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ABSTRACT

Evolutionary rescue describes a situation where adaptive evolution prevents the extinction
of a population facing a stressing environment. Models of evolutionary rescue could in principle
be used to predict the level of stress beyond which extinction becomes likely for species of
conservation concern, or conversely the treatment levels most likely to limit the emergence of
resistant pests or pathogens. Stress levels are known to affect both the rate of population
decline (demographic effect) and the speed of adaptation (evolutionary effect), but the latter
aspect has received less attention. Here, we address this issue using Fisher’s Geometric Model
of adaptation. In this model, the fitness effects of mutations depend both on the genotype and
the environment in which they arise. In particular, the model introduces a dependence
between the level of stress, the proportion of rescue mutants, and their costs before the onset
of stress. We obtain analytic results under a strong-selection-weak-mutation regime, which we
compare to simulations. We show that the effect of the environment on evolutionary rescue
can be summarized into a single composite parameter quantifying the effective stress level,
which is amenable to empirical measurement. We describe a narrow characteristic stress
window over which the rescue probability drops from very likely to very unlikely as the level of
stress increases. This drop is sharper than in previous models, as a result of the decreasing
proportion of stress-resistant mutations as stress increases. We discuss how to test these

predictions with rescue experiments across gradients of stress.
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INTRODUCTION

Understanding the persistence or decline to extinction of populations facing environmental
stress is a crucial challenge both for the conservation of biodiversity and the eradication of
pests or pathogens (Gonzalez et al. 2013; Carlson et al. 2014; Alexander et al. 2014; Bell 2017).
In evolutionary biology, environmental stress describes any conditions in the environment that
induces a reduction in individual fitness (Koehn and Bayne 1989; Bijlsma and Loeschcke 2005).
Here, we will focus on the case where environmental stress causes a reduction of population
mean fitness that is harsh enough to trigger a decline in abundance (Hoffmann and Parsons
1997). In such a stressful environment, if heritable variation in fitness is available or arises by
mutation, adaptive evolution may allow the population to escape extinction. This phenomenon
has been called evolutionary rescue (ER) (Gomulkiewicz and Holt 1995). Evolutionary rescue is
of particular importance for understanding the emergence of genetic resistance to drugs or

treatments in medicine and agronomy (Davies and Davies 2010).

Empirical evidence supports the idea that stress levels critically determine ER probabilities
(Samani and Bell 2010; Moser and Bell 2011; Lindsey et al. 2013). For example, the probability
that bacteria evolve antibiotic resistance (that is, the probability of avoiding antibiotic-induced
extinction through ER) typically declines sharply, in a strongly non-linear way, with increasing
drug concentration (Drlica 2003). Evolutionary rescue thus shifts from being highly likely to
highly unlikely over a narrow window of stress levels. This critical range of stress depends on
the strain, especially on its evolutionary history with respect to exposure to the stress (Gonzalez
and Bell 2013). Stress level, as controlled by drug concentration, has also been shown to affect
the genetic basis of resistance (e.g. Harmand et al. 2017), with a wider diversity of genes and
alleles conferring resistance at low than at high doses. However, the underlying causes for the
relationship between stress level and ER are still poorly understood. Our aim here is to derive
new analytical predictions for this relationship. In particular, we want to predict the critical
window of stress levels above which ER is very unlikely, allowing direct comparison with

experimental data.

In the theoretical literature (reviewed in Alexander et al. 2014), most ER models predict that
ER probability decreases with increasing stress level, measured by the decay rate of the
stressed population. Indeed, a faster decay of the population leaves less time for adaptation to

occur before extinction (e.g. Gomulkiewicz and Holt 1995). But beyond this direct demographic
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effect, stress level may also have indirect effects on ER. Indeed, a stressful environment may
not only affect the demographic properties of the population, but also its rate of adaptation,
by modifying the determinants of genetic variance in fitness (Hoffmann and Parsons 1997; De
Visser and Rozen 2005; Agrawal and Whitlock 2010). First, the rate of mutations and the
distribution of their effects on fitness change across environments (Martin and Lenormand
2006b; Wang et al. 2009; Agrawal and Whitlock 2010; Wang et al. 2014). In particular, the
fraction of beneficial mutations was found to increase in stressful environments (Remold and
Lenski 2001, 2004). Standing genetic variation for quantitative traits (notably fitness
components), also frequently depends on the environment (Hoffmann and Merild 1999; Sgro
and Hoffmann 2004; Charmantier and Garant 2005). Finally, the initial frequency of preexisting
variants able to rescue the population from extinction in a stressful environment may depend
on their selective cost in the past environment. In light of this empirical evidence, it seems clear
that progress towards understanding and predicting ER across stress levels requires addressing,
in a quantitative way, the joint effect of stress on the demography and genetic variation in

fitness of a population exposed to stressful conditions. This is our goal in the present article.

To do so, we develop a model that is a hybrid between two modeling traditions in ER theory,
summarized by Alexander et al. (2014): discrete genetic models, and quantitative genetic
models. Discrete genetic models assume a narrow genetic basis for adaptation (and ER),
whereby a single beneficial mutation can rescue an otherwise monomorphic population (Orr
and Unckless 2008; Martin et al. 2013; Uecker et al. 2014; Orr and Unckless 2014; Uecker and
Hermisson 2016). This approach was initially proposed for ER by Gomulkiewicz and Holt (1995),
and later extended to account for (i) evolutionary and demographic stochasticity (e.g. Orr and
Unckless 2008), and (ii) variation in the selection coefficients of mutations that may cause
rescue, with an arbitrary distribution of fitness effects (Martin et al. 2013). However, such
models do not predict how the distribution of fitness effects of mutations vary along gradients
of stress level. For this reason, they make it difficult to jointly address the two fundamental
components of stress mentioned above. On the contrary, quantitative genetics models of ER
inherently address the influence of stress on the rate of adaptation by assuming that adaptation
(and ER) is caused by evolution of a quantitative trait whose optimum changes with the
environment (Lynch et al. 1991; Burger and Lynch 1995; Gomulkiewicz and Holt 1995). In these

models, both the rate of population decline and the rate of adaptation under stress depend on


https://doi.org/10.1101/135780
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/135780; this version posted February 23, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

92  the distance between the phenotypic optima in the past and present environments. However,
93  analytical predictions are derived assuming a broad, polygenic basis for adaptation with a stable
94  genetic variance of the quantitative trait. The population genetic processes underlying
95 adaptation are not explicitly modelled, and the stochasticity involved in fixation and
96  establishment of mutations neglected. These complications are only explored by simulations

97  (e.g. Gomulkiewicz et al. 2010).

98 In order to take the best of both approaches, we rely on Fisher's (1930) Geometrical Model

99  (hereafter “FGM”). Fitness variation in the FGM is assumed to emerge from variation in multiple
100  putative phenotypic traits undergoing stabilizing selection that depends on the environment.
101  This model is analytically tractable, while retaining various aspects of realism (reviewed in
102  Tenaillon 2014). In particular, it accurately predicts how fitness effects of mutations change
103 across environments (Martin and Lenormand 2006b; Hietpas et al. 2013; Harmand et al. 2017)
104  or genetic backgrounds (Martin et al. 2007; MaclLean et al. 2010; Trindade et al. 2012). The
105  FGM naturally relates environmental stress to (i) the rate of population decline, (ii) the rate and
106  effect of rescue mutants, and (iii) their potential costs in the past environment. Here, we
107  combine this FGM with population dynamic approaches that account for demographic and
108  evolutionary stochasticity (Martin et al. 2013), in a regime where selection is strong relative to
109  therate of mutation. We consider rescue in asexual populations, stemming either from de novo
110  mutations or standing genetic variance. Interestingly, we show that all effects of stress on
111  demography and on the distribution of the fitness effects of mutations can be summarized into
112 a single composite measure of effective stress level. Evolutionary rescue shifts abruptly from
113 very likely to very unlikely over a narrow window of effective stress level, which can be

114  predicted from empirically measurable quantities.

115
116 METHODS
117 We here detail the ecological (environmental), genetic, and demographic assumptions of

118  the model, and the approximations used for its mathematical analysis.

119
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120 Abrupt environmental shift: We define two environments: (1) a non-stressful one, denoted
121 as “previous environment”, in which the population has a positive mean growth rate, and a
122 large enough population size that demographic stochasticity can be ignored; and (2) a stressful
123 one, denoted “new environment”, in which the population initially has a negative mean growth
124  rate, and the population size is subject to demographic stochasticity. Conditions shift abruptly

125  from the previous to the new environment at t = 0, at which time the population size is N,.
126

127 Eco-evolutionary dynamics: Extinction or rescue ultimately depends on details of the
128  stochastic population dynamics of each genotype. These are assumed to be mutually
129  independent (no density or frequency-dependence, see Chevin 2011), and sufficiently ‘smooth’
130  (moderate growth or decay) that they can be approximated by a Feller diffusion (Feller 1951),
131  following Martin et al. (2013). This approximation reduces all the complexity of the life cycle
132 into two key parameters for each genotype i: its expected growth rate r; (our fitness here),
133 and its variance in reproductive output ;. Our simulations below are performed for discrete
134 generations with Poisson offspring distributions. In this case, o; = 1 + 1; = 1 for any genotype,
135 as long as their growth rate is not too large (r; < 1 per-generation, see Appendix section |
136  subsection 1 and 2 and Martin et al. (2013)). Note that the approximation extends to various

137  other forms of reproduction (see Martin et al. 2013).

138 To cause a rescue, a resistant mutant (r; > 0) must establish, by avoiding extinction when
139  rare. The probability that this happens, for a lineage with growth rate r; > 0 starting from a
140  single copyis 1 — e~ 27i (still assuming 1; < a;, with g; ~ 1 in the example used in simulations).
141 The number of individuals from which such mutations can arise declines in time, and we ignore
142  stochasticity in these decay dynamics. This is accurate as long as the population has large initial

143 size, of order Ny > 1 (Martin et al. 2013).

144 Finally, we assume that mutation rates per capita per unit time are constant over time. This
145  is exact in models with discrete generations. In continuous-time models, where mutations
146  occur during birth events, mutation rates vary between genotypes with different birth rates,
147  and over time as these genotypes change in frequency. However, the constant mutation rate

148  model can still be approximately valid (see Martin et al. 2013).

149


https://doi.org/10.1101/135780
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/135780; this version posted February 23, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

150 ER from standing variance versus de novo mutation: At the onset of stress (t = 0), the
151  population either consists of a single ancestral clone, or is polymorphic at mutation-selection
152 balance in the previous environment. In the first case, we must derive the distribution of fitness
153  effects, in the new environment, of mutants arising from the ancestral clone. In the second
154  case, we must also describe the potential rescue variants already present in the previous

155 environment.
156

157 Mutations under Fisher’s geometrical model (FGM): We assume that the expected growth
158  rate of a given genotypic class (its Malthusian fitness, or log-multiplicative fitness in discrete-
159  time models), is a quadratic function of its phenotype for n quantitative (continuous) traits.
160  Denoting as Z € R™ the vector of breeding values (heritable components) for all traits, and as

161 o the single optimum phenotype with maximal growth 7;,,,, the expected growth rate is

T'(Z) = Tmax — |z — 0”2/2 , (1)
162  while the stochastic variance in reproductive success is assumed constant across genotypes.

163 The key assumption of our model is that the optimum depends on the environment. Without
164  loss of generality, we set the phenotypic origin at the optimum in the new environment, in
165  which 0 = 0. In the previous environment, the optimum coincides with the mean phenotype
166  of the ancestral population (‘A’): 0 = z, = [E(z), which implies that the ancestral population
167  was well-adapted in its original environment. The fitness of the mean ancestral phenotype z4
168 in the new environment is thus 7(z4) = Tyax — 124ll2/2 = —1p < 0, where 1y, is its rate of

169  decay, and the phenotypic magnitude of the stress-induced shift of the optimum phenotype
170  (fromo =z4t00 = 0)is ||z4]l = +/2(rp + Tnax) -

171 Mutations occur as a Poisson process with rate U per unit time per capita, constant over
172 time and across genotypes, but potentially variable across environments. Each mutation adds
173  a random perturbation dz to the phenotype, drawn from an unbiased and isotropic
174  multivariate Gaussian distribution dz ~ N(0,A1,,), where I, is the identity matrix in n
175 dimensions and A is a scale parameter. Note that, since traits are not our main interest here,
176  we choose to measure mutation effects on them in units that directly relate to their fitness
177  effects. Therefore, A can be understood as the variance of mutational effects on traits,

178  standardized by the strength of selection (see Appendix section Il subsection 1 for more details).
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Note that mutation effects are additive on phenotypes (no epistasis), but not on fitness,

because r(z) is nonlinear (Martin et al. 2007) .

Fig.1 illustrates the rescue process in the FGM. At the onset of stress (t = 0), the optimum
shifts abruptly to a new position, such that the mean growth rate becomes negative with —1, <
0 (Fig.1.C). Meanwhile, the population size starts to drop from an initial value N, (Fig.1.C), facing
extinction in the absence of evolution. However, one or several mutants or pre-existing variants
may be close enough to the new optimum to have a positive growth rate (“resistant
genotypes”, Fig.1.A, 1.B). These may then establish, and ultimately rescue the population

(“rescue genotypes” Fig.1.A, 1.B).

A
M utants
r=0
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Figure 1: Evolutionary rescue in Fisher’s geometric model. In all panels, black refers to deleterious and neutral
mutations (=1, = 1), blue to beneficial but not resistant mutations (—rp < r < 0) and orange to resistant
mutations (r > 0), around the dominant genotype of the ancestral population with phenotype z, # 0. (A) Fitness
landscape (FGM) with growth rate r (z-axis) determined by two phenotypic traits z; and z, . Dots represent the
distribution of random mutant phenotypes around the dominant genotype of the ancestral population. The

growth rate of this dominant genotype, in the stressful environment, is —1p, and 73,45 is the maximal fitness at the
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phenotypic optimum. (B) Distribution of growth rates among random mutants arising from the dominant genotype
(distribution of mutation effects on fitness) for two decay rates 1, = 0.1 (left) and rp = 0.5 (right). (C) Dynamics
of the population size N; and mean fitness 7; of a population starting from a clone at —rp = —0.083 at size Ny =
10°. The black line represents the case without fixation of a beneficial mutation, the blue line the case with
extinction in spite of the fixation of a beneficial, but non-resistant, mutation, and the orange line the case of a

rescue. Parameters for the simulations are g, = 1.5, U = 2% 107°, n = 4and 1 = 5 x 1073,

189 Within the context of the FGM, increasing stress level may have different effects, also
190  discussed in Harmand et al. (2017). First, stronger stress may cause a larger shift in the position
191  of the optimum phenotype, resulting in a larger initial drop in fitness (higher 1), as assumed in
192  most models of adaptation to a changing environment (Kopp and Matuszewski 2014). In
193  addition, the maximal possible fitness 7,4, May also be lower in the new than in the previous
194  environment (reduced environmental quality). Moreover, the mutational parameters (U and
195 1) may change with stress, causing shifts in evolvability. Note that a change in A may reflect a
196  change in the phenotypic effects of mutations, of the strength of stabilizing selection, or both.
197  Forinstance, higher stress may release cryptic genetic variance on underlying phenotypic traits
198  (Scharloo 1991; Hermisson and Wagner 2004), or cause increased mutation rates via SOS
199  responses in bacteria (Foster 2007). Finally, although less easy to conceptualize, some
200  environments may change the effective dimensionality of the landscape. However, in the
201  present paper, we only consider such changes in dimensionality in the context of rescue from

202  de novo mutations (where it can readily be handled by studying the effect of the parameter n).

203 As we will see, all our results can be expressed in terms of five parameters

204 (NoU,1p,Tmax » A, n). Table 1 summarizes all notations in the article.

205
Notation Description Formula
N, N, N,: population size at time t after the onset of the stress.
’ Ny: initial population size at the onset of the stress.
U Mutation rate per individual per unit time.
n Number of traits under stabilizing selection, or phenotypic

dimensionality.

Variance of mutational effects: variance of the phenotypic
A effects of mutations, per trait, in a trait space scaled by dz~N(0,11,)
the strength of stabilizing selection
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U, Cri‘FicaI mutation rate below which the SSWM regime is Ue = n? /4
valid.
z n-dimensional vector z € R"™ of (breeding values for)
phenotype
0: optimal phenotype in a given environment — 0: new environment
240 Z,: i ) .
4. average phenotype of the ancestral population — 2,: previous environment
(before the onset of stress)
o Growth rate (r) and reproductive variance (o) of a given Ea.(1)
’ genotype, in the new environment. 9
Tnax Maximum possible growth rate in the new environment. 7(0) = Thnax
Rate of decay of the ancestral phenotype z, in the new _ 20 _
b environment. 7(Z4) = Tnax — l124ll*/2 = —1p
Cost of a mutation: selective disadvantage of the mutant,
c relative to the optimal phenotype, in the previous c=|lz—1z411%/2
environment.
) Harmonic mean of the cost c|y among de novo mutations Eq.(3)
HY with scaled growth rate y in the new environment 4
Growth rate of a genotype, in the new environment
7 7 — e — 00 1
y scaled by ;... Y =71/Tmax € [-0,1]
Probability density function of y among random single
Eq.(2
L) step mutations a.(2)
Vb Rate of decay scaled by 73,44 Yo = T/ Tmax
Yp Alternative measure of yp Yp = 2(,/1 +yp — 1) (Eq.(6))
a Effective stress level Eq.(6)
o Characteristic stress level (@) or decay rate (r5) beyond Eq.(8)
e b which ER probability drops below 1/2. o
Function driving the dependence of rescue probabilities
g(a) Eq.(7)
on stress levels.
X wpy: rate of rescue from de novo mutations scaled by N,
WpnN, Wpy . _ o Egs.(5), (7)
wpy: corresponding approximation when A < Ty,
. wgy: rate of rescue from standing variance scaled by N,
Wsy, Wsy . ) o Egs.(5),(10)
wgy: corresponding approximation when 4 < 75,4,
Pq Probability of rescue. Pr=1— e Nowr
bsv Proportion of rescue events caused by standing variants Eqg. (10)

Table 1: Notations
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207 Strong selection and weak mutation (SSWM) regime: The FGM described in the previous
208  section, produces epistasis for fitness between different mutations which makes the problem
209  highly intractable in general. To make analytical progress, we assume a regime of strong
210  selection and weak mutation (SSWM, Gillespie 1983), which allows neglecting multiple mutants
211  and epistasis. This regime arises when mutation rates are small relative to their typical fitness
212 effect (as detailed below). In our context, this assumption implies that most rescue variants
213 (pre-existing or de novo) are only one mutational step away from the ancestral genotype,
214  allowing for two key simplifications. First, with a purely clonal ancestral populations, we can
215 ignore ER by genotypes that have accumulated multiple de novo mutations. Second, in
216  populations initially at mutation-selection balance, we can consider that all mutations arise
217  from a single dominant genotype, optimal in the previous environment. Indeed, in the SSWM
218 regime at mutation-selection balance, most segregating phenotypes remain within a narrow
219  neighborhood of the optimum (relative to the magnitude of mutation effects on traits), so the
220  mutation-selection balance is well-approximated by assuming that all mutations originate from
221  the optimum phenotype. This is essentially the House-of-Cards approximation (Turelli 1984)

222  extended to the FGM of arbitrary dimensionality (Martin and Roques 2016).

223 Overall, the SSWM assumption implies that the evolutionary aspects of ER are entirely
224 determined by a single joint distribution of fitness, in the previous and new environment. This
225  distribution corresponds to that of mutants arising from the optimal genotype of the previous

226  environment. We thus apply the results of Martin et al. (2013), to this particular distribution.

227 Note that the SSWM approximations used in this article should apply even when multiple
228  single-step mutants co-segregate (generating “soft selective sweeps”, as detailed in Wilson et
229  al. 2017). Indeed, the probability of ER, as computed for example in Orr and Unckless (2008) or
230  Martin et al. (2013) and used here, is one minus the probability that no single mutant arises
231  that ultimately causes ER. This means that we ignore ER requiring multiple mutational steps,
232 but allow several single-step rescue mutations to co-segregate. Consistently, our simulations
233 did not show any particular deviation from the theory at very mild stress, where such co-

234 segregation of several single-step mutants is expected.
235

236 Maximal mutation rate for the SSWM regime: We conjecture that the SSWM approximation

237  should be accurate below some threshold mutation rate U, i.e. whenever U < U, = n? 1/4.
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238 Indeed, Martin and Roques (2016) found that as long as U < U, the fitness distribution at
239  mutation-selection balance corresponds exactly to that expected under the House of cards
240  approximation (with a dominant optimal genotype plus its deleterious mutants). Whether this
241  same condition is sufficient for most rescue events to stem from single-step mutations is not
242  justified theoretically, and was simply tested by extensive stochastic simulations.
243 Supplementary Fig.1 further explores the range of validity of this approximation. It shows, in a
244 rescued population, the proportion of wild-type, single mutant, double mutant, and so on, as a

245  function of the mutation rate.
246

247 Distribution of single-step mutation fitness effects in the new environment: Let s be the
248  selection coefficient (difference in growth rate), in the new environment, of a random mutant
249  (with phenotype Zz) relative to its ancestor (with phenotype z4). The distribution of s = r(z) —
250 r(z4) =r + rp among random mutants has a known exact form in the isotropic FGM (Martin
251  2014; Martin and Lenormand 2015), from which the distribution of growth rates (r = s — 1)
252  in the new environment is readily obtained. It proves simpler and sufficient (see Appendix
253  section Il subsection 2) to consider the scaled (and unitless) growth rate y = r/Tyax € [—0, 1],
254 such that yp = 1p/Tnax € [0, +00] is the decay rate of the ancestor scaled to the maximum
255  possible growth rate. The scaled growth rates y = r/r,4, have the following probability

256  density function:
fy(y) =

oFy <§ (o) (14 yp) (1 - y))
r'(n/2) ’

(2)

2+ yp - n/2
exp (_ Trnax( A.VD Y)> (rrr;ax) - y)n/z—l

y€]—oo,1]
257  where (F;(.,.) is the confluent hypergeometric function and I'(z) is the gamma function. In
258  the SSWM regime, this probability density function approximately describes de novo mutations
259  produced after the onset of stress by the whole population, be it initially clonal or at mutation-

260 selection balance.

261


https://doi.org/10.1101/135780
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/135780; this version posted February 23, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

262 Fitness cost of single-step pre-existing mutants in the previous environment: Consider the
263 subset of random mutations, among those that arise from the dominant genotype of the
264 ancestral population, that have a scaled growth rate within the infinitesimal class [y, y + dy]
265  inthe new environment. We introduce the conditional random variable c|y, which is the cost,
266  in the previous environment, of a random mutant within this subset (thus, conditional on y).
267  This cost is equal to the negative of the selection coefficient of the mutation relative to the
268  dominant genotype with phenotype z,. More precisely, the cost of a mutant with phenotype z
269 isc = ||z — z4]1%/2 (using eq.(1), witho =z, for the previous environment). Note that,
270  because the mutation-selection balance in the previous environment is fully characterized by
271  relative fitnesses, which do not depend on the maximal growth rate in this environment, the
272 latter may differ from 7,4, Without impacting the distribution of the costs c|y and our results.
273 Importing results from Martin et al. (2013) for the SSWM regime, the total number of pre-
274  existing variants within the class [y,y + dy] is Poisson distributed with mean Ny U f;,(y)/
275  cy(y)dy, wherecy(y) = 1/E.(1/cly) is the harmonic mean of the cost c|y among
276  mutations with effect y in the new environment. This conditional harmonic mean depends on
277  thejoint distribution of mutation effects on fitness (¢, y) across two environments in the FGM
278  (given in Martin and Lenormand 2015). In our context, the dominant genotype of the ancestral
279  population is optimal in the previous environment and far from the optimum in the new
280  environment. In this case, using Eqg.(9) in Martin and Lenormand (2015), the resulting
281  conditional harmonic mean cy(y) takes a tractable form (see Eq.(A6) for n > 2 and (A8) for

282 n = 1 in Appendix section Il subsection 4 and 5):

Av(y), n=1

1
cn ) = 1/Ec (3 ]y) = / n>2
e”(Y)E(n_l)/z(v(y))'

rm ax

with v(y) = 2 (2+yD—2\/(1+yD)(1—}’)—3’)

283  where E(2) = flooe_z t/tk dt is the exponential integral function. In most of the article we

284  focus on the casen = 2, when considering ER from standing variance. The distributions of
285  mutation effects on fitness in both the previous (Eq.(3)) and the new environment (Eq.(2)) can

286  then be integrated to yield the probability of ER, as we show next.

287
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288 General expression and assumptions for the rescue probability: Extinction occurs when no
289  resistant mutation manages to establish (i.e. to avoid stochastic loss). For compactness, we
290 define a rate of rescue w per individual present at the onset of stress (i.e., scaled by Ny), such
291  that, following Martin et al. (2013), ER probabilities take the general form (similar to that in
292  e.g. Orr and Unckless 2008):

Pr=1—eNow, (4)
293  The rate of rescue from de novo mutations alone is wpy (‘DN’ for de novo), while that from
294  pre-existing variance alone is wgy (‘SV’ for standing variants). For a purely clonal population,
295  the rate of rescue is w = wpy, While for a population initially at mutation-selection balance, it
296  is w = wpy + wgy in the SSWM regime assumed here (Martin et al. 2013). Applied to the
297  context of the FGM using Egs.(2) and (3), the rates wpy and wgy, are given by (see Appendix
298  Eq.(A5)and (A7)):

U 1
WpN = EJ;) n(y)fy(y)dy

cu(¥)
with r(y) = 1 — e=2¥ "max/0

sy = U jo ) ¢ ydy

299  where cy(y), and E—1y/2(.) are defined in Eq.(3) and m(y) is the probability of establishment
300 of aresistant genotype with scaled growth rate y > 0 in the new environment. wpy in Eq.(5)
301  issimply the average establishment probability of de novo resistant mutants times the genomic
302  mutation rate, divided by the rate of decay. In previous ER models (e.g. Orr and Unckless 2008;
303  Martin et al. 2013), which we denote “context-independent”, the probability of rescue takes
304 the exact same form as Eq.(4). The expressions for the rates of rescue per capita also take a
305  form similar to Eq.(5): for de novo mutations, wpy = U qg / rp, and for standing variance,

306 wgy = U qgr /cy, Where qg is the proportion of rescuers among random mutations (qg =

307 [

o (y)fy(y)dy in Eq.(5)) and cy is again the harmonic mean of the cost of rescue mutations.

308 Theimportant difference is that in previous models, gz and ¢y do not depend on rp, while the
309 corresponding quantities in Eq.(5) do depend on the rate of decay, through its effect on fy(y)
310 andcy(y).

311 The linearity of ER rates with the mutation rate U (w « U) arises here because of the SSWM

312  regime, where multiple mutations are ignored: it might not hold at higher mutation rates
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313  (whenU > U,). As such, Eq.(5) makes no further assumption than the SSWM regime (U < U,.);
314 it can easily be evaluated numerically to provide a general testable theory for rescue
315  probabilities across stress levels, in the FGM. Yet, in order to gain more quantitative/intuitive

316  insight into the effects of stress, we study approximate closed forms for the rates in Eq.(5).
317

318 Small mutational effects approximation (SME): Although selection is assumed to be strong
319  relative to mutation (U < U, SSWM regime), it is still fairly realistic to assume that mutation
320 effects on traits (and thus fitness) are weak relative to the maximal growth rate in the new
321  environment, namely that A < 7y,4,- Taking a limit where A/75,,4 = 0, simpler expressions for

322  Eq. (5) are derived in the Appendix section Ill.

323 With this approximation, single-step resistance mutations are still rare and of large phenotypic
324  effect, in that they pertain to the tail of the mutant phenotype distribution. However, even
325  resistance mutations typically remain far from the optimum in the new environment, so that
326  their scaled growth rate is small: y = /7,4, < 1. Overall, mutation effects must fall within
327  the range: 4U/n? < A K Typq, for both the SSWM and the SME (small mutational effects)
328 approximation to apply (see Appendix section ll). In the appendix, we study the convergence,

329  as A/7yay decreases, of the results from Eq.(5) to their asymptotic limit (Supplementary Figs.3

330 and4).
331
332 Stochastic simulations of a discrete-time model: We checked the robustness of our

333  assumptions and approximations using stochastic simulations, where we tracked the
334  population size and genetic composition of a population across discrete, non-overlapping
335 generations. The size N, of population at generation t + 1 was drawn as a Poisson number
336 N4y ~ Poisson(N, W), with W = e" the mean multiplicative fitness (W = e”) and N, the
337  population size, in the previous generation. The genotypes forming this new generation were
338  thensampled with replacement from the previous one with weight W; = e"i. This is faster and
339  exactly equivalent to drawing independent Poisson reproductive outputs for each individual, or
340 genotype. Because of the underlying assumptions of the simulations, the corresponding
341  analytical approximation for the stochastic reproductive variance in Eq.(1) iso; =0 =1
342 (assuming small growth rates r; << 1). Mutations occurred according to a Poisson process, with

343  aconstant rate U per capita per generation. Mutation phenotypic effects were drawn from a
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344 multivariate normal distribution N(0, A 1,,), with multiple mutants having additive effects on

345  phenotype, and their fithess computed according to the FGM (Eq.(1)).

346 Rescue probability was estimated by running 1000 replicate simulations until either
347  extinction or rescue occurred. A population was considered rescued when it reached a
348  population size N; and mean growth rate 7; such that its ultimate extinction probability, if it
349  were monomorphic, would lie bellow 10712 (exp(—2 N, 7) < 10712). This is a conservative
350 criterion: once 7 has become positive, we expect it to remain so, yielding further increases in
351  population size and thus further decreasing the probability of future extinction. We checked on
352  a subset of simulations that the above procedure gave the same rescue probabilities as
353  obtained in simulations performed until the population rebounded back to its (large) initial

354  size N,.

355 For rescue from populations at mutation-selection balance, 8 replicate initial equilibrium
356  populations were generated, each by starting from an optimal clone and running the same
357  algorithm with fixed population size (N, = 10°) until the mean growth rate had visually
358  stabilized to a fixed value (close to its theoretical equilibrium value 7pq = Tipax — U (for U <
359 U.) for more than 1000 generations. Then the optimum was shifted by m
360  phenotypic units, and 1000 replicate ER simulations were performed (same algorithm as for de

361  novo rescue), from each of the 8 replicate equilibrium populations.

362 All simulations and mathematical derivations were performed in MATHEMATICA v. 9.0
363  (Wolfram Research 2012).

364
365 RESULTS
366 The ER rates in Eq.(5) are analytical but only implicit functions of the model parameters. In

367  asmall mutational effects (SME) limit, they take simpler closed form (indicated by a "*’). As we
368  will see below, these simpler forms mostly depend on the following two compound variables,

369  which summarize the various effects of stress on the fitness landscape:

Yp = 2(\/1+rD/rmax_1)

o = VB Tnax - ©)
42
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370  Bothyp and a increase with the decay rate rp, decrease with increasing peak height 7,4, and
371 are independent of n. The parameter a further increases with decreasing variance of
372  mutational effects 4. We can already see how a qualitatively reflects an “effective stress level”:
373  stress is harder to cope with if decay rate is larger, the maximum growth rate is lower, and

374 mutation effects are smaller.
375

376 Rescue from de novo mutations: Under the SME approximation and in the SSWM regime
377  (4U/n? < A K Tygy) the rate of de novo rescue (Eq.(5)), converges to (Eqg. (A12) in the
378  Appendix):

_ L (/)0

wDN;L«*r'max Wpy = 1+ yp/4 g(a) (Ma
* 7
why lpD/_z)—ng(a) (Db , (7)
e—(X
with g(a) = — erfc(Va

379  where erfc(.) is the complementary error function. Eq.(7)b. gives the approximate closed form
380  of Eq.(7)a. for mild stress (¥p/2 — 0). Note that this approximation converges faster (with
381 decreasing Yp) with fewer dimensions, due to the faster vanishing of the factor (1 +
382 P, /2)A"™/2 (in the limitn =1 it vanishes for allyp). We now discuss the biological

383  implications of these expressions.
384

385 Effect of FGM parameters on rescue: The partial derivatives of wpy in Eq.(7) with respect to
386  the FGM parameters (rp, Tinax 4, 1) quantify the sensitivities of ER probability to each of them
387  (Appendix section Il subsection 4). First, note that g(.) is a strictly decreasing function of a.
388 Whenn > 1 and with mild stress (Yp < 2), Eq.(7)b. applies and wpy = U g(a). ER then
389  becomes less likely with a higher decay rate 1p, a lower peak 13,4, and a smaller variance of
390 mutational effects A, and is independent of dimensionality n. For stronger stress levels, Eq.(7)a.
391  applies: these qualitative dependencies to the parameters still hold, except that ER probability

392  now decreases with increasing dimensionality.

393
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394 Sharp drop of ER probability with stress levels: Fig.2 shows the agreement between
395  simulations (stochastic discrete-time demographic model, see Methods) and the analytical
396  expressions in Eqgs.(5) and (7), over a wide range of stress levels (quantified by rp,), and for two
397  values of 1y, and U (Supplementary Fig.3 further explores the range of validity of the
398  approximation). Interestingly, ER probability drops sharply with stress levels (with decay rate
399 1p here), which is well captured by the term g(a) alone (Eq.(7)b., dashed red lines in Fig.2).
400  This drop is much more pronounced than in a context-independent model (gray lines in Fig.2),
401  where stress does not affect the distribution of mutation effects. The difference between
402  context-independent models and the FGM is that, in the latter, increased stress implies both
403  faster decay (as in the former), and fewer and weaker resistance mutations. In the FGM, these
404  effects on the properties of rescue mutations are the main drivers of ER probabilities across

405 stress levels.

406
A Pmax = 0.5
e Simulations
= Eq.(5
-~ Eq.(7a.
- = Eq.(7b.
CI model
r r
03 04 P 0a P
407

Figure 2: Rescue probability from de novo mutations. The ER probability as a function of stress levels, expressed
as the initial mean decay rate of the population, is given for various values of the mutation rate U = 1073 U,
(blue) or U = 1072 U, (orange) and the maximal fitness reachable in new the environment 7,4, = 0.5 (A) or
1.5 (B). Dots give the results from simulations and solid lines (blue and orange) show the corresponding theory
computed numerically (Eq.(5)). The black dot-dashed (respectively red dashed) lines give the corresponding
analytical approximations Eq.(7)a. (respectively Eq.(7)b.). The gray lines correspond to an equivalent theory
without the FGM (named context-independent model as described in the Method section, “Cl”) modified from
Orr and Unckless (2008). This last model was computed using a fixed proportion of resistant mutations equal to
the one in Eq.(5) for a rescue probability of 0.5 (which explains why the two curves cross exactly at Pz = 0.5).

Other parameters aren = 4, N, = 105, 1 = 0.005.

408
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409 Composite parameter a describing an effective stress level: The results in Eqgs.(6)-(7) suggest
410  that a single composite parameter (a in Eq.(6)) can capture the various ways in which stress
411  may alter the parameters of the fitness landscape, that is, fitness peak height 73,4, variance of
412  mutational effects A, or distance to the optimum 7. We denote this parameter the “effective
413  stress level”. In Fig.2, considering the effect of stress only via a (Eq.(7)b.) is equally accurate as

414 using the more complex Eq.(7)a., or the numerical computation from Eq.(5).

415 This simplification is further illustrated in Fig.3, where we use exact numerical computations
416  from Eq. (5) to explore different possible effects of stress. Regardless of whether stress affects
417  only the maladaptation of the ancestral clone (rp, blue symbols), or also the quality of the
418  environment (joint change in 1p and 15,4, Orange symbols) or the variance of mutational
419  effects (joint change in 1y and A4, red symbols), its effect on the rescue probability is accurately
420  predicted by a (Fig.3B, black line). As predicted by Eq.(7)b., the relationship between rescue
421  probability and a is approximately independent of dimensionality (compare circlesn = 1 and
422  squaresn = 6in Fig.3B). We also note that Eq.(7)b. slightly overestimates the ‘exact’ numerical
423  computations of the ER probability from Eq.(5), so it provides a conservative bound when

424 considering the control of resistant pathogens.

A B
Pp Pr D
1 1
|iillS=seeaseﬂeaggai 01 rp & rmax
0.1 !gﬂ .
an & A
0.01 ®a, 0.01 ‘2
0.001 0.001 O n=1I
. O n=6
1074 1074
D « — Eq.(7)b.
0.15 0.20 | 2 5 10

425

Figure 3: The effective stress level. Rescue probability for clonal populations versus initial decay rate r, (A) or the
effective stress level a (B). In both panels the axes are in logarithmic scale, symbols show Eq.(5) and colors refer
to different effects of increased stress level: blue symbols show only 13, increasing (with 7,4, = 1.5 and 4 =
0.005), orange symbols 1y increasing and 7,4, decreasing linearly with rp, (according to 73,4, = 1.5 — 5 13, with
A = 0.005) and red symbols rp increasing and A decreasing linearly with 7y, (according to A = 0.005 — 1072 1y,
with 75,4, = 1.5). In each case, the results for both n = 1 (circles) and n = 6 (squares) are shown. The black plain

line on the right panel gives the result from Eq.(7)b.: a single composite measure of stress (a) approximately


https://doi.org/10.1101/135780
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/135780; this version posted February 23, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

captures the impact of stress-induced variations in the various parameters (7p, fiax, 4, ). Other parameters are

Ny =10%and U =2 x 1075,
426

427 Characteristic stress level: Fig.2 shows that ER drops from highly likely to highly unlikely
428  around a “characteristic stress level”, which we can be characterized analytically (as detailed in
429  the Appendix section IV subsection 1). Consider the set of values of parameters
430  (Ny, U, g 1o, A, 1) for which the rescue probability is of given value p € [0,1]. From Eq.(7)b.,
431  this corresponds to the set (Tyax, 7p,A) for which @ = g71(—log(1 — p) /NyU). Using the
432 approximation g(a) ~ a=3/2e~*/(2+/rr) (from Eq.(7) with @ > 1), the corresponding & can
433 be derived explicitly (Eq.(A17)). In particular for p = 1/2, the characteristic stress level a, at
434 which the ER probability is 1/2 is (Eq. (A19) in the Appendix):

0 ~ g log(2)
NoU»1 NyU

> N0§>>1 0.91log(NyU) — 2.7. (8)

435  Under the conditions of the SME approximation (detailed in Methods), Eq.(8) applies for large
436 NyU (approximately when NoU = 5.10%), a necessary condition for this equation to be self-

437  consistent (detailed in Appendix section IV subsection 2).

438 The characteristic stress level a, that a population can typically withstand increases only log-
439 linearly with population size and mutation rate. Consider the characteristic decay rate r§ for
440  which the rescue probability is P = 1/2, i.e. the decay rate that populations can overcome
441  half of the times. From Eq.(8) with a, & (15)? (Eq.(6)), this decay rate is 15 « +/log(N,U) for
442  large NyU. For comparison, we would have r§ = qgrNoU/ log(2), which is linear in NyU, in a
443  context-independent model where the proportion qg of random mutations causing a rescue is
444 independent of rp. The difference in the effect of NyU on rescue probability thus stems from
445  the strong non-linearity (i.e. sharp drop) of rescue probability with stress level (decay rate)
446  underthe FGM. In the FGM, overcoming a given environmental harshness requires much more

447  mutational input than in a context-independent model.
448

449 Characteristic stress window: It is also important to predict how sharply the ER probability
450  drops around the characteristic stress level. This drop can be characterized by a “characteristic

451  stress window” of a over which the ER probability drops from 75% to 25%. The width Aa of this
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452  window can be scaled by the value of the characteristic stress level a., to get a scale-free
453  measure of its steepness (i.e., how sharp the drop in ER probability is, relative to the stress level

454 around which it occurs). This gives (from Eq.(A20) in the Appendix):

Aa 1
a, NoU»1 1 + 0.7a,

(9)

455  The width Aa increases with increasing NoU until it saturates (at ~ 1.5) (see Appendix section
456 IV subsection 3 for further details). However, when scaled by the center of the window (a,),
457  the width of this scaled characteristic stress window drops below 1 as a, increases (and hence
458  with increasing NyU, from Eq.(8)). This result shows formally that the drop in ER probability
459  with increasing stress a gets proportionally sharper (relative to the position where it occurs)
460  as NyU increases, but this is entirely driven at large NyU by shifts of a window with constant
461  absolute width. This is illustrated in Fig.4, which also shows the accuracy of Eq.(9) compared to
462  ‘exact’ numerical computations from Eq.(5) (as expected, the exact result deviates from Eq.(9)

463  for smaller NyU).

464
Aaja,
1.4
1
O Eq.(5)
8
0.6 %y Eq.(9)
€e
0o,,
0.2 °°°°°eoooo:
NoU
2 4 (8
465 10 10 10
Figure 4: Scaled width of the characteristic stress window Aa/a, versus the population-scale mutation rate NyU.
The dots are obtained by numerical inversion of the ‘exact’ Eq.(5) with two values of 75,4, = 2 (blue) and 15,4, =
0.1 (red). The orange line shows the approximate scaled width of the characteristic stress window derived in
Eqg.(9). Other parameters aren = 4, A = 0.005.
466 Interestingly, Eq.(9) provides a scale-free measure that may be compared across

467  experiments, as it only depends on the genomic mutational input NoU (via a.). However, like
468  all results so far, Eq.(9) only considers ER from de novo mutation. We now turn to ER from

469  standing genetic variation.

470
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471 Rate of rescue from a population at mutation-selection balance: In the SSWM regime, and for
472  apopulation at mutation-selection balance in the previous environment, each rescue event can
473 be tracked back to either a pre-existing variant, or a de novo mutation (Orr and Unckless 2008;
474 Martin et al. 2013; Orr and Unckless 2014). The proportion ¢gy, of rescue events caused by
475  standing variance is then simply given by ¢y = wsy/(wsy + wpy)- A simple expression can
476  be obtained again under the SME for n > 2 (see Eq.(A21) in the Appendix), but the

477  approximation (¢sy) now further requires that decay rates are not vanishingly small (4 <

478 Tinax W /4).

Wgy 1+yp/4 n—1
_ _ ~ * = where e = 1 , 10
Psv Wsy T WpN A< Tmax Yph/4 Psv €/Yp +1+Yp/2 2 Tax 1o
479  where Yp is defined in Eq.(6).
480 Eq.(10) captures the main features of how standing variance contributes to ER across (non-

481  vanishing) stress levels (here, decay rate). Contrary to context-independent models, this
482  contribution changes non-monotically with increasing stress level (Fig.5). At very mild decay
483  rate rp, rescue relies on mild-effect mutations. The cost of such mutations - and hence their
484  frequency before stress - is roughly independent of 1, (Martin and Lenormand 2015), while
485  their rate of production by de novo mutation decreases as 1/1p (demographic effect), so the
486  contribution of standing variance to ER increases with 1 at small . In contrast at large stress
487  levels, rescue stems from strong effect mutations. These mutations pay a substantial
488  “incompressible cost” before stress that increases faster than rp (Martin and Lenormand 2015),
489  while their rate of de novo production still decreases as 1/ry, so the contribution of standing
490  variance to ER decreases with rp, at large 1p. In the limit of very large yp, the distance between
491  the two optima is very large and makes most of both the cost and decay rate, so that cy(y) =
492 1y for all mutations. Hence, de novo mutations and standing variants contribute equally to ER

493 in this limit (¢pgy — 1/2).
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— Eq.(5)

- - Eq.(10)
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Figure 5: relative contribution of standing genetic variation to ER. The proportion of ER from standing variance is
shown across scaled decay rates yp. The numerical computation for ¢g, (using Eq.(5) and (10)), for two values
of Tipax = 0.1 (blue) and 73,4, = 0.7 (orange), is compared to the approximate ¢g, (Eq. (10), black dashed line).

Other parameters as in Fig.2.

495 These different behaviors are illustrated in Fig.5, showing the variation of ¢g, over a very
496  wide range of scaled decay rates yp. The limit ¢psy = gy in Eq.(10) provides a fairly accurate
497  approximation across the full range of stress levels. The limits when yp, = 0 and yp, — oo are
498  in fact of limited biological interest, as they correspond to stress levels where ER becomes de
499  facto certain orimpossible, respectively. When focusing on the more biologically relevant range
500 corresponding to the characteristic stress window, which occurs near the peak in ¢g in Fig.5
501 (see Appendix Section IV subsection 4), the variation of ¢g, across stress levels becomes
502  negligible. As illustrated in Fig.6B, ¢g; remains close to 1 — v/e (see Appendix Eq.(A22)) as v
503  varies over a range where ER probabilities span several orders of magnitude (see Appendix
504  Section IV subsection 5). Note that this behavior arises when stress only shifts the optimum

505 (effect on 1p), but does not affect peak height (13,,45) Or the variance of mutational effects (A4).

506 Therefore the rate of rescue in the presence of standing variance is approximately
507 proportional to that with only de novo mutation, with proportionality constant largely

508 independent of the decay rate:

w = wDN + wSV = wl’f)N/\/_l (11)

509  where € is defined in Eq.(10). The rough constancy of ¢gy also means that all the results
510 obtained previously for ER from de novo mutations apply in the presence of standing variance,

511  when stress only shifts the optima (as longasn > 2).
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512 The ER probability profile across stress levels (shown in Fig.6A) is the same as that from de

513  novo mutations alone (Fig.2), but with a higher characteristic stress (a, - 0.91log(X) — 2.7

0

514  from Eq.(8) with X = NoU/+/€ ). Moreover, when considering the contribution from standing
515  variance, the difference between the FGM and context-independent models (gray line on
516  Fig.6A) is striking. Indeed in the latter, the ER rate from standing variance (wgy) is independent
517  of the decay rate, hence Py saturates with stress to a constant value 1 — exp(— Ny U qg/cy),

518  where all ER events stem from standing variance.

A - ER probability B : proportion of ER from standing variance
with/without standing variance

sy e Simulations

1.0
M - — Eq.[SIpNysv

4

0.8 - - Eq[10]

0.7 -~ Eq.[l1]
0.6

0.5 rp
rp 00 01 02 03 04 05

519

Figure 6: ER probability in the presence of standing genetic variation. In each panel, stress only affects the decay
rate rp (shifting optimum). In both panels, blue solid lines show the theory for de novo and standing variance
(‘DN’+'SV’) computed numerically (Eq.(5)) and the gray lines correspond to an equivalent theory without the FGM
(named context-independent model as described in the Method section, “Cl”) modified from Orr and Unckless
(2008). This last model was computed using a fixed proportion of resistant mutations equal to the one in Eq.(5)
for a rescue probability of 0.5 (which explains why the two curves cross exactly at P = 0.5). The dashed red line
gives the simpler expression for the overall rescue rate: w = wjy/Ve - (Eq.(11)) with € given in Eq.(10) and wpy
by Eqg.(7). (A) ER probability in the presence of standing genetic variation as a function of r,. The dots give the
results from simulations. (B) Proportion ¢g, of rescue from standing variance as a function of rp. The black
dashed-line give the approximate theory from Eq. (10) and the dashed red line max(¢s,) =~ 1 — /€ from Eq.(11).
The shaded area shows the range of 15, for which the ER probability drops from 0.99 to 1073, Other parameters

as in Fig.2.

520 Finally, note that when considering rescue from preexisting variance, U may change across
521  environments, from Up (for previous) to Uy (for new). For example, a stress-induced increase
522  in DNA copy error would yield Uy > Up. Accounting for such shifts in mutation rate at the onset
523  of stress, the total ER rate simply becomes w = w}}N(l +Up/Uy (1 - \/E)/\/E) (from
524 Eq.(11)).
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525
526 DISCUSSION
527 Main results: We investigated the persistence of a population of asexual organisms under an

528 abrupt environmental alteration. We assumed that this stress causes a shift in a
529  multidimensional fitness landscape with a single peak (Fisher's Geometrical Model - FGM -),
530  which the population must ‘climb’ to avoid extinction. In such a landscape, faster population
531  decline (due to stress-induced increase in the decay rate 1) necessarily means that resistance
532  mutations are fewer, have lower growth rates in the presence of stress and higher costs in its
533  absence. We believe that this constraint, not included in previous studies, adds a key element
534  of realism to evolutionary rescue (ER) models. In our model, variation in stress levels may affect
535 thelandscape in various ways: shifting the optimum, changing the peak height, or altering the
536  phenotypic scale of mutations (or the strength of stabilizing selection). Under a strong selection
537  and weak mutation (SSWM) regime and assuming small mutational effects (SME), all these
538 effects of stress on the distribution of mutation fitness effects are approximately captured by
539  the variation, across stress levels, of a single composite parameter a, which is approximately
540 independent of the dimensionality of the organism (number of orthogonal traits under
541  selection). The probability of ER drops sharply with this effective stress level, more so than in
542  previous ER models where the rate of population decline is decoupled from the input of
543  resistant mutations. The characteristic stress window over which this drop occurs only depends
544 on the initial population size N, and genomic rate of mutation U. As NyU gets large, the
545  characteristic stress window reaches an asymptotic width (Aa in Eg.(9)) while its center (the

546  characteristic stress level @, in Eq.(8)) shifts towards higher values, approximately as log(NyU).

547 When standing variance is available (population at mutation-selection balance before
548  stress), its contribution to ER is dominant, and approximately constant across a wide range of

549  stress levels that encompasses the characteristic stress window.

550 In Table 2, we summarize how these features compare to properties of previous ER models.
551  We consider only the situation where stress shifts the position of the optimum, affecting 1, (as
552  in previous models), because other effects of stress we investigate here (7,4, and A) are not

553  treated in previous models.
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Context-independent model FGM rescue model
Impact of decay rate rp wpy X151, wg, = constant w o e ™D > W
Impact of mutational input
. . w < Ny U w < Ny U
NoU
“Characteristic decay rate”
(r5) for DN rescue versus 5 &< Nog U 5 o< y/log(Ny U)
Ny U
Relative contribution of Increases W,l[t)h "D ~ Stable with 1p
standing variance to ER bsy = psy = 1—+/e
1 +cC

Table 2: Main results of “context-independent” models (Orr and Unckless 2008; Martin et al. 2013; Orr and
Unckless 2014) and the present model (FGM) when stress only affects rp, (only shifts the optimum position in our
model). When the dependence to the parameters is given for the overall rate of rescue w, it applies to both the

rate of rescue from de novo mutations wpy and from pre-existing variance wgy . (1) derived from the approximate

expression g(a) ~ a~3/2e~ % /(2y/1).
554

555 Genetic basis of ER patterns across environments: Our model allows identification of three
556  ranges of stress levels that yield different eco-evolutionary patterns, despite all leading to
557  extinction in the absence of evolution. First at low stress levels (& < «,), although evolutionary
558 change is required for persistence and demographic dynamics typical of ER may be observed
559  (decay /rebounce), extinctions are de facto undetectable (ER is pervasive, Pz = 1). In this
560 regime, we expect several resistance mutations to establish and co-segregate (frequent “soft
561  sweeps” as in Wilson et al. 2017). Their number is predictable (= Nywg), but the ultimate
562  composition of the population in asexuals will depend on more complex clonal interference
563  dynamics. Second, at intermediate stress levels (@ = O(a.)), small variation in stress
564  conditions has large impact on the probability of population survival. Over this range, P = 1/2
565  sothe expected overall number of rescue mutations in the population is less than one (Nywg =
566  —log(Pg) = 0.7). Therefore, “hard sweeps” (including from standing variation) should be the
567 most frequent: a single mutation typically establishes and rescues the population. Finally, at
568  higher stress levels (a > a,), very few populations overcome the imposed stress, and when

569  theydoitis typically through a hard sweep (Nywg < 1).
570

571 Estimating parameters and testing the model: Studies on the emergence of resistance to

572  controlled stress (e.g. antibiotics, fungicides, chemotherapy in cancer), especially in microbes,


https://doi.org/10.1101/135780
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/135780; this version posted February 23, 2018. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

573  can generate a set of estimates of Pg (the probability of resistance emergence), across stress
574  levels. In general, to test (or use) predictions from ER models, it is critical to empirically relate
575  physical measures of stress level (e.g. concentrations, temperatures, salinities, etc.) with
576  demographic measures (e.g. decay rates). If we assume that the main effect of stress is to shift
577  optimum positions, given a set of measurements of rp, (“dose-kill curves”, Regoes et al. 2004),
578  the change in ER probability with stress can be predicted via Eq.(7). This simple scenario of
579  optimum shifting is the one that is considered by most of the literature on evolutionary ecology
580 across environmental gradients, so it would seem natural to test it first. Furthermore, this
581  scenario has received empirical support from an analysis of a few experimental studies of
582  distribution of mutation effects on fitness across stress levels (Martin and Lenormand 2006b).
583  However, these studies used mild stresses, which reduce growth without causing population
584  decay. A more recent study on bacteria facing lethal doses of antibiotics, i.e. in the presence of
585  decay (Harmand et al. 2017), suggests that factors other than the position of the optimum may
586  also change with stress (4, 13,44, ). Estimating these extra parameters across environments can
587  be challenging. The variance of mutational effects A and the dimensionality n can be estimated
588 by fitting the distributions of single random mutation effects on fitness (Martin and Lenormand
589  2006b; Perfeito et al. 2014), in a single environment if it is to be assumed constant, or in each
590 environment otherwise. The maximal growth rate in the stress could be measured on lines well-

591  adapted to the environment considered.

592 The effective stress level a is also amenable to empirical measurement and circumvents the
593  issue of measuring joint changes in (1p, Tiax, A) With stress. Consider a set of Py estimates
594  across a range of empirically controlled stress levels, and some knowledge of the genomic
595  (non—neutral) mutation rate (e.g. as estimated by mutation accumulation experiments) of the
596  species and environment under study (U). The initial population size N, is easily controlled by
597  the experimenter. Then Eq.(7)b. suggests a simple estimator of & in each environment: & =

598 g Y(—log(1 — Pg)/NyU).

599 Finally, it is also possible to circumvent the problem of stress-induced variation in the
600 parameters of the fitness landscape by considering multiple genetic backgrounds, in a single
601  environment. Each background would have a given measurable decay rate rp, and other
602  parameters (A, a1, U) would be held fixed: while A, n and U may change with the genetic

603  background, this seems less likely than with the environment. The isotropic FGM assumes a
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604  strict equivalence between shifts in optima (multiple environments) from a given ancestor
605  phenotype (single genetic background), and shifts in ancestor phenotypes (multiple genetic
606  backgrounds) with a fixed optimum (single environment). The model could thus be applied and
607  tested in this context. This could yield useful insights into the effect of epistasis (background
608  dependence) on resistance emergence, an issue of notable importance when considering the

609  fate of horizontally transferred resistance or multidrug resistance (as discussed in Wong 2017)
610

611 Potential implications for resistance management: Our results suggest that stress levels have
612  a strongly nonlinear impact on ER probabilities (Fig.2), at least in the context of abrupt
613  environmental changes, in asexuals. This context may be particularly relevant to the chemical
614  treatment of pathogens (cancer therapy, antivirals, antibiotics, fungicides, herbicides, etc.). In
615  particular, the non-linear impact of stress on ER, if empirically confirmed, can provide insights
616  regarding the optimization of treatment regimens or the quantification of the effect of poor
617 treatment adherence on resistance emergence (e.g. in HIV, Harrigan et al. 2005). Our results
618  point to the risk that even a slight lowering of drug doses (bellow prescribed treatment levels)
619  could radically change the outcome of the treatment (making it de facto inefficient). On the
620  contrary, a slight increase in prescribed doses could sometimes prove sufficient to allow

621 efficient eradication.

622
623 Limits and possible extensions :
624 Density-dependence and competitive release: Our model ignores density dependence, but

625 some form may be easily introduced by considering a single density dependence coefficient
626 (common to all genotypes) and using logistic diffusion approximations (Lambert 2005). This
627  would potentially allow for “competitive release” (Read et al. 2011), whereby higher stresses
628  may favor the emergence of resistance by rapidly depleting the sensitive wild-type population,
629  thus releasing limiting resources for resistant genotypes. Previous models on competitive
630 release assumed that the number of standing resistant mutants is independent of stress level
631  (Read et al. 2011; Day and Read 2016). In this case, stress mostly limits de novo rescue
632  mutation, with limited impact on the contribution from standing variance. On the contrary, the
633  FGM imposes a similar drop, with stress, in the rate of rescue from de novo and preexisting

634  mutants. The positive effects of competitive release on ER probability may thus be less
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635 important, in the FGM, than predicted from these previous models. Note however that more
636  generally, the effect of density dependence on ER is more safely investigated by accounting
637  explicitly for the effect of stress on the density-independent intrinsic rate of increase on the
638 one hand (as done here in a density-independent model), versus on the competition
639 component on growth (e.g. carrying capacity) on the other hand, than by compounding their
640  effects into an overall density-dependent decay rate (e.g. Chevin and Lande 2010). This would
641  require modeling the effect of stress on both the intrinsic rate of increase and the competition
642  component, possibly through a landscape with two fitness functions, describing each

643  component.

644 Anisotropy and parallel evolution in drug resistance: The present model is isotropic: all

645  directions in phenotype space are equivalent (in terms of mutation and selection). In contrast,
646  module-dependent anisotropy (where particular genes mutate along favored directions) can
647  lead to substantial parallel evolution in the FGM (Chevin et al. 2010). Parallel evolution of
648  resistance, whereby some (portions or sets of) genes contribute most of the resistance
649  mutations, is often observed among drug-resistance alleles, and can increase with stress
650 (Harmand et al. 2017), contrary to parallel evolution in a growing population, which is expected
651  to decrease with increasing maladaptation (Chevin et al. 2010). Although not explored here,
652  we conjecture that our model may accommodate mild anisotropy. Indeed, mild anisotropy
653  (even environment-dependent) might have limited impact. If mutational covariances between
654  traits merely “turn”, “shrink” or “expand” the phenotypic mutant cloud, this would
655  approximately amount to a mere change in A in an equivalent isotropic landscape (Martin and
656  Lenormand 2006a; Martin 2014). However, a particular form of strong anisotropy may also
657  arise where mutant phenotypes (in a given module) spread along a single favored direction
658  (Martin 2014). Only this level of anisotropy would generate clear parallel evolution, and it will

659 likely require implementing a fully anisotropic model.

660 High mutation rates: Our results relied on a strong selection and weak-mutation (SSWM)

661  approximation. When the mutation rate is higher (e.g. viruses or mutator bacterial strains),
662  multiple mutants must be accounted for as a source of ER. These can in principle be introduced
663  in the framework used here (Martin et al. 2013) but, especially when applied to the FGM, the
664  results quickly become intractable. Alternative population genetics assumptions would then

665  have to be used, but this is beyond the scope of the present work.
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666

667 Conclusion: Recently, the FGM has received renewed interest for its ability to provide
668  testable, quantitative, and often accurate predictions regarding patterns of mutation effects
669  on fitness, across various species and contexts (Tenaillon 2014). The present model is an
670  attempt to extend its scope to model the evolution of resistance to stress. We hope that future
671  experimental tests will evaluate its accuracy and potential to tackle various pressing applied

672 issues.
673
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