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Abstract

Flexible interaction between brain regions enables neural systems to transfer and process
information adaptively for goal-directed behaviors. In the current study, we investigated neural
substrates that interact with task-evoked functional connectivity during cognitive control. We
conducted a human fMRI study where participants selectively attended to a category of visual
stimuli in the presence of competing distractors from another stimulus category. To study
flexible interactions between brain regions, we performed a dynamic functional connectivity
analysis to estimate temporal changes in connectivity strength between brain regions under
different levels of cognitive control. Consistent with theoretical predictions, we found that
cognitive control selectively enhances functional connectivity for prioritizing the processing of
task-relevant information. By regressing temporal changes in connectivity strength against
activity patterns elsewhere in the brain, we localized frontal and parietal regions that potentially
provide top-down biasing signals for influencing, or reading information out from, task-evoked
functional connectivity. Our results suggest that in addition to modulating local activity, fronto-
parietal regions could also exert top-down biasing signals to influence functional connectivity

between distributed brain regions.
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Introduction

Cognitive control refers to our ability to flexibly regulate behavior to achieve changing
goals. It is proposed that neural systems implement cognitive control by exerting top-down
biasing signals to adaptively modulate on-going sensorimotor functions (Miller and Cohen,
2001). It is well established that top-down biasing signals can modulate the gain of localized
brain activity (O'Craven et al., 1999; Treue and Trujillo, 1999), resulting in both enhancement of
responses to task-relevant stimuli and dampening of responses to task-irrelevant stimuli
(Gazzaley et al., 2005). These biasing signals can also modulate patterns of activity within local
functional brain regions (Seidl et al., 2012; Nelissen et al., 2013). For example, goal-directed
attention influences the decoding accuracy of multi-voxel patterns of activity in occipito-
temporal cortices and its tuning to attended stimuli (Serences et al., 2009; Chen et al., 2012).
These control mechanisms can adaptively change the signal strength and signal-to-noise ratio of
information depending on its behavioral relevance, which is proposed to resolve the competition
among stimuli or response pathways (Desimone, 1998; Badre, 2008). The prefrontal cortex
(PFC) is a likely source of top-down biasing signals (Miller and D'Esposito, 2005). For example,
patients with PFC lesions showed increased distractor-related evoked responses in posterior
cortices (Knight et al., 1999), and temporary disruption of PFC function with transcranial
magnetic stimulation (TMS) in healthy individuals reduces the gain of stimulus-evoked
responses and decreases the discriminability of multivariate response patterns of activity in
posterior cortices (Higo et al., 2011; Zanto et al., 2011; Lee and D'Esposito, 2012).

Neural systems not only support cognition through modulating localized information
representation, but also through interactive communication between distributed brain regions
(Van Essen et al., 1992; Friston, 2009). For example, while attending to a visual object,
information related to elementary visual features encoded in primary visual cortex is transmitted
to anterior ventral temporal cortices for further processing (Lerner et al., 2001). This suggests
that cognitive control could also be achieved by adaptively regulating the information flow
between brain regions to prioritize the transfer of task-relevant information (Botvinick et al.,
2001; Miller and Cohen, 2001). However, few studies have investigated on how biasing signals

influence information exchange between distributed brain regions.
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Inter-regional communication between brain regions has been hypothesized to be a key
mechanism for brain information processing (Bullmore and Sporns, 2009), and can be quantified
by calculating the statistical dependency between activity in different brain regions (otherwise
known as functional connectivity). Most methods that estimate functional connectivity from
brain imaging data, such as Pearson correlation or coherence, assume that connectivity is
stationary across time. However, recent studies have demonstrated that patterns of functional
connectivity not only change across time (Hutchison et al., 2013), the temporal dynamics of
functional connectivity are modulated by alterations in attention (Shine et al., 2016a) and
memory (Braun et al., 2015) processes. In this human fMRI study, we used a dynamic functional
connectivity method (Shine et al., 2015) to estimate, with high temporal resolution, patterns of
task-evoked functional interactions between primary and higher-level visual areas during
selective attention to categories of visual stimuli. As predicted by theoretical models and
previous findings (Miller and Cohen, 2001; Al-Aidroos et al., 2012), we hypothesized that
cognitive control should enhance information exchange between visual areas to prioritize task-
relevant information processing. Further, by regressing the time point by time point dynamic
functional connectivity estimates against whole brain activity, we were also able to identify
localized regions that may putatively act as the source of top-down biasing signals that influence

task-evoked functional connectivity patterns.

Methods

Subjects

Twenty-nine healthy adults subjects were recruited for this study. Four subjects were
excluded due to excessive head motion, thus we report data from 25 subjects (aged 18-35, mean
=21.22,8D =2.44, 15 males). All subjects were right handed, had normal or corrected to normal
vision and reported no history of a neurological or psychiatric disorder. All patients provided
written informed consent in accordance with procedures approved by the Committee for the

Protection of Human Subjects at the University of California, Berkeley.
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Data Acquisition

Imaging data were acquired using a Siemens Tim/Trio 3T scanner and a 12-channel head
coil. Structural images were acquired using a multi-echo MPRAGE sequence (TR = 2530ms; TE
= 1.64/3.5/5.36/7.22 ms; flip angle = 7°; field of view = 256x 256, 176 sagittal slices, 1 mm’
voxels; 2x GRAPPA acceleration). Functional images were acquired using an echo-planar
sequence sensitive to blood oxygenated level-dependent (BOLD) contrast (TR =1500 ms; TE =
25 ms; flip angel = 70°; field of view = 256x 256, voxel size: 4mm’ isotropic voxels with 29
contiguous axial slices in descending order; no acceleration). Each subject completed 24 runs of
functional scans, each run lasting 2 minutes and 33 seconds (102 volumes each, total = 2448
volumes; total scan time approximately 75 minutes). An LCD projector projected visual stimuli
onto a screen mounted to the head coil. Psychophysics Toolbox Version 3 was used to present

stimuli and record responses and via a fiber-optic motor response-recording device.

Experimental Task

Each subject completed 8 runs of a functional localizer task, and 16 runs of a two-factor
experimental task (Figure 1). The localizer task was used to independently identify regions of
interests (ROIs) for the connectivity analyses. We used pictures of human faces for localizing the
fusiform face area (FFA; Kanwisher et al., 1997), pictures of buildings for the parahippocampal
place area (PPA; Epstein et al., 1999), and both categories for localizing the primary visual
cortex (V1). The two factors for the main experimental task were conditions (categorization task
versus 1-back task) and the stimulus categories (faces versus buildings). In all tasks, subjects
were asked to respond to sequences of pictures. In the localizer task and categorization task,
subjects categorized pictures presented. For the 1-back task, subjects detected occasional
repetitions of one stimulus category in the presence of competing stimuli from another category,
thus requiring more cognitive control resources compared to the categorization task (Gazzaley et
al., 2005; Lee and D'Esposito, 2012). The interaction between the 1-back task and stimuli
categories (face versus building) further manipulated behavioral relevance of the stimuli. For
example, a face was a relevant stimulus, and a building was an irrelevant stimulus in the 1-back

attend to face condition.
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All tasks began with 3 seconds of initial fixation, followed by 4 task blocks (20 seconds
each) interleaved with 3 baseline fixation blocks (20 seconds each), and a 10 seconds fixation
block (Figure 1). Each block started with a 2 seconds initiation cue. Task blocks consisted of 12
trials of stimuli. Each trial started with an image presented centrally on screen for 500 ms,
immediately followed by a 1 second of fixation. For the localizer task, pictures of human faces or
buildings were presented, and subjects were required to make a button press to identify the
category of the picture (face or building). For the 1-back task, images presented were semi-
transparent faces overlaid on semi-transparent phase-scrambled buildings, or semi-transparent
buildings overlaid on semi-transparent phase-scrambled faces. Subjects were instructed to attend
to a target category (faces or buildings), and were required to make a button press to the
occasional back-to-back repetitions of this target category. There were 2 to 4 repetitions for both
the attended and unattended categories within each block, and the presentation sequences were
randomized separately. For the categorization task, images were semi-transparent faces or
buildings overlaid on semi-transparent phase-scrambled faces or buildings from the opposite
category. The phase-scramble procedure ensured that elementary visual properties of stimuli
used were equivalent between the 1-back and categorization tasks. Subjects were required to
make a button press to indicate the stimulus category. Luminance for all pictures was equalized
using the SHINE toolbox (Willenbockel et al., 2010). For all tasks, subjects used their left or
right index finger to make the button press, and the hand order was randomized across runs. A

feedback indicating the accuracy of responses from the previous run was given at the end of each

run.
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Data Analysis

Preprocessing. Imaging data were processed using AFNI and FSL (Cox, 1996; Smith et
al., 2004). Functional images were slice-time and motion corrected (FSL’s slicetimer and MC-
FLIRT), co-registered to T1-weighted structural image using a boundary-based-registration
algorithm (FSL’s FLIRT), and warped to the MNI template using FSL’s non-linear registration
(FSL’s FNIRT). Functional data were then resampled to 2mm combining motion correction and
atlas transformation in a single interpolation step. Data were then spatially smoothed with a Smm
full-width-at-half-maximum Gaussian kernel (FSL’s SUSAN). We then performed nuisance
regression using ordinary least squares regression (AFNI’s 3dDeconvolve) with the following
regressors: polynomial fits for removing linear drifts, six rigid-body motion parameters and its
derivatives, averaged signal from white-matter and ventricles ROIs created using freesurfer’s
tissue segmentation tool (Dale et al., 1999). To minimize motion confounds, we calculated
average frame-wise displacement (FD) (Power et al., 2012), and volumes with FD > 0.2 were

excluded from all analyses. Subjects with > 25% volumes removed were also excluded (n=4).

Regions of interets (ROIs) analyses. After preprocessing, we performed a generalized
linear model (GLM) analysis of linear regression at each voxel, using generalized least squares
with a voxel-wise ARMA(1,1) autocorrelation model (AFNI’s 3dREMLfit). Finite impulse
response (FIR) basis functions were used to estimate the mean stimulus-evoked response
amplitudes during task blocks, separately for each condition (localizers, categorize and 1-back
conditions crossed with stimulus categories). Using data from the localizer runs, we then defined
the FFA/PPA using the top 255 voxels (size equivalent to a 8 mm sphere) that were most
selective for faces (face blocks > building blocks) and buildings (building blocks > faces blocks)
within previously defined FFA/PPA ROIs (Julian et al., 2012). We defined the V1 ROI using the
top 255 most active voxels within an anatomically defined ROI of each individual subject’s
calcarine sulcus (Destrieux et al., 2010). To analyze differences in stimulus-evoked response
amplitudes, for each ROI we performed a three-way within subject analysis of variance, crossing
conditions (1-back vs. categorize), stimulus categories (faces vs. buildings) and time (21

volumes within each task block).
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Functional connectivity analyses. Our goal was to localize potential sources of top-down
biasing signals that modulate task-evoked functional connectivity patterns. Achieving this goal
requires a method that can estimate temporal changes in connectivity patterns under different
task conditions, which can then be used to localized regional changes in brain activity that
covary with temporal changes in connectivity estimates. Such a method complements existing
static functional connectivity methods that assume connectivity structure is stationary and
invariant across time and task conditions. Thus, we utilized a dynamic functional connectivity
metric, Multiplication of Temporal Derivatives (MTD; for details see Shine et al., 2015), to
estimate time varying connectivity strength between V1 and PPA/FFA under task conditions.
Prior to preforming all connectivity analyses, stimulus-evoked responses were regressed out
from the preprocessed data, and residuals were used to assess task-evoked functional
connectivity independent of shared variances between ROIs (Norman-Haignere et al., 2012; Cole
et al., 2014; Gratton et al., 2016). This additional regression was performed to minimize the
influence of mean task-related activation on task-evoked functional connectivity, while retaining
the residual trial-by-trial fluctuations in the time-series that contributes to task-evoked functional
connectivity. To perform MTD analysis, we first calculated the first order temporal derivatives
(dt) of each time-series extracted from ROIs, and then normalized each data point by dividing
each derivative by the standard deviation of the whole time-series. We then multiplied dt scores
to calculate MTD scores between ROIs. Positive MTD scores reflect synchronized coupling
between ROIs, whereas negative MTD scores reflect out-of-synch decoupling. Similar to a
Pearson correlation analysis, the MTD values can be averaged across time and be interpreted as
static functional connectivity strength, whereas the time-varying MTD scores reflect dynamic
changes in functional connectivity.

Because MTD scores of a single time point could be susceptible to high-frequency noise,
we further calculated a simple moving average on MTD scores (Shine et al., 2015). To determine
the most effective window length for detecting task-evoked functional connectivity (i.e.
connectivity between time-series that occurred primarily within task-blocks), we simulated time-
series (Figure 2A) that contained: (i) 1* order correlations over the entire task (task and resting
blocks); and (ii) 2" order correlations that occurred only during the task blocks (i.e. task
correlations). We ran 5000 iterations of this simulation and calculated the MTD across a range of

window lengths from 10 volumes to 100 volumes. We then determined the effect size of the
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difference between the task-evoked and resting correlation time-series (Figure 2B). Windows
with the length of 15 volumes showed the maximal effect size for differentiating 1 order and 2™
order functional connectivity. Therefore all results were presented using a smoothing window of
15 volumes, but we also explored a range of smoothing windows (1 to 20). Importantly, MTD
time-series for each condition can be used as additional regressors in the GLM analysis to

localize potential sources of signals that modulate task-evoked functional connectivity patterns.
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Whole-brain GLM maps of each individual subject’s MTD regressors were then
submitted to group analysis contrasting the effects of condition (1-back versus categorize) and its
interaction with stimulus relevance (relevant stimuli, e.g., V1-FFA connectivity during attend to
face condition, versus irrelevant stimuli, e.g., V1-FFA connectivity during attend to building
condition). Group level analysis was performed with a linear mixed effects model at each voxel,
using generalized least squares with a local estimate of random effects variance (AFNI’s
3dMEMA). To correct for multiple comparisons, a Monte Carlo simulation of 5000 iterations
was performed to identify minimal cluster size that reached a corrected family-wise error rate of
0.05 (AFNI’s 3dClustSim). The smoothness that entered this simulation was estimated from the
GLM model residuals, using a spatial autocorrelation function (Cox et al., 2016) implemented in
AFNI’s 3dFWHMx (full-width-half-maximum smoothness = 8.32 mm). Cluster forming
threshold were set as p < 0.05, and the resulting minimal cluster size was 479 contiguous 2mm’
voxels. All unthresholded statistic maps have been uploaded to the NeuroVault database

(http://neurovault.org/collections/2474/). We also performed seed-based connectivity analyses by
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including the mean signals extracted from FFA and PPA as additional regressors in the GLM

model. The associated maps were submitted to group analysis using the same procedure.

Connectivity and stimulus-evoked responses. We tested the relationship between MTD
estimates and stimulus-evoked response amplitudes by calculating its correlations across
subjects. The amplitudes of each condition’s stimulus-evoked responses were calculated using
area-under-the-curve of FIR estimates. We further correlated subject-by-subject seed-based
connectivity strength estimates (Pearson correlations with FFA/PPA) from selected fronto-
parietal ROIs with stimulus-evoked response amplitudes. These ROIs were created by creating a
Smm radius sphere centered on peak voxels in each significant spatial cluster that showed
significant connectivity with FFA/PPA (right inferior precentral sulcus: x =20, y = -8, z = 56;
right insula: x = 42, y = 24, z = 0; right intraparietal sulcus: x =26, y = -58, z = 60; left middle
frontal: x = 18, y =-36, z = 50).

Results

Behavioral Results

Behavioral performance for the categorization task was near ceiling for both faces and
buildings (mean accuracy for faces = 0.96, SD = 0.08; mean accuracy for buildings = 0.96, SD =
0.06; mean RT for faces = 543 ms, SD = 99 ms; mean RT for buildings = 557 ms, SD = 109 ms).
Accuracy for detecting repetitions in the 1-back condition was below ceiling, and no significant
difference was found between faces and buildings (mean accuracy for faces = 0.71, SD = 0.16;
mean accuracy for buildings = 0.74, SD = 0.16; mean RT for faces = 745 ms, SD = 112 ms;
mean RT for buildings = 693 ms, SD = 100 ms; t-test for accuracy: #(24) = 1.07, p = 0.29; t-test
for RT: #(24) = 7.39, p=1.43 x 107). The accuracy for 1-back (only including repeating stimuli)
was significantly lower when compared to the categorize task (faces: #(24) = 6.71, p=7.27 x 10°
7 buildings: #(24) = 1.02, p =1.02 x 107). Similarly, reaction time for 1-back task was
significantly slower when compared to the categorization task (faces: #(24) =13.59,p=7.17 x
107"; buildings: #(24) = 8.39, p = 1.45 x 10'®).

10
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Stimulus Evoked Responses

We found increased stimulus-evoked responses in V1 for all task conditions (Figure 3A,
main effect of factor volume: F(1,2084) =9.38, p = 0.0022), but no significant condition by
category interaction (F(1,2084) = 0.31, p = 0.56). We found significant condition by category
interactions in both the FFA and PPA (Figure 3B-C; FFA: F(1,2084) =4.21, p = 0.04; PPA:
F(1,2084) =4.87, p = 0.027). Specifically, averaged across time points within task blocks, faces
elicited stronger stimulus-evoked responses in FFA compared to buildings (t(24) = 11.71, p =
1.82 x 10™'"), whereas buildings elicited a stronger responses in PPA compared to faces (t(24) =
11.61,p=2.18x 10'“). Further, for both the FFA and PPA, the 1-back condition elicited
stronger stimulus-evoked responses compared to the categorize condition (FFA: #24) =4.29, p =

0.00032; PPA: #(24) = 5.39, p = 1.95 x 10°).
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Dynamic Functional Connectivity

Based on theoretical models and previous findings (Cohen and Miller, 2001; Al-Aidroos
et al., 2012), we predicted that functional connectivity between V1 and ventral visual cortex

should be category-specific. That is, when subjects attend to faces, functional connectivity
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between V1 and FFA should increase compared to when they attended to buildings. In contrast,
attention to buildings should increase connectivity between V1 and PPA when compared to
attention to faces. Consistent with our predictions, we found that functional connectivity
(calculated using time-averaged MTD scores) between task-related brain regions is modulated by
cognitive control and stimuli relevance (Figure 4A). Specifically, functional connectivity
between V1 and PPA was stronger for the 1-back attend to buildings condition compared to the
1-back attend to faces condition (#(24) = 6.51, p = 1.18 x 10°) and categorization conditions (1-
back buildings versus categorize faces: #24) = 5.98, p = 4.4 x 10°; 1-back buildings versus
categorize buildings: #(24) = 3.27, p = 0.0032). Functional connectivity between V1 and FFA
was significantly stronger for the 1-back attend to faces condition when compared to the 1-back
attend to buildings condition (#24) = 4.44, p = 0.00017) and categorize building condition (1-
back buildings versus categorize faces: #24) = 1.98, p = 0.059 ; 1-back buildings versus
categorize buildings: #(24) = 3.10, p = 0.003). Connectivity between V1 and FFA was stronger
than V1 and PPA under the 1-back attend to faces condition (#24) =4.17, p = 0.00034). No
significant difference was found for connectivity between V1-PPA and V1-FFA under the 1-
back attend to buildings condition (#24) = 0.17, p = 0.86). These results were consistent across a
range of smoothing windows we explored (Figure 4B), and further consistent with connectivity
strength estimated using Pearson correlations (Figure 4C). Furthermore, we did not find any
significant correlations between evoked-response amplitudes and MTD estimates. MTD
estimates for 1-back conditions were moderately correlated with subject’s accuracy on the 1-
back task (1-back attend to face: 7(24) = 0.37, p = 0.075; 1-back attend to buildings #(24) = 0.44,
p=0.031).

12
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To localize potential sources of top-down biasing signals for modulating task-evoked
functional connectivity, we entered each condition’s time-varying MTD scores as additional
regressors in the whole-brain GLM analysis and contrasted 1-back versus categorization

conditions. We found that a distributed set of fronto-parietal regions that showed increased
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activity that was positively associated with changes in task-evoked connectivity for processing
task-relevant stimuli (i.e., averaging MTD estimates of V1-FFA for attend faces condition and
V1-PPA for attend buildings conditions; Figure 5A). These regions included bilateral superior
frontal sulcus, the left middle frontal gyrus, bilateral dorsal medial frontal cortex, bilateral
precuneus, and bilateral intraparietal sulcus. Negative associations were found in the medial
occipital cortex. This indicates that increased activity in these frontal and parietal regions is
associated with increases in connectivity strength between V1 and higher order visual areas for
processing the attended visual stimuli. No significant clusters of activation associated with

processing of task-irrelevant stimuli were found after correcting form multiple comparisons.

A Figure 5. Potential sources

Regions interacting with ‘ ﬂ ) ..
changes in functional '( O'f top down blas'lng
connectivity between V1 ‘ /\/ \\J\ ‘ signals. (A) Regions that
and FFA/PPA Y

b/J \d lsllll(‘)’(‘i"l’lelgﬁs(i)irsliifrilcant task

interactions with task-

~- -
] | Locus of Q ~J evoked connectivity
usssssass modulation -~
\ » / ) patterns between V1 and
i / FFA/PPA. This map was
generated using a

smoothing window of 15

B .

P volumes. (B) Regions that
Regions that showed | . .
changes in functional N/ showed significant task-
connectivity with local J related changes in
FFA/PPA activity - .

functional connectivity

Locus of with local FFA/PPA
modulation ’ ..
g activity.
Pa 5
2 t 4

Contrast: 1-back > categorization -_
-2 -4

Seed-Based Functional Connectivity

It is possible that the fronto-parietal brain regions identified in the previous analysis were
simultaneously interacting with FFA/PPA and V1, but not specifically modulating functional

connectivity strength between FFA/PPA and V1. To rule out this possibility, we performed a
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seed-based functional connectivity analysis to localize brain regions that showed task-driven
changes in connectivity (contrasting 1-back versus categorize conditions) with FFA/PPA. In this
analysis, we found increased connectivity with bilateral inferior precentral sulcus, the right
inferior frontal gyrus, bilateral insular, the left intraparietal sulcus, bilateral occpito-temporal
cortices, and the thalamus. We further found decreased connectivity with bilateral superior
frontal sulcus, bilateral central sulcus, the dorsal medial prefrontal cortex, bilateral inferior
parietal cortex, bilateral medial occipital cortex, bilateral superior temporal cortex, and bilateral
medial parietal cortex (Figure 5B). Importantly, except the intraparietal sulcus, most brain
regions that showed increased functional connectivity with FFA/PPA (Figure 5A) exhibited little
overlap with brain regions that showed a positive association with dynamic functional
connectivity patterns (Figure 5B). Instead, brain regions that showed decreased functional
connectivity with FFA/PPA overlapped with brain regions that showed a positive association
with dynamic functional connectivity patterns. No significant correlations were found between

seed-based connectivity estimates and behavioral performance.

Discussion

In this study, we investigated the neural mechanisms underlying top-down biasing signals
that influence task-evoked functional connectivity. Utilizing a dynamic functional connectivity
approach that allowed us to localize regions that co-vary with temporal fluctuations in functional
connectivity, we found that task-related changes in functional connectivity patterns interact with
activity in several frontal and parietal regions. Our results suggest that fronto-parietal regions
could be the source of top-down signals that bias information communication along functional
pathways for cognitive control.

Previous studies of patient with focal lesions or healthy individuals following TMS have
provided ample evidence that frontal and parietal cortices provide top-down biasing signals that
influence activity in posterior sensory cortices (i.e., Armstrong and Moore, 2007; Ruff et al.,
2008; Feredoes et al., 2011; Higo et al., 2011; Zanto et al., 2011; Lee and D'Esposito, 2012;
Gregoriou et al., 2014; Heinen et al., 2014; Lorenc et al., 2015). For example, TMS of dorsal

lateral prefrontal cortex (Feredoes et al., 2011), inferior frontal cortex (Lee and D’Esposito,
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2012, Zanto et al., 2011), frontal eye fields (Heinen et al., 2014) and intraparietal sulcus (Ruff et
al., 2008) can modulate occipito-temporal activity. In addition, stimulating the frontal cortex
modulates the discriminability of neural population code in occipito-temporal cortices
(Armstrong and Moore, 2007; Lee and D’Esposito, 2012; Lorenc et al., 2015). Likewise, lateral
PFC lesions reduce the attentional effect on stimulus-evoked response amplitudes and neural
synchrony in V4 (Gregoriou et al., 2014). In aggregate, these studies suggest that one major
function of fronto-parietal cortices is to modulate the gain and tuning in posterior cortices in the
service of cognitive control. These empirical findings support the theory of biased-competition
(Desimone and Duncan, 1995), which proposes that selection of goal-relevant information in
specialized brain regions are enhanced by top-down biasing signals.

Our results demonstrated that another potential function of fronto-parietal cortices is to
adaptively modulate functional connectivity between brain regions, putatively to establish signal
pathways for transferring task-relevant information. There are at least two potential mechanisms
that could support this function. First, top-down biasing signals emanating from fronto-parietal
cortices could modulate neuronal oscillations between brain regions, which are proposed to
facilitate communication via temporal coherence (Fries, 2015). It has been suggested that
different classes of neural oscillations (i.e., alpha-, beta-, gamma-band oscillations) could be
generated by distinct neurophysiological mechanisms (Moore et al., 2010; Wang, 2010). Neural
oscillations are putatively controlled by neocortical inhibitory interneurons (Cardin et al., 2009;
Vierling-Claassen et al., 2010), suggesting that top-down modulations of neural synchrony
between brain regions may target cortical inhibitory neurons, thereby affecting brain region’s
excitability to synaptic inputs and its communication efficacy (Lakatos et al., 2005). A second
potential mechanism could involve fronto-parietal regions acting on the thalamus or the thalamic
reticular nucleus (Wimmer et al., 2015), which in turn could modulate cortico-cortical
communication. In addition to relaying information from peripheral sensory organs to the
cerebral cortex, the thalamus has also been proposed to mediate the exchange of information
between cortical regions through cortico-thalamic-cortical pathways (Sherman, 2016). For
example, the pulvinar nucleus has been found to synchronize with distant visual areas according
to attentional demands (Saalmann et al., 2012). These results suggest that the thalamus could

receive top-down biasing signals from fronto-parietal cortices, and in turn be involved in
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regulating information communication between cortical regions according to various cognitive
control demands.

Although the PFC has been proposed to support cognitive control by establishing the
optimal route of information transfer between brain regions (Miller and Cohen, 2001), direct
evidence has been lacking. Due to general assumptions of stationary connectivity over the course
of an entire behavioral session, most existing studies have not examined contextual or temporal
changes in functional connectivity under different cognitive control demands. New connectivity
methods such as the one utilized here allowed us to provide such evidence (Al-Aidroos et al.,
2012; Shine et al., 2015; Shine et al., 2016b). Given that we removed the mean trial-evoked
responses in our analyses, our findings are not likely driven by correlated evoked response
patterns. However, because the method we utilized is correlational, we cannot determine the
direction of interaction between fronto-parietal regions and task-evoked functional connectivity
in the visual cortex. It is possible that the fronto-parietal activity we observed reflects a read out
mechanism for selecting goal-relevant information, rather than a top-down biasing signal. To
address this possibility, we correlated signals extracted from FFA/PPA, and observed that fronto-
parietal regions that exhibited increased static functional connectivity with FFA/PPA (Figure 5B)
were different than the fronto-parietal regions that correlated with dynamic functional
connectivity patterns between FFA/PPA and V1 (Figure SA). We also found that estimates of
dynamic functional connectivity patterns did not correlate with evoked response amplitudes,
suggesting that mechanisms involved in local gain modulation could be dissociable from those
from modulating task-evoked connectivity patterns between brain regions. Given previous work
demonstrating fronto-parietal regions as the source of top-down biasing signals that modulate
gain and tuning of activity in posterior cortical regions, we predict that these regions also provide
a signal that can modulating task-adaptive connectivity. Future TMS or lesion studies can
directly test this prediction.

In summary, our results suggest that there is likely a fronto-parietal mechanism for
modulating the synchronizability between brain regions, which compliments other mechanisms
such as bias competition (Desimone and Duncan, 1995), noise correlation (Cohen and Maunsell,
2009), and tuning change (Serences et al., 2009). Altogether, these mechanisms provide multiple

means for brains to generate flexible and adaptive behaviors.
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