergeometric function and Γ(𝑧) is the gamma function. In 257 

the SSWM regime, this probability density function approximately describes de novo mutations 258 

produced after the onset of stress by the whole population, be it initially clonal or at mutation-259 

selection balance. 260 

 261 
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Fitness cost of single-step pre-existing mutants in the previous environment: Consider the 262 

subset of random mutations, among those that arise from the dominant genotype of the 263 

ancestral population, that have a scaled growth rate within the infinitesimal class [𝑦, 𝑦 + 𝑑𝑦] 264 

in the new environment. We introduce the conditional random variable 𝑐|𝑦, which is the cost, 265 

in the previous environment, of a random mutant within this subset (thus, conditional on 𝑦). 266 

This cost is equal to the negative of the selection coefficient of the mutation relative to the 267 

dominant genotype with phenotype 𝐳𝐴. More precisely, the cost of a mutant with phenotype 𝐳 268 

is 𝑐 = ‖𝐳 − 𝐳𝑨‖𝟐/𝟐 (using eq.(1), with 𝐨 = 𝐳𝐴 for the previous environment). Note that, 269 

because the mutation-selection balance in the previous environment is fully characterized by 270 

relative fitnesses, which do not depend on the maximal growth rate in this environment, the 271 

latter may differ from 𝑟𝑚𝑎𝑥 without impacting the distribution of the costs 𝑐|𝑦 and our results. 272 

Importing results from Martin et al. (2013) for the SSWM regime, the total number of pre-273 

existing variants within the class [𝑦, 𝑦 + 𝑑𝑦] is Poisson distributed with mean 𝑁0 𝑈 𝑓𝑦(𝑦)/274 

𝑐𝐻(𝑦)𝑑𝑦 , where 𝑐𝐻(𝑦) = 1/𝔼𝑐(1/𝑐|𝑦) is the harmonic mean of the cost 𝑐|𝑦 among 275 

mutations with effect 𝑦 in the new environment. This conditional harmonic mean depends on 276 

the joint distribution of mutation effects on fitness (𝑐, 𝑦) across two environments in the FGM 277 

(given in Martin and Lenormand 2015). In our context, the dominant genotype of the ancestral 278 

population is optimal in the previous environment and far from the optimum in the new 279 

environment. In this case, using Eq.(9) in Martin and Lenormand (2015), the resulting 280 

conditional harmonic mean 𝑐𝐻(𝑦) takes a tractable form (see Eq.(A6) for 𝑛 ≥ 2 and (A8) for 281 

𝑛 = 1 in Appendix section II subsection 4 and 5): 282 

 

𝑐𝐻(𝑦) = 1/𝔼𝑐 (
1
𝑐 |𝑦) = {

𝜆 𝑣(𝑦) , 𝑛 = 1
𝜆

𝑒𝑣(𝑦)𝐸(𝑛−1) 2⁄ (𝑣(𝑦))
, 𝑛 ≥ 2 

with 𝑣(𝑦) =
𝑟𝑚𝑎𝑥

𝜆
 (2 + 𝑦𝐷 − 2√(1 + 𝑦𝐷)(1 − 𝑦) − 𝑦)

 , (3) 

where 𝐸𝑘(𝑧) = ∫ 𝑒−𝑧 𝑡/𝑡𝑘  𝑑𝑡
∞

1
 is the exponential integral function. In most of the article we 283 

focus on the case 𝑛 ≥ 2, when considering ER from standing variance. The distributions of 284 

mutation effects on fitness in both the previous (Eq.(3)) and the new environment (Eq.(2)) can 285 

then be integrated to yield the probability of ER, as we show next.  286 

 287 
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General expression and assumptions for the rescue probability: Extinction occurs when no 288 

resistant mutation manages to establish (i.e. to avoid stochastic loss). For compactness, we 289 

define a rate of rescue 𝜔 per individual present at the onset of stress (i.e., scaled by 𝑁0), such 290 

that, following Martin et al. (2013), ER probabilities take the general form (similar to  that in 291 

e.g. Orr and Unckless 2008):  292 

 𝑃𝑅 = 1 − 𝑒−𝑁0 𝜔 . (4) 

The rate of rescue from de novo mutations alone is 𝜔𝐷𝑁 (‘𝐷𝑁’ for de novo), while that from 293 

pre-existing variance alone is 𝜔𝑆𝑉 (‘𝑆𝑉’ for standing variants).  For a purely clonal population, 294 

the rate of rescue is 𝜔 = 𝜔𝐷𝑁, while for a population initially at mutation-selection balance, it 295 

is 𝜔 = 𝜔𝐷𝑁 + 𝜔𝑆𝑉 in the SSWM regime assumed here (Martin et al. 2013). Applied to the 296 

context of the FGM using Eqs.(2) and (3), the rates 𝜔𝐷𝑁 and 𝜔𝑆𝑉 are given by (see Appendix 297 

Eq.(A5) and (A7) ):  298 

 

𝜔𝐷𝑁 =
 𝑈

𝑟𝐷
∫  𝜋(𝑦)𝑓𝑦(𝑦)𝑑𝑦

1

0

 

𝜔𝑆𝑉 = 𝑈 ∫
𝜋(𝑦)

𝑐𝐻(𝑦)
 𝑓𝑦(𝑦)𝑑𝑦

1

0

with 𝜋(𝑦) = 1 − 𝑒−2 𝑦 𝑟𝑚𝑎𝑥 𝜎⁄   

  , (5) 

where 𝑐𝐻(𝑦), and 𝐸(𝑛−1)/2(. ) are defined in Eq.(3) and 𝜋(𝑦) is the probability of establishment 299 

of a resistant genotype with scaled growth rate 𝑦 > 0 in the new environment. 𝜔𝐷𝑁 in Eq.(5) 300 

is simply the average establishment probability of de novo resistant mutants times the genomic 301 

mutation rate, divided by the rate of decay. In previous ER models (e.g. Orr and Unckless 2008; 302 

Martin et al. 2013), which we denote “context-independent”, the probability of rescue takes 303 

the exact same form as Eq.(4). The expressions for the rates of rescue per capita also take a 304 

form similar to Eq.(5): for de novo mutations, 𝜔𝐷𝑁 =  𝑈 𝑞𝑅 / 𝑟𝐷, and for standing variance, 305 

𝜔𝑆𝑉 = 𝑈 𝑞𝑅 / 𝑐𝐻, where 𝑞𝑅 is the proportion of rescuers among random mutations (𝑞𝑅 =306 

∫  𝜋(𝑦)𝑓𝑦(𝑦)𝑑𝑦
1

0
 in Eq.(5)) and 𝑐𝐻 is again the harmonic mean of the cost of rescue mutations. 307 

The important difference is that in previous models, 𝑞𝑅 and 𝑐𝐻  do not depend on 𝑟𝐷, while the 308 

corresponding quantities in Eq.(5) do depend on the rate of decay, through its effect on 𝑓𝑦(𝑦) 309 

and 𝑐𝐻(𝑦). 310 

The linearity of ER rates with the mutation rate 𝑈 (𝜔 ∝ 𝑈) arises here because of the SSWM 311 

regime, where multiple mutations are ignored: it might not hold at higher mutation rates 312 
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(when 𝑈 > 𝑈𝑐). As such, Eq.(5) makes no further assumption than the SSWM regime (𝑈 < 𝑈𝑐); 313 

it can easily be evaluated numerically to provide a general testable theory for rescue 314 

probabilities across stress levels, in the FGM. Yet, in order to gain more quantitative/intuitive 315 

insight into the effects of stress, we study approximate closed forms for the rates in Eq.(5). 316 

 317 

Small mutational effects approximation (SME): Although selection is assumed to be strong 318 

relative to mutation (𝑈 < 𝑈𝑐, SSWM regime), it is still fairly realistic to assume that mutation 319 

effects on traits (and thus fitness) are weak relative to the maximal growth rate in the new 320 

environment, namely that 𝜆 ≪ 𝑟𝑚𝑎𝑥. Taking a limit where 𝜆/𝑟𝑚𝑎𝑥 → 0, simpler expressions for 321 

Eq. (5) are derived in the Appendix section III. 322 

With this approximation, single-step resistance mutations are still rare and of large phenotypic 323 

effect, in that they pertain to the tail of the mutant phenotype distribution. However, even 324 

resistance mutations typically remain far from the optimum in the new environment, so that 325 

their scaled growth rate is small: 𝑦 = 𝑟/𝑟𝑚𝑎𝑥 ≪ 1. Overall, mutation effects must fall within 326 

the range: 4𝑈/𝑛2 < 𝜆 ≪ 𝑟𝑚𝑎𝑥 for both the SSWM and the SME (small mutational effects) 327 

approximation to apply (see Appendix section III). In the appendix, we study the convergence, 328 

as 𝜆/𝑟𝑚𝑎𝑥 decreases, of the results from Eq.(5) to their asymptotic limit (Supplementary Figs.3 329 

and 4). 330 

 331 

Stochastic simulations of a discrete-time model: We checked the robustness of our 332 

assumptions and approximations using stochastic simulations, where we tracked the 333 

population size and genetic composition of a population across discrete, non-overlapping 334 

generations. The size  𝑁𝑡+1 of population at generation 𝑡 + 1 was drawn as a Poisson number 335 

𝑁𝑡+1 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑁𝑡 𝑊̅), with 𝑊̅ = 𝑒𝑟̅̅ ̅ the mean multiplicative fitness (𝑊 = 𝑒𝑟) and 𝑁𝑡 the 336 

population size, in the previous generation. The genotypes forming this new generation were 337 

then sampled with replacement from the previous one with weight 𝑊𝑖 = 𝑒𝑟𝑖. This is faster and 338 

exactly equivalent to drawing independent Poisson reproductive outputs for each individual, or 339 

genotype. Because of the underlying assumptions of the simulations, the corresponding 340 

analytical approximation for the stochastic reproductive variance in Eq.(1) is 𝜎𝑖 = 𝜎 ≈ 1 341 

(assuming small growth rates 𝑟𝑖 ≪ 1). Mutations occurred according to a Poisson process, with 342 

a constant rate 𝑈 per capita per generation. Mutation phenotypic effects were drawn from a 343 
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multivariate normal distribution 𝑁(𝟎, 𝜆 𝐈𝒏), with multiple mutants having additive effects on 344 

phenotype, and their fitness computed according to the FGM (Eq.(1)).   345 

Rescue probability was estimated by running 1000 replicate simulations until either 346 

extinction or rescue occurred. A population was considered rescued when it reached a 347 

population size 𝑁𝑡 and mean growth rate 𝑟̅𝑡 such that its ultimate extinction probability, if it 348 

were monomorphic, would lie bellow 10−12 (exp(−2 𝑁𝑡 𝑟̅𝑡) < 10−12). This is a conservative 349 

criterion: once 𝑟̅𝑡 has become positive, we expect it to remain so, yielding further increases in 350 

population size and thus further decreasing the probability of future extinction. We checked on 351 

a subset of simulations that the above procedure gave the same rescue probabilities as 352 

obtained in simulations performed until the population rebounded back to its (large) initial 353 

size 𝑁0. 354 

For rescue from populations at mutation-selection balance, 8 replicate initial equilibrium 355 

populations were generated, each by starting from an optimal clone and running the same 356 

algorithm with fixed population size (𝑁𝑡 = 106) until the mean growth rate had visually 357 

stabilized to a fixed value (close to its theoretical equilibrium value 𝑟̅𝑒𝑞 = 𝑟𝑚𝑎𝑥 − 𝑈 (for 𝑈 <358 

𝑈𝑐) for more than 1000 generations. Then the optimum was shifted by  √2(𝑟𝐷 + 𝑟𝑚𝑎𝑥) 359 

phenotypic units, and 1000 replicate ER simulations were performed (same algorithm as for de 360 

novo rescue), from each of the 8 replicate equilibrium populations.  361 

All simulations and mathematical derivations were performed in MATHEMATICA v. 9.0 362 

(Wolfram Research 2012). 363 

 364 

RESULTS 365 

The ER rates in Eq.(5) are analytical but only implicit functions of the model parameters. In 366 

a small mutational effects (SME) limit, they take simpler closed form (indicated by a ’*’). As we 367 

will see below, these simpler forms mostly depend on the following two compound variables, 368 

which summarize the various effects of stress on the fitness landscape: 369 

 

𝜓𝐷 = 2 (√1 + 𝑟𝐷/𝑟𝑚𝑎𝑥 − 1)

𝛼 =
𝜓𝐷

2  𝑟max

4 𝜆 

  . (6) 
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Both 𝜓𝐷 and 𝛼 increase with the decay rate 𝑟𝐷, decrease with increasing peak height 𝑟𝑚𝑎𝑥, and 370 

are independent of 𝑛. The parameter 𝛼 further increases with decreasing variance of 371 

mutational effects 𝜆. We can already see how  𝛼 qualitatively reflects an “effective stress level”: 372 

stress is harder to cope with if decay rate is larger, the maximum growth rate is lower, and 373 

mutation effects are smaller.   374 

 375 

Rescue from de novo mutations: Under the SME approximation and in the SSWM regime 376 

(4 𝑈/𝑛2 < 𝜆 ≪ 𝑟𝑚𝑎𝑥) the rate of de novo rescue (Eq.(5)), converges to (Eq. (A12) in the 377 

Appendix): 378 

 

𝜔𝐷𝑁 ≈ 
𝜆 ≪ 𝑟𝑚𝑎𝑥

𝜔𝐷𝑁
∗ =  𝑈 

(1 + 𝜓𝐷 2⁄ )(1−𝑛) 2⁄

1 + 𝜓𝐷 4⁄
 𝑔(𝛼)        (7)𝑎

𝜔𝐷𝑁
∗  → 

𝜓𝐷 2⁄  → 0
𝑈 𝑔(𝛼)                                                            (7)𝑏

with 𝑔(𝛼) =
𝑒−𝛼

√𝜋 𝛼
− erfc(√𝛼)

  , (7) 

where erfc(. ) is the complementary error function. Eq.(7)b. gives the approximate closed form 379 

of Eq.(7)a. for mild stress (𝜓𝐷 2⁄  →  0). Note that this approximation converges faster (with 380 

decreasing 𝜓𝐷) with fewer dimensions, due to the faster vanishing of the factor (1 +381 

𝜓𝐷 2⁄ )(1−𝑛) 2⁄  (in the limit 𝑛 = 1 it vanishes for all 𝜓𝐷). We now discuss the biological 382 

implications of these expressions.  383 

 384 

Effect of FGM parameters on rescue: The partial derivatives of 𝜔𝐷𝑁
∗  in Eq.(7) with respect to 385 

the FGM parameters (𝑟𝐷 , 𝑟𝑚𝑎𝑥, 𝜆, 𝑛) quantify the sensitivities of ER probability to each of them 386 

(Appendix section III subsection 4). First, note that 𝑔(. ) is a strictly decreasing function of 𝛼. 387 

When 𝑛 > 1 and with mild stress (𝜓𝐷 ≪ 2), Eq.(7)b. applies and 𝜔𝐷𝑁 ≈ 𝑈 𝑔(𝛼). ER then 388 

becomes less likely with a higher decay rate 𝑟𝐷, a lower peak 𝑟𝑚𝑎𝑥 and a smaller variance of 389 

mutational effects 𝜆, and is independent of dimensionality 𝑛. For stronger stress levels, Eq.(7)a. 390 

applies: these qualitative dependencies to the parameters still hold, except that ER probability 391 

now decreases with increasing dimensionality.  392 

 393 
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Sharp drop of ER probability with stress levels: Fig.2 shows the agreement between 394 

simulations (stochastic discrete-time demographic model, see Methods) and the analytical 395 

expressions in Eqs.(5) and (7), over a wide range of stress levels (quantified by 𝑟𝐷), and for two 396 

values of 𝑟𝑚𝑎𝑥 and 𝑈 (Supplementary Fig.3 further explores the range of validity of the 397 

approximation). Interestingly, ER probability drops sharply with stress levels (with decay rate 398 

𝑟𝐷 here), which is well captured by the term 𝑔(𝛼) alone (Eq.(7)b., dashed red lines in Fig.2). 399 

This drop is much more pronounced than in a context-independent model (gray lines in Fig.2), 400 

where stress does not affect the distribution of mutation effects. The difference between 401 

context-independent models and the FGM is that, in the latter, increased stress implies both 402 

faster decay (as in the former), and fewer and weaker resistance mutations. In the FGM, these 403 

effects on the properties of rescue mutations are the main drivers of ER probabilities across 404 

stress levels. 405 

 406 

 407 

Figure 2: Rescue probability from de novo mutations. The ER probability as a function of stress levels, expressed 

as the initial mean decay rate of the population, is given for various values of the mutation rate 𝑈 =  10−3 𝑈𝑐 

(blue) or 𝑈 =  10−2 𝑈𝑐   (orange) and the maximal fitness reachable in new the environment 𝑟𝑚𝑎𝑥  =  0.5 (A) or 

1.5 (B). Dots give the results from simulations and solid lines (blue and orange) show the corresponding theory 

computed numerically (Eq.(5)). The black dot-dashed (respectively red dashed) lines give the corresponding 

analytical approximations Eq.(7)a. (respectively Eq.(7)b.). The gray lines correspond to an equivalent theory 

without the FGM (named context-independent model as described in the Method section, “CI”) modified from 

Orr and Unckless (2008). This last model was computed using a fixed proportion of resistant mutations equal to 

the one in Eq.(5) for a rescue probability of 0.5 (which explains why the two curves cross exactly at 𝑃𝑅 = 0.5). 

Other parameters are 𝑛 = 4, 𝑁0 = 105, 𝜆 = 0.005. 

 408 
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Composite parameter 𝜶 describing an effective stress level: The results in Eqs.(6)-(7) suggest 409 

that a single composite parameter (𝛼 in Eq.(6)) can capture the various ways in which stress 410 

may alter the parameters of the fitness landscape, that is, fitness peak height 𝑟𝑚𝑎𝑥, variance of 411 

mutational effects 𝜆, or distance to the optimum 𝑟𝐷. We denote this parameter the “effective 412 

stress level”. In Fig.2, considering the effect of stress only via 𝛼 (Eq.(7)b.) is equally accurate as 413 

using the more complex Eq.(7)a., or the numerical computation from Eq.(5).  414 

This simplification is further illustrated in Fig.3, where we use exact numerical computations 415 

from Eq. (5) to explore different possible effects of stress. Regardless of whether stress affects 416 

only the maladaptation of the ancestral clone (𝑟𝐷, blue symbols), or also the quality of the 417 

environment (joint change in 𝑟𝐷 and 𝑟𝑚𝑎𝑥, orange symbols) or the variance of mutational 418 

effects (joint change in 𝑟𝐷 and 𝜆, red symbols), its effect on the rescue probability is accurately 419 

predicted by 𝛼 (Fig.3B, black line). As predicted by Eq.(7)b., the relationship between rescue 420 

probability and 𝛼 is approximately independent of dimensionality (compare circles 𝑛 = 1 and 421 

squares 𝑛 = 6 in Fig.3B). We also note that Eq.(7)b. slightly overestimates the ‘exact’ numerical 422 

computations of the ER probability from Eq.(5), so it provides a conservative bound when 423 

considering the control of resistant pathogens. 424 

 425 

Figure 3: The effective stress level. Rescue probability for clonal populations versus initial decay rate 𝑟𝐷 (A) or the 

effective stress level α (B). In both panels the axes are in logarithmic scale, symbols show Eq.(5) and colors refer 

to different effects of increased stress level: blue symbols show only 𝑟𝐷 increasing (with 𝑟𝑚𝑎𝑥 = 1.5 and 𝜆 =

0.005), orange symbols 𝑟𝐷 increasing and 𝑟𝑚𝑎𝑥  decreasing linearly with 𝑟𝐷 (according to 𝑟𝑚𝑎𝑥 = 1.5 − 5 𝑟𝐷, with 

𝜆 = 0.005) and red symbols 𝑟𝐷 increasing and 𝜆 decreasing linearly with 𝑟𝐷 (according to 𝜆 = 0.005 − 10−2 𝑟𝐷, 

with 𝑟𝑚𝑎𝑥 = 1.5). In each case, the results for both 𝑛 = 1 (circles) and 𝑛 = 6 (squares) are shown. The black plain 

line on the right panel gives the result from Eq.(7)b.: a single composite measure of stress (𝛼) approximately 
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captures the impact of stress-induced variations in the various parameters (𝑟𝐷 , 𝑟𝑚𝑎𝑥 , 𝜆, 𝑛). Other parameters are 

𝑁0 = 106 and 𝑈 = 2 ∗ 10−5. 

 426 

Characteristic stress level: Fig.2 shows that ER drops from highly likely to highly unlikely 427 

around a “characteristic stress level”, which we can be characterized analytically (as detailed in 428 

the Appendix section IV subsection 1). Consider the set of values of parameters 429 

(𝑁0, 𝑈, 𝑟𝑚𝑎𝑥, 𝑟𝐷 , 𝜆, 𝑛) for which the rescue probability is of given value 𝑝 ∈ [0,1]. From Eq.(7)b., 430 

this corresponds to the set (𝑟𝑚𝑎𝑥, 𝑟𝐷 , 𝜆) for which 𝛼 = 𝑔−1(− log(1 − 𝑝) /𝑁0𝑈). Using the 431 

approximation 𝑔(𝛼) ≈ 𝛼−3 2⁄ 𝑒− 𝛼 (2√𝜋⁄ ) (from Eq.(7) with 𝛼 ≫ 1), the corresponding 𝛼 can 432 

be derived explicitly (Eq.(A17)). In particular for 𝑝 = 1/2, the characteristic stress level 𝛼𝑐 at 433 

which the ER probability is 1/2 is (Eq. (A19) in the Appendix): 434 

 𝛼𝑐 ≈
𝑁0𝑈≫1

𝑔−1 (
log(2)

𝑁0𝑈
) ≈

𝑁0𝑈≫1
0.9 log(𝑁0𝑈) − 2.7 .  (8) 

Under the conditions of the SME approximation (detailed in Methods), Eq.(8) applies for large 435 

𝑁0𝑈 (approximately when 𝑁0𝑈 ≥ 5.104), a necessary condition for this equation to be self-436 

consistent (detailed in Appendix section IV subsection 2).  437 

The characteristic stress level 𝛼𝑐 that a population can typically withstand increases only log-438 

linearly with population size and mutation rate. Consider the characteristic decay rate 𝑟𝐷
𝑐 for 439 

which the rescue probability is 𝑃𝑅 = 1/2, i.e. the decay rate that populations can overcome 440 

half of the times. From Eq.(8) with 𝛼𝑐 ∝ (𝑟𝐷
𝑐)2 (Eq.(6)), this decay rate is 𝑟𝐷

𝑐 ∝ √log(𝑁0𝑈) for 441 

large 𝑁0𝑈. For comparison, we would have 𝑟𝐷
𝑐 = 𝑞𝑅𝑁0𝑈/ log(2), which is linear in 𝑁0𝑈, in a 442 

context-independent model where the proportion 𝑞𝑅 of random mutations causing a rescue is 443 

independent of 𝑟𝐷. The difference in the effect of 𝑁0𝑈 on rescue probability thus stems from 444 

the strong non-linearity (i.e. sharp drop) of rescue probability with stress level (decay rate) 445 

under the FGM. In the FGM, overcoming a given environmental harshness requires much more 446 

mutational input than in a context-independent model. 447 

 448 

Characteristic stress window: It is also important to predict how sharply the ER probability 449 

drops around the characteristic stress level. This drop can be characterized by a “characteristic 450 

stress window” of 𝛼 over which the ER probability drops from 75% to 25%. The width Δ𝛼 of this 451 
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window can be scaled by the value of the characteristic stress level 𝛼𝑐, to get a scale-free 452 

measure of its steepness (i.e., how sharp the drop in ER probability is, relative to the stress level 453 

around which it occurs). This gives (from Eq.(A20) in the Appendix): 454 

 
Δ𝛼

𝛼𝑐
 ≈

𝑁0𝑈≫1

1

1 + 0.7𝛼𝑐
 . (9) 

The width Δ𝛼 increases with increasing 𝑁0𝑈 until it saturates (at ~ 1.5) (see Appendix section 455 

IV subsection 3 for further details). However, when scaled by the center of the window (𝛼𝑐), 456 

the width of this scaled characteristic stress window drops below 1 as 𝛼𝑐 increases (and hence 457 

with increasing 𝑁0𝑈, from Eq.(8)). This result shows formally that the drop in ER probability 458 

with increasing stress 𝛼 gets proportionally sharper (relative to the position where it occurs) 459 

as 𝑁0𝑈 increases, but this is entirely driven at large 𝑁0𝑈 by shifts of a window with constant 460 

absolute width. This is illustrated in Fig.4, which also shows the accuracy of Eq.(9) compared to 461 

‘exact’ numerical computations from Eq.(5) (as expected, the exact result deviates from Eq.(9) 462 

for smaller 𝑁0𝑈). 463 

 464 

 465 

Figure 4: Scaled width of the characteristic stress window 𝛥𝛼/𝛼𝑐 versus the population-scale mutation rate 𝑁0𝑈. 

The dots are obtained by numerical inversion of the ‘exact’ Eq.(5) with two values of 𝑟𝑚𝑎𝑥 = 2 (blue) and 𝑟𝑚𝑎𝑥 =

0.1 (red). The orange line shows the approximate scaled width of the characteristic stress window derived in 

Eq.(9). Other parameters are 𝑛 = 4, 𝜆 = 0.005. 

Interestingly, Eq.(9) provides a scale-free measure that may be compared across 466 

experiments, as it only depends on the genomic mutational input 𝑁0𝑈 (via 𝛼𝑐). However, like 467 

all results so far, Eq.(9) only considers ER from de novo mutation. We now turn to ER from 468 

standing genetic variation. 469 

 470 
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Rate of rescue from a population at mutation-selection balance: In the SSWM regime, and for 471 

a population at mutation-selection balance in the previous environment, each rescue event can 472 

be tracked back to either a pre-existing variant, or a de novo mutation (Orr and Unckless 2008; 473 

Martin et al. 2013; Orr and Unckless 2014). The proportion 𝜙𝑆𝑉  of rescue events caused by 474 

standing variance is then simply given by 𝜙𝑆𝑉 = 𝜔𝑆𝑉 (𝜔𝑆𝑉 + 𝜔𝐷𝑁)⁄ . A simple expression can 475 

be obtained again under the SME for 𝑛 ≥ 2 (see Eq.(A21) in the Appendix), but the 476 

approximation (𝜙𝑆𝑉
∗ ) now further requires that decay rates are not vanishingly small (𝜆 ≪477 

 𝑟𝑚𝑎𝑥 𝜓𝐷
2 /4). 478 

  𝜙𝑆𝑉 =
𝜔𝑆𝑉

𝜔𝑆𝑉 + 𝜔𝐷𝑁
 ≈ 

𝜆 ≪ 𝑟𝑚𝑎𝑥 𝜓𝐷
2 /4

 𝜙𝑆𝑉
∗ =

1 + 𝜓𝐷 4⁄

𝜖/𝜓𝐷 + 1 + 𝜓𝐷 2⁄
  where  𝜖 = 𝜆 

𝑛 − 1

2 𝑟𝑚𝑎𝑥
  , (10) 

where 𝜓𝐷 is defined in Eq.(6). 479 

Eq.(10) captures the main features of how standing variance contributes to ER across (non-480 

vanishing) stress levels (here, decay rate). Contrary to context-independent models, this 481 

contribution changes non-monotically with increasing stress level (Fig.5). At very mild decay 482 

rate 𝑟𝐷, rescue relies on mild-effect mutations. The cost of such mutations - and hence their 483 

frequency before stress - is roughly independent of 𝑟𝐷 (Martin and Lenormand 2015), while 484 

their rate of production by de novo mutation decreases as 1/𝑟𝐷 (demographic effect), so the 485 

contribution of standing variance to ER increases with 𝑟𝐷 at small 𝑟𝐷. In contrast at large stress 486 

levels, rescue stems from strong effect mutations. These mutations pay a substantial 487 

“incompressible cost” before stress that increases faster than 𝑟𝐷 (Martin and Lenormand 2015), 488 

while their rate of de novo production still decreases as 1/𝑟𝐷, so the contribution of standing 489 

variance to ER decreases with 𝑟𝐷 at large 𝑟𝐷. In the limit of very large 𝑦𝐷, the distance between 490 

the two optima is very large and makes most of both the cost and decay rate, so that 𝑐𝐻(𝑦) ≈491 

𝑟𝐷 for all mutations. Hence, de novo mutations and standing variants contribute equally to ER 492 

in this limit (𝜙𝑆𝑉 → 1/2). 493 
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 494 

Figure 5: relative contribution of standing genetic variation to ER. The proportion of ER from standing variance is 

shown across scaled decay rates 𝑦𝐷 . The numerical computation for 𝜙𝑆𝑉 (using Eq.(5) and (10)), for two values 

of 𝑟𝑚𝑎𝑥 = 0.1 (blue) and 𝑟𝑚𝑎𝑥 = 0.7 (orange), is compared to the approximate 𝜙𝑆𝑉
∗  (Eq. (10), black dashed line). 

Other parameters as in Fig.2. 

These different behaviors are illustrated in Fig.5, showing the variation of 𝜙𝑆𝑉 over a very 495 

wide range of scaled decay rates 𝑦𝐷. The limit 𝜙𝑆𝑉 → 𝜙𝑆𝑉
∗  in Eq.(10) provides a fairly accurate 496 

approximation across the full range of stress levels. The limits when 𝑦𝐷 → 0 and 𝑦𝐷 → ∞ are 497 

in fact of limited biological interest, as they correspond to stress levels where ER becomes de 498 

facto certain or impossible, respectively. When focusing on the more biologically relevant range 499 

corresponding to the characteristic stress window, which occurs near the peak in 𝜙𝑆𝑉 in Fig.5 500 

(see Appendix Section IV subsection 4), the variation of 𝜙𝑆𝑉 across stress levels becomes 501 

negligible. As illustrated in Fig.6B, 𝜙𝑆𝑉 remains close to 1 − √𝜖  (see Appendix Eq.(A22)) as  𝑦𝐷 502 

varies over a range where ER probabilities span several orders of magnitude (see Appendix 503 

Section IV subsection 5). Note that this behavior arises when stress only shifts the optimum 504 

(effect on 𝑟𝐷), but does not affect peak height (𝑟𝑚𝑎𝑥) or the variance of mutational effects (𝜆).  505 

Therefore the rate of rescue in the presence of standing variance is approximately 506 

proportional to that with only de novo mutation, with proportionality constant largely 507 

independent of the decay rate: 508 

 𝜔 = 𝜔𝐷𝑁 + 𝜔𝑆𝑉 ≈  𝜔𝐷𝑁
∗ /√𝜖 , (11) 

where 𝜖 is defined in Eq.(10). The rough constancy of 𝜙𝑆𝑉 also means that all the results 509 

obtained previously for ER from de novo mutations apply in the presence of standing variance, 510 

when stress only shifts the optima (as long as 𝑛 ≥ 2). 511 
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The ER probability profile across stress levels (shown in Fig.6A) is the same as that from de 512 

novo mutations alone (Fig.2), but with a higher characteristic stress (𝛼𝑐 ≈
𝑁0𝑈≫1

0.9 log(𝑋) − 2.7 513 

from Eq.(8) with 𝑋 ≈ 𝑁0𝑈 √𝜖 ⁄  ). Moreover, when considering the contribution from standing 514 

variance, the difference between the FGM and context-independent models (gray line on 515 

Fig.6A) is striking. Indeed in the latter, the ER rate from standing variance (𝜔𝑆𝑉) is independent 516 

of the decay rate, hence 𝑃𝑅 saturates with stress to a constant value 1 − exp (− 𝑁0 𝑈 𝑞𝑅/𝑐𝐻), 517 

where all ER events stem from standing variance. 518 

 519 

Figure 6: ER probability in the presence of standing genetic variation. In each panel, stress only affects the decay 

rate 𝑟𝐷 (shifting optimum). In both panels, blue solid lines show the theory for de novo and standing variance 

(‘DN’+’SV’) computed numerically (Eq.(5)) and the gray lines correspond to an equivalent theory without the FGM 

(named context-independent model as described in the Method section, “CI”) modified from Orr and Unckless 

(2008). This last model was computed using a fixed proportion of resistant mutations equal to the one in Eq.(5) 

for a rescue probability of 0.5 (which explains why the two curves cross exactly at 𝑃𝑅 = 0.5). The dashed red line 

gives the simpler expression for the overall rescue rate: 𝜔 ≈  𝜔𝐷𝑁
∗ /√𝜖 . (Eq.(11)) with ϵ given in Eq.(10) and 𝜔𝐷𝑁

∗  

by Eq.(7). (A) ER probability in the presence of standing genetic variation as a function of 𝑟𝐷. The dots give the 

results from simulations. (B) Proportion 𝜙𝑆𝑉 of rescue from standing variance as a function of 𝑟𝐷. The black 

dashed-line give the approximate theory from Eq. (10) and the dashed red line max(𝜙𝑆𝑉
∗ ) ≈ 1 − √𝜖 from Eq.(11). 

The shaded area shows the range of 𝑟𝐷 for which the ER probability drops from 0.99 to 10−3. Other parameters 

as in Fig.2. 

Finally, note that when considering rescue from preexisting variance, 𝑈 may change across 520 

environments, from 𝑈𝑃 (for previous) to 𝑈𝑁 (for new). For example, a stress-induced increase 521 

in DNA copy error would yield 𝑈𝑁 > 𝑈𝑃. Accounting for such shifts in mutation rate at the onset 522 

of stress, the total ER rate simply becomes 𝜔 ≈  𝜔𝐷𝑁
∗ (1 + 𝑈𝑃 𝑈𝑁⁄ (1 − √𝜖) √𝜖⁄ ) (from 523 

Eq.(11)). 524 
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 525 

DISCUSSION 526 

Main results: We investigated the persistence of a population of asexual organisms under an 527 

abrupt environmental alteration. We assumed that this stress causes a shift in a 528 

multidimensional fitness landscape with a single peak (Fisher's Geometrical Model - FGM -), 529 

which the population must ‘climb’ to avoid extinction. In such a landscape, faster population 530 

decline (due to stress-induced increase in the decay rate 𝑟𝐷) necessarily means that resistance 531 

mutations are fewer, have lower growth rates in the presence of stress and higher costs in its 532 

absence. We believe that this constraint, not included in previous studies, adds a key element 533 

of realism to evolutionary rescue (ER) models. In our model, variation in stress levels may affect 534 

the landscape in various ways: shifting the optimum, changing the peak height, or altering the 535 

phenotypic scale of mutations (or the strength of stabilizing selection). Under a strong selection 536 

and weak mutation (SSWM) regime and assuming small mutational effects (SME), all these 537 

effects of stress on the distribution of mutation fitness effects are approximately captured by 538 

the variation, across stress levels, of a single composite parameter 𝛼, which is approximately 539 

independent of the dimensionality of the organism (number of orthogonal traits under 540 

selection). The probability of ER drops sharply with this effective stress level, more so than in 541 

previous ER models where the rate of population decline is decoupled from the input of 542 

resistant mutations. The characteristic stress window over which this drop occurs only depends 543 

on the initial population size 𝑁0 and genomic rate of mutation 𝑈. As 𝑁0𝑈 gets large, the 544 

characteristic stress window reaches an asymptotic width (Δ𝛼 in Eq.(9)) while its center (the 545 

characteristic stress level 𝛼𝑐 in Eq.(8)) shifts towards higher values, approximately as log(𝑁0𝑈). 546 

When standing variance is available (population at mutation-selection balance before 547 

stress), its contribution to ER is dominant, and approximately constant across a wide range of 548 

stress levels that encompasses the characteristic stress window. 549 

In Table 2, we summarize how these features compare to properties of previous ER models. 550 

We consider only the situation where stress shifts the position of the optimum, affecting 𝑟𝐷 (as 551 

in previous models), because other effects of stress we investigate here (𝑟𝑚𝑎𝑥 and 𝜆) are not 552 

treated in previous models.  553 
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 Context-independent model FGM rescue model 

Impact of decay rate 𝑟𝐷 𝜔𝐷𝑁 ∝ 𝑟𝐷
−1 ,  𝜔𝑆𝑉 = constant 𝜔 ∝ 𝑒−𝑟𝐷

2
 𝑟𝐷

−3 (1) 

Impact of mutational input 
𝑁0𝑈 

𝜔 ∝ 𝑁0 𝑈 𝜔 ∝ 𝑁0 𝑈 

“Characteristic decay rate” 
(𝑟𝐷

𝑐) for DN rescue versus 
𝑁0 𝑈 

𝑟𝐷
𝑐 ∝ 𝑁0 𝑈 𝑟𝐷

𝑐 ∝ √log(𝑁0 𝑈) 

Relative contribution of 
standing variance to ER 

Increases with 𝑟𝐷 

𝜙𝑆𝑉 ≈
𝑟𝐷

𝑟𝐷 + 𝑐
 

~ Stable with 𝑟𝐷 

𝜙𝑆𝑉 ≈ 1 − √𝜖 

Table 2: Main results of “context-independent” models (Orr and Unckless 2008; Martin et al. 2013; Orr and 

Unckless 2014) and the present model (FGM) when stress only affects 𝑟𝐷 (only shifts the optimum position in our 

model). When the dependence to the parameters is given for the overall rate of rescue 𝜔, it applies to both the 

rate of rescue from de novo mutations 𝜔𝐷𝑁 and from pre-existing variance 𝜔𝑆𝑉 . (1) derived from the approximate 

expression 𝑔(𝛼) ≈ 𝛼−3 2⁄ 𝑒− 𝛼 (2√𝜋⁄ ). 

 554 

Genetic basis of ER patterns across environments: Our model allows identification of three 555 

ranges of stress levels that yield different eco-evolutionary patterns, despite all leading to 556 

extinction in the absence of evolution. First at low stress levels (𝛼 ≪ 𝛼𝑐), although evolutionary 557 

change is required for persistence and demographic dynamics typical of ER may be observed 558 

(decay /rebounce), extinctions are de facto undetectable (ER is pervasive, 𝑃𝑅 ≈ 1). In this 559 

regime, we expect several resistance mutations to establish and co-segregate (frequent “soft 560 

sweeps” as in Wilson et al. 2017). Their number is predictable (≈ 𝑁0𝜔𝑅), but the ultimate 561 

composition of the population in asexuals will depend on more complex clonal interference 562 

dynamics. Second, at intermediate stress levels (𝛼 = 𝑂(𝛼𝑐)), small variation in stress 563 

conditions has large impact on the probability of population survival. Over this range, 𝑃𝑅 ≈ 1/2 564 

so the expected overall number of rescue mutations in the population is less than one (𝑁0𝜔𝑅 ≈565 

−log(𝑃𝑅) = 0.7). Therefore, “hard sweeps” (including from standing variation) should be the 566 

most frequent: a single mutation typically establishes and rescues the population. Finally, at 567 

higher stress levels (𝛼 ≫ 𝛼𝑐), very few populations overcome the imposed stress, and when 568 

they do it is typically through a hard sweep (𝑁0𝜔𝑅 ≪ 1).  569 

 570 

Estimating parameters and testing the model: Studies on the emergence of resistance to 571 

controlled stress (e.g. antibiotics, fungicides, chemotherapy in cancer), especially in microbes, 572 
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can generate a set of estimates of 𝑃𝑅 (the probability of resistance emergence), across stress 573 

levels. In general, to test (or use) predictions from ER models, it is critical to empirically relate 574 

physical measures of stress level (e.g. concentrations, temperatures, salinities, etc.) with 575 

demographic measures (e.g. decay rates). If we assume that the main effect of stress is to shift 576 

optimum positions, given a set of measurements of 𝑟𝐷 (“dose-kill curves”, Regoes et al. 2004), 577 

the change in ER probability with stress can be predicted via Eq.(7). This simple scenario of 578 

optimum shifting is the one that is considered by most of the literature on evolutionary ecology 579 

across environmental gradients, so it would seem natural to test it first. Furthermore, this 580 

scenario has received empirical support from an analysis of a few experimental studies of 581 

distribution of mutation effects on fitness across stress levels (Martin and Lenormand 2006b). 582 

However, these studies used mild stresses, which reduce growth without causing population 583 

decay. A more recent study on bacteria facing lethal doses of antibiotics, i.e. in the presence of 584 

decay (Harmand et al. 2017), suggests that factors other than the position of the optimum may 585 

also change with stress (𝜆, 𝑟𝑚𝑎𝑥 , 𝑛). Estimating these extra parameters across environments can 586 

be challenging. The variance of mutational effects 𝜆 and the dimensionality 𝑛 can be estimated 587 

by fitting the distributions of single random mutation effects on fitness (Martin and Lenormand 588 

2006b; Perfeito et al. 2014), in a single environment if it is to be assumed constant, or in each 589 

environment otherwise. The maximal growth rate in the stress could be measured on lines well-590 

adapted to the environment considered. 591 

The effective stress level 𝛼 is also amenable to empirical measurement and circumvents the 592 

issue of measuring joint changes in (𝑟𝐷, 𝑟𝑚𝑎𝑥, 𝜆) with stress. Consider a set of 𝑃𝑅 estimates 593 

across a range of empirically controlled stress levels, and some knowledge of the genomic 594 

(non–neutral) mutation rate (e.g. as estimated by mutation accumulation experiments) of the 595 

species and environment under study (𝑈). The initial population size 𝑁0 is easily controlled by 596 

the experimenter. Then Eq.(7)b. suggests a simple estimator of 𝛼 in each environment: 𝛼̂ =597 

𝑔−1(−log (1 − 𝑃𝑅)/𝑁0𝑈). 598 

Finally, it is also possible to circumvent the problem of stress-induced variation in the 599 

parameters of the fitness landscape by considering multiple genetic backgrounds, in a single 600 

environment. Each background would have a given measurable decay rate 𝑟𝐷, and other 601 

parameters (𝜆, 𝑟𝑚𝑎𝑥 , 𝑛, 𝑈) would be held fixed: while 𝜆, 𝑛 and 𝑈 may change with the genetic 602 

background, this seems less likely than with the environment. The isotropic FGM assumes a 603 
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strict equivalence between shifts in optima (multiple environments) from a given ancestor 604 

phenotype (single genetic background), and shifts in ancestor phenotypes (multiple genetic 605 

backgrounds) with a fixed optimum (single environment). The model could thus be applied and 606 

tested in this context. This could yield useful insights into the effect of epistasis (background 607 

dependence) on resistance emergence, an issue of notable importance when considering the 608 

fate of horizontally transferred resistance or multidrug resistance (as discussed in Wong 2017) 609 

 610 

Potential implications for resistance management: Our results suggest that stress levels have 611 

a strongly nonlinear impact on ER probabilities (Fig.2), at least in the context of abrupt 612 

environmental changes, in asexuals. This context may be particularly relevant to the chemical 613 

treatment of pathogens (cancer therapy, antivirals, antibiotics, fungicides, herbicides, etc.). In 614 

particular, the non-linear impact of stress on ER, if empirically confirmed, can provide insights 615 

regarding the optimization of treatment regimens or the quantification of the effect of poor 616 

treatment adherence on resistance emergence (e.g. in HIV, Harrigan et al. 2005). Our results 617 

point to the risk that even a slight lowering of drug doses (bellow prescribed treatment levels) 618 

could radically change the outcome of the treatment (making it de facto inefficient). On the 619 

contrary, a slight increase in prescribed doses could sometimes prove sufficient to allow 620 

efficient eradication.  621 

 622 

Limits and possible extensions : 623 

Density-dependence and competitive release: Our model ignores density dependence, but 624 

some form may be easily introduced by considering a single density dependence coefficient 625 

(common to all genotypes) and using logistic diffusion approximations (Lambert 2005). This 626 

would potentially allow for “competitive release” (Read et al. 2011), whereby higher stresses 627 

may favor the emergence of resistance by rapidly depleting the sensitive wild-type population, 628 

thus releasing limiting resources for resistant genotypes. Previous models on competitive 629 

release assumed that the number of standing resistant mutants is independent of stress level 630 

(Read et al. 2011; Day and Read 2016). In this case, stress mostly limits de novo rescue 631 

mutation, with limited impact on the contribution from standing variance. On the contrary, the 632 

FGM imposes a similar drop, with stress, in the rate of rescue from de novo and preexisting 633 

mutants. The positive effects of competitive release on ER probability may thus be less 634 
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important, in the FGM, than predicted from these previous models. Note however that more 635 

generally, the effect of density dependence on ER is more safely investigated by accounting 636 

explicitly for the effect of stress on the density-independent intrinsic rate of increase on the 637 

one hand (as done here in a density-independent model), versus on the competition 638 

component on growth (e.g. carrying capacity) on the other hand, than by compounding their 639 

effects into an overall density-dependent decay rate (e.g. Chevin and Lande 2010). This would 640 

require modeling the effect of stress on both the intrinsic rate of increase and the competition 641 

component, possibly through a landscape with two fitness functions, describing each 642 

component. 643 

Anisotropy and parallel evolution in drug resistance: The present model is isotropic: all 644 

directions in phenotype space are equivalent (in terms of mutation and selection). In contrast, 645 

module-dependent anisotropy (where particular genes mutate along favored directions) can 646 

lead to substantial parallel evolution in the FGM (Chevin et al. 2010). Parallel evolution of 647 

resistance, whereby some (portions or sets of) genes contribute most of the resistance 648 

mutations, is often observed among drug-resistance alleles, and can increase with stress 649 

(Harmand et al. 2017), contrary to parallel evolution in a growing population, which is expected 650 

to decrease with increasing maladaptation (Chevin et al. 2010). Although not explored here, 651 

we conjecture that our model may accommodate mild anisotropy. Indeed, mild anisotropy 652 

(even environment-dependent) might have limited impact. If mutational covariances between 653 

traits merely “turn”, “shrink” or “expand” the phenotypic mutant cloud, this would 654 

approximately amount to a mere change in 𝜆 in an equivalent isotropic landscape (Martin and 655 

Lenormand 2006a; Martin 2014). However, a particular form of strong anisotropy may also 656 

arise where mutant phenotypes (in a given module) spread along a single favored direction 657 

(Martin 2014). Only this level of anisotropy would generate clear parallel evolution, and it will 658 

likely require implementing a fully anisotropic model. 659 

High mutation rates: Our results relied on a strong selection and weak-mutation (SSWM) 660 

approximation. When the mutation rate is higher (e.g. viruses or mutator bacterial strains), 661 

multiple mutants must be accounted for as a source of ER. These can in principle be introduced 662 

in the framework used here (Martin et al. 2013) but, especially when applied to the FGM, the 663 

results quickly become intractable. Alternative population genetics assumptions would then 664 

have to be used, but this is beyond the scope of the present work. 665 
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 666 

Conclusion: Recently, the FGM has received renewed interest for its ability to provide 667 

testable, quantitative, and often accurate predictions regarding patterns of mutation effects 668 

on fitness, across various species and contexts (Tenaillon 2014). The present model is an 669 

attempt to extend its scope to model the evolution of resistance to stress. We hope that future 670 

experimental tests will evaluate its accuracy and potential to tackle various pressing applied 671 

issues. 672 
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