10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

31
32
33
34
35
36
37
38
39

40

bioRxiv preprint doi: https://doi.org/10.1101/134601; this version posted October 15, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Genetic stratification of depression in UK Biobank suggests a subgroup linked to age of natural
menopause

David M. Howard*'?, Lasse Folkersen®*, Jonathan R. |. Coleman®®, Mark J. Adams?, Kylie Glanville?,
Thomas Werge>*57, Saskia P. Hagenaars'®, Buhm Han®, David Porteous®'°, Archie Campbell®*?, Toni-
Kim Clarke?, Gerome Breen®?, Patrick F. Sullivan!**** Naomi R. Wray®®, Cathryn M. Lewis*>, and

Andrew M. Mclntosh?®

Affiliations:

1Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology &
Neuroscience, King's College London, UK

2 Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
3Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Copenhagen, Denmark
4nstitute of Biological Psychiatry, Mental Health Services Capital Region of Denmark, Copenhagen,
Denmark

>NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust, London, UK

® Department of Clinical Sciences, University of Copenhagen, Copenhagen, Denmark

"Lundbeck Foundation’s Center for GeoGenetics, GLOBE Institute, University of Copenhagen,
Denmark

8 Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic
of Korea

9 Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, UK

19 Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK

1 Usher Institute for Population Health Sciences and Informatics, University of Edinburgh, Edinburgh,
UK

12 pepartment of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
13 Department of Genetics, University of North Carolina, Chapel Hill, NC, USA

14 Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA

1>Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia

18 Department of Psychology, University of Edinburgh, Edinburgh, UK

* Corresponding author: David M. Howard

Social, Genetic and Developmental Psychiatry Centre,
Institute of Psychiatry, Psychology & Neuroscience,
King's College London, UK

+44 (0)20 7848 5433

E-mail: David.Howard@kcl.ac.uk



mailto:David.Howard@kcl.ac.uk
https://doi.org/10.1101/134601
http://creativecommons.org/licenses/by-nc-nd/4.0/

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

bioRxiv preprint doi: https://doi.org/10.1101/134601; this version posted October 15, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Abstract

Depression is a common and clinically heterogeneous mental health disorder that is frequently
comorbid with other diseases and conditions. Stratification of depression may align sub-diagnoses
more closely with their underling aetiology and provide more tractable targets for research and
effective treatment. In the current study, we investigated whether genetic data could be used to
identify subgroups within people with depression using the UK Biobank. Examination of cross-locus
correlations was used to test for evidence of subgroups by examining whether there was clustering of
independent genetic variants associated with eleven other complex traits and disorders in people with
depression. We found evidence of a subgroup within depression using age of natural menopause
variants (P = 1.69 x 103) and this effect remained significant in females (P = 1.18 x 10°3), but not males
(P = 0.186). However, no evidence for this subgroup (P > 0.05) was found in Generation Scotland,
iPSYCH, a UK Biobank replication cohort or the GERA cohort. In the UK Biobank, having depression was
also associated with a later age of menopause (beta = 0.34, standard error = 0.06, P = 9.92 x 10%). A
potential age of natural menopause subgroup within depression and the association between

depression and a later age of menopause suggests that they partially share a developmental pathway.

Introduction

Depression is a common mental health disorder characterised by persistent feelings of sadness or a
loss of interest in day-to-day activities lasting for at least a two-week period. These feelings can be
accompanied by tiredness, changes in appetite, changes in sleep patterns, reduced concentration,
feelings of worthlessness or hopelessness, and thoughts of self-harm or suicide. Zimmerman et al. [1]
found that there were 170 different symptom profiles amongst 1566 participants diagnosed with
major depressive disorder from the Rhode Island MIDAS project. This variety of different symptom
profiles suggest that depression is highly heterogeneous [2]. Depression is also comorbid with many

diseases including cancer [3], cardiovascular disease [4] and other psychiatric illnesses [5].
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Stratification of depression, to address heterogeneity and comorbidity, may aid in providing valuable

aetiological insights and improve treatment efficacy.

Studies aimed at stratifying depression have examined differences between melancholic and atypical
depression [6], differences between the sexes and recurrence of the disorder [7] and used data from
other traits, such as neuroticism [8] and social contact [9] to stratify depression. Twin-based studies
[10] and genome-wide association studies [11, 12] have shown depression to be heritable and
genetically correlated with a number of other traits and disorders. This shared genetic component
could be due to pleiotropic variants shared across all individuals but could also be as a result of a
subgroup for the other trait within depression cases. For example, there is a genetic correlation of -
0.11 (standard error = 0.03) between depression and age of natural menopause [13]. If this genetic
correlation was due to pleiotropy, then several of the age of menopause variants would be carried by
most depression cases. However, if this correlation was due to a subgroup, then a greater proportion
of the age of menopause variants would only be carried by individuals in this subgroup. A subgroup
could arise where there is a causal association, a shared molecular pathway, a misclassification

between the traits, or an ascertainment bias in the diagnosis of depression.

For the current study, BUHMBOX (Breaking Up Heterogeneous Mixture Based On cross(X)-locus
correlations) [14] was used to determine whether there was evidence of a subgroup within depression
that was genetically more similar to other traits. BUHMBOX uses variants associated with a non-
depression trait to calculate weighted pairwise correlations of risk allele dosages within depression
cases and controls, adjusted for effect size and allele frequency. Where there is a subgroup amongst
depression cases that carry a greater proportion of the risk alleles for the non-depression trait, there
will be consistent positive pairwise correlations between those variants (Figure 1). BUHMBOX then

calculates a P-value based on the likelihood of the observed pairwise correlations between variants.
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90 Figure 1. Pairwise correlations between variants for (a) whole-group pleiotropy, where most
91  depression cases carry a few variants associated with a non-depression trait and (b) a subgroup within
92 depression cases (M), where just the subgroup carry many of the non-depression trait variants. A tick
93 indicates a depression case individual is a carrier of that non-depression variant.

94

95  Two definitions of depression were assessed in the UK Biobank [15], one based on the Composite
96 International Diagnostic Interview Short Form (CIDI-SF) [16] and the other based on a broader help-
97  seeking definition (broad depression) [12]. Since many traits are genetically correlated with
98  depression [13], a power calculation was performed to determine traits with sufficient power to
99  detect a subgroup. Power is determined by the number of depression cases, the size of any subgroup
100 within depression cases, the number of associated variants tested from the non-depression trait and
101  the effect sizes of these variants. We tested adequately-powered traits for evidence of a subgroup in
102  depression cases using BUHMBOX v0.38 [14]. Replication of traits forming a subgroup in depression
103  were sought in Generation Scotland: Scottish Family Health Study (GS:SFHS), The Lundbeck
104  Foundation Initiative for Integrative Psychiatric Research (iPSYCH), a UK Biobank replication cohort,

105 and the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. UK Biobank and

4
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106  GS:SFHS were used to investigate phenotypic associations between depression and traits forming a

107  subgroup.

108 Materials and Methods

109 UK Biobank discovery cohort

110  The UK Biobank is a population-based cohort of 501,726 individuals with imputed genome-wide data
111 for 93,095,623 autosomal genetic variants [15]. A genetically homogeneous sample of 462,065
112 individuals was identified using the first two principal components from a 4-means clustering
113 approach. A total of 131,790 individuals were identified as being related up to the third degree (kinship
114  coefficients > 0.044) using the KING toolset [17] and were removed from the sample. For these related
115 individuals a genomic relationship matrix was calculated to enable the identification of one individual
116  from each related group that could be reinstated. This allowed the reintroduction of 55,745 individuals

117  providing an unrelated sample of 386,020 individuals.

118 UK Biobank depression phenotypes

119 Two depression phenotypes were assessed for evidence of subgroups in UK Biobank. For the UK
120 Biobank discovery cohort, both phenotypes were restricted to only those individuals that had
121  completed the online mental health questionnaire (n = 109,049). The first phenotype analysed was
122 based on the Composite International Diagnostic Interview Short Form (CIDI-SF) [18] as used by Davis
123 et al. [16] to provide a lifetime instance measure of depression in the UK Biobank. Davis et al. [16]

124  provide a more in-depth description of this CIDI-SF phenotype, but in summary cases were defined as

125 having:

126 e at least one core symptom of depression (persistent sadness (Data-Field: 20446) or a loss of
127 interest (Data-Field: 20441)) for most or all days over a two-week period which were present
128 “most of the day” or “all of the day”.

129 e plus at least another four non-core depressive symptoms with some or a lot of impairment
130 experienced during the worst two-week period of depression or low mood.
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131  The non-core depressive symptoms that were included in this assessment of the worst episode of
132  depression were: Feelings of tiredness (Data-Field: 20449), Weight change (Data-Field: 20536), Did
133 your sleep change? (Data-Field: 20532), Difficulty concentrating (Data-Field: 20435), Feelings of
134  worthlessness (Data-Field: 20450), and Thoughts of death (Data-Field: 20437). Cases that self-
135 reported another mood disorder were excluded. Controls were determined by not having at least one
136 core symptom of depression or not endorsing at least another four non-core depressive symptoms if
137  at least one core symptom was endorsed. This provided a total of 25,721 CIDI-SF cases and 61,894

138 controls.

139 A second depression phenotype within the UK Biobank discovery cohort was also examined using the
140  broad depression definition from Howard et al. [12] with detailed information provided in that paper.
141 In summary, cases had sought help for nerves, anxiety, tension or depression from either a general
142 practitioner or a psychiatrist (Data-Field: 2090 and Data-Field: 2100), whereas controls had not. Cases
143  were supplemented with an additional 132 individuals identified as having a primary or secondary
144 International Classification of Diseases (ICD)-10 diagnosis of a depressive mood disorder from linked
145 hospital admission records (Data-Field: 41202 and Data-Field: 41204). Participants identified with
146  bipolar disorder, schizophrenia or personality disorder and those reporting a prescription for an
147  antipsychotic medication were removed. This provided a total of 36,790 broad depression cases and
148 70,304 controls. The phenotypic correlation between the CIDI-SF depression phenotype and the broad
149  depression phenotype was 0.61 with the number of cases and controls shared across the two

150  definitions shown in Supplementary Table 1.

151 Traits examined as subgroups within depression

152 We selected traits genetically correlated with depression (false discovery rate corrected, g < 0.01) in
153 Howard et al. [13] to test as subgroups within depression, which included anthropomorphic,

154 autoimmune, life course, cardiovascular and other psychiatric traits. For each trait, there was a
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155 requirement that publicly available summary statistics were available and that the UK Biobank was

156  notincluded in that study due to potential confounding effects (Supplementary Table 2).

157  The BUHMBOX power calculation test v0.1 [14] was used to determine whether there was sufficient
158 power to detect a subgroup for each depression correlated trait and to identify the optimum variant
159 selection criterion (P <5 x 108 P < 10 or P < 10%). The power calculation was conducted using the
160 CIDI-SF depression phenotype and then using the broad depression phenotype. Variants from the
161  summary statistics for each non-depression trait were examined in the UK Biobank discovery cohort.
162 Variants that had a call rate less than 0.99, were out of Hardy-Weinberg equilibrium (P < 101%), had a
163 hard call threshold less than 0.25, or had a minor allele frequency less than 0.005 were excluded.
164  BUHMBOX requires that all variants are available for all individuals and therefore individuals with a
165  call rate less than 1 were removed. To identify independently segregating variants, clumping was
166 conducted in PLINK v1.90b4 [19] using an r? value of 0.01 across a 3Mb window in either CIDI-SF or

167  broad depression control individuals, respectively.

168 For the power analysis the approach used in Han et al. [14] was followed, with 1000 simulated
169 iterations run for each trait, the proportion of individuals in the subgroup was set to 0.2 and a nominal
170  subgroup P-value of 0.05 was used. Power analyses were used to identify the optimum variant
171  selection criterion that provided the greatest power for each non-depression trait. Where power was
172 the same across variant selection criteria, the strictest variant selection criterion was selected as the
173 optimum. Variants with P < 10* were not publicly available for Squamous Cell Lung Cancer or Lung
174  Cancer and so P < 10®° was used instead. Only those traits that had a power > 0.8 (using the optimum

175  variant selection criterion) were selected to be tested for evidence of a subgroup within depression.

176  Testing for subgroups within depression

177 For the traits that had power > 0.8, variants meeting the optimum variant selection criterion were
178  extracted from the UK Biobank discovery cohort. The same quality control thresholds and method to

179  identify independently segregating variants as used as previously in the power analysis were applied.


https://doi.org/10.1101/134601
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/134601; this version posted October 15, 2019. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

180 BUHMBOX v0.38 [14] was used to examine shared risk alleles for each non-depression trait within
181  CIDI-SF depression and broad depression. BUHMBOX uses the positive correlations between risk allele
182  dosages in cases to determine whether any sharing of risk alleles is driven by all individuals (whole-
183  group pleiotropy) or by a subset of individuals (Figure 1). The likelihood of observing such positive
184 correlations are used to determine the subgroup P-values. The BUHMBOX software and manual are

185 freely downloadable from http://software.broadinstitute.org/mpg/buhmbox/.

186 Sex, age, genotyping array and the first 20 principal components were fitted as covariates in the
187 subgroup analysis. Bonferroni correction was used to account for the multiple testing of non-
188  depression traits, with P-values < 5 x 103 (0.05/10) or < 4.5 x 103 (0.05/11) deemed significant for
189  CIDI-SF or broad depression, respectively. No multiple testing correction was applied for the two

190  depression definitions analysed.

191 BUHMBOX calculates and outputs polygenic risk scores for each individual based on the summary
192  statistics provided. If a subgroup for a trait exists, as in Figure 1b, then potentially this subgroup would
193 carry a greater number of these variants compared to the non-subgroup depression cases and
194  therefore a binomial distribution would exist within the polygenic risk scores of cases. To examine
195  whether the standardised distributions of polygenic risk scores for non-depression traits in depression
196  cases and controls could be explained by two univariate normal distributions the mix2normal function
197  fromthe VGAM package [20] in R v3.5.2 was used. The use of polygenic risk scores provides additional

198  supporting evidence of a subgroup and provides an estimation of the size of any subgroup.

199 Replication of significant subgroups within depression

200  Traits that showed significant evidence of forming a subgroup for depression in the UK Biobank
201 discovery cohort were re-examined in independent cohorts: Generation Scotland: Scottish Family
202 Health Study (GS:SFHS), The Lundbeck Foundation Initiative for Integrative Psychiatric Research
203 (iPSYCH), a UK Biobank replication cohort, and the Genetic Epidemiology Research on Adult Health

204  and Aging (GERA) cohort. In each of the replication cohorts, individuals were removed if they had a
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205 variant call rate less than 1 and variants were removed if they had a call rate less than 0.99, were out

206  of Hardy-Weinberg equilibrium (P < 10'°) or had a minor allele frequency less than 0.005.

207 The family and population-based GS:SFHS cohort [21] consisted of 23,960 individuals, of whom 20,195
208  were genotyped and subsequently imputed [22] providing a total of 8,633,288 variants for 20,032
209 individuals (11,085 females and 8,947 males). An unrelated subset was created using GCTA v1.22 [23]
210  ensuring that no two individuals shared a genomic relatedness of > 0.025. Individuals were removed
211 if they were identified as population outliers [24] or had participated in UK Biobank (using a checksum-
212 based approach [25]). Sex, age and the first 20 principal components were fitted as covariates in the
213 subgroup tests. A diagnosis of major depressive disorder (MDD) was made using two initial screening
214  questions and the Structured Clinical Interview for the Diagnostic and Statistical Manual of Mental
215 Disorders [26] and has been described previously in Fernandez-Pujals et al. [27]. Using record linkage
216 to the Scottish Morbidity Record, we removed 1,072 controls who had attended at least one
217  psychiatry outpatient clinic. Using the psychiatric inpatient records, we identified 47 MDD cases who
218  were also diagnosed with bipolar disorder or schizophrenia and these individuals were excluded. This
219 provided a total of 975 MDD cases and 5,971 controls. These participants provided prior consent for

220 their anonymised data to be linked to medical records.

221 iPSYCH is a case-control sample with genotyping data collected for 77,639 individuals after quality
222 control. The iPSYCH sample was phased using SHAPEIT3 [28] and imputed using Impute2 [29] using
223  the 1000 genomes phase 3 data [30]. An unrelated subsample was identified using the KING toolset
224  [17] with second degree relatives or closer excluded. Sex, age, genotyping array and the first 20
225 principal components were fitted as covariates in the subgroup tests. Depression status was
226  ascertained from in- and out- patient hospital records with controls screened to ensure they had no
227 other psychiatric disorders. This provided a total of 19,644 cases and 21,295 controls. Further detailed

228 information on the iPSYCH sample is available in Pedersen et al. [31].
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229  The UK Biobank discovery sample consisted of only those individuals that completed the mental health
230  questionnaire. Therefore, the individuals that did not complete the questionnaire were used as an
231 independent replication cohort. For these individuals only the broad depression definition could be
232 assessed and applying the same quality control criteria used in the UK Biobank discovery cohort

233 resulted in 71,282 broad depression cases and 128,303 controls.

234  The GERA cohort is a genotyped subsample of 78,419 participants from the Kaiser Permanente
235 Medical Care Plan, Northern California Region (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-
236 bin/study.cgi?study_id=phs000674.v3.p3). GERA was genotyped using custom designed Affymetrix
237  Axiom arrays [32] before being phased with SHAPEIT v2.5 [33] and imputed with IMPUTE2 v2.3.1 [29]
238  using the 1000 Genomes Project [30] as the reference panel. GERA is a mixed ancestry cohort [34] and
239  in the current analysis only those individuals with European ancestry were examined with related
240  individuals up to the third degree removed. Sex, age and the first 10 principal components were fitted
241  as covariates in the subgroup tests. MDD status was ascertained using ICD-9 coding from in- and out-

242 patient hospital records which identified 4,912 MDD cases and 33,902 controls.

243 During the replication analysis, the BUHMBOX power calculation test v0.1 [14] was applied assuming
244  the same estimated proportion of individuals in the subgroup and the same variant selection criterion
245  asinthe UK Biobank discovery cohort, and a nominal subgroup P-value of 0.05. BUHMBOX v0.38 [14]
246  was then used to examine whether there was evidence of a subgroup within depression cases in the
247  GS:SFHS, iPSYCH, UK Biobank replication and GERA cohorts. The power and subgroup analyses were
248  run using all individuals and then, as age of natural menopause trait generated a significant result in

249  the subgroup analysis the analyses, were run using females only.

250 Phenotypic examination of significant subgroups within depression

251  The age of natural menopause trait generated a significant result in the subgroup analysis in the UK
252 Biobank discovery cohort and we therefore examined whether those with depression had a later or

253  earlier onset of menopause compared to controls. This was conducted in UK Biobank and GS:SFHS

10
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254  using unrelated individuals by applying the same criteria as described previously to identify
255 relatedness. In UK Biobank, a linear regression was conducted to compare the age of menopause
256  (Data-Field: 3581) in the CIDI-SF depression cases with controls covarying for the age when attending
257 assessment centre (Data-Field: 21003). Age of attending assessment centre was fitted as a covariate
258  as it was associated with age of menopause (beta = 0.12, standard error = 4.92 x 103, P = 10'%¥),
259 Individuals that reported they had not experienced menopause, were unsure whether menopause
260 had been experienced or had undergone a hysterectomy were excluded. The latest entry for each
261 individual, at either the Initial Assessment (2006-2010), Repeat Assessment (2012-2013) or Imaging
262  visit (2014+), was used to record the age of menopause and age when attending assessment centre.
263 Individuals that had an age at onset of depression (Data-Field: 20433) that was two years prior to or
264  after the age of menopause were classified as controls. In GS:SFHS, a linear regression was also used
265  to compare the age of menopause in MDD cases and controls covarying for age when attending
266  assessment centre. Individuals that had a self-reported age at onset of first episode of MDD [27]
267 obtained during the Structured Clinical Interview that was two years prior to or after the age of
268 menopause were classified as controls. GS:SFHS individuals that reported they had not experienced

269  menopause, had a hysterectomy or whose ovaries had been removed were excluded.

270 Results

271 Power analyses of potential subgroups traits

272  To determine whether there was sufficient power (> 0.8) to detect a subgroup and identify the
273  optimum variant selection criterion (P < 5 x 108, P < 10°® or P < 10*) for each trait the BUHMBOX
274  power calculation test v0.1 [14] was used. The results of the power analysis for detecting a subgroup
275 for 25 available traits within the two depression definitions are provided in Table 1. Obesity 1 and
276  Obesity 3 were from the same study [35] and were highly correlated (ry = 0.942, standard error =

277  0.045) and therefore only the trait providing greatest power (Obesity 3) was selected to be tested as

11
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278  asubgroup. The same approach was used for the Squamous Cell Lung Cancer and Lung Cancer traits

279  with only Squamous Cell Lung Cancer selected for analysis.

280  Ten traits had power > 0.8 across both the CIDI-SF depression and broad depression definitions:
281 Schizophrenia [36], Bipolar Disorder [37], Autism Spectrum Disorder [38], Anorexia Nervosa [39],
282 Coronary Artery Disease [40], Crohn’s Disease [41], Inflammatory Bowel Disease [42], Obesity 3 [35],
283 Age of Natural Menopause [43], and Squamous Cell Lung Cancer [44]. There was one further trait,

284 Ever Smoked [45], that had power > 0.8 for detection of a subgroup in broad depression.

CIDI-SF depression Broad depression

Optimum Optimum

variant variant

selection selection
Subgroup trait PubMed ID criterion Power criterion Power
Neuroticism 24828478 <10* 0.197 <10% 0.212
Schizophrenia 25056061 <10* 1 <10° 1
Bipolar Disorder 29906448 <10* 1 <10* 1
Attention Deficit Hyperactivity Disorder 27663945 <10* 0.319 <10* 0.416
Autism Spectrum Disorder 28540026 <10* 1 <10% 1
Anorexia Nervosa 28494655 <10* 1 <10* 1
Triglyceride Level 24097068 <10* 0.265 <10* 0.364
Coronary Artery Disease 26343387 <10* 0.986 <10* 1
Crohn's Disease 26192919 <5x108 1 <5x108 1
Inflammatory Bowel Disease 28067908 <5x108 1 <5x108 1
Waist to Hip Ratio 25673412 <10* 0.114 <10* 0.117
Body Fat 26833246 <10* 0.257 <10* 0.325
Waist Circumference 25673412 <10* 0.143 <10* 0.143
Overweight 23563607 <10* 0.423 <10* 0.551
Obesity 1 23563607 <10* 0.977 <10% 0.996
Obesity 3 23563607 <10* 1 <10* 1
Body Mass Index 25673413 <10* 0.135 <10* 0.14
Age of Menarche 25231870 <10* 0.461 <10* 0.537
Age of Natural Menopause 26414677 <5x108 1 <5x108 1
Years of Schooling 25201988 <10* 0.081 <10* 0.108
College Completion 25201988 <10* 0.602 <10* 0.672
Ever Smoked 20418890 <10* 0.733 <10* 0.842
Age of Smoking Initiation 20418890 <10* 0.079 <10% 0.069
Squamous Cell Lung Cancert 28604730 <10° 0.999 <10° 0.999
Lung Cancert 28604730 <10° 0.813 <10° 0.889

285 Table 1. Power analysis for detecting a subgroup for 25 traits within either Composite International Diagnostic
286 Interview Short Form (CIDI-SF) depression or broad depression in the UK Biobank discovery cohort. PubMed
287 identifiers (PubMed ID) for the 25 traits are provided. Bold values indicate that power was > 0.8. The optimum
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288 variant selection criterion that maximised power for the non-depression traits are provided. tVariants with P <
289 10" were not publicly available for Squamous Cell Lung Cancer or Lung Cancer and so P < 10°° was tested instead.

290

291  Testing for subgroups within depression

292 BUHMBOX v0.38 [14] was used to test ten traits for evidence of a subgroup within CIDI-SF depression
293 and eleven traits within broad depression. The results of the subgroup analyses are provided in Table
294 2. There was evidence of a genetic subgroup relating to age of natural menopause within CIDI-SF
295 depression (P = 1.69 x 103) which remained significant after correction for multiple testing. The 47
296  variants used to identify this subgroup are provided in Supplementary Table 3. A genetic subgroup
297  relating to age of menopause was detected within the broad depression phenotype (P =9.13 x 103),

298  although this was not significant after correction for multiple testing.

299 Density plots of the distributions of standardised polygenic risk scores, calculated using 47 variants
300 with P < 10* for age of natural menopause, in CIDI-SF depression cases and controls with density
301  curves of the estimates for underlying univariate normal distributions are provided in Figure 2. In CIDI-
302 SF depression cases, one normal distribution had a mean polygenic risk score of -0.11 (standard
303  deviation = 0.75) with a second normal distribution with a mean of 0.86 (standard deviation = 0.76).
304  The proportion of individuals in the second normal distribution was 0.11 which is potentially indicative
305  of the proportion of case individuals in the age of menopause subgroup. Cohen’s d was greater for the

306  two univariate distributions in CIDI-SF depression cases (1.3) than for the controls (0.5).

Depression Number of Depression Depression  Subgroup

definition Subgroup trait variants cases controls P-value

CIDI-SF Schizophrenia 1,107 1,053 2,393 0.48
Bipolar Disorder 441 8,027 19,146 0.54
Autism Spectrum Disorder 56 20,524 49,050 0.94
Anorexia Nervosa 180 15,233 36,519 0.96
Coronary Artery Disease 305 12,941 31,186 0.28
Crohn's Disease 62 23,233 55,940 0.31
Inflammatory Bowel Disease 146 19,534 46,942 0.22
Obesity 3 61 22,096 53,312 0.50
Age of Natural Menopause 47 23,592 56,764 1.69 x 103
Squamous Cell Lung Cancer 52 22,677 54,693 0.48
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Broad Schizophrenia 184 21,451 41,109 0.30
Bipolar Disorder 440 11,368 21,842 0.59
Autism Spectrum Disorder 56 29,279 55,882 0.86
Anorexia Nervosa 180 21,804 41,519 0.95
Coronary Artery Disease 305 18,514 35,428 0.31
Crohn's Disease 62 33,137 63,567 0.11
Inflammatory Bowel Disease 146 27,948 53,235 0.12
Obesity 3 61 31,690 60,548 0.35
Age of Natural Menopause 47 33,685 64,533 9.13 x 103
Squamous Cell Lung Cancer 52 32,535 62,071 0.85
Ever Smoked 99 27,521 52,296 0.34

307 Table 2. Evidence of a subgroup from traits tested within either Composite International Diagnostic Interview
308 Short Form (CIDI-SF) depression or broad depression in the UK Biobank discovery cohort. The number of
309 individuals in the UK Biobank discovery cohort classified as depression cases and depression controls is provided.
310 The number of variants assessed is provided based on the optimum variant selection criterion for that trait. Bold
311 values indicate significant evidence of a subgroup after Bonferroni correction for multiple testing.
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Figure 2. Density plots of the distributions of polygenic risk scores for age of natural menopause in Composite
International Diagnostic Interview Short Form (CIDI-SF) depression cases and controls. Overlaid density curves
are used to provide estimates of underlying univariate normal distributions in cases (green) and controls
(purple).
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317  Asasubgroup was observed for age of natural menopause, which is a sex-limited trait, the subgroup
318  analysis was rerun in men and woman separately, using variants with P < 5 x 10%. This would
319 potentially reveal whether it was the genetic variants for age of menopause alone, regardless of sex,
320 whichindicated a depression subgroup. In males (7408 cases, 28,558 controls), there was no evidence
321 (P = 0.186) for an age of menopause subgroup in CIDI-SF depression. In females (cases = 16,184,
322 controls = 28,206), there remained evidence (P = 1.18 x 1073) of an age of menopause subgroup within
323 CIDI-SF depression. Using the mix2normal function to examine age of menopause polygenic risk scores
324  for female depression cases estimated one normal distribution with a mean of -0.18 (standard
325  deviation = 0.73) with a second normal distribution with a mean of 0.35 (standard deviation = 0.86)

326  with the proportion of individuals in the first normal distribution estimated as 0.35.

327  To replicate the age of menopause subgroup within CIDI-SF depression observed in the UK Biobank
328 discovery cohort, we also examined the GS:SFHS, iPSYCH, UK Biobank replication and GERA cohorts.
329 There was no evidence of a subgroup for age of natural menopause in any of the replication cohorts
330 (P =0.05), when analysing both sexes and in the female only analysis (Table 3). The power was greater
331 in the female only analyses compared to both sexes and this was likely due to the potential subgroup

332 size being larger when analysing only females.

Number of Depression Depression Power  Subgroup

Cohort Depression definition variants cases controls P-value
GS:SEHS MDD 49 975 5971 0.44 0.47
MDD (female only) 49 683 3250 0.87 0.74
PSYCH Depression 29 19644 21295 0.60 0.24
Depression (female only) 29 13299 10362 1 0.33
UK Biobank Broad Depression 44 71282 128303 1 0.17
replication  Broad Depression (female only) 45 45136 59251 1 0.37
MDD 42 4912 33902 0.92 0.47
GERA MDD (female only) 42 3543 19494 1 0.63

333 Table 3. P-values for an age of natural menopause subgroup in depression within the Generation Scotland:
334 Scottish Family Health Study (GS:SFHS), The Lundbeck Foundation Initiative for Integrative Psychiatric Research
335 (iPSYCH), UK Biobank replication and the Genetic Epidemiology Research on Adult Health and Aging (GERA)
336 cohorts. The number of variants is based on an optimum variant selection criterion of P < 5 x 108 for an
337 association with age of natural menopause. Power is based on the estimated proportion of individuals in the age
338 of natural menopause subgroup observed in the UK Biobank discovery cohort (0.11 or 0.35 in female only
339 analysis).

340
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341 Phenotypic examination of depression and age of menopause

342 Having observed evidence for a genetic subgroup for age of natural menopause within CIDI-SF
343  depression, we examined whether age of natural menopause differed between depression cases and
344 controls using a linear model. To examine depression prior to onset of menopause the analysis was
345 restricted to cases that reported depression at least two years prior to onset of menopause with age
346  when attending assessment centre (to assess age of menopause) fitted as a covariate in both UK
347 Biobank and GS:SFHS. In UK Biobank, the age of natural menopause in CIDI-SF depression cases (n =
348 7312, mean = 50.24 years) was significantly later (beta = 0.34, standard error = 0.06, P = 9.92 x 10®)
349  thanin controls (n = 21,829, mean = 50.09 years). In GS:SFHS, the age of natural menopause in MDD
350 cases (n = 63, mean = 55.0 years) was earlier than in MDD controls (n = 533, mean 59.0), but after
351  covarying for age of assessment the estimate was in the opposite direction (i.e. depression cases had

352  alater age of menopause) and was not significant (beta = 0.87, standard error = 0.68, P = 0.20).

353

354 Discussion

355 Depression is a heterogeneous mental health disorder and is comorbid with many other diseases and
356 illnesses. Over the last few years, valuable progress has been made in understanding the underlying
357  genetic architecture of depression [11, 13, 46]. Furthermore, stratifying depression using genetic data
358 remains a key goal within the psychiatric genetics community [47] and should lead to improved
359 classification of mental health conditions and more efficacious treatment for patients. Machine
360 learning [48, 49] and polygenic risk score [6, 50] approaches offer possible methods for stratification
361 in mental health. In the current study, we used BUHMBOX [14] to identify whether traits that were
362 genetically correlated with depression were correlated due to a subgroup, i.e. the correlation was
363 driven by a subset of depressed individuals who had a greater genetic loading for the trait. Evidence

364  of a subgroup within depression may provide future opportunities for stratifying the disease.
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365 We examined 25 traits genetically correlated with depression using individuals that had completed
366  the UK Biobank mental health questionnaire. Two definitions of depression were examined to allow a
367  direct comparison between a stricter and a broader definition of depression. We initially conducted a
368 power analysis to determine those correlated traits which could be reasonably tested as genetic
369 subgroups. There were ten traits adequately powered to be tested as subgroups within CIDI-SF
370 depression and eleven traits tested as subgroups within broad depression. A genetic subgroup for age
371 of natural menopause was found within CIDI-SF depression after correction for multiple testing. A
372  genetic subgroup for age of natural menopause was also found within broad depression, but this did
373 not survive multiple testing correction. No evidence for this subgroup was found in GS:SFHS, iPSYCH,
374  a UK Biobank replication cohort or GERA. The lack of replication could be due to Type 1 error, there
375  could be something distinct about the UK Biobank discovery cohort, the different definitions of

376 depression examined, or a combination of factors.

377 From BUHMBOX, it is not directly possible to determine whether an earlier or later age of menopause
378 led to the observed genetic subgroup. However, the phenotypic analyses conducted suggested people
379  with depression have a later age of menopause and so for the purposes of illustrating possible
380 explanations for this subgroup, a later age of menopause is used. Han et al. [14] suggested that
381 subgroups could arise due to ascertainment bias, misclassification, causal relationships, or molecular
382  subgroups. Ascertainment bias seems unlikely as that would require that a later age of menopause
383  somehow increases the chances of individuals receiving clinical attention and obtaining a diagnosis of
384  depression. Misclassification also seems unlikely as there is no obvious reason why individuals with a
385 later age of menopause would be misdiagnosed as depressed. No evidence for a causal relationship
386 in either direction (P = 0.169 for depression being causing for age of menopause and P = 0.529 for age
387  of menopause being causal for depression) was found by Howard et al. [13] using Mendelian
388 randomization. Molecular subtypes, where there exists a shared developmental pathway between a
389 later age of menopause and depression, represents a potential explanation for our results and

390 identifying this pathway could form the basis of future research.
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391 The relationship between depression and menopause has been well studied, but with inconsistent
392  findings [51, 52]. Studies have reported an increase in depressive symptoms during menopause [53-
393  56], but this may be due to the onset of climacteric symptoms, such as insomnia, heavy sweating, hot
394 flashes, and irritability, rather than menopausal state [57-59]. Whereas, Kaufert et al. [60] reported
395 that there was no effect of onset of menopause on depressive status. A meta-analysis of 14 studies
396 foundthatan older age at menopause led to a lower risk of depression in later life [61]. Several shared
397 neuroendocrine mechanisms have been proposed between menopause and depression. Failure of the
398 gamma-aminobutyric acid A (GABA,) receptor to adapt to fluctuations in ovarian hormones due to the
399 menopause may impact hypothalamic pituitary adrenal (HPA) axis activity [62], with dysregulation of
400 the HPA axis associated with depression [63]. Further, oestradiol is a reproductive hormone that
401  declines during menopause, but it also has a neuroprotective role and contributes to the maintenance
402 of brain homeostasis [64]. A review by Rubinow et al. [65] reported that there was some evidence that
403  oestradiol had an antidepressant effect in perimenopausal women. The role of oestradiol throughout
404  the life course may have produced the results observed in the current study with observable effects

405 on both depression and age of menopause.

406  The results from the subgroup analysis suggest that there was a shared genetic component underlying
407  both depression and age of menopause. Studies examining genetic factors relating to both menopause
408 and mental health phenotypes have principally been focused on the estrogen receptor alpha (ESR1)
409  gene [66], with ESR1 associated with anxiety [67], premenstrual dysphoric disorder [68], and major
410  depressive disorder [69]. However, variants in or near the ESR1 gene were not associated with age of
411 menopause [43] and therefore not included in the current analysis. Future research identifying genetic
412  factors underlying shared biological mechanisms between menopause and depression may aid in

413 developing new treatments for related mood disorders.

414  The limitations of the current study include selection bias, whereby particular individuals are more
415 likely to participate in population-based cohorts or complete additional assessments, such as the

416  online mental health questionnaire. Participants of the UK Biobank are healthier and from less
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417  deprived areas than the general population[70] and those that completed the mental health
418  questionnaire had a lower genetic predisposition to severe depression than those who did not [71].
419 UK Biobank participants that either had a self-reported or a hospital diagnosis of schizophrenia or
420  bipolar disorder were excluded in the current analysis which may limit the potential for identifying
421  subgroups for these disorders. The replication cohorts each used different diagnostic criteria for
422  depression and also examined slightly different sets of genetic variants, nevertheless the set of
423  variants examined were associated with age of menopause. Over half of the traits that are genetically
424 correlated with depression were not included in the subgroup analysis due to a lack of power (< 0.8).
425  Asincreasing large genome-wide association studies become available, a greater number of variants
426  will meet the required selection criteria, allowing additional traits to be tested for evidence of a

427  subgroup within depression.

428 Depression is both polygenic and heterogeneous and stratification of the disorder may lead to
429  improvements in treatment outcomes. In the current study, we found that depressed individuals in
430 the UK Biobank and GS:SFHS had a later age of menopause. This relationship may have a genetic basis
431 with age of natural menopause found to form a subgroup within UK Biobank CIDI-SF depression cases.
432 Using genetic data to identify individuals in this subgroup may ultimately reveal more efficacious

433  treatments for depression.
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