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ABSTRACT

Extensively drug-resistant Klebsiella pneumoniae (XDR-KP) infections cause high mortality and
are disseminating globally. Identifying the genetic basis underpinning resistance allows for rapid
diagnosis and treatment. XDR isolates sourced from Greece and Brazil, including nineteen
polymyxin-resistant and five polymyxin-susceptible strains, underwent whole genome
sequencing. Approximately 90% of polymyxin resistance was enabled by alterations upstream or
within mgrB. The most common mutation identified was an insertion at nucleotide position 75 in
mgrB via an ISKpn26-like element in the ST258 lineage and ISKpn i3 in one ST11 isolate. Three
strains acquired an IS/ element upstream of mgrB and another strain had an ISKpn25 insertion at
133 bp. Other isolates had truncations (C28STOP, Q30STOP) or a missense mutation (D31E)
affecting mgrB. Complementation assays revealed all mgrB perturbations contributed to
resistance. Missense mutations in phoQ (T281M, G385C) were also found to facilitate resistance.
Several variants in phoPQ co-segregating with the ISKpn26-like insertion were identified as
potential partial suppressor mutations. Three ST258 samples were found to contain subpopulations
with different resistance conferring mutations, including the ISKpn26-like insertion colonising
with a novel mutation in pmrB (P158R), both confirmed via complementation assays. We also
characterized a new multi-drug resistant Klebsiella quasipneumoniae strain ST2401 which was
susceptible to polymyxins. These findings highlight the broad spectrum of chromosomal

modifications which can facilitate and regulate resistance against polymyxins in K. pneumoniae.
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DATA SUMMARY

1. Whole genome sequencing of the 24 clinical isolates has been deposited under BioProject

PRINA307517 (www.ncbi.nlm.nih.gov/bioproject/PRINA307517).

IMPACT STATEMENT

Klebsiella pneumoniae contributes to a high abundance of nosocomial infections and the rapid
emergence of antimicrobial resistance hinders treatment. Polymyxins are predominantly utilized
to treat multidrug-resistant infections, however, resistance to the polymyxins is arising. This
increasing prevalence in polymyxin resistance is evident especially in Greece and Brazil.
Identifying the genomic variations conferring resistance in clinical isolates from these regions
assists with potentially detecting novel alterations and tracing the spread of particular strains. This
study commonly found mutations in the gene mgrB, the negative regulator of PhoPQ, known to
cause resistance in KP. In the remaining isolates, missense mutations in phoQ were accountable
for resistance. Multiple novel mutations were detected to be segregating with mgrB perturbations.
This was either due to a mixed heterogeneous sample of two polymyxin-resistant strains, or
because of multiple mutations within the same strain. Of interest was the validation of novel
mutations in phoPQ segregating with a previously known ISKpn26-like element in disrupted mgrB
isolates. Complementation of these phoPQ mutations revealed a reduction in minimum inhibitory
concentrations and suggests the first evidence of partial suppressor mutations in KP. This research
builds upon our current understanding of heteroresistance, lineage specific mutations and

regulatory variations relating to polymyxin resistance.
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INTRODUCTION

Klebsiella pneumoniae (KP) strains classified as extensively drug-resistant (XDR) are rapidly
emerging due to the dissemination of plasmid-encoded resistance towards aminoglycosides, -
lactams, fluoroquinolones and carbapenems [1]. Notably, carbapenem-resistant KP have been
linked to high morbidity and an overall mortality of 48% in infected patients [2]. Polymyxin B and
colistin (polymyxin E) are now one of the last viable therapeutic options [3]. Unfortunately,
resistance to this last-line antibiotic class is an increasing global burden, with countries particularly
impacted including Asia (Korea [4, 5], India [6, 7]), Europe (Greece [8-10]), Italy [10, 11]) and
Latin America (Brazil [12, 13]). There is considerable debate regarding the mortality associated
with polymyxin-resistant infections. Combining several clinical cohorts has provided an overall
mortality estimate ranging from 20 to 100% which was dependent on early detection of the

outbreak [14].

Polymyxins infiltrate Gram-negative bacteria via initial binding to the basal component of
lipopolysaccharide, lipid A. This causes the displacement of Mg*" and Ca?*, disrupting bacterial
outer membrane integrity, allowing the polymyxins to traverse the inner membrane and act on
intracellular targets. An extended exposure in KP triggers the activation of the two-component
regulatory systems, PmrAB and PhoPQ [15-17]. These systems regulate a pathway that modulates
pmrC and the pmrHFIJKLM operon facilitating the addition of phosphoethanolamine (pEtN) and/
or 4-amino-4-deoxy-L-arabinose to lipid A phosphate groups, resulting in impaired polymyxin
binding interactions [18-20]. Disruption of mgrB, the negative regulator of PhoPQ, has been

commonly observed in isolates of clinical origin [8, 21]. The constitutive up-regulation of pmrC
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and the pmrHFIJKLM operon incurs a minimal fitness cost and appears to be stable, with minimal
reports of reversions [22, 23]. Heteroresistant populations, where only a subset of bacteria are
resistant, have been reported in KP which complicates diagnosis [24]. The emergence of pandrug-
resistant KP is of grave concern [25] and this acquisition of resistance is further exacerbated by
the recently reported plasmid-encoded colistin resistance gene mcr-1, which encodes a pEtN

transferase enzyme, albeit currently rare in KP [26].

This study aimed to investigate XDR-KP clinical isolates arising in Greece and Brazil during 2012
to 2014 to identify and validate genetic variants contributing to resistance. These alterations were
compared to prior clinical isolates to ascertain if these mutations have been previously detected

globally.
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94
95 METHODS

96

97  Bacterial isolates

98  KP clinical isolates were acquired from the Hygeia General Hospital, Athens, Greece and Instituto

99  Dante Pazzanese de Cardiologia, Brazil from patients in 2012 to 2014. Cultures were supplied as
100  stabs/slants or on agar, and were subsequently cultured in Nutrient Broth. Cultures were made to
101 20% (v/v) glycerol and stored at -80 °C. When required for assay or extraction, glycerol stocks
102 were struck out to obtain single colonies on either Nutrient Agar or Tryptic Soy Agar with 5%
103  defibrinated sheep blood. Reference strains included Escherichia coli (ATCC 25922) and
104  Klebsiella spp. (ATCC 13883, ATCC 700603, ATCC BAA-2146), which were obtained from the

105  American Type Culture Collection (ATCC; Manassas, VA, USA).

106  Antimicrobial susceptibility assays

107  Species identification and susceptibility profiles of clinical isolates from Greece and Brazil were
108  evaluated in the clinic using VITEK®2 (bioMérieux). Strains were further validated at the Institute
109  for Molecular Bioscience (IMB) (The University of Queensland, Australia) using the standard
110  Clinical & Laboratory Standards Institute (CLSI) approved broth microdilution (BMD) methods
111 with cation-adjusted Mueller-Hinton Broth (caMHB). Resistance was determined as per CLSI
112 guidelines [27] except for tigecycline and fosfomycin where The European Committee on
113 Antimicrobial Susceptibility Testing (EUCAST) (Version 7.1, 2017) (see http://www.eucast.org)
114  guidelines were implemented. Categorisation of drug resistance level was determined through

115  guidelines previously outlined [28].

116
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117 DNA extraction

118  DNA was extracted from overnight cultures using the DNeasy Blood and Tissue Kit (Qiagen) with
119  the additional enzymatic lysis buffer pre-treatment as per manufacturer’s instructions. DNA was

120  quantified with Qubit®3.0 (ThermoFisher Scientific).

121 DNA library preparation and sequencing

122 Library preparation was performed using the Nextera XT kit (Illumina) with 1 ng input of DNA
123 as per manufacturer’s instructions. Quality of libraries were checked using a 2100 Bioanalyzer
124  (Agilent Technologies). Libraries were sequenced on an Illumina MiSeq with 300 bp paired-end

125  sequencing reads and >100X coverage per sample.

126  Sequencing analysis

127  Paired-end reads were trimmed with Trimmomatic [29] and assembled using SPAdes [30]. The
128 Rapid Annotation using Subsystem Technology (RAST) was utilized to annotate assembled
129  genomes [31]. Assemblies were also uploaded to the Centre for Genomic Epidemiology (CGE) to
130  identify sequence types (STs) (MultiLocus Sequence Typing Server 1.8 [32]) and acquired
131  antibiotic resistance genes (ResFinder 2.1 [33]). A neighbor-joining tree was constructed using the
132 2358 Klebsiella pneumoniae/quasipneumoniae/variicola genes known to form the core genome
133 MLST (cgMLST) using Ridom SeqSphere+ v4.0.1 software [34]. The cgMLST was compared
134  against complete assemblies of ST11 (HS11286), ST147 (MS6671), ST258 (NJST258 1,

135  NJST258 2) and a reference for K. quasipneumoniae, ATCC 700603 [25, 35-37].

136

137
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138  Variant detection

139  Alterations both in and flanking the genes pmrAB, phoPQ and mgrB were examined and sequence
140 reads of all strains were aligned to the assembly of 20 GR 12, a polymyxin-susceptible ST258
141  strain with the least number of contigs, using BWA-MEM [38]. The alignment was analyzed
142 through FreeBayes [39] to identify single nucleotide and small indel variation, using a diploid
143  analysis in order to identify potential heterogeneity. Sites with more than 20% of reads mapping
144  to the minor allele were considered potentially heterogeneous. The effects of variations were
145  determined by snpEff [40]. The impact on protein sequence was further confirmed by the Protein
146  Variation Effect Analyzer (PROVEAN) [41]. For the analysis of large chromosome changes, the
147  gene sequences including 300 bp flanking were extracted from the assemblies. A multiple

148  alignment of each gene was constructed from the pair-wise alignment to the longest gene sequence.

149  Insertion sequence element validation

150 ISFinder [42] was used for the identification of insertion sequence (IS) elements. To confirm
151  disruptive IS elements, mgrB was amplified with primers displayed in Table S1 via 2X Phusion
152  HF master mix (Invitrogen) under the following cycling conditions: 98 °C 10 seconds, 50 °C 30

153  seconds and 72 °C 60 seconds (35X). Amplicon identity was validated via Sanger sequencing.

154  Complementation assays

155  The contribution of variants to resistance was validated through complementation assays as
156  previously described [43]. Briefly, genes (Table S1) were amplified from a polymyxin-susceptible
157  isolate, 20 GR 12, and cloned into the pCR-BluntII-TOPO vector via the Zero Blunt TOPO PCR
158  cloning kit (Invitrogen). Chemically competent E. coli TOP10 cells were transformed and selected

159 by the addition of 50 mg/L kanamycin in MHA. Isolation of plasmids were via the PureLink™
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160  Quick Plasmid Miniprep Kit (Invitrogen) and transformed into KP strains via electroporation (25
161  pF, 200 Q, 1.25 kV/cm) with a Gene Pulser (Bio-Rad Laboratories). Selection was accomplished
162  through supplementation of >500 mg/L zeocin in MHA plates. Transformed colonies (n=>2) were
163  acquired and placed in MHB containing 1500 mg/L zeocin and 1 mM isopropyl fS-D-1-
164  thiogalactopyranoside (Sigma Aldrich). If polymyxin susceptibility was not restored upon
165 complementation, genes harboring mutations were further amplified and introduced into
166 20 _GR 12. To discern the impact of additional mutations in phoPQ and pmrB segregating with
167  disrupted mgrB, mutant genes were introduced into a polymyxin-resistant isolate only harboring
168 an IS element mgrB disruption, 7 GR_13. Controls included transformation of WT genes into
169 20 _GR 12, sequencing of amplicon prior to introduction in vector and KP transformed strains
170  undergoing a plasmid extraction and further PCR of the multiple cloning site. Antimicrobial testing

171  against polymyxin B were conducted as described above.
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172
173 RESULTS
174

175 Characterization of clinical isolates

176  KP isolates were all characterized in the hospital microbiology facility using VITEK®2. Several
177  discrepancies were detected between VITEK®2 and broth microdilution (BMD) results (Table 1,
178  Table S2), predominantly the level of resistance towards aminoglycosides, tetracyclines,
179  fosfomycin and tigecycline. A major dissimilarity was polymyxin susceptibility in 6 GR 12
180  (sensitive in BMD, resistant in VITEK®2) and resistant in 23_GR 13 (resistant in BMD, sensitive
181  in VITEK®2). Polymyxin resistance was identified in 19 of the isolates. An abundance of acquired
182  resistance genes (Table 2) were detected and this presence corresponded to the antimicrobial
183  testing phenotype. This analysis did not identify mcr-1 in these strains. Only 18 GR 14 and
184 19 GR 14 were not identified as extended-spectrum beta-lactamase producers amongst the
185  polymyxin-resistant strains. Consequently, all polymyxin-resistant strains that harbored non-
186  susceptibility to at least one antibiotic in 15 or more of the 17 antimicrobial categories hence were

187  defined as XDR.

188  Sequence type determination

189  Two thirds of the Greece clinical strains were found to belong to ST258 and the remaining were
190 STI11,ST147 or ST383 (Table 1). While 5. GR 13 and 6_GR 12 were both ST383, only 5 GR_13
191  was resistant to polymyxin. Among the two strains from Brazil, 11 BR 13 was ST437 and
192 12 BR 13 was STI11. 21 GR 13 had a profile previously undefined and has been newly
193  designated ST2401. Further cgMLST studies were conducted on the isolates using complete

194  assemblies of reference genomes for ST11 (HS11286), ST147 (MS6671) ST258 (NJST258 1,

10
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NJST258 2)and KQ (ATCC 700603) (Fig. 1). For the ST258 isolates, these were more similar to
NJST258 2 rather than NJST258 1. Within this cluster, 7 GR 13,9 GR 12 and 24 GR 13 were
closely related (<15 allelic changes). Similarly, grouped together were 2 GR 12 and 23 GR 12;
3 GR 13 and 22 GR 12; 13 GR 14 and 14 GR 14; and 18 GR 14 and 19 GR 14. In ST11,
16 GR 13 and 17_GR 14 harbored only 3 allele differences and the Brazilian isolate, 12 BR 13,
had 206 variants apparent. ST383 isolates 5 GR 13 and 6 GR 12 only exhibited 1 allele change.
ST147 1_GR 13 was not clonal to the previous pandrug resistant KP, MS6671. Clustering analysis
revealed 21 GR 13 as Klebsiella quasipneumoniae (KQ) and diverged with reference genome

ATCC 700603 (ST489).

MgrB disruption

Seventeen of the nineteen polymyxin-resistant strains exhibited either missense mutations,
nonsense mutations or IS elements in mgrB (Table 3). Both 5 GR 13 and 19 GR 14 harbored a
truncation while an amino acid change, D31E, was apparent in 3 GR_13. IS element disruption
was prevalent in 53% of strains and commonly an IS5-like element was integrated at nucleotide
position 75 (Fig. S1). Sanger sequencing revealed this element was closely related to ISKpn26,
herein known as ISKpn26-like, except for 12 BR 13 which matched ISKpn13. ISIR was detected
upstream of mgrB in 11 _BR 13 and an IS/R-like (A>C, 393 bp; C>T, 396 bp) element in
16 GR 13 and 17 _GR _14. Strain 15 _GR 13 had a deletion of the mgrB locus from nucleotide
position 133 onwards. The 127 bp flanking region mapped to ISKpn25 with the transposase in the
same orientation as mgrB. All 3 of IS/ element insertions, but only one of the 8 ISKpn26-like

element insertions had the transposase in the same orientation as mgrB.

11
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217  Single, multiple and heterogeneous mutations

218  Aberrations in genes commonly identified to confer polymyxin resistance in KP include mgrB,
219  phoPQ and pmrAB (Table 2). Several non-synonymous mutations were identified across the
220  isolates however, not all were predicted to be deleterious (Table S3). ST383 contained several
221  mutations in pmrAB although only Q30STOP in polymyxin-resistant 5 GR 13 was predicted to
222 have an impact. Similarly, neutral changes in all four of these genes were detected in polymyxin-
223 susceptible KQ strains ATCC 700603 and 21 GR 13.8 GR 13 and 9 GR 12 harbored a single
224 detrimental missense mutation in phoQ. Alterations in mgrB were accompanied by one or more
225 missense mutations in phoPQ and/ or pmrB. Predicted deleterious variants segregating with
226  disrupted mgrB included pmrB (T140P, P158R), phoP (P74L, A95S) and phoQ (N253T, V446QG),
227  which were commonly in the ST258 lineage. V446G (phoQ) and P158R (pmrB) were
228  heterogeneous in 13 GR 14 (65% (V446G), 66% (P158R) mutation allele frequency) and
229 14 GR 14 (52% (V446G) and 57% (P158R) mutation allele frequency). Assembly revealed
230 23 GR 12 harbored an ISKpn26-like disrupted mgrB alongside the intact version with alterations

231 in phoP and phoQ in 57% of the sample.

232 Role of mgrB disruptions and presence of heteroresistance via complementation assays

233 Complementation of the WT gene elucidated the role of these mutations in resistance (Fig. 2).
234 Introduction of pTOPO-mgrB restored susceptibility in all resistant isolates with mgrB coding
235  mutations or upstream disruptions, with the exception of two strains heterogeneous for the mgrB
236  disruption and a pmrB coding mutation (13_GR 14 and 14 GR 14) (Fig. 2a). For these two
237  strains, pTOPO-mgrB restored susceptibility in zero of three 13 GR 14 colonies and one of three
238 14 GR 14 colonies. Transformation of 1 out of 3 colonies for both 13 GR 14 and 14 GR 14

239  strains with pTOPO-pmrB restored susceptibility (Fig. 2d) and mgrB amplification of these

12


https://doi.org/10.1101/134684
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/134684; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

240  colonies revealed an intact mgrB locus (data not shown). Colonies which were reverted on
241  complementation were further passaged 3 times with no antibiotic pressure in order to remove the
242 plasmid and discern if these mutations were contributing to resistance. After passaging, pTOPO-
243 mgrB isolates harbored an MIC of >64 mg/L whilst pTOPO-pmrB colonies were 16 mg/L to
244  confirm two resistant populations in these samples. 23 GR 12 was also observed to have a
245  heterogeneous mgrB disruption but did not carry a corresponding pmrB mutation however,
246  harbored similar mutations to 2 GR 12 in phoPQ. Amplification of mgrB identified two of three
247 23 GR 12 transformed colonies contained the IS element disruption and were reverted to

248  susceptible upon complementation with pTOPO-mgrB.

249  Validation of resistance conferring mutations in phoQ

250  Strains 8 GR 13 and 9 GR 12 harbored a single mutation in phoQ potentially conferring
251  resistance (Table 2). When these isolates were transformed with pTOPO-phoQ, results remained
252 variable where a lack of growth was present in a susceptible range (MIC: <2 mg/L) however,
253  several wells containing high polymyxin B concentrations exhibited growth (Fig. 2¢). To resolve
254  this, the mutated gene was introduced into a polymyxin-susceptible isolate, 20 GR 12, and

255  resistance was apparent (Fig. 2e).

256  Potential suppressor mutations in phoPQ

257  Several mutations co-segregating with disrupted mgrB were detected including phoP (P74L,
258  A95S), phoQ (N253T, V446G) and pmrB (T140P). Complementation of WT genes in these
259  isolates commonly facilitated a >2-fold increase in MIC with the exception of 10_GR 13, which
260  had an additional predicted neutral mutation in phoQ (A225T) (Table S3, Fig. 2b-d). To evaluate

261  the potential influence of these mutations on polymyxin resistance, mutated genes were placed

13
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262  into a strain only containing the mgrB IS element disruption, 7 GR_13 (Fig. 2f). Complementation
263  of the mutant phoQ (N253T) decreased the MIC by 2-fold, potentially indicating a partial
264  suppressor mutation. Initially, the phoQ (V446G) mutation was anticipated to segregate with the
265  mgrB disrupted populationin 13 _GR 14 and 14 GR_14 however, when phoQ was amplified from
266  a colony reverted to susceptible via pTOPO-mgrB complementation, the WT phoQ was observed
267  (Fig. S3). The phoQ (V446G) mutation was successfully amplified from a 14 GR 14 colony
268  containing the pmrB (T158R) mutation and upon complementation in 7GR 13, resulted in a 2-
269  fold reduction in MIC. Although this mutation did not segregate with disrupted mgrB, it may act
270  as a partial suppressor mutation when a resistance conferring mutation is present in pmrB.
271 Mutations in phoP (P74L, A95S) reduced the MIC in 7_GR_13 by >4-fold which identifies these
272 as partial suppressor mutations. Complementation of mutant pmrB (T140P) into 7GR 13 did not
273 lead to an observable corresponding reduction in MIC however, once transformed into 20_GR 12,

274  a2-fold increase in MIC was apparent (Fig. 2e).

14
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275
276 DISCUSSION
277

278  Polymyxin resistance in XDR-KP is of grave concern given that this is a last-line antibiotic, and
279  is increasingly prevalent in countries such as Greece and Brazil [10, 12-14, 44]. We evaluated the
280  genetic basis of polymyxin resistance in a series of Greek and Brazilian clinical isolates from

281  patients in 2012 to 2014 and found alterations in genes mgrB, phoPQ and pmrAB.

282  Inactivation of mgrB was highly prevalent in these strains with an ISKpn26-like element being the
283  predominant cause of resistance, as confirmed by complementation restoring susceptibility in all
284  isolates. Several other studies have observed an IS5-like element integration in the same position,
285 including reports from Greece, Italy, France, Turkey and Colombia [8, 9, 45, 46]. The ISKpn26-
286  like element resembled the same sequence from Greece isolates previously described [46]. We
287  identified that this mutation still persisted in 2014, after being first detected in 2012 [9].
288  Disruptions in mgrB including the ISKpn26-like forward insertion at nucleotide 75 in ST147,
289  ISKpnl3 integration at nucleotide 75 in ST11 and ISKpn25 in the ST258 lineage have yet to be
290 reported. We identified IS/R or IS/R-like elements positioned upstream of mgrB in 3 isolates
291 (11 BR 13,16 GR 13, 17 GR 14) which were reverted upon complementation indicating an

292  impact on the promoter region.

293  Truncations identified at position 28 and 30 of mgrB have been previously detected, although these
294  were identified in differing STs indicating mutations potentially have arisen independently in
295  Greece [21, 47]. Complementation restored susceptibility to polymyxins for these mutations and
296 this study further revealed the amino acid change D31E in 3_GR 13 to be a resistance conferring

297  alteration. These findings support the notion that intact MgrB is required to confer negative
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298  feedback on PhoPQ [8]. The inactivation of mgrB is prevalent in polymyxin-resistant KP and may
299  arise owing to its capacity to promote virulence and further attenuate the early host defence

300 response, with little or no fitness cost [48].

301  Single predicted detrimental mutations were observed in the phoQ histidine kinase region, critical
302  for phosphorylation and interaction with phoP,in 8 GR 13 (G385C)and 9 GR 12 (T281M). The
303  G385C mutation had previously been reported, [21] however in a differing ST. Complementation
304 revealed an inconsistent MIC for these strains, although when a polymyxin-susceptible isolate was
305 transformed with the mutated gene, full resistance was restored. Dominance of mutated phoQ has
306  recently been highlighted and these results may imply the inability of pTOPO-phoQ to override

307 the resistance caused by these mutations [49].

308  Several non-synonymous changes were identified to be not deleterious according to PROVEAN
309 analysis. Notably, these were abundant in KQ strains ATCC 700603 [37] and 21 GR 13. This
310  was further identified in KP ST383 lineages and PROVEAN detected these neutral changes. These
311  mutations represent lineage specific alterations, however, this does not negate the possibility of
312  previously resistance conferring alterations being acquired in these loci with subsequent reversion

313  mutations to give rise to a susceptible phenotype.

314  Heterogeneity was apparent in several isolates. In near equal ratios, 13 GR 14 and 14 GR 14
315  possessed the ISKpn26-like mgrB disruption and a new alteration conferring resistance in pmrB,
316  PI158R as determined by complementation. 23 GR 12 consisted of approximately half the reads
317  mapping to the undisrupted genes and the other to the ISKpn26-like strain with several additional
318  predicted deleterious mutations. This heterogeneity may explain the initial clinical detection for

319 this isolate to be polymyxin-susceptible.
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320  Several isolates harboring ISKpn26-like element disrupted mgrB were accompanied by mutations
321  in phoPQ and/ or pmrB. These changes were present in >98% of reads to render the involvement
322 of heterogeneity unlikely. Once complemented, an increase in resistance was commonly recorded.
323  This potentially reflects partial suppressor mutations as strains which solely possessed this IS
324  element disruption commonly exhibited a heightened MIC of >64 mg/L. One variant segregating
325  with this disruption included pmrB T140P. This had formerly been identified in an ST258 lineage
326  but even when the resistant gene was complemented, the MIC increased by 2-fold but was not

327  defined as clinically resistant [21, 50].

328  When mutated phoP or phoQ were introduced into the mgrB disrupted isolate, a reduction in MIC
329 was apparent. The involvement of additional mutations in PhoPQ to influence the level of
330 polymyxin resistance has yet to be reported in KP. Previous research by Miller et al [51]
331  determined additional mutations in PhoPQ altered polymyxin resistance in Pseudomonas
332 aeruginosa. This prior study describes phoP mutations with the capacity to partially or fully
333  suppress resistance-causing mutations in phoQ. These mutations in phoP were near or within the
334  DNA binding site which differs to our results, where the alterations are impacting the response
335 regulatory region that interacts with PhoQ. Conversely, all mutations partially suppressing the
336  MIC were identified to be targeting the HAMP and histadine kinase component of PhoQ. These
337  were in regions similar to revertant P. aeruginosa strains identified by Lee and Ko [52]. We
338  postulate these mutations are perturbing the critical transfer of phosphoryl groups from the
339  histadine kinase of PhoQ to PhoP and subsequent pmrD expression. Whether these mutations
340 constitute a fitness advantage due to the reduction of metabolism required for the production of

341 LPS modifications is yet to be discerned. Furthermore, due to variability in some of the
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342  complementation data, a knockout phoPQ background and introduction of genes that are potential

343  suppressor mutations is required.

344 Rapid and accurate detection of mutations attributed to polymyxin resistance remains a
345  longstanding burden. Our research has contributed to the current understanding of the
346  dissemination and evolution of this resistance in KP. Although the sample size is limited, this study
347  highlights several issues arising from solely interrogating genomes for resistance detection
348 including ST specific non-synonymous changes, and heterogeneity. The study provides the first
349  potential report of suppressor mutations for polymyxin resistance. Through complementation
350 assays, we have discerned the role of these modifications and have identified resistance-causing

351 alterations that can be monitored during future genome-based diagnostics.
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552  Table 1. Broth microdilution and VITEK®2 antimicrobial testing for the 24 clinical isolates

553
Resistance Profile’
. , 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Strain Source
M oz A = e = N & X N X o B QO 3 & 5 &= =
= § 858 ECBEEZIBB8ELEZZEER D EE
1 GR 13 St N
2 GR 12 U N
3 GR 13 S E
4 GR 12 B y
5 GR 13 St y
6 GR 12 St y
7 GR 13 St i
8 GR 13 St N
9 GR_12 Br i
10 GR 13 B N
11 BR_13 U N
12 BR_13 Br N
13 GR_14 Br N N
14 GR_14 U N N
15 GR_13 St ﬁ i
16 GR_13 St N \
17_GR_14 St \ N
18 GR_14 St N
19 GR_14 St N
20 GR 12 St N
21 GR 13 9] N
22 GR 12 S \
23 GR 12 St \
24 GR 13 St N
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565

566

567

568

569

570

571

572

573

574

575

576

*Strain identification, numerical order catalogued at IMB_Country (GR:Greece, BR:Brazil) last two digits of isolation year.
’Source represented as B, Blood; Br; Bronchial secretion; U, Urine; S, Sputum; St, Stool.

Antibiotic resistance as determined by broth microdilution according to CLSI guidelines (EUCAST for fosfomycin (disk diffusion) and
tigecycline) and in superscript, any discrepancies identified in VITEK®2 results. Antibiotic classes tested include 1, Aminoglycosides (Amikacin,
AMK; Gentamicin, GEN; Tobramycin, TOB); 2, Anti-MRSA cephalosporins (Ceftaroline, CPT); 3, Antipseudomonal penicillins + -lactamase
inhibitors (Piperacillin-tazobactam, TZP); 4, Carbapenems (Imipenem, IPM; Meropenem, MEM); 5, Non-extended spectrum cephalosporins (1%
and 2" generation) (Cefazolin, CFZ); 6, Extended-spectrum cephalosporins (3™ and 4" generation) (Cefepime, FEP; Cefotaxime, CTX,
Ceftazidime, CAZ); 7, Cephamycins (Cefoxitin, FOX); 8, Fluoroquinolones (Ciprofloxacin, CIP); 9, Folate pathway inhibitors (Trimethoprim-
sulfamethoxazole, SXT); 10, Glycylcyclines (Tigecycline, TGC); 11, Monobactams (Aztreonam, ATM); 12, Penicillins (Ampicillin, AMP); 13,
Penicillins + B-lactamase inhibitors (Amipicillin-sulbactam, SAM); 14, Phenicols (Chloramphenicol, CHL); 15, Phosphonic acids (Fosfomycin,

FOF); 16, Polymyxins (Colistin, CST); 17, Tetracyclines (Minocycline, MIN; Tetracycline, TET).

R, Resistant; I, Intermediate; S, Susceptible; N, Not tested.
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577  Table 2. Potential mutations contributing to polymyxin resistance and acquired resistance genes

Acquired antibiotic resistance genes“

A B F M P Q R S T Tr
. * + " o

Strain  MLST PMX-R -~ 8 5 s T2 87T Iy s IRR Sy
L3 833 g 2 T R R R T T T S R R S i) T B T e 3 2 I 3T IR
g@a‘§§~‘§§nn§§‘§bs§:><§E§§§><><5mm§55&5%5‘5:?@?%5%§§§§§'§§§:§§§§‘<
$ T TS § 8 S 3 FF°® 3R UCIEFTC IR ELgLEREEREIIZIRISEETEES SIS SRCSSA S =3 sxssss
§§ 3 § 5 33y FfI gz %

SoS -Q'si‘ < 3z 3 3 IS 8 3 3 3 JESES
LGR 13 147 ™&rB (N25AISKpn26-like"),
- pmrB (T140P)

2GR 12 258 ™MerB (N25AISKpn26 -like®),
- phoP (A95S), phoQ (N253T)
3 GR 13 258 mgrB (D31E)

4GR 12 253 Me&rB (N25AISKpn26 -like®),
- phoP (P74L), phoQ (N253T)
5 GR_13 383 mgrB (Q30STOP)

6 GR 12 383 -

7GR I3 258 mgrB (N25AISKpn26-like®)
8 GR 13 258 phoQ (G385C)

9 GR 12 258 phoQ (T281M)

10 GR 13 2585 "€ (N25AISKpn26 -like®),

phoQ (N253T)
11_BR 13 437 mgrB (-35AISIR")
12 BR 13 11 mgrB (N25AISKpni3®)

13 GR 14 258 ™Me&B (N25AISKpn26 -like®),
- phoQ (V446G), pmrB (P158R)

14 GR 14 258 ™Me&B (N25AISKpn26 -like®),
- phoQ (V446G), pmrB (P158R)

15 GR 13 258 mgrB (145AISKpn25")

16 GR 13 11 mgrB (-19AISIR-like") -
17.GR 14 11 mgrB (-19AISIR-lke")

18 GR 14 258  mgrB (N25AISKpn26-lke®)

19 GR 14 258 mgrB (C28STOP)

20 GR 12 258 WT - .
21 GR 13 2401 - .

22 GR 12 258 WT

mgrB (N25AISKpn26 -like®),
phoP (A95S), phoQ (N253T)
578 24 GR_13 258 WT

23 GR 12 258
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579

580

581

582

583

584

585

586

587

*Multilocus sequence type as identified through MultiLocus Sequence Typing Server 1.8.

"Variations detected in mgrB, phoPQ and pmrAB potentially causing polymyxin resistance (PMX-R). Significant non-synonymous changes
determined by PROVEAN analysis. WT (Wild-type) alleles in comparison to 20 GR 12. Displayed as gene impacted, initial amino acid, position
and new amino acid. If - shown in front of position, alteration is encoded upstream and if - is only displayed, no significant non-synonymous
changes were detected in these loci. Insertion sequences classified as A, identity as per ISFinder and orientation in superscript. Orientation

determined as forward, , if transposase is in the same direction as mgrB and conversely, reverse, X, if in the opposite direction to mgrB.

 Acquired antibiotic resistance genes detected via ResFinder 2.1. Classes of antibiotics impacted displayed as A, Aminoglycoside; B, Beta-lactam;
F; Fosfomycin; M, Macrolide; P, Phenicol; Q, Quinolone; R, Rifampicin; S, Sulphonamide; T, Tetracycline; Tr, Trimethoprim. Shading indicates

detection of gene (>90% homology, >60% sequence length).
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22 GR_12
3 GR 13
18_GR_14
19 GR_ 14
24 GR_13
9 GR_12
7 GR_13
L 20 GR 12
L 8 GR_13
L 15 GR_13

14 GR 14
-] 13_GR_14
L 10_GR_13
23 GR_12

{ 2 GR_12
L 4 GR 12
ST258 -
L NJST258 2
NJST258 1

HS11286
r—||ST j— 12.BR 13

| I

16 GR_13
17_GR_14
11_BR_13
1.GR 13
MS6671

6 GR 12
5 GR_I3
21 GR 13

. ST437
preumoniae

ST147

[ ]

ST383

—_—

quasipneumoniae ATCC 700603
0.1

589

590 Fig. 1. Neighbor-joining tree of core genome MLST of 24 Klebsiella clinical isolates. Clustering of
591  sequence type (ST) indicated at base of diverging branch. cgMLST compared to completed assemblies
592  including ATCC 700603 (K. quasipneumoniae), HS11286 (ST11), MS6671 (ST147) and NJST258 1

593  and NJST258 2 (ST258).
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618  Fig. 2. Complementation assays and*rfiIchR&"6T e iHolymyxin resistance. Polymyxin B
619  MIC measured before (©) and after (m) complementation of wild-type gene (a) pTOPO-mgrB,
620  (b) pTOPO-phoP, (c) pTOPO-phoQ, or (d) pTOPO-pmrB in indicated resistant isolates. (e)
621  Mutated genes complemented into 20 GR 12 (polymyxin-susceptible isolate) to determine if
622  variant induces polymyxin resistance. (f) Complementation of 9 GR 13 (IS element disrupted
623  mgrB control) to detect potential suppressor mutations. Strains shown on x axis for (a-d) and
624  superscript indicates variants in genes including mgrB (a), phoP (b), phoQ (c) and pmrB (d)
625 that differ from 20 GR 12. For (e, f), the x axis shows the gene complemented with amino
626  acid variation in brackets. Dotted line at 2 mg/L represents the breakpoint for polymyxin B.
627  Values indicate mean+standard deviation where no error bars display no fluctuation in MIC

628  (n>2 colonies).
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