
1 
 

Genetic stratification of depression in UK Biobank suggests a subgroup linked to age of natural 1 

menopause  2 

 3 

David M. Howard*1,2, Lasse Folkersen3,4, Jonathan R. I. Coleman1,5, Mark J. Adams2, Kylie Glanville1, 4 

Thomas Werge3,4,6,7, Saskia P. Hagenaars1,5, Buhm Han8, David Porteous9,10, Archie Campbell9,11, Toni-5 

Kim Clarke2, Gerome Breen1,5, Patrick F. Sullivan12,13,14, Naomi R. Wray15, Cathryn M. Lewis1,5, and 6 

Andrew M. McIntosh2,16 7 

Affiliations: 8 
1 Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & 9 

Neuroscience, King's College London, UK 10 
2 Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK 11 
3 Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark 12 
4 Institute of Biological Psychiatry, Mental Health Services Capital Region of Denmark, Copenhagen, 13 

Denmark 14 
5 NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK 15 
6 Department of Clinical Sciences, University of Copenhagen, Copenhagen, Denmark 16 
7 Lundbeck Foundation’s Center for GeoGenetics, GLOBE Institute, University of Copenhagen, 17 

Denmark 18 
8 Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic 19 

of Korea 20 
9 Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK 21 
10 Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK 22 
11 Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, 23 

UK 24 
12 Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden 25 
13 Department of Genetics, University of North Carolina, Chapel Hill, NC, USA 26 
14 Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA 27 
15 Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia 28 
16 Department of Psychology, University of Edinburgh, Edinburgh, UK 29 

 30 

 31 
* Corresponding author: David M. Howard 32 
Social, Genetic and Developmental Psychiatry Centre, 33 
Institute of Psychiatry, Psychology & Neuroscience, 34 
King's College London, UK 35 
+44 (0)20 7848 5433 36 
E-mail: David.Howard@kcl.ac.uk 37 
 38 
 39 

 40 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted October 15, 2019. ; https://doi.org/10.1101/134601doi: bioRxiv preprint 

mailto:David.Howard@kcl.ac.uk
https://doi.org/10.1101/134601
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 
 

Abstract 41 

Depression is a common and clinically heterogeneous mental health disorder that is frequently 42 

comorbid with other diseases and conditions. Stratification of depression may align sub-diagnoses 43 

more closely with their underling aetiology and provide more tractable targets for research and 44 

effective treatment. In the current study, we investigated whether genetic data could be used to 45 

identify subgroups within people with depression using the UK Biobank. Examination of cross-locus 46 

correlations was used to test for evidence of subgroups by examining whether there was clustering of 47 

independent genetic variants associated with eleven other complex traits and disorders in people with 48 

depression. We found evidence of a subgroup within depression using age of natural menopause 49 

variants (P = 1.69 × 10-3) and this effect remained significant in females (P = 1.18 × 10-3), but not males 50 

(P = 0.186). However, no evidence for this subgroup (P > 0.05) was found in Generation Scotland, 51 

iPSYCH, a UK Biobank replication cohort or the GERA cohort. In the UK Biobank, having depression was 52 

also associated with a later age of menopause (beta = 0.34, standard error = 0.06, P = 9.92 × 10-8). A 53 

potential age of natural menopause subgroup within depression and the association between 54 

depression and a later age of menopause suggests that they partially share a developmental pathway. 55 

 56 

Introduction 57 

Depression is a common mental health disorder characterised by persistent feelings of sadness or a 58 

loss of interest in day-to-day activities lasting for at least a two-week period. These feelings can be 59 

accompanied by tiredness, changes in appetite, changes in sleep patterns, reduced concentration, 60 

feelings of worthlessness or hopelessness, and thoughts of self-harm or suicide. Zimmerman et al. [1] 61 

found that there were 170 different symptom profiles amongst 1566 participants diagnosed with 62 

major depressive disorder from the Rhode Island MIDAS project. This variety of different symptom 63 

profiles suggest that depression is highly heterogeneous [2]. Depression is also comorbid with many 64 

diseases including cancer [3], cardiovascular disease [4] and other psychiatric illnesses [5]. 65 
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Stratification of depression, to address heterogeneity and comorbidity, may aid in providing valuable 66 

aetiological insights and improve treatment efficacy. 67 

Studies aimed at stratifying depression have examined differences between melancholic and atypical 68 

depression [6], differences between the sexes and recurrence of the disorder [7] and used data from 69 

other traits, such as neuroticism [8] and social contact [9] to stratify depression. Twin-based studies 70 

[10] and genome-wide association studies [11, 12] have shown depression to be heritable and 71 

genetically correlated with a number of other traits and disorders. This shared genetic component 72 

could be due to pleiotropic variants shared across all individuals but could also be as a result of a 73 

subgroup for the other trait within depression cases. For example, there is a genetic correlation of -74 

0.11 (standard error = 0.03) between depression and age of natural menopause [13]. If this genetic 75 

correlation was due to pleiotropy, then several of the age of menopause variants would be carried by 76 

most depression cases. However, if this correlation was due to a subgroup, then a greater proportion 77 

of the age of menopause variants would only be carried by individuals in this subgroup. A subgroup 78 

could arise where there is a causal association, a shared molecular pathway, a misclassification 79 

between the traits, or an ascertainment bias in the diagnosis of depression. 80 

For the current study, BUHMBOX (Breaking Up Heterogeneous Mixture Based On cross(X)-locus 81 

correlations) [14] was used to determine whether there was evidence of a subgroup within depression 82 

that was genetically more similar to other traits. BUHMBOX uses variants associated with a non-83 

depression trait to calculate weighted pairwise correlations of risk allele dosages within depression 84 

cases and controls, adjusted for effect size and allele frequency. Where there is a subgroup amongst 85 

depression cases that carry a greater proportion of the risk alleles for the non-depression trait, there 86 

will be consistent positive pairwise correlations between those variants (Figure 1). BUHMBOX then 87 

calculates a P-value based on the likelihood of the observed pairwise correlations between variants. 88 
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 89 

Figure 1. Pairwise correlations between variants for (a) whole-group pleiotropy, where most 90 

depression cases carry a few variants associated with a  non-depression trait and (b) a subgroup within 91 

depression cases (👤), where just the subgroup carry many of the non-depression trait variants. A tick 92 

indicates a depression case individual is a carrier of that non-depression variant. 93 

 94 

Two definitions of depression were assessed in the UK Biobank [15], one based on the Composite 95 

International Diagnostic Interview Short Form (CIDI-SF) [16] and the other based on a broader help-96 

seeking definition (broad depression) [12]. Since many traits are genetically correlated with 97 

depression [13], a power calculation was performed to determine traits with sufficient power to 98 

detect a subgroup. Power is determined by the number of depression cases, the size of any subgroup 99 

within depression cases, the number of associated variants tested from the non-depression trait and 100 

the effect sizes of these variants. We tested adequately-powered traits for evidence of a subgroup in 101 

depression cases using BUHMBOX v0.38 [14]. Replication of traits forming a subgroup in depression 102 

were sought in Generation Scotland: Scottish Family Health Study (GS:SFHS), The Lundbeck 103 

Foundation Initiative for Integrative Psychiatric Research (iPSYCH), a UK Biobank replication cohort, 104 

and the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. UK Biobank and 105 
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GS:SFHS were used to investigate phenotypic associations between depression and traits forming a 106 

subgroup. 107 

Materials and Methods 108 

UK Biobank discovery cohort 109 

The UK Biobank is a population-based cohort of 501,726 individuals with imputed genome-wide data 110 

for 93,095,623 autosomal genetic variants [15]. A genetically homogeneous sample of 462,065 111 

individuals was identified using the first two principal components from a 4-means clustering 112 

approach. A total of 131,790 individuals were identified as being related up to the third degree (kinship 113 

coefficients > 0.044) using the KING toolset [17] and were removed from the sample. For these related 114 

individuals a genomic relationship matrix was calculated to enable the identification of one individual 115 

from each related group that could be reinstated. This allowed the reintroduction of 55,745 individuals 116 

providing an unrelated sample of 386,020 individuals. 117 

UK Biobank depression phenotypes 118 

Two depression phenotypes were assessed for evidence of subgroups in UK Biobank. For the UK 119 

Biobank discovery cohort, both phenotypes were restricted to only those individuals that had 120 

completed the online mental health questionnaire (n = 109,049). The first phenotype analysed was 121 

based on the Composite International Diagnostic Interview Short Form (CIDI-SF) [18] as used by Davis 122 

et al. [16] to provide a lifetime instance measure of depression in the UK Biobank. Davis et al. [16] 123 

provide a more in-depth description of this CIDI-SF phenotype, but in summary cases were defined as 124 

having: 125 

• at least one core symptom of depression (persistent sadness (Data-Field: 20446) or a loss of 126 

interest (Data-Field: 20441)) for most or all days over a two-week period which were present 127 

“most of the day” or “all of the day”. 128 

• plus at least another four non-core depressive symptoms with some or a lot of impairment 129 

experienced during the worst two-week period of depression or low mood. 130 
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The non-core depressive symptoms that were included in this assessment of the worst episode of 131 

depression were: Feelings of tiredness (Data-Field: 20449), Weight change (Data-Field: 20536), Did 132 

your sleep change? (Data-Field: 20532), Difficulty concentrating (Data-Field: 20435), Feelings of 133 

worthlessness (Data-Field: 20450), and Thoughts of death (Data-Field: 20437). Cases that self-134 

reported another mood disorder were excluded. Controls were determined by not having at least one 135 

core symptom of depression or not endorsing at least another four non-core depressive symptoms if 136 

at least one core symptom was endorsed. This provided a total of 25,721 CIDI-SF cases and 61,894 137 

controls. 138 

A second depression phenotype within the UK Biobank discovery cohort was also examined using the 139 

broad depression definition from Howard et al. [12] with detailed information provided in that paper. 140 

In summary, cases had sought help for nerves, anxiety, tension or depression from either a general 141 

practitioner or a psychiatrist (Data-Field: 2090 and Data-Field: 2100), whereas controls had not. Cases 142 

were supplemented with an additional 132 individuals identified as having a primary or secondary 143 

International Classification of Diseases (ICD)-10 diagnosis of a depressive mood disorder from linked 144 

hospital admission records (Data-Field: 41202 and Data-Field: 41204). Participants identified with 145 

bipolar disorder, schizophrenia or personality disorder and those reporting a prescription for an 146 

antipsychotic medication were removed. This provided a total of 36,790 broad depression cases and 147 

70,304 controls. The phenotypic correlation between the CIDI-SF depression phenotype and the broad 148 

depression phenotype was 0.61 with the number of cases and controls shared across the two 149 

definitions shown in Supplementary Table 1. 150 

Traits examined as subgroups within depression 151 

We selected traits genetically correlated with depression (false discovery rate corrected, q < 0.01) in 152 

Howard et al. [13] to test as subgroups within depression, which included anthropomorphic, 153 

autoimmune, life course, cardiovascular and other psychiatric traits. For each trait, there was a 154 
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requirement that publicly available summary statistics were available and that the UK Biobank was 155 

not included in that study due to potential confounding effects (Supplementary Table 2). 156 

The BUHMBOX power calculation test v0.1 [14] was used to determine whether there was sufficient 157 

power to detect a subgroup for each depression correlated trait and to identify the optimum variant 158 

selection criterion (P < 5 × 10-8, P < 10-6 or P < 10-4). The power calculation was conducted using the 159 

CIDI-SF depression phenotype and then using the broad depression phenotype. Variants from the 160 

summary statistics for each non-depression trait were examined in the UK Biobank discovery cohort. 161 

Variants that had a call rate less than 0.99, were out of Hardy-Weinberg equilibrium (P < 10-10), had a 162 

hard call threshold less than 0.25, or had a minor allele frequency less than 0.005 were excluded. 163 

BUHMBOX requires that all variants are available for all individuals and therefore individuals with a 164 

call rate less than 1 were removed. To identify independently segregating variants, clumping was 165 

conducted in PLINK v1.90b4 [19] using an r2 value of 0.01 across a 3Mb window in either CIDI-SF or 166 

broad depression control individuals, respectively. 167 

For the power analysis the approach used in Han et al. [14] was followed, with 1000 simulated 168 

iterations run for each trait, the proportion of individuals in the subgroup was set to 0.2 and a nominal 169 

subgroup P-value of 0.05 was used. Power analyses were used to identify the optimum variant 170 

selection criterion that provided the greatest power for each non-depression trait. Where power was 171 

the same across variant selection criteria, the strictest variant selection criterion was selected as the 172 

optimum. Variants with P < 10-4 were not publicly available for Squamous Cell Lung Cancer or Lung 173 

Cancer and so P < 10-5 was used instead. Only those traits that had a power > 0.8 (using the optimum 174 

variant selection criterion) were selected to be tested for evidence of a subgroup within depression. 175 

Testing for subgroups within depression 176 

For the traits that had power > 0.8, variants meeting the optimum variant selection criterion were 177 

extracted from the UK Biobank discovery cohort. The same quality control thresholds and method to 178 

identify independently segregating variants as used as previously in the power analysis were applied. 179 
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BUHMBOX v0.38 [14] was used to examine shared risk alleles for each non-depression trait within 180 

CIDI-SF depression and broad depression. BUHMBOX uses the positive correlations between risk allele 181 

dosages in cases to determine whether any sharing of risk alleles is driven by all individuals (whole-182 

group pleiotropy) or by a subset of individuals (Figure 1). The likelihood of observing such positive 183 

correlations are used to determine the subgroup P-values. The BUHMBOX software and manual are 184 

freely downloadable from http://software.broadinstitute.org/mpg/buhmbox/. 185 

Sex, age, genotyping array and the first 20 principal components were fitted as covariates in the 186 

subgroup analysis. Bonferroni correction was used to account for the multiple testing of non-187 

depression traits, with P-values < 5 × 10-3 (0.05/10) or < 4.5 × 10-3 (0.05/11) deemed significant for 188 

CIDI-SF or broad depression, respectively. No multiple testing correction was applied for the two 189 

depression definitions analysed. 190 

BUHMBOX calculates and outputs polygenic risk scores for each individual based on the summary 191 

statistics provided. If a subgroup for a trait exists, as in Figure 1b, then potentially this subgroup would 192 

carry a greater number of these variants compared to the non-subgroup depression cases and 193 

therefore a binomial distribution would exist within the polygenic risk scores of cases. To examine 194 

whether the standardised distributions of polygenic risk scores for non-depression traits in depression 195 

cases and controls could be explained by two univariate normal distributions the mix2normal function 196 

from the VGAM package [20] in R v3.5.2 was used. The use of polygenic risk scores provides additional 197 

supporting evidence of a subgroup and provides an estimation of the size of any subgroup. 198 

Replication of significant subgroups within depression 199 

Traits that showed significant evidence of forming a subgroup for depression in the UK Biobank 200 

discovery cohort were re-examined in independent cohorts: Generation Scotland: Scottish Family 201 

Health Study (GS:SFHS), The Lundbeck Foundation Initiative for Integrative Psychiatric Research 202 

(iPSYCH), a UK Biobank replication cohort, and the Genetic Epidemiology Research on Adult Health 203 

and Aging (GERA) cohort. In each of the replication cohorts, individuals were removed if they had a 204 
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variant call rate less than 1 and variants were removed if they had a call rate less than 0.99, were out 205 

of Hardy-Weinberg equilibrium (P < 10-10) or had a minor allele frequency less than 0.005. 206 

The family and population-based GS:SFHS cohort [21] consisted of 23,960 individuals, of whom 20,195 207 

were genotyped and subsequently imputed [22] providing a total of 8,633,288 variants for 20,032 208 

individuals (11,085 females and 8,947 males). An unrelated subset was created using GCTA v1.22 [23] 209 

ensuring that no two individuals shared a genomic relatedness of ≥ 0.025. Individuals were removed 210 

if they were identified as population outliers [24] or had participated in UK Biobank (using a checksum-211 

based approach [25]). Sex, age and the first 20 principal components were fitted as covariates in the 212 

subgroup tests. A diagnosis of major depressive disorder (MDD) was made using two initial screening 213 

questions and the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental 214 

Disorders [26] and has been described previously in Fernandez-Pujals et al. [27]. Using record linkage 215 

to the Scottish Morbidity Record, we removed 1,072 controls who had attended at least one 216 

psychiatry outpatient clinic. Using the psychiatric inpatient records, we identified 47 MDD cases who 217 

were also diagnosed with bipolar disorder or schizophrenia and these individuals were excluded. This 218 

provided a total of 975 MDD cases and 5,971 controls. These participants provided prior consent for 219 

their anonymised data to be linked to medical records. 220 

iPSYCH is a case-control sample with genotyping data collected for 77,639 individuals after quality 221 

control. The iPSYCH sample was phased using SHAPEIT3 [28] and imputed using Impute2 [29] using 222 

the 1000 genomes phase 3 data [30]. An unrelated subsample was identified using the KING toolset 223 

[17] with second degree relatives or closer excluded. Sex, age, genotyping array and the first 20 224 

principal components were fitted as covariates in the subgroup tests. Depression status was 225 

ascertained from in- and out- patient hospital records with controls screened to ensure they had no 226 

other psychiatric disorders. This provided a total of 19,644 cases and 21,295 controls. Further detailed 227 

information on the iPSYCH sample is available in Pedersen et al. [31].  228 
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The UK Biobank discovery sample consisted of only those individuals that completed the mental health 229 

questionnaire. Therefore, the individuals that did not complete the questionnaire were used as an 230 

independent replication cohort. For these individuals only the broad depression definition could be 231 

assessed and applying the same quality control criteria used in the UK Biobank discovery cohort 232 

resulted in 71,282 broad depression cases and 128,303 controls. 233 

The GERA cohort is a genotyped subsample of 78,419 participants from the Kaiser Permanente 234 

Medical Care Plan, Northern California Region (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-235 

bin/study.cgi?study_id=phs000674.v3.p3). GERA was genotyped using custom designed Affymetrix 236 

Axiom arrays [32] before being phased with SHAPEIT v2.5 [33] and imputed with IMPUTE2 v2.3.1 [29] 237 

using the 1000 Genomes Project [30] as the reference panel. GERA is a mixed ancestry cohort [34] and 238 

in the current analysis only those individuals with European ancestry were examined with related 239 

individuals up to the third degree removed. Sex, age and the first 10 principal components were fitted 240 

as covariates in the subgroup tests. MDD status was ascertained using ICD-9 coding from in- and out- 241 

patient hospital records which identified 4,912 MDD cases and 33,902 controls. 242 

During the replication analysis, the BUHMBOX power calculation test v0.1 [14] was applied assuming 243 

the same estimated proportion of individuals in the subgroup and the same variant selection criterion 244 

as in the UK Biobank discovery cohort, and a nominal subgroup P-value of 0.05. BUHMBOX v0.38 [14] 245 

was then used to examine whether there was evidence of a subgroup within depression cases in the 246 

GS:SFHS, iPSYCH, UK Biobank replication and GERA cohorts. The power and subgroup analyses were 247 

run using all individuals and then, as age of natural menopause trait generated a significant result in 248 

the subgroup analysis the analyses, were run using females only. 249 

Phenotypic examination of significant subgroups within depression 250 

The age of natural menopause trait generated a significant result in the subgroup analysis in the UK 251 

Biobank discovery cohort and we therefore examined whether those with depression had a later or 252 

earlier onset of menopause compared to controls. This was conducted in UK Biobank and GS:SFHS 253 
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using unrelated individuals by applying the same criteria as described previously to identify 254 

relatedness. In UK Biobank, a linear regression was conducted to compare the age of menopause 255 

(Data-Field: 3581) in the CIDI-SF depression cases with controls covarying for the age when attending 256 

assessment centre (Data-Field: 21003). Age of attending assessment centre was fitted as a covariate 257 

as it was associated with age of menopause (beta = 0.12, standard error = 4.92 × 10-3, P = 10-137). 258 

Individuals that reported they had not experienced menopause, were unsure whether menopause 259 

had been experienced or had undergone a hysterectomy were excluded. The latest entry for each 260 

individual, at either the Initial Assessment (2006-2010), Repeat Assessment (2012-2013) or Imaging 261 

visit (2014+), was used to record the age of menopause and age when attending assessment centre. 262 

Individuals that had an age at onset of depression (Data-Field: 20433) that was two years prior to or 263 

after the age of menopause were classified as controls. In GS:SFHS, a linear regression was also used 264 

to compare the age of menopause in MDD cases and controls covarying for age when attending 265 

assessment centre. Individuals that had a self-reported age at onset of first episode of MDD [27] 266 

obtained during the Structured Clinical Interview that was two years prior to or after the age of 267 

menopause were classified as controls. GS:SFHS individuals that reported they had not experienced 268 

menopause, had a hysterectomy or whose ovaries had been removed were excluded. 269 

Results 270 

Power analyses of potential subgroups traits 271 

To determine whether there was sufficient power (> 0.8) to detect a subgroup and identify the 272 

optimum variant selection criterion (P < 5 × 10-8, P < 10-6 or P < 10-4) for each trait the BUHMBOX 273 

power calculation test v0.1 [14] was used. The results of the power analysis for detecting a subgroup 274 

for 25 available traits within the two depression definitions are provided in Table 1. Obesity 1 and 275 

Obesity 3 were from the same study [35] and were highly correlated (rg = 0.942, standard error = 276 

0.045) and therefore only the trait providing greatest power (Obesity 3) was selected to be tested as 277 
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a subgroup. The same approach was used for the Squamous Cell Lung Cancer and Lung Cancer traits 278 

with only Squamous Cell Lung Cancer selected for analysis. 279 

Ten traits had power > 0.8 across both the CIDI-SF depression and broad depression definitions: 280 

Schizophrenia [36], Bipolar Disorder [37], Autism Spectrum Disorder [38], Anorexia Nervosa [39], 281 

Coronary Artery Disease [40], Crohn’s Disease [41], Inflammatory Bowel Disease [42], Obesity 3 [35], 282 

Age of Natural Menopause [43], and Squamous Cell Lung Cancer [44]. There was one further trait, 283 

Ever Smoked [45], that had power > 0.8 for detection of a subgroup in broad depression. 284 

Table 1. Power analysis for detecting a subgroup for 25 traits within either Composite International Diagnostic 285 
Interview Short Form (CIDI-SF) depression or broad depression in the UK Biobank discovery cohort. PubMed 286 
identifiers (PubMed ID) for the 25 traits are provided. Bold values indicate that power was > 0.8. The optimum 287 

 
 CIDI-SF depression Broad depression 

Subgroup trait PubMed ID 

Optimum 
variant 
selection 
criterion Power 

Optimum  
variant 
selection 
criterion Power 

Neuroticism 24828478 < 10-4 0.197 < 10-4 0.212 

Schizophrenia 25056061 < 10-4 1 < 10-6 1 

Bipolar Disorder 29906448 < 10-4 1 < 10-4 1 

Attention Deficit Hyperactivity Disorder 27663945 < 10-4 0.319 < 10-4 0.416 

Autism Spectrum Disorder 28540026 < 10-4 1 < 10-4 1 

Anorexia Nervosa 28494655 < 10-4 1 < 10-4 1 

Triglyceride Level 24097068 < 10-4 0.265 < 10-4 0.364 

Coronary Artery Disease 26343387 < 10-4 0.986 < 10-4 1 

Crohn's Disease 26192919 < 5 × 10-8 1 < 5 × 10-8 1 

Inflammatory Bowel Disease 28067908 < 5 × 10-8 1 < 5 × 10-8 1 

Waist to Hip Ratio 25673412 < 10-4 0.114 < 10-4 0.117 

Body Fat 26833246 < 10-4 0.257 < 10-4 0.325 

Waist Circumference 25673412 < 10-4 0.143 < 10-4 0.143 

Overweight 23563607 < 10-4 0.423 < 10-4 0.551 

Obesity 1 23563607 < 10-4 0.977 < 10-4 0.996 

Obesity 3 23563607 < 10-4 1 < 10-4 1 

Body Mass Index 25673413 < 10-4 0.135 < 10-4 0.14 

Age of Menarche 25231870 < 10-4 0.461 < 10-4 0.537 

Age of Natural Menopause 26414677 < 5 × 10-8 1 < 5 × 10-8 1 

Years of Schooling 25201988 < 10-4 0.081 < 10-4 0.108 

College Completion 25201988 < 10-4 0.602 < 10-4 0.672 

Ever Smoked 20418890 < 10-4 0.733 < 10-4 0.842 

Age of Smoking Initiation 20418890 < 10-4 0.079 < 10-4 0.069 

Squamous Cell Lung Cancer† 28604730 < 10-5 0.999 < 10-5 0.999 

Lung Cancer† 28604730 < 10-5 0.813 < 10-5 0.889 
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variant selection criterion that maximised power for the non-depression traits are provided. †Variants with P < 288 
10-4 were not publicly available for Squamous Cell Lung Cancer or Lung Cancer and so P < 10-5 was tested instead. 289 

 290 

Testing for subgroups within depression 291 

BUHMBOX v0.38 [14] was used to test ten traits for evidence of a subgroup within CIDI-SF depression 292 

and eleven traits within broad depression. The results of the subgroup analyses are provided in Table 293 

2. There was evidence of a genetic subgroup relating to age of natural menopause within CIDI-SF 294 

depression (P = 1.69 × 10-3) which remained significant after correction for multiple testing. The 47 295 

variants used to identify this subgroup are provided in Supplementary Table 3. A genetic subgroup 296 

relating to age of menopause was detected within the broad depression phenotype (P = 9.13 × 10-3), 297 

although this was not significant after correction for multiple testing. 298 

Density plots of the distributions of standardised polygenic risk scores, calculated using 47 variants 299 

with P < 10-4 for age of natural menopause, in CIDI-SF depression cases and controls with density 300 

curves of the estimates for underlying univariate normal distributions are provided in Figure 2. In CIDI-301 

SF depression cases, one normal distribution had a mean polygenic risk score of -0.11 (standard 302 

deviation = 0.75) with a second normal distribution with a mean of 0.86 (standard deviation = 0.76). 303 

The proportion of individuals in the second normal distribution was 0.11 which is potentially indicative 304 

of the proportion of case individuals in the age of menopause subgroup. Cohen’s d was greater for the 305 

two univariate distributions in CIDI-SF depression cases (1.3) than for the controls (0.5). 306 

Depression 
definition Subgroup trait 

Number of 
variants 

Depression 
cases 

Depression 
controls 

Subgroup 
P-value 

CIDI-SF Schizophrenia 1,107 1,053 2,393 0.48 

 Bipolar Disorder 441 8,027 19,146 0.54 

 Autism Spectrum Disorder 56 20,524 49,050 0.94 

 Anorexia Nervosa 180 15,233 36,519 0.96 

 Coronary Artery Disease 305 12,941 31,186 0.28 

 Crohn's Disease 62 23,233 55,940 0.31 

 Inflammatory Bowel Disease 146 19,534 46,942 0.22 

 Obesity 3 61 22,096 53,312 0.50 

 Age of Natural Menopause 47 23,592 56,764 1.69 × 10-3  

 Squamous Cell Lung Cancer 52 22,677 54,693 0.48 
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Broad Schizophrenia 184 21,451 41,109 0.30 

 Bipolar Disorder 440 11,368 21,842 0.59 

 Autism Spectrum Disorder 56 29,279 55,882 0.86 

 Anorexia Nervosa 180 21,804 41,519 0.95 

 Coronary Artery Disease 305 18,514 35,428 0.31 

 Crohn's Disease 62 33,137 63,567 0.11 

 Inflammatory Bowel Disease 146 27,948 53,235 0.12 

 Obesity 3 61 31,690 60,548 0.35 

 Age of Natural Menopause 47 33,685 64,533 9.13 × 10-3 

 Squamous Cell Lung Cancer 52 32,535 62,071 0.85 

 Ever Smoked 99 27,521 52,296 0.34 

Table 2. Evidence of a subgroup from traits tested within either Composite International Diagnostic Interview 307 
Short Form (CIDI-SF) depression or broad depression in the UK Biobank discovery cohort. The number of 308 
individuals in the UK Biobank discovery cohort classified as depression cases and depression controls is provided. 309 
The number of variants assessed is provided based on the optimum variant selection criterion for that trait. Bold 310 
values indicate significant evidence of a subgroup after Bonferroni correction for multiple testing. 311 
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 312 

Figure 2. Density plots of the distributions of polygenic risk scores for age of natural menopause in Composite 313 
International Diagnostic Interview Short Form (CIDI-SF) depression cases and controls. Overlaid density curves 314 
are used to provide estimates of underlying univariate normal distributions in cases (green) and controls 315 
(purple). 316 
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As a subgroup was observed for age of natural menopause, which is a sex-limited trait, the subgroup 317 

analysis was rerun in men and woman separately, using variants with P < 5 × 10-8. This would 318 

potentially reveal whether it was the genetic variants for age of menopause alone, regardless of sex, 319 

which indicated a depression subgroup. In males (7408 cases, 28,558 controls), there was no evidence 320 

(P = 0.186) for an age of menopause subgroup in CIDI-SF depression. In females (cases = 16,184, 321 

controls = 28,206), there remained evidence (P = 1.18 × 10-3) of an age of menopause subgroup within 322 

CIDI-SF depression. Using the mix2normal function to examine age of menopause polygenic risk scores 323 

for female depression cases estimated one normal distribution with a mean of -0.18 (standard 324 

deviation = 0.73) with a second normal distribution with a mean of 0.35 (standard deviation = 0.86) 325 

with the proportion of individuals in the first normal distribution estimated as 0.35. 326 

To replicate the age of menopause subgroup within CIDI-SF depression observed in the UK Biobank 327 

discovery cohort, we also examined the GS:SFHS, iPSYCH, UK Biobank replication and GERA cohorts. 328 

There was no evidence of a subgroup for age of natural menopause in any of the replication cohorts 329 

(P ≥ 0.05), when analysing both sexes and in the female only analysis (Table 3). The power was greater 330 

in the female only analyses compared to both sexes and this was likely due to the potential subgroup 331 

size being larger when analysing only females. 332 

Cohort Depression definition  
Number of 
variants 

Depression 
cases 

Depression 
controls 

Power Subgroup 
P-value 

GS:SFHS 
MDD 49 975 5971 0.44 0.47 

MDD (female only) 49 683 3250 0.87 0.74 

iPSYCH 
Depression 29 19644 21295 0.60 0.24 

Depression (female only) 29 13299 10362 1 0.33 

UK Biobank 
replication 

Broad Depression 44 71282 128303 1 0.17 

Broad Depression (female only) 45 45136 59251 1 0.37 

GERA 
MDD 42 4912 33902 0.92 0.47 

MDD (female only) 42 3543 19494 1 0.63 

Table 3. P-values for an age of natural menopause subgroup in depression within the Generation Scotland: 333 
Scottish Family Health Study (GS:SFHS), The Lundbeck Foundation Initiative for Integrative Psychiatric Research 334 
(iPSYCH), UK Biobank replication and the Genetic Epidemiology Research on Adult Health and Aging (GERA) 335 
cohorts. The number of variants is based on an optimum variant selection criterion of P < 5 × 10-8 for an 336 
association with age of natural menopause. Power is based on the estimated proportion of individuals in the age 337 
of natural menopause subgroup observed in the UK Biobank discovery cohort (0.11 or 0.35 in female only 338 
analysis). 339 

 340 
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Phenotypic examination of depression and age of menopause 341 

Having observed evidence for a genetic subgroup for age of natural menopause within CIDI-SF 342 

depression, we examined whether age of natural menopause differed between depression cases and 343 

controls using a linear model. To examine depression prior to onset of menopause the analysis was 344 

restricted to cases that reported depression at least two years prior to onset of menopause with age 345 

when attending assessment centre (to assess age of menopause) fitted as a covariate in both UK 346 

Biobank and GS:SFHS. In UK Biobank, the age of natural menopause in CIDI-SF depression cases (n = 347 

7312, mean = 50.24 years) was significantly later (beta = 0.34, standard error = 0.06, P = 9.92 × 10-8) 348 

than in controls (n = 21,829, mean = 50.09 years). In GS:SFHS, the age of natural menopause in MDD 349 

cases (n = 63, mean = 55.0 years) was earlier than in MDD controls (n = 533, mean 59.0), but after 350 

covarying for age of assessment the estimate was in the opposite direction (i.e. depression cases had 351 

a later age of menopause) and was not significant (beta = 0.87, standard error = 0.68, P = 0.20). 352 

 353 

Discussion 354 

Depression is a heterogeneous mental health disorder and is comorbid with many other diseases and 355 

illnesses. Over the last few years, valuable progress has been made in understanding the underlying 356 

genetic architecture of depression [11, 13, 46]. Furthermore, stratifying depression using genetic data 357 

remains a key goal within the psychiatric genetics community [47] and should lead to improved 358 

classification of mental health conditions and more efficacious treatment for patients. Machine 359 

learning [48, 49] and polygenic risk score [6, 50] approaches offer possible methods for stratification 360 

in mental health. In the current study, we used BUHMBOX [14] to identify whether traits that were 361 

genetically correlated with depression were correlated due to a subgroup, i.e. the correlation was 362 

driven by a subset of depressed individuals who had a greater genetic loading for the trait. Evidence 363 

of a subgroup within depression may provide future opportunities for stratifying the disease. 364 
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We examined 25 traits genetically correlated with depression using individuals that had completed 365 

the UK Biobank mental health questionnaire. Two definitions of depression were examined to allow a 366 

direct comparison between a stricter and a broader definition of depression. We initially conducted a 367 

power analysis to determine those correlated traits which could be reasonably tested as genetic 368 

subgroups. There were ten traits adequately powered to be tested as subgroups within CIDI-SF 369 

depression and eleven traits tested as subgroups within broad depression. A genetic subgroup for age 370 

of natural menopause was found within CIDI-SF depression after correction for multiple testing. A 371 

genetic subgroup for age of natural menopause was also found within broad depression, but this did 372 

not survive multiple testing correction. No evidence for this subgroup was found in GS:SFHS, iPSYCH, 373 

a UK Biobank replication cohort or GERA. The lack of replication could be due to Type 1 error, there 374 

could be something distinct about the UK Biobank discovery cohort, the different definitions of 375 

depression examined, or a combination of factors. 376 

From BUHMBOX, it is not directly possible to determine whether an earlier or later age of menopause 377 

led to the observed genetic subgroup. However, the phenotypic analyses conducted suggested people 378 

with depression have a later age of menopause and so for the purposes of illustrating possible 379 

explanations for this subgroup, a later age of menopause is used. Han et al. [14] suggested that 380 

subgroups could arise due to ascertainment bias, misclassification, causal relationships, or molecular 381 

subgroups. Ascertainment bias seems unlikely as that would require that a later age of menopause 382 

somehow increases the chances of individuals receiving clinical attention and obtaining a diagnosis of 383 

depression. Misclassification also seems unlikely as there is no obvious reason why individuals with a 384 

later age of menopause would be misdiagnosed as depressed. No evidence for a causal relationship 385 

in either direction (P = 0.169 for depression being causing for age of menopause and P = 0.529 for age 386 

of menopause being causal for depression) was found by Howard et al. [13] using Mendelian 387 

randomization. Molecular subtypes, where there exists a shared developmental pathway between a 388 

later age of menopause and depression, represents a potential explanation for our results and 389 

identifying this pathway could form the basis of future research. 390 
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The relationship between depression and menopause has been well studied, but with inconsistent 391 

findings [51, 52]. Studies have reported an increase in depressive symptoms during menopause [53-392 

56], but this may be due to the onset of climacteric symptoms, such as insomnia, heavy sweating, hot 393 

flashes, and irritability, rather than menopausal state [57-59]. Whereas, Kaufert et al. [60] reported 394 

that there was no effect of onset of menopause on depressive status. A meta-analysis of 14 studies 395 

found that an older age at menopause led to a lower risk of depression in later life [61]. Several shared 396 

neuroendocrine mechanisms have been proposed between menopause and depression. Failure of the 397 

gamma-aminobutyric acid A (GABAA) receptor to adapt to fluctuations in ovarian hormones due to the 398 

menopause may impact hypothalamic pituitary adrenal (HPA) axis activity [62], with dysregulation of 399 

the HPA axis associated with depression [63]. Further, oestradiol is a reproductive hormone that 400 

declines during menopause, but it also has a neuroprotective role and contributes to the maintenance 401 

of brain homeostasis [64]. A review by Rubinow et al. [65] reported that there was some evidence that 402 

oestradiol had an antidepressant effect in perimenopausal women. The role of oestradiol throughout 403 

the life course may have produced the results observed in the current study with observable effects 404 

on both depression and age of menopause. 405 

The results from the subgroup analysis suggest that there was a shared genetic component underlying 406 

both depression and age of menopause. Studies examining genetic factors relating to both menopause 407 

and mental health phenotypes have principally been focused on the estrogen receptor alpha (ESR1) 408 

gene [66], with ESR1 associated with anxiety [67], premenstrual dysphoric disorder [68], and major 409 

depressive disorder [69]. However, variants in or near the ESR1 gene were not associated with age of 410 

menopause [43] and therefore not included in the current analysis. Future research identifying genetic 411 

factors underlying shared biological mechanisms between menopause and depression may aid in 412 

developing new treatments for related mood disorders. 413 

The limitations of the current study include selection bias, whereby particular individuals are more 414 

likely to participate in population-based cohorts or complete additional assessments, such as the 415 

online mental health questionnaire. Participants of the UK Biobank are healthier and from less 416 
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deprived areas than the general population[70] and those that completed the mental health 417 

questionnaire had a lower genetic predisposition to severe depression than those who did not [71]. 418 

UK Biobank participants that either had a self-reported or a hospital diagnosis of schizophrenia or 419 

bipolar disorder were excluded in the current analysis which may limit the potential for identifying 420 

subgroups for these disorders. The replication cohorts each used different diagnostic criteria for 421 

depression and also examined slightly different sets of genetic variants, nevertheless the set of 422 

variants examined were associated with age of menopause. Over half of the traits that are genetically 423 

correlated with depression were not included in the subgroup analysis due to a lack of power (≤ 0.8). 424 

As increasing large genome-wide association studies become available, a greater number of variants 425 

will meet the required selection criteria, allowing additional traits to be tested for evidence of a 426 

subgroup within depression. 427 

Depression is both polygenic and heterogeneous and stratification of the disorder may lead to 428 

improvements in treatment outcomes. In the current study, we found that depressed individuals in 429 

the UK Biobank and GS:SFHS had a later age of menopause. This relationship may have a genetic basis 430 

with age of natural menopause found to form a subgroup within UK Biobank CIDI-SF depression cases. 431 

Using genetic data to identify individuals in this subgroup may ultimately reveal more efficacious 432 

treatments for depression.  433 
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