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Abstract 

 

Flexible interaction between brain regions enables neural systems to transfer and process 

information adaptively for goal-directed behaviors. In the current study, we investigated neural 

substrates that interact with task-evoked functional connectivity during cognitive control. We 

conducted a human fMRI study where participants selectively attended to a category of visual 

stimuli in the presence of competing distractors from another stimulus category. To study 

flexible interactions between brain regions, we performed a dynamic functional connectivity 

analysis to estimate temporal changes in connectivity strength between brain regions under 

different levels of cognitive control. Consistent with theoretical predictions, we found that 

cognitive control selectively enhances functional connectivity for prioritizing the processing of 

task-relevant information. By regressing temporal changes in connectivity strength against 

activity patterns elsewhere in the brain, we localized frontal and parietal regions that potentially 

provide top-down biasing signals for influencing, or reading information out from, task-evoked 

functional connectivity. Our results suggest that in addition to modulating local activity, fronto-

parietal regions could also exert top-down biasing signals to influence functional connectivity 

between distributed brain regions. 
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Introduction 

 

 Cognitive control refers to our ability to flexibly regulate behavior to achieve changing 

goals. It is proposed that neural systems implement cognitive control by exerting top-down 

biasing signals to adaptively modulate on-going sensorimotor functions (Miller and Cohen, 

2001). It is well established that top-down biasing signals can modulate the gain of localized 

brain activity (O'Craven et al., 1999; Treue and Trujillo, 1999), resulting in both enhancement of 

responses to task-relevant stimuli and dampening of responses to task-irrelevant stimuli 

(Gazzaley et al., 2005). These biasing signals can also modulate patterns of activity within local 

functional brain regions (Seidl et al., 2012; Nelissen et al., 2013). For example, goal-directed 

attention influences the decoding accuracy of multi-voxel patterns of activity in occipito-

temporal cortices and its tuning to attended stimuli (Serences et al., 2009; Chen et al., 2012). 

These control mechanisms can adaptively change the signal strength and signal-to-noise ratio of 

information depending on its behavioral relevance, which is proposed to resolve the competition 

among stimuli or response pathways (Desimone, 1998; Badre, 2008). The prefrontal cortex 

(PFC) is a likely source of top-down biasing signals (Miller and D'Esposito, 2005). For example, 

patients with PFC lesions showed increased distractor-related evoked responses in posterior 

cortices (Knight et al., 1999), and temporary disruption of PFC function with transcranial 

magnetic stimulation (TMS) in healthy individuals reduces the gain of stimulus-evoked 

responses and decreases the discriminability of multivariate response patterns of activity in 

posterior cortices (Higo et al., 2011; Zanto et al., 2011; Lee and D'Esposito, 2012).  

Neural systems not only support cognition through modulating localized information 

representation, but also through interactive communication between distributed brain regions 

(Van Essen et al., 1992; Friston, 2009). For example, while attending to a visual object, 

information related to elementary visual features encoded in primary visual cortex is transmitted 

to anterior ventral temporal cortices for further processing (Lerner et al., 2001). This suggests 

that cognitive control could also be achieved by adaptively regulating the information flow 

between brain regions to prioritize the transfer of task-relevant information (Botvinick et al., 

2001; Miller and Cohen, 2001). However, few studies have investigated on how biasing signals 

influence information exchange between distributed brain regions.  
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Inter-regional communication between brain regions has been hypothesized to be a key 

mechanism for brain information processing (Bullmore and Sporns, 2009), and can be quantified 

by calculating the statistical dependency between activity in different brain regions (otherwise 

known as functional connectivity). Most methods that estimate functional connectivity from 

brain imaging data, such as Pearson correlation or coherence, assume that connectivity is 

stationary across time. However, recent studies have demonstrated that patterns of functional 

connectivity not only change across time (Hutchison et al., 2013), the temporal dynamics of 

functional connectivity are modulated by alterations in attention (Shine et al., 2016a) and 

memory (Braun et al., 2015) processes. In this human fMRI study, we used a dynamic functional 

connectivity method (Shine et al., 2015) to estimate, with high temporal resolution, patterns of 

task-evoked functional interactions between primary and higher-level visual areas during 

selective attention to categories of visual stimuli. As predicted by theoretical models and 

previous findings (Miller and Cohen, 2001; Al-Aidroos et al., 2012), we hypothesized that 

cognitive control should enhance information exchange between visual areas to prioritize task-

relevant information processing. Further, by regressing the time point by time point dynamic 

functional connectivity estimates against whole brain activity, we were also able to identify 

localized regions that may putatively act as the source of top-down biasing signals that influence 

task-evoked functional connectivity patterns.  

   

 

Methods 

 

Subjects 

 

Twenty-nine healthy adults subjects were recruited for this study. Four subjects were 

excluded due to excessive head motion, thus we report data from 25 subjects (aged 18-35, mean 

= 21.22, SD = 2.44, 15 males). All subjects were right handed, had normal or corrected to normal 

vision and reported no history of a neurological or psychiatric disorder. All patients provided 

written informed consent in accordance with procedures approved by the Committee for the 

Protection of Human Subjects at the University of California, Berkeley. 
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Data Acquisition 

 

 Imaging data were acquired using a Siemens Tim/Trio 3T scanner and a 12-channel head 

coil. Structural images were acquired using a multi-echo MPRAGE sequence (TR = 2530ms; TE 

= 1.64/3.5/5.36/7.22 ms; flip angle = 7°; field of view = 256x 256, 176 sagittal slices, 1 mm3 

voxels; 2x GRAPPA acceleration). Functional images were acquired using an echo-planar 

sequence sensitive to blood oxygenated level-dependent (BOLD) contrast (TR =1500 ms; TE = 

25 ms; flip angel = 70°; field of view = 256x 256, voxel size: 4mm3 isotropic voxels with 29 

contiguous axial slices in descending order; no acceleration). Each subject completed 24 runs of 

functional scans, each run lasting 2 minutes and 33 seconds (102 volumes each, total = 2448 

volumes; total scan time approximately 75 minutes). An LCD projector projected visual stimuli 

onto a screen mounted to the head coil. Psychophysics Toolbox Version 3 was used to present 

stimuli and record responses and via a fiber-optic motor response-recording device. 

 

Experimental Task 

 

 Each subject completed 8 runs of a functional localizer task, and 16 runs of a two-factor 

experimental task (Figure 1). The localizer task was used to independently identify regions of 

interests (ROIs) for the connectivity analyses. We used pictures of human faces for localizing the 

fusiform face area (FFA; Kanwisher et al., 1997), pictures of buildings for the parahippocampal 

place area (PPA; Epstein et al., 1999), and both categories for localizing the primary visual 

cortex (V1). The two factors for the main experimental task were conditions (categorization task 

versus 1-back task) and the stimulus categories (faces versus buildings). In all tasks, subjects 

were asked to respond to sequences of pictures. In the localizer task and categorization task, 

subjects categorized pictures presented. For the 1-back task, subjects detected occasional 

repetitions of one stimulus category in the presence of competing stimuli from another category, 

thus requiring more cognitive control resources compared to the categorization task (Gazzaley et 

al., 2005; Lee and D'Esposito, 2012). The interaction between the 1-back task and stimuli 

categories (face versus building) further manipulated behavioral relevance of the stimuli. For 

example, a face was a relevant stimulus, and a building was an irrelevant stimulus in the 1-back 

attend to face condition. 
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All tasks began with 3 seconds of initial fixation, followed by 4 task blocks (20 seconds 

each) interleaved with 3 baseline fixation blocks (20 seconds each), and a 10 seconds fixation 

block (Figure 1). Each block started with a 2 seconds initiation cue. Task blocks consisted of 12 

trials of stimuli. Each trial started with an image presented centrally on screen for 500 ms, 

immediately followed by a 1 second of fixation. For the localizer task, pictures of human faces or 

buildings were presented, and subjects were required to make a button press to identify the 

category of the picture (face or building). For the 1-back task, images presented were semi-

transparent faces overlaid on semi-transparent phase-scrambled buildings, or semi-transparent 

buildings overlaid on semi-transparent phase-scrambled faces. Subjects were instructed to attend 

to a target category (faces or buildings), and were required to make a button press to the 

occasional back-to-back repetitions of this target category. There were 2 to 4 repetitions for both 

the attended and unattended categories within each block, and the presentation sequences were 

randomized separately. For the categorization task, images were semi-transparent faces or 

buildings overlaid on semi-transparent phase-scrambled faces or buildings from the opposite 

category. The phase-scramble procedure ensured that elementary visual properties of stimuli 

used were equivalent between the 1-back and categorization tasks. Subjects were required to 

make a button press to indicate the stimulus category. Luminance for all pictures was equalized 

using the SHINE toolbox (Willenbockel et al., 2010). For all tasks, subjects used their left or 

right index finger to make the button press, and the hand order was randomized across runs. A 

feedback indicating the accuracy of responses from the previous run was given at the end of each 

run.  

 

 

Figure 1. Structure of the task 
and trial timing.  
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Data Analysis 

 

 Preprocessing. Imaging data were processed using AFNI and FSL (Cox, 1996; Smith et 

al., 2004). Functional images were slice-time and motion corrected (FSL’s slicetimer and MC-

FLIRT), co-registered to T1-weighted structural image using a boundary-based-registration 

algorithm (FSL’s FLIRT), and warped to the MNI template using FSL’s non-linear registration 

(FSL’s FNIRT). Functional data were then resampled to 2mm combining motion correction and 

atlas transformation in a single interpolation step. Data were then spatially smoothed with a 5mm 

full-width-at-half-maximum Gaussian kernel (FSL’s SUSAN). We then performed nuisance 

regression using ordinary least squares regression (AFNI’s 3dDeconvolve) with the following 

regressors: polynomial fits for removing linear drifts, six rigid-body motion parameters and its 

derivatives, averaged signal from white-matter and ventricles ROIs created using freesurfer’s 

tissue segmentation tool (Dale et al., 1999). To minimize motion confounds, we calculated 

average frame-wise displacement (FD) (Power et al., 2012), and volumes with FD > 0.2 were 

excluded from all analyses. Subjects with > 25% volumes removed were also excluded (n=4).  

 

 Regions of interets (ROIs) analyses. After preprocessing, we performed a generalized 

linear model (GLM) analysis of linear regression at each voxel, using generalized least squares 

with a voxel-wise ARMA(1,1) autocorrelation model (AFNI’s 3dREMLfit). Finite impulse 

response (FIR) basis functions were used to estimate the mean stimulus-evoked response 

amplitudes during task blocks, separately for each condition (localizers, categorize and 1-back 

conditions crossed with stimulus categories). Using data from the localizer runs, we then defined 

the FFA/PPA using the top 255 voxels (size equivalent to a 8 mm sphere) that were most 

selective for faces (face blocks > building blocks) and buildings (building blocks > faces blocks) 

within previously defined FFA/PPA ROIs (Julian et al., 2012). We defined the V1 ROI using the 

top 255 most active voxels within an anatomically defined ROI of each individual subject’s 

calcarine sulcus (Destrieux et al., 2010). To analyze differences in stimulus-evoked response 

amplitudes, for each ROI we performed a three-way within subject analysis of variance, crossing 

conditions (1-back vs. categorize), stimulus categories (faces vs. buildings) and time (21 

volumes within each task block).  
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 Functional connectivity analyses. Our goal was to localize potential sources of top-down 

biasing signals that modulate task-evoked functional connectivity patterns. Achieving this goal 

requires a method that can estimate temporal changes in connectivity patterns under different 

task conditions, which can then be used to localized regional changes in brain activity that 

covary with temporal changes in connectivity estimates. Such a method complements existing 

static functional connectivity methods that assume connectivity structure is stationary and 

invariant across time and task conditions. Thus, we utilized a dynamic functional connectivity 

metric, Multiplication of Temporal Derivatives (MTD; for details see Shine et al., 2015), to 

estimate time varying connectivity strength between V1 and PPA/FFA under task conditions. 

Prior to preforming all connectivity analyses, stimulus-evoked responses were regressed out 

from the preprocessed data, and residuals were used to assess task-evoked functional 

connectivity independent of shared variances between ROIs (Norman-Haignere et al., 2012; Cole 

et al., 2014; Gratton et al., 2016). This additional regression was performed to minimize the 

influence of mean task-related activation on task-evoked functional connectivity, while retaining 

the residual trial-by-trial fluctuations in the time-series that contributes to task-evoked functional 

connectivity. To perform MTD analysis, we first calculated the first order temporal derivatives 

(dt) of each time-series extracted from ROIs, and then normalized each data point by dividing 

each derivative by the standard deviation of the whole time-series. We then multiplied dt scores 

to calculate MTD scores between ROIs. Positive MTD scores reflect synchronized coupling 

between ROIs, whereas negative MTD scores reflect out-of-synch decoupling. Similar to a 

Pearson correlation analysis, the MTD values can be averaged across time and be interpreted as 

static functional connectivity strength, whereas the time-varying MTD scores reflect dynamic 

changes in functional connectivity. 

 Because MTD scores of a single time point could be susceptible to high-frequency noise, 

we further calculated a simple moving average on MTD scores (Shine et al., 2015). To determine 

the most effective window length for detecting task-evoked functional connectivity (i.e. 

connectivity between time-series that occurred primarily within task-blocks), we simulated time-

series (Figure 2A) that contained: (i) 1st order correlations over the entire task (task and resting 

blocks); and (ii) 2nd order correlations that occurred only during the task blocks (i.e. task 

correlations). We ran 5000 iterations of this simulation and calculated the MTD across a range of 

window lengths from 10 volumes to 100 volumes. We then determined the effect size of the 
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difference between the task-evoked and resting correlation time-series (Figure 2B). Windows 

with the length of 15 volumes showed the maximal effect size for differentiating 1st order and 2nd 

order functional connectivity. Therefore all results were presented using a smoothing window of 

15 volumes, but we also explored a range of smoothing windows (1 to 20). Importantly, MTD 

time-series for each condition can be used as additional regressors in the GLM analysis to 

localize potential sources of signals that modulate task-evoked functional connectivity patterns.  

 
Whole-brain GLM maps of each individual subject’s MTD regressors were then 

submitted to group analysis contrasting the effects of condition (1-back versus categorize) and its 

interaction with stimulus relevance (relevant stimuli, e.g., V1-FFA connectivity during attend to 

face condition, versus irrelevant stimuli, e.g., V1-FFA connectivity during attend to building 

condition). Group level analysis was performed with a linear mixed effects model at each voxel, 

using generalized least squares with a local estimate of random effects variance (AFNI’s 

3dMEMA). To correct for multiple comparisons, a Monte Carlo simulation of 5000 iterations 

was performed to identify minimal cluster size that reached a corrected family-wise error rate of 

0.05 (AFNI’s 3dClustSim). The smoothness that entered this simulation was estimated from the 

GLM model residuals, using a spatial autocorrelation function (Cox et al., 2016) implemented in 

AFNI’s 3dFWHMx (full-width-half-maximum smoothness = 8.32 mm). Cluster forming 

threshold were set as p < 0.05, and the resulting minimal cluster size was 479 contiguous 2mm3 

voxels. All unthresholded statistic maps have been uploaded to the NeuroVault database 

(http://neurovault.org/collections/2474/). We also performed seed-based connectivity analyses by 

Figure 2. Simulation for 
determining optimal smoothing 
window. (A) Simulated time-series 
that have r = 0.8 correlations for 
both task and resting blocks (1st 
order) or only during task blocks 
(2nd order). (B) Effect size of 
differentiating between 1st and 2nd 
order correlations. 
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including the mean signals extracted from FFA and PPA as additional regressors in the GLM 

model. The associated maps were submitted to group analysis using the same procedure.   

 

 Connectivity and stimulus-evoked responses. We tested the relationship between MTD 

estimates and stimulus-evoked response amplitudes by calculating its correlations across 

subjects. The amplitudes of each condition’s stimulus-evoked responses were calculated using 

area-under-the-curve of FIR estimates. We further correlated subject-by-subject seed-based 

connectivity strength estimates (Pearson correlations with FFA/PPA) from selected fronto-

parietal ROIs with stimulus-evoked response amplitudes. These ROIs were created by creating a 

5mm radius sphere centered on peak voxels in each significant spatial cluster that showed 

significant connectivity with FFA/PPA (right inferior precentral sulcus: x = 20, y = -8, z = 56; 

right insula: x = 42, y = 24, z = 0; right intraparietal sulcus: x = 26, y = -58, z = 60; left middle 

frontal: x = 18, y = -36, z = 50). 

 

 

Results 

 

Behavioral Results 

  

 Behavioral performance for the categorization task was near ceiling for both faces and 

buildings (mean accuracy for faces = 0.96, SD = 0.08; mean accuracy for buildings = 0.96, SD = 

0.06; mean RT for faces = 543 ms, SD = 99 ms; mean RT for buildings = 557 ms, SD = 109 ms). 

Accuracy for detecting repetitions in the 1-back condition was below ceiling, and no significant 

difference was found between faces and buildings (mean accuracy for faces = 0.71, SD = 0.16; 

mean accuracy for buildings = 0.74, SD = 0.16; mean RT for faces = 745 ms, SD = 112 ms; 

mean RT for buildings = 693 ms, SD = 100 ms; t-test for accuracy: t(24) = 1.07, p = 0.29; t-test 

for RT: t(24) = 7.39, p = 1.43 x 10-7 ). The accuracy for 1-back (only including repeating stimuli) 

was significantly lower when compared to the categorize task (faces: t(24) = 6.71, p = 7.27 x 10-

7; buildings: t(24) = 1.02, p =1.02 x 10-7). Similarly, reaction time for 1-back task was 

significantly slower when compared to the categorization task (faces: t(24) = 13.59, p = 7.17 x 

10-13; buildings: t(24) = 8.39, p = 1.45 x 10-8).  
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Stimulus Evoked Responses 

 

 We found increased stimulus-evoked responses in V1 for all task conditions (Figure 3A, 

main effect of factor volume: F(1,2084) = 9.38, p = 0.0022), but no significant condition by 

category interaction (F(1,2084) = 0.31, p = 0.56). We found significant condition by category 

interactions in both the FFA and PPA (Figure 3B-C; FFA: F(1,2084) = 4.21, p = 0.04; PPA: 

F(1,2084) = 4.87, p = 0.027). Specifically, averaged across time points within task blocks, faces 

elicited stronger stimulus-evoked responses in FFA compared to buildings (t(24) = 11.71, p = 

1.82 x 10-11), whereas buildings elicited a stronger responses in PPA compared to faces (t(24) = 

11.61, p = 2.18 x 10-11). Further, for both the FFA and PPA, the 1-back condition elicited 

stronger stimulus-evoked responses compared to the categorize condition (FFA: t(24) =4.29, p = 

0.00032; PPA: t(24) = 5.39, p = 1.95 x 10-5).  

 
 

Dynamic Functional Connectivity 

  

 Based on theoretical models and previous findings (Cohen and Miller, 2001; Al-Aidroos 

et al., 2012), we predicted that functional connectivity between V1 and ventral visual cortex 

should be category-specific. That is, when subjects attend to faces, functional connectivity 
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between V1 and FFA should increase compared to when they attended to buildings. In contrast, 

attention to buildings should increase connectivity between V1 and PPA when compared to 

attention to faces. Consistent with our predictions, we found that functional connectivity 

(calculated using time-averaged MTD scores) between task-related brain regions is modulated by 

cognitive control and stimuli relevance (Figure 4A). Specifically, functional connectivity 

between V1 and PPA was stronger for the 1-back attend to buildings condition compared to the 

1-back attend to faces condition (t(24) = 6.51, p = 1.18 x 10-6) and categorization conditions (1-

back buildings versus categorize faces: t(24) = 5.98, p = 4.4 x 10-6; 1-back buildings versus 

categorize buildings: t(24) = 3.27, p = 0.0032). Functional connectivity between V1 and FFA 

was significantly stronger for the 1-back attend to faces condition when compared to the 1-back 

attend to buildings condition (t(24) = 4.44, p = 0.00017) and categorize building condition (1-

back buildings versus categorize faces: t(24) = 1.98, p = 0.059 ; 1-back buildings versus 

categorize buildings: t(24) = 3.10, p = 0.003). Connectivity between V1 and FFA was stronger 

than V1 and PPA under the 1-back attend to faces condition (t(24) = 4.17, p = 0.00034). No 

significant difference was found for connectivity between V1-PPA and V1-FFA under the 1-

back attend to buildings condition (t(24) = 0.17, p = 0.86). These results were consistent across a 

range of smoothing windows we explored (Figure 4B), and further consistent with connectivity 

strength estimated using Pearson correlations (Figure 4C). Furthermore, we did not find any 

significant correlations between evoked-response amplitudes and MTD estimates. MTD 

estimates for 1-back conditions were moderately correlated with subject’s accuracy on the 1-

back task (1-back attend to face: r(24) = 0.37, p = 0.075; 1-back attend to buildings r(24) = 0.44, 

p = 0.031). 
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 To localize potential sources of top-down biasing signals for modulating task-evoked 

functional connectivity, we entered each condition’s time-varying MTD scores as additional 

regressors in the whole-brain GLM analysis and contrasted 1-back versus categorization 

conditions. We found that a distributed set of fronto-parietal regions that showed increased 
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for each condition. Single 
dots represent values 
outside of 5th and 95th 
percentiles. (B) MTD 
scores across a range of 
smoothing window sizes. 
Thick solid lines represent 
the mean MTD values of 
each condition. Shaded 
areas represent 1 SE.  (C) 
Box plots of Pearson 
correlations calculated 
between V1/FFA for 
different conditions.  
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activity that was positively associated with changes in task-evoked connectivity for processing 

task-relevant stimuli (i.e., averaging MTD estimates of V1-FFA for attend faces condition and 

V1-PPA for attend buildings conditions; Figure 5A). These regions included bilateral superior 

frontal sulcus, the left middle frontal gyrus, bilateral dorsal medial frontal cortex, bilateral 

precuneus, and bilateral intraparietal sulcus. Negative associations were found in the medial 

occipital cortex. This indicates that increased activity in these frontal and parietal regions is 

associated with increases in connectivity strength between V1 and higher order visual areas for 

processing the attended visual stimuli. No significant clusters of activation associated with 

processing of task-irrelevant stimuli were found after correcting form multiple comparisons.  

 

 
 

Seed-Based Functional Connectivity 

  

 It is possible that the fronto-parietal brain regions identified in the previous analysis were 

simultaneously interacting with FFA/PPA and V1, but not specifically modulating functional 

connectivity strength between FFA/PPA and V1. To rule out this possibility, we performed a 

t2 4

-2 -4

A

B

FFA PPA 

V1 

FFA PPA 

V1 

Regions interacting with 
changes in functional 
connectivity between V1 
and FFA/PPA

Regions that showed 
changes in functional 
connectivity with local 
FFA/PPA activity

Contrast: 1-back > categorization

Locus of 
modulation

Locus of 
modulation

Figure 5. Potential sources 
of top-down biasing 
signals. (A) Regions that 
showed significant task 
modulations in 
interactions with task-
evoked connectivity 
patterns between V1 and 
FFA/PPA. This map was 
generated using a 
smoothing window of 15 
volumes. (B) Regions that 
showed significant task-
related changes in 
functional connectivity 
with local FFA/PPA 
activity.  
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seed-based functional connectivity analysis to localize brain regions that showed task-driven 

changes in connectivity (contrasting 1-back versus categorize conditions) with FFA/PPA. In this 

analysis, we found increased connectivity with bilateral inferior precentral sulcus, the right 

inferior frontal gyrus, bilateral insular, the left intraparietal sulcus, bilateral occpito-temporal 

cortices, and the thalamus. We further found decreased connectivity with bilateral superior 

frontal sulcus, bilateral central sulcus, the dorsal medial prefrontal cortex, bilateral inferior 

parietal cortex, bilateral medial occipital cortex, bilateral superior temporal cortex, and bilateral 

medial parietal cortex (Figure 5B). Importantly, except the intraparietal sulcus, most brain 

regions that showed increased functional connectivity with FFA/PPA (Figure 5A) exhibited little 

overlap with brain regions that showed a positive association with dynamic functional 

connectivity patterns (Figure 5B). Instead, brain regions that showed decreased functional 

connectivity with FFA/PPA overlapped with brain regions that showed a positive association 

with dynamic functional connectivity patterns. No significant correlations were found between 

seed-based connectivity estimates and behavioral performance. 

 

 

Discussion 

 

In this study, we investigated the neural mechanisms underlying top-down biasing signals 

that influence task-evoked functional connectivity. Utilizing a dynamic functional connectivity 

approach that allowed us to localize regions that co-vary with temporal fluctuations in functional 

connectivity, we found that task-related changes in functional connectivity patterns interact with 

activity in several frontal and parietal regions. Our results suggest that fronto-parietal regions 

could be the source of top-down signals that bias information communication along functional 

pathways for cognitive control. 

Previous studies of patient with focal lesions or healthy individuals following TMS have 

provided ample evidence that frontal and parietal cortices provide top-down biasing signals that 

influence activity in posterior sensory cortices (i.e., Armstrong and Moore, 2007; Ruff et al., 

2008; Feredoes et al., 2011; Higo et al., 2011; Zanto et al., 2011; Lee and D'Esposito, 2012; 

Gregoriou et al., 2014; Heinen et al., 2014; Lorenc et al., 2015). For example, TMS of dorsal 

lateral prefrontal cortex (Feredoes et al., 2011), inferior frontal cortex (Lee and D’Esposito, 
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2012, Zanto et al., 2011), frontal eye fields (Heinen et al., 2014) and intraparietal sulcus (Ruff et 

al., 2008) can modulate occipito-temporal activity. In addition, stimulating the frontal cortex 

modulates the discriminability of neural population code in occipito-temporal cortices 

(Armstrong and Moore, 2007; Lee and D’Esposito, 2012; Lorenc et al., 2015). Likewise, lateral 

PFC lesions reduce the attentional effect on stimulus-evoked response amplitudes and neural 

synchrony in V4 (Gregoriou et al., 2014). In aggregate, these studies suggest that one major 

function of fronto-parietal cortices is to modulate the gain and tuning in posterior cortices in the 

service of cognitive control. These empirical findings support the theory of biased-competition 

(Desimone and Duncan, 1995), which proposes that selection of goal-relevant information in 

specialized brain regions are enhanced by top-down biasing signals.  

Our results demonstrated that another potential function of fronto-parietal cortices is to 

adaptively modulate functional connectivity between brain regions, putatively to establish signal 

pathways for transferring task-relevant information. There are at least two potential mechanisms 

that could support this function. First, top-down biasing signals emanating from fronto-parietal 

cortices could modulate neuronal oscillations between brain regions, which are proposed to 

facilitate communication via temporal coherence (Fries, 2015). It has been suggested that 

different classes of neural oscillations (i.e., alpha-, beta-, gamma-band oscillations) could be 

generated by distinct neurophysiological mechanisms (Moore et al., 2010; Wang, 2010). Neural 

oscillations are putatively controlled by neocortical inhibitory interneurons (Cardin et al., 2009; 

Vierling-Claassen et al., 2010), suggesting that top-down modulations of neural synchrony 

between brain regions may target cortical inhibitory neurons, thereby affecting brain region’s 

excitability to synaptic inputs and its communication efficacy (Lakatos et al., 2005). A second 

potential mechanism could involve fronto-parietal regions acting on the thalamus or the thalamic 

reticular nucleus (Wimmer et al., 2015), which in turn could modulate cortico-cortical 

communication. In addition to relaying information from peripheral sensory organs to the 

cerebral cortex, the thalamus has also been proposed to mediate the exchange of information 

between cortical regions through cortico-thalamic-cortical pathways (Sherman, 2016). For 

example, the pulvinar nucleus has been found to synchronize with distant visual areas according 

to attentional demands (Saalmann et al., 2012). These results suggest that the thalamus could 

receive top-down biasing signals from fronto-parietal cortices, and in turn be involved in 
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regulating information communication between cortical regions according to various cognitive 

control demands.  

Although the PFC has been proposed to support cognitive control by establishing the 

optimal route of information transfer between brain regions (Miller and Cohen, 2001), direct 

evidence has been lacking. Due to general assumptions of stationary connectivity over the course 

of an entire behavioral session, most existing studies have not examined contextual or temporal 

changes in functional connectivity under different cognitive control demands. New connectivity 

methods such as the one utilized here allowed us to provide such evidence (Al-Aidroos et al., 

2012; Shine et al., 2015; Shine et al., 2016b). Given that we removed the mean trial-evoked 

responses in our analyses, our findings are not likely driven by correlated evoked response 

patterns. However, because the method we utilized is correlational, we cannot determine the 

direction of interaction between fronto-parietal regions and task-evoked functional connectivity 

in the visual cortex. It is possible that the fronto-parietal activity we observed reflects a read out 

mechanism for selecting goal-relevant information, rather than a top-down biasing signal. To 

address this possibility, we correlated signals extracted from FFA/PPA, and observed that fronto-

parietal regions that exhibited increased static functional connectivity with FFA/PPA (Figure 5B) 

were different than the fronto-parietal regions that correlated with dynamic functional 

connectivity patterns between FFA/PPA and V1 (Figure 5A). We also found that estimates of 

dynamic functional connectivity patterns did not correlate with evoked response amplitudes, 

suggesting that mechanisms involved in local gain modulation could be dissociable from those 

from modulating task-evoked connectivity patterns between brain regions. Given previous work 

demonstrating fronto-parietal regions as the source of top-down biasing signals that modulate 

gain and tuning of activity in posterior cortical regions, we predict that these regions also provide 

a signal that can modulating task-adaptive connectivity. Future TMS or lesion studies can 

directly test this prediction.  

In summary, our results suggest that there is likely a fronto-parietal mechanism for 

modulating the synchronizability between brain regions, which compliments other mechanisms 

such as bias competition (Desimone and Duncan, 1995), noise correlation (Cohen and Maunsell, 

2009), and tuning change (Serences et al., 2009). Altogether, these mechanisms provide multiple 

means for brains to generate flexible and adaptive behaviors.  
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