
Beyond SNP Heritability: Polygenicity and Discoverability of Phenotypes Estimated

with a Univariate Gaussian Mixture Model

Dominic Hollanda,b,∗, Oleksandr Freid, Rahul Desikanc, Chun-Chieh Fana,e,f, Alexey A. Shadrind, Olav B.
Smelanda,d,g, V. S. Sundara,f, Paul Thompsonh, Ole A. Andreassend,g, Anders M. Dalea,b,f,i

aCenter for Multimodal Imaging and Genetics, University of California at San Diego, La Jolla, CA 92037, USA,
bDepartment of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA,

cDepartment of Radiology, University of California, San Francisco, San Francisco, CA 94158, USA,
dNORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine, University of Oslo 0424 Oslo, Norway,

eDepartment of Cognitive Sciences, University of California at San Diego, La Jolla, CA 92093, USA,
fDepartment of Radiology, University of California, San Diego, La Jolla, CA 92093, USA,
gDivision of Mental Health and Addiction, Oslo University Hospital, 0407 Oslo, Norway,

hKeck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA,
iDepartment of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA,

Abstract

Estimating the polygenicity (proportion of causally associated single nucleotide polymorphisms (SNPs)) and discover-
ability (effect size variance) of causal SNPs for human traits is currently of considerable interest. SNP-heritability is
proportional to the product of these quantities. We present a basic model, using detailed linkage disequilibrium structure
from an extensive reference panel, to estimate these quantities from genome-wide association studies (GWAS) summary
statistics. We apply the model to diverse phenotypes and validate the implementation with simulations. We find model
polygenicities ranging from ≃ 2× 10−5 to ≃ 4× 10−3, with discoverabilities similarly ranging over two orders of magni-
tude. A power analysis allows us to estimate the proportions of phenotypic variance explained additively by causal SNPs
reaching genome-wide significance at current sample sizes, and map out sample sizes required to explain larger portions
of additive SNP heritability. The model also allows for estimating residual inflation (or deflation from over-correcting of
z-scores), and assessing compatibility of replication and discovery GWAS summary statistics.
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Author Summary

There are ∼10 million common variants in the genome
of humans with European ancestry. For any particular
phenotype a number of these variants will have some causal
effect. It is of great interest to be able to quantify the
number of these causal variants and the strength of their
effect on the phenotype.

Genome wide association studies (GWAS) produce very
noisy summary statistics for the association between sub-
sets of common variants and phenotypes. For any pheno-
type, these statistics collectively are difficult to interpret,
but buried within them is the true landscape of causal ef-
fects. In this work, we posit a probability distribution for
the causal effects, and assess its validity using simulations.
Using a detailed reference panel of ∼11 million common
variants – among which only a small fraction are likely
to be causal, but allowing for non-causal variants to show
an association with the phenotype due to correlation with
causal variants – we implement an exact procedure for es-
timating the number of causal variants and their mean
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strength of association with the phenotype. We find that,
across different phenotypes, both these quantities – whose
product allows for lower bound estimates of heritability –
vary by orders of magnitude.

INTRODUCTION

The genetic components of complex human traits and dis-
eases arise from hundreds to likely many thousands of sin-
gle nucleotide polymorphisms (SNPs) [1], most of which
have weak effects. As sample sizes increase, more of the
associated SNPs are identifiable (they reach genome-wide
significance), though power for discovery varies widely acr-
oss phenotypes. Of particular interest are estimating the
proportion of common SNPs from a reference panel (poly-
genicity) involved in any particular phenotype; their ef-
fective strength of association (discoverability, or causal
effect size variance); the proportion of variation in sus-
ceptibility, or phenotypic variation, captured additively by
all common causal SNPs (approximately, the narrow sense
heritability), and the fraction of that captured by genome-
wide significant SNPs – all of which are active areas of
research [2, 3, 4, 5, 6, 7, 8, 9]. The effects of popula-
tion structure [10], combined with high polygenicity and
linkage disequilibrium (LD), leading to spurious degrees
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of SNP association, or inflation, considerably complicate
matters, and are also areas of much focus [11, 12, 13]. De-
spite these challenges, there have been recent significant
advances in the development of mathematical models of
polygenic architecture based on GWAS [14, 15]. One of
the advantages of these models is that they can be used
for power estimation in human phenotypes, enabling pre-
diction of the capabilities of future GWAS.

Here, in a unified approach explicitly taking into ac-
count LD, we present a model relying on genome-wide as-
sociation studies (GWAS) summary statistics (z-scores for
SNP associations with a phenotype [16]) to estimate poly-
genicity (π1, the proportion of causal variants in the un-
derlying reference panel of approximately 11 million SNPs
from a sample size of 503) and discoverability (σ2

β , the
causal effect size variance), as well as elevation of z-scores
due to any residual inflation of the z-scores arising from
variance distortion (σ2

0 , which for example can be induced
by cryptic relatedness), which remains a concern in large-
scale studies [10]. We estimate π1, σ2

β , and σ2
0 , by postulat-

ing a z-score probability distribution function (pdf) that
explicitly depends on them, and fitting it to the actual
distribution of GWAS z-scores.

Estimates of polygenicity and discoverability allow one
to estimate compound quantities, like narrow-sense heri-
tability captured by the SNPs [17]; to predict the power
of larger-scale GWAS to discover genome-wide significant
loci; and to understand why some phenotypes have higher
power for SNP discovery and proportion of heritability ex-
plained than other phenotypes.

In previous work [18] we presented a related model
that treated the overall effects of LD on z-scores in an
approximate way. Here we take the details of LD explic-
itly into consideration, resulting in a conceptually more
basic model to predict the distribution of z-scores. We
apply the model to multiple phenotype datasets, in each
case estimating the three model parameters and auxiliary
quantities, including the overall inflation factor λ, (tradi-
tionally referred to as genomic control [19]) and narrow
sense heritability, h2. We also perform extensive simula-
tions on genotypes with realistic LD structure in order to
validate the interpretation of the model parameters. A dis-
cussion of the relation of the present paper to other work
is provided in the Supplementary Material.

METHODS

Overview

Our basic model is a simple postulate for the distribution
of causal effects (denoted β below) [20]. Our model as-
sumes that only a fraction of all SNPs are in some sense
causally related to any given phenotype. We work with
a reference panel of approximately 11 million SNPs with
503 samples, and assume that all common causal SNPs
(minor allele frequency (MAF) > 0.002) are contained in
it. Any given GWAS will have z-scores for a subset of

these reference SNPs (we use the term “typed” below to
refer to GWAS SNPs with z-scores, whether they were di-
rectly genotyped or their genotype was imputed). When a
z-score partially involves a latent causal component (i.e.,
not pure noise), we assume that it arises through LD with
neighboring causal SNPs, or that it itself is causal.

We construct a pdf for z-scores that directly follows
from the underlying distribution of effects. For any given
typed SNP’s z-score, it is dependent on the other SNPs the
focal SNP is in LD with (SNPs that are “tagged” by the fo-
cal SNP), taking into account their LD with the focal SNP
and their heterozygosity (i.e., it depends not just on the
focal typed SNP’s total LD and heterozygosity, but also
on the distribution of neighboring reference SNPs in LD
with it and their heterozygosities). We present two ways
of constructing the model pdf for z-scores, using multi-
nomial expansion, and using convolution. The former is
perhaps more intuitive, but the latter is more numerically
tractable, yielding an exact solution, and is used here to
obtain all reported results. The problem then is finding
the three model parameters that give a maximum likeli-
hood best fit for the model’s prediction of the distribution
of z-scores to the actual distribution of z-scores. Because
we are fitting three parameters typically using &106 data
points, it is appropriate to incorporate some data reduc-
tion to facilitate the computations. To that end, we bin
the data (z-scores) into a 10×10 grid of heterozygosity-by-
total LD (having tested different grid sizes to ensure con-
vergence of results). Also, when building the LD and het-
erozygosity structures of reference SNPs, we fine-grained
the LD range (0 ≤ r2 ≤ 1), again ensuring that bins were
small enough that results were well converged. To fit the
model to the data we bin the z-scores (within each het-
erozygosity/total LD window) and calculate the multino-
mial probability for having the actual distribution of z-
scores (numbers of z-scores in the z-score bins) given the
model pdf for the distribution of z-scores, and adjusting
the model parameters using a multidimensional uncon-
strained nonlinear minimization (Nelder-Mead), so as to
maximize the likelihood of the data, given the parameters.

A visual summary of the predicted and actual distri-
bution of z-scores is obtained by making quantile-quantile
plots showing, for a wide range of significance thresholds
going well beyond genome-wide significance, the propor-
tion (x-axis) of typed SNPs exceeding any given threshold
(y-axis) in the range. It is important also to assess the
quantile-quantile sub-plots for SNPs in the heterozygosity-
by-total LD grid elements (see Supplementary Material).

With the pdf in hand, various quantities can be calcu-
lated: the number of causal SNPs; the expected genetic
effect (denoted δ below, where δ2 is the non-centrality pa-
rameter of a Chi-squared distribution) at the current sam-
ple size for a typed SNP given the SNP’s z-score and its
full LD and heterozygosity structure; the estimated SNP
heritability, h2

SNP (excluding contributions from rare ref-
erence SNPs, i.e., with MAF<0.2%); and the sample size
required to explain any percentage of that with genome-
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wide significant SNPs. The model can easily be extended
using a more complex distribution for the underlying β’s,
with multiple-component mixtures for small and large ef-
fects, and incorporating selection pressure through both
heterozygosity dependence on effect sizes and linkage dise-
quilibrium dependence on the prior probability of a SNP’s
being causal – issues we will address in future work.

The Model: Probability Distribution for z-Scores

To establish notation, we consider a bi-allelic genetic vari-
ant, i, and let βi denote the effect size of allele substitution
of that variant on a given quantitative trait. We assume
a simple additive generative model (simple linear regres-
sion, ignoring covariates) relating genotype to phenotype
[18, 21]. That is, assume a linear vector equation (no sum-
mation over repeated indices)

y = giβi + ei (1)

for phenotype vector y over N samples (mean-centered
and normalized to unit variance), mean-centered genotype
vector gi for the ith of n SNPs (vector over samples of
the additively coded number of reference alleles for the ith

variant), true fixed effect βi (regression coefficient) for the
SNP, and residual vector ei containing the effects of all the
other causal SNPs, the independent random environmen-
tal component, and random error. Variants with non-zero
fixed effect βi are said to be “causal”. For SNP i, the
estimated simple linear regression coefficient is

β̂i = gT
i y/(gT

i gi) = cov(gi, y)/var(gi), (2)

where T denotes transpose and gT
i gi/N = var(gi) = Hi is

the SNP’s heterozygosity (frequency of the heterozygous
genotype): Hi = 2pi(1 − pi) where pi is the frequency of
either of the SNP’s alleles.

Consistent with the work of others [11, 15], we assume
the causal SNPs are distributed randomly throughout the
genome (an assumption that can be relaxed when explic-
itly considering different SNP categories, but that in the
main is consistent with the additive variation explained by
a given part of the genome being proportional to the length
of DNA [22]). In a Bayesian approach, we assume that the
parameter β for a SNP has a distribution (in that specific
sense, this is similar to a random effects model), represent-
ing subjective information on β, not a distribution across
tangible populations [23]. Specifically, we posit a normal
distribution for β with variance given by a constant, σ2

β :

β ∼ N (0, σ2
β). (3)

This is also how the β are distributed across the set of
causal SNPs. Therefore, taking into account all SNPs (the
remaining ones are all null by definition), this is equivalent
to the two-component Gaussian mixture model we origi-
nally proposed [20]

β ∼ π1N (0, σ2
β) + (1 − π1)N (0, 0) (4)

where N (0, 0) is the Dirac delta function, so that consid-
ering all SNPs, the net variance is var(β) = π1σ

2
β . If there

is no LD (and assuming no source of spurious inflation),
the association z-score for a SNP with heterozygosity H
can be decomposed into a fixed effect δ and a residual ran-
dom environment and error term, ǫ ∼ N (0, 1), which is
assumed to be independent of δ [18]:

z = δ + ǫ (5)

with
δ =

√
NHβ (6)

so that

var(z) = var(δ) + var(ǫ)

≡ σ2 + 1 (7)

where
σ2 = σ2

βNH. (8)

By construction, under null, i.e., when there is no genetic
effect, δ = 0, so that var(ǫ) = 1.

If there is no source of variance distortion in the sam-
ple, but there is a source of bias in the summary statistics
for a subset of markers (e.g., the sample is composed of
two or more subpopulations with different allele frequen-
cies for a subset of markers – pure population stratification
in the sample [24]), the marginal distribution of an indi-
vidual’s genotype at any of those markers will be inflated.
The squared z-score for such a marker will then follow
a non-central Chi-square distribution (with one degree of
freedom); the non-centrality parameter will contain the
causal genetic effect, if any, but biased up or down (con-
founding or loss of power, depending on the relative sign of
the genetic effect and the SNP-specific bias term). The ef-
fect of bias shifts, arising for example due to stratification,
is nontrivial, and currently not explicitly in our model; it
is usually accounted for using standard methods [25].

Variance distortion in the distribution of z-scores can
arise from cryptic relatedness in the sample (drawn from
a population mixture with at least one subpopulation with
identical-by-descent marker alleles, but no population strat-
ification) [19]. If zu denotes the uninflated z-scores, then
the inflated z-scores are

z = σ0zu, (9)

where σ0 ≥ 1 characterizes the inflation. Thus, from Eq.
7, in the presence of inflation in the form of variance dis-
tortion

var(z) = σ2
0(σ2 + 1)

≡ σ̃2 + σ2
0

≡ σ̃2
βNH + σ2

0 (10)

where σ̃2
β ≡ σ2

0σ2
β , so that var(δ) = σ̃2 ≡ σ̃2

βNH and

ǫ ∼ N (0, σ2
0). In the presence of variance distortion one is
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dealing with inflated random variables β̃ ∼ N (0, σ̃2
β), but

we will drop the tilde on the β’s in what follows.
Since variance distortion leads to scaled z-scores [19],

then, allowing for this effect in some of the extremely large
data sets, we can assess the ability of the model to detect
this inflation by artificially inflating the z-scores (Eq. 9),
and checking that the inflated σ̂2

0 is estimated correctly
while the other parameter estimates remain unchanged.

Implicit in Eq. 8 is approximating the denominator,
1 − q2, of the χ2 statistic non-centrality parameter to be
1, where q2 is the proportion of phenotypic variance ex-
plained by the causal variant, i.e., q ≡

√
Hβ. So a more

correct δ is
δ =

√
Nq/

√
1 − q2. (11)

Taylor expanding in q and then taking the variance gives

var(δ) = σ2
βNH[1 + (15/4)σ4

βH2 + O(σ8
βH4)]. (12)

The additional terms will be vanishingly small and so do
not contribute in a distributional sense; (quasi-) Mendelian
or outlier genetic effects represent an extreme scenario
where the model is not expected to be accurate, but SNPs
for such traits are by definition easily detectable. So Eq.
8 remains valid for the polygenicity of complex traits.

Now consider the effects of LD on z-scores. The simple
linear regression coefficient estimate for typed SNP i, β̂i,
and hence the GWAS z-score, implicitly incorporates con-
tributions due to LD with neighboring causal SNPs. (A
typed SNP is a SNP with a z-score, imputed or otherwise;
generally these will compose a smaller set than that avail-
able in reference panels like 1000 Genomes used here for
calculating the LD structure of typed SNPs.) In Eq. 1,
ei =

∑
j 6=i gjβj + ε, where gj is the genotype vector for

SNP j, βj is its true regression coefficient, and ε is the
independent true environmental and error residual vector
(over the N samples). Thus, explicitly including all causal
true β’s, Eq. 2 becomes

β̂i =

∑
j gT

i gjβj

NHi
+

gT
i ε

gT
i gi

≡ β′
i + ε′i (13)

(the sum over j now includes SNP i itself). This is the sim-
ple linear regression expansion of the estimated regression
coefficient for SNP i in terms of the independent latent
(true) causal effects and the latent environmental (plus
error) component; β′

i is the effective simple linear regres-
sion expression for the true genetic effect of SNP i, with
contributions from neighboring causal SNPs mediated by
LD. Note that gT

i gj/N is simply cov(gi, gj), the covariance
between genotypes for SNPs i and j. Since correlation is
covariance normalized by the variances, β′

i in Eq. 13 can
be written as

β′
i =

∑

j

√
Hj

Hi
rijβj . (14)

where rij is the correlation between genotypes at reference
SNP j and typed SNP i. Then, from Eq. 5, the z-score for

the typed SNP’s association with the phenotype is given
by:

zi =
√

NHiβ
′
i + ǫi

=
√

N
∑

j

√
Hjrijβj + ǫi. (15)

We noted that in the absence of LD, the distribution of the
residual in Eq. 5 is assumed to be univariate normal. But
in the presence of LD (Eq. 15) there are induced correla-
tions. Letting ǫ denote the vector of residuals (with ele-
ment ǫi for SNP i, i = 1 . . . n), and M denote the (sparse)
n×n LD-r2 matrix, then, ignoring inflation, ǫ ∼ N (0,M)
[26]. Since the genotypes of two unrelated individuals are
marginally independent, this multivariate normal distribu-
tion for ǫ is contingent on the summary statistics for all
SNPs being determined from the same set of individuals,
which generally is overwhelmingly, if not in fact entirely,
the case (in the extreme, with an independent set of indi-
viduals for each SNP, M would be reduced to the identity
matrix). A limitation of the present work is that we do
not consider this complexity. This may account for the
relatively minor misfit in the simulation results for cases
of high polygenicity – see below.

Thus, for example, if the SNP itself is not causal but
is in LD with k causal SNPs that all have heterozygosity
H, and where its LD with each of these is the same, given
by some value r2 (0 < r2 ≤ 1), then σ̃2 in Eq. 10 will be
given by

σ̃2 = kr2σ̃2
βNH. (16)

For this idealized case, the marginal distribution, or pdf,
of z-scores for a set of such associated SNPs is

f1(z;N,H, σβ , σ0) = φ(z; 0, kr2σ̃2
βNH + σ2

0) (17)

where φ(·;µ, σ2) is the normal distribution with mean µ
and variance σ2, and H is shorthand for the LD and het-
erozygosity structure of such SNPs (in this case, denoting
exactly k causal SNPs with LD given by r2 and heterozy-
gosity given by H). If a proportion α of all typed SNPs
are similarly associated with the phenotype while the re-
maining proportion are all null (not causal and not in LD
with causal SNPs), then the marginal distribution for all
SNP z-scores is the Gaussian mixture

f(z) = (1 − α)φ(z; 0, σ2
0) + αf1(z), (18)

dropping the parameters for convenience.
For real genotypes, however, the LD and heterozygosity

structure is far more complicated, and of course the causal
SNPs are generally numerous and unknown. Thus, more
generally, for each typed SNP H will be a two-dimensional
histogram over LD (r2) and heterozygosity (H), each grid
element giving the number of SNPs falling within the edges
of that (r2,H) bin. Alternatively, for each typed SNP it
can be built as two one-dimensional histograms, one giving
the LD structure (counts of neighboring SNPs in each LD
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r2 bin), and the other giving, for each r2 bin, the mean
heterozygosity for those neighboring SNPs, which will be
accurate for sufficiently fine binning – within a bin, the
heterozygosities of the tagged referene SNPs wll be in a
vary narrow range. We use the latter in what follows. We
present two consistent ways of expressing the a posteri-

ori pdf for z-scores, based on multinomial expansion and
on convolution, that provide complementary views. The
multinomial approach perhaps gives a more intuitive feel
for the problem, but the convolution approach is consider-
ably more tractable numerically and is used here to obtain
all reporter results. All code used in the analyses, includ-
ing simulations, is publicly available on GitHub [27].

Model PDF: Multinomial Expansion

As in our previous work, we incorporate the model pa-
rameter π1 for the fraction of all SNPs that are causal
[18]. Additionally, we calculate the actual LD and het-
erozygosity structure for each SNP. That is, for each SNP
we build a histogram of the numbers of other SNPs in LD
with it for w equally-spaced r2-windows between r2

min and
1 where r2

min = 0.05 (approximately the noise floor for
correlation when LD is calculated from the 503 samples in
1000 Genomes), and record the mean heterozygosity for
each bin; as noted above, we use H as shorthand to repre-
sent all this. We find that w ≃ 20 is sufficient for converged
results. For any given SNP, the set of SNPs thus deter-
mined to be in LD with it constitute its LD block, with
their number given by n (LD with self is always 1, so n is
at least 1). The pdf for z-scores, given N,H, and the three
model parameters π1, σβ , σ0, will then be given by the sum
of Gaussians that are generalizations of Eq. 17 for different
combinations of numbers of causal SNPs among the w LD
windows, each Gaussian scaled by the probability of the
corresponding combination of causal SNPs among the LD
windows, i.e., by the appropriate multinomial distribution
term.

For w r2-windows, we must consider the possibilities
where the typed SNP is in LD with all possible numbers
of causal SNPs in each of these windows, or any combi-
nation thereof. There are thus w + 1 categories of SNPs:
null SNPs (which r2-windows they are in is irrelevant),
and causal SNPs, where it does matter which r2-windows
they reside in. If window i has ni SNPs (

∑w
i=1 ni = n) and

mean heterozygosity Hi, and the overall fraction of SNPs
that are causal is π1, then the probability of having simul-
taneously k0 null SNPs, k1 causal SNPs in window 1, and
so on through kw causal SNPs in window w, for a nominal
total of K causal SNPs (

∑w
i=1 ki = K and k0 = n − K),

is given by the multinomial distribution, which we denote
M(k0, ..., kw;n0, ..., nw;π1). For an LD block of n SNPs,
the prior probability, pi, for a SNP to be causal and in
window i is the product of the independent prior prob-
abilities of a SNP being causal and being in window i:
pi = π1ni/n. The prior probability of being null (regard-
less of r2-window) is simply p0 = (1−π1). The probability

of a given breakdown k0, ..., kw of the neighboring SNPs
into the w + 1 categories is then given by

M(k0, ..., kw;n0, ..., nw;π1) =
n!

k0!...kw!
pk0

0 ...pkw
w (19)

and the corresponding Gaussian is

φ(z; 0, (k1H1r
2
1 + ... + kwHwr2

w)σ̃2
βN + σ2

0). (20)

For a SNP with LD and heterozygosity structure H, the
pdf for its z-score, given N and the model parameters, is
then given by summing over all possible numbers of total
causal SNPs in LD with the SNP, and all possible distri-
butions of those causal SNPs among the w r2-windows:

pdf(z;N,H, π1, σβ , σ0) =

Kmax∑

K=0

∑

k1,...,kw

n!

k0!...kw!
pk0

0 ...pkw
w ×

φ(z; 0, (k1H1r
2
1 + ... + kwHwr2

w)σ̃2
βN + σ2

0), (21)

where Kmax is bounded above by n. Note again that H
is shorthand for the heterozygosity and linkage-disequilib-
rium structure of the SNP, giving the set {ni} (as well
as {Hi}), and hence, for a given π1, pi. Also there is the
constraint

∑w
i=1 ki = K on the second summation, and, for

all i, max(ki) = max(K,ni), though generally Kmax ≪ ni.
The number of ways of dividing K causal SNPs amongst w
LD windows is given by the binomial coefficient

(
a
b

)
, where

a ≡ K+w−1 and b ≡ w−1, so the number of terms in the
second summation grows rapidly with K and w. However,
because π1 is small (often ≤10−3), the upper bound on
the first summation over total number of potential causal
SNPs K in the LD block for the SNP can be limited to
Kmax < min(20, n), even for large blocks with n ≃ 103.
That is,

Kmax∑

K=0

∑

k1,...,kw

M(k0, ..., kw;n0, ..., nw;π1) ≃ 1. (22)

Still, the number of terms is large; e.g., for K = 10 and
w = 10 there are 92,378 terms.

For any given typed SNP (whose z-score we are trying
to predict), it is important to emphasize that the specific
LD r2 and the heterozygosity of each underlying causal
(reference) SNP tagged by it need to be taken into account,
at least in an approximate sense that can be controlled to
allow for arbitrary finessing giving converged results. This
is the purpose of our w = 20 LD-r2 windows, which in-
evitably leads to the multinomial expansion. Which win-
dow the causal SNP is in matters, leading to w + 1 SNP
categories, as noted above. Setting w = 1 would result
in only a very rough approximation for the model pdf, re-
ducing our multinomial to a binomial involving just two
categories of SNPs: null and causal, with all causal SNPs
treated the same, regardless of their LD with the tag SNP
and their heterozygosity, as is done for the “M2” and “M3”
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models in [14]. The effect of this are demonstrated in the
Supplementary Material (“Relation to Other Work”).

Model PDF: Convolution

From Eq. 15, there exists an efficient procedure that al-
lows for accurate calculation of a z-score’s a posteriori pdf
(given the SNP’s heterozygosity and LD structure, and the
phenotype’s model parameters). Any GWAS z-score is a
sum of unobserved random variables (LD-mediated con-
tributions from neighboring causal SNPs, and the additive
environmental component), and the pdf for such a compos-
ite random variable is given by the convolution of the pdfs
for the component random variables. Since convolution is
associative, and the Fourier transform of the convolution of
two functions is just the product of the individual Fourier
transforms of the two functions, one can obtain the a pos-

teriori pdf for z-scores as the inverse Fourier transform
of the product of the Fourier transforms of the individual
random variable components.

From Eq. 15 z is a sum of correlation- and hetero-
zygosity-weighted random variables {βj} and the random
variable ǫ, where {βj} denotes the set of true causal pa-
rameters for each of the SNPs in LD with the typed SNP
whose z-score is under consideration. The Fourier trans-
form F (k) of a Gaussian f(x) = c × exp(−ax2) is F (k) =
c
√

π/a × exp(−π2k2/a). From Eq. 4, for each SNP j in
LD with the typed SNP (1 ≤ j ≤ b, where b is the typed
SNP’s block size),

√
NHjrjβj ∼ π1N (0, NHjr

2
j σ̃2

β) + (1− π1)N (0, 0). (23)

The Fourier transform (with variable k – see below) of the
first term on the right hand side is

F (k) = π1exp(−2π2k2NHjr
2
j σ̃2

β), (24)

while that of the second term is simply (1 − π1). Addi-
tionally, the environmental term is ǫ ∼ N (0, σ2

0) (ignoring
LD-induced correlation, as noted earlier), and its Fourier
transform is exp(−2π2σ2

0k2). For each typed SNP, one
could construct the a posteriori pdf based on these Fourier
transforms. However, it is more practical to use a coarse-
grained representation of the data. Thus, in order to fit
the model to a data set, we bin the typed SNPs whose
z-scores comprise the data set into a two-dimensional het-
erozygosity/total LD grid (whose elements we denote “H-
L” bins), and fit the model with respect to this coarse
grid instead of with respect to every individual typed SNP
z-score; in the section “Parameter Estimation” below we
describe using a 10 × 10 grid. Additionally, for each H-
L bin the LD r2 and heterozygosity histogram structure
for each typed SNP is built, using wmax equally-spaced
r2 bins for r2

min ≤ r2 ≤ 1 (this is a change in notation
from the previous section: wmax here plays the role of w
there; in what follows, w will be used as a running index,
1 ≤ w ≤ wmax); wmax = 20 is large enough to allow for
converged results; r2

min = 0.05 is generally small enough
to capture true causal associations in weak LD while large

enough to exclude spurious contributions to the pdf aris-
ing from estimates of r2 that are non-zero due to noise.
This points up a minor limitation of the model stemming
from the small reference sample size (NR = 503 for 1000
Genomes) from which H is built. Larger NR would allow
for more precision in handling very low LD (r2 < 0.05),
but this is an issue only for situations with extremely large
σ2

β (high heritability with low polygenicity) that we do not
encounter for the 16 phenotypes we analyze here. In any
case, this can be calibrated for using simulations.

We emphasize again that setting wmax = 1 would re-
sult in only an approximation for the model pdf (see “Re-
lation to Other Work” in the Supplementary Material).

For any H-L bin with mean heterozygosity H and mean
total LD L there will be an average LD and heterozygos-
ity structure with a mean breakdown for the typed SNPs
having nw reference SNPs (not all of which necessarily are
typed SNPs, i.e., have a z-score) with LD r2 in the wth

r2 bin whose average heterozygosity is Hw. Thus, one can
re-express z-scores for an H-L bin as

z =
√

N

wmax∑

w=1



√
Hwrw

nw∑

j=0

βj



 + ǫ (25)

where βj and ǫ are unobserved random variables.
In the spirit of the discrete Fourier transform (DFT),

discretize the set of possible z-scores into the ordered set of
n (equal to a power of 2) values z1, ..., zn with equal spac-
ing between neighbors given by ∆z (zn = −z1 − ∆z, and
zn/2+1 = 0). Taking z1 = −38 allows for the minimum
p-values of 5.8 × 10−316 (near the numerical limit); with
n = 210, ∆z = 0.0742. Given ∆z, the Nyquist critical fre-
quency is fc = 1

2∆z , so we consider the Fourier transform
function for the z-score pdf at n discrete values k1, ..., kn,
with equal spacing between neighbors given by ∆k, where
k1 = −fc (kn = −k1 − ∆k, and kn/2+1 = 0; the DFT pair
∆z and ∆k are related by ∆z∆k = 1/n). Define

Aw ≡ −2π2NHwr2
wσ̃2

β . (26)

(see Eq. 24). Then the product (over r2 bins) of Fourier
transforms for the genetic contribution to z-scores, denoted
Gj ≡ G(kj), is

G(kj) =

wmax∏

w=1

(
π1exp(Awk2

j ) + (1 − π1)
)nw

. (27)

Recall that H denotes the LD and heterozygosity structure
of a particular SNP (or representative SNP in an average
sense for an H-L grid element), a shorthand for the set
of values {nw,Hw, Lw : w = 1, . . . , wmax} that character-
ize the SNP. Let M denote the set of model parameters.
The Fourier transform of the environmental contribution,
denoted Ej ≡ E(kj), is

E(kj) = exp(−2π2σ2
0k

2
j ). (28)
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Let Fz = (G1E1, ..., GnEn) denote the vector of products
of Fourier transform values, and let F−1 denote the inverse
Fourier transform operator. Then for the SNP in question,
the vector of pdf values, pdfz, for the uniformly discretized
possible z-score outcomes z1, . . . , zn described above, i.e.,
pdfz = (f1, ..., fn) where fi ≡ pdf(zi|H,M, N), is

pdfz = F−1 [Fz] . (29)

Thus, the ith element pdfzi = fi is the a posteriori prob-
ability of obtaining a z-score value zi for the SNP, given
the SNP’s LD and heterozygosity structure, the model pa-
rameters, and the sample size.

Data Preparation

For real phenotypes, we calculated SNP minor allele fre-
quency (MAF) and LD between SNPs using the 1000 Geno-
mes phase 3 data set for 503 subjects/samples of European
ancestry [28, 29, 30]. In order to carry out realistic sim-
ulations (i.e., with realistic heterozygosity and LD struc-
tures for SNPs), we used HAPGEN2 [31, 32, 33] to gen-
erate genotypes; we calculated SNP MAF and LD struc-
ture from 1000 simulated samples. We elected to use the
same intersecting set of SNPs for real data and simulation.
For HAPGEN2, we eliminated SNPs with MAF<0.002;
for 1000 Genomes, we eliminated SNPs for which the call
rate (percentage of samples with useful data) was less than
90%. This left nsnp=11,015,833 SNPs. See Supplementary
Material for further details.

We analyzed summary statistics for sixteen phenotypes
(in what follows, where sample sizes varied by SNP, we
quote the median value): (1) major depressive disorder
(Ncases = 59,851, Ncontrols = 113,154) [34]; (2) bipolar
disorder (Ncases = 20,352, Ncontrols = 31,358) [35]; (3)
schizophrenia (Ncases = 35,476, Ncontrols = 46,839) [36];
(4) coronary artery disease (Ncases = 60,801, Ncontrols

= 123,504) [37]; (5) ulcerative colitis (Ncases = 12,366,
Ncontrols = 34,915) and (6) Crohn’s disease (Ncases =
12,194, Ncontrols = 34,915) [38]; (7) late onset Alzheimer’s
disease (LOAD; Ncases = 17,008, Ncontrols = 37,154) [39]
(in the Supplementary Material we present results for a
more recent GWAS with Ncases = 71,880 and Ncontrols

= 383,378 [40]); (8) amyotrophic lateral sclerosis (ALS)
(Ncases = 12,577, Ncontrols = 23,475) [41]; (9) number
of years of formal education (N = 293,723) [42]; (10) in-
telligence (N = 262,529) [43, 44]; (11) body mass index
(N = 233,554) [45]; (12) height (N = 251,747) [46]; (13)
putamen volume (normalized by intracranial volume, N =
11,598) [47]; (14) low- (N = 89,873) and (15) high-density
lipoprotein (N = 94,295) [48]; and (16) total cholesterol
(N = 94,579) [48]. Most participants were of European
ancestry.

For height, we focused on the 2014 GWAS [46], not
the more recent 2018 GWAS [49], although we also re-
port below model results for the latter. There are issues
pertaining to population structure in the various height
GWAS [50, 51], and the 2018 GWAS is a combination of

GIANT and UKB GWAS, so some caution is warranted in
interpreting results for these data.

For the ALS GWAS data, there is very little signal out-
side chromosome 9: the data QQ plot essentially tracks the
null distribution straight line. The QQ plot for chromo-
some 9, however, shows a significant departure from the
null distribution. Of 471,607 SNPs on chromosome 9 a
subset of 273,715 have z-scores, of which 107 are genome-
wide significant, compared with 114 across the full genome.
Therefore, we restrict ALS analysis to chromosome 9.

A limitation in the current work is that we have not
taken account of imputation inaccuracy, where lower MAF
SNPs are, through lower LD, less certain. Thus, the effects
from lower MAF causal variants will be noisier than for
higher MAF variants.

Simulations

We generated genotypes for 105 unrelated simulated sam-
ples using HAPGEN2 [33]. For narrow-sense heritability
h2 equal to 0.1, 0.4, and 0.7, we considered polygenic-
ity π1 equal to 10−5, 10−4, 10−3, and 10−2. For each
of these 12 combinations, we randomly selected ncausal =
π1×nsnp “causal” SNPs and assigned them β-values drawn
from the standard normal distribution (i.e., independent
of H), with all other SNPs having β = 0. We repeated this
ten times, giving ten independent instantiations of random
vectors of β’s. Defining YG = Gβ, where G is the geno-
type matrix and β here is the vector of true coefficients
over all SNPs, the total phenotype vector is constructed
as Y =YG+ε, where the residual random vector ε for each
instantiation is drawn from a normal distribution such that
h2 = var(YG)/var(Y ). For each of the instantiations this
implicitly defines the “true” value σ2

β .

The sample simple linear regression slope, β̂, and the
Pearson correlation coefficient, r̂, are assumed to be t-
distributed. These quantities have the same t-value: t =
β̂/se(β̂) = r̂/se(r̂) = r̂

√
N − 2/

√
1 − r̂2, with correspond-

ing p-value from Student’s t cumulative distribution func-
tion (cdf) with N −2 degrees of freedom: p = 2×tcdf(−|t|,
N−2) (see Supplementary Material). Since we are not here
dealing with covariates, we calculated p from correlation,
which is slightly faster than from estimating the regression
coefficient. The t-value can be transformed to a z-value,
giving the z-score for this p: z = −Φ−1(p/2) × sign(r̂),
where Φ is the normal cdf (z and t have the same p-value).

Parameter Estimation

We randomly pruned SNPs using the threshold r2 > 0.8
to identify “synonymous” SNPs, performing ten such it-
erations. That is, for each of ten iterations, we randomly
selected a SNP (not necessarily the one with largest z-
score) to represent each subset of synonymous SNPs. For
schizophrenia, for example, pruning resulted in approxi-
mately 1.3 million SNPs in each iteration.

The postulated pdf for a SNP’s z-score depends on the
SNP’s LD and heterozygosity structure (histogram), H.
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Given the data – the set of z-scores for available SNPs, as
well as their LD and heterozygosity structure – and the
H-dependent pdf for z-scores, the objective is to find the
model parameters that best predict the distribution of z-
scores. We bin the SNPs with respect to a grid of heterozy-
gosity and total LD; for any given H-L bin there will be a
range of z-scores whose distribution the model it intended
to predict. We find that a 10 × 10-grid of equally spaced
bins is adequate for converged results. (Using equally-
spaced bins might seem inefficient because of the resulting
very uneven distribution of z-scores among grid elements
– for example, orders of magnitude more SNPs in grid el-
ements with low total LD compared with high total LD.
However, the objective is to model the effects of H and L:
using variable grid element sizes so as to maximize balance
of SNP counts among grid elements means that the true
H- and L-mediated effects of the SNPs in a narrow range
of H and L get subsumed with the effects of many more
SNPs in a much wider range of H and L – a misspecifi-
cation of the pdf leading to some inaccuracy.) In lieu of
or in addition to total LD (L) binning, one can bin SNPs
with respect to their total LD block size (total number of
SNPs in LD, ranging from 1 to ∼1,500).

To find the model parameters that best fit the data, for
a given H-L bin we binned the selected SNPs z-scores into
equally-spaced bins of width dz=0.0742 (between zmin=
−38 and zmax=38, allowing for p-values near the numeri-
cal limit of 10−316), and from Eq. 29 calculated the prob-
ability for z-scores to be in each of those z-score bins (the
prior probability for “success” in each z-score bin). Then,
knowing the actual numbers of z-scores (numbers of “suc-
cesses”) in each z-score bin, we calculated the multinomial
probability, pm, for this outcome. The optimal model pa-
rameter values will be those that maximize the accrual
of this probability over all H-L bins. We constructed a
cost function by calculating, for a given H-L bin, −ln(pm)
and averaging over prunings, and then accumulating this
over all H-L bins. Model parameters minimizing the cost
were obtained from Nelder-Mead multidimensional uncon-
strained nonlinear minimization of the cost function, using
the Matlab function fminsearch().

Posterior Effect Sizes

Model posterior effect sizes, given z (along with N, H, and
the model parameters), were calculated using numerical
integration over the random variable δ:

δexpected ≡ E(δ|z) =

∫
P (δ|z)δdδ

=
1

P (z)

∫
P (z|δ)P (δ)δdδ. (30)

Here, since z|δ ∼ N (δ, σ2
0), the posterior probability of z

given δ is simply

P (z|δ) = φ(z; δ, σ2
0). (31)

P (z) is shorthand for pdf(z|N,H, π1, σβ , σ0), given by Eq.
29. P (δ) is calculated by a similar procedure that lead

to Eq. 29 but ignoring the environmental contributions
{Ej}. Specifically, let Fδ = (G1, ..., Gn) denote the vector
of products of Fourier transform values. Then, the vector
of pdf values for genetic effect bins (indexed by i; numeri-
cally, these will be the same as the z-score bins) in the H-L
bin, pdfδ = (f1, ..., fn) where fi ≡ pdf(δi|H), is

pdfδ = F−1 [Fδ] . (32)

Similarly,

δ2
expected ≡ E(δ2|z) =

∫
P (δ|z)δ2dδ

=
1

P (z)

∫
P (z|δ)P (δ)δ2dδ, (33)

which is used in power calculations.

GWAS Replication

A related matter has to do with whether z-scores for SNPs
reaching genome-wide significance in a discovery-sample
are compatible with the SNPs’ z-scores in a replication-
sample, particularly if any of those replication-sample z-
scores are far from reaching genome-wide significance, or
whether any apparent mismatch signifies some overlooked
inconsistency. The model pdf allows one to make a prin-
cipled statistical assessment in such cases. We present the
details for this application, and results applied to studies
of bipolar disorder, in the Supplementary Material.

GWAS Power

Chip heritability, h2
SNP , is the proportion of phenotypic

variance that in principle can be captured additively by
the nsnp SNPs under study [17]. It is of interest to es-
timate the proportion of h2

SNP that can be explained by
SNPs reaching genome-wide significance, p≤5×10−8 (i.e.,
for which |z|>zt=5.45), at a given sample size [60, 61]. In
Eq 1, for SNP i with genotype vector gi over N samples,
let ygi

≡ giβi. If the SNP’s heterozygosity is Hi, then
var(ygi

)=β2
i Hi. If we knew the full set {βi} of true β-

values, then, for z-scores from a particular sample size N ,
the proportion of SNP heritability captured by genome-
wide significant SNPs, A(N), would be given by

A(N) =

∑
i:|zi|>zt

β2
i Hi∑

all i β2
i Hi

. (34)

Now, from Eq. 15, δi =
√

N
∑

j

√
Hjrijβj . If SNP i is

causal and sufficiently isolated so that it is not in LD with
other causal SNPs, then δi =

√
N
√

Hiβi, and var(ygi
) =

δ2
i /N . When all causal SNPs are similarly isolated, Eq.

34 becomes

A(N) =

∑
i:|zi|>zt

δ2
i∑

all i δ2
i

. (35)

Of course, the true βi are not known and some causal SNPs
will likely be in LD with others. Furthermore, due to LD
with causal SNPs, many SNPs will have a nonzero (latent
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ĥ
2
l =0.03

0

5

10

15

20

ĥ
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Figure 1: QQ plots of (pruned) z-scores for qualitative phenotypes (dark blue, 95% confidence interval in light blue) with model prediction
(yellow): (A) major depressive disorder; (B) bipolar disorder; (C) schizophrenia; (D) coronary artery disease (CAD); (E) ulcerative colitis
(UC); (F) Crohn’s disease (CD); (G) late onset Alzheimer’s disease (AD), excluding APOE (see also Supplementary Material Fig. S7); and
(H) amyotrophic lateral sclerosis (ALS), restricted to chromosome 9 (see also Supporting Material Figure S9). The dashed line is the expected
QQ plot under null (no SNPs associated with the phenotype). p is a nominal p-value for z-scores, and q is the proportion of z-scores with
p-values exceeding that threshold. λ is the overall nominal genomic control factor for the pruned data (which is accurately predicted by
the model in all cases). The three estimated model parameters are: polygenicity, π̂1; discoverability, σ̂2

β
(corrected for inflation); and SNP

association χ2-statistic inflation factor, σ̂2
0 . ĥ2 is the estimated narrow-sense chip heritability, re-expressed as h2

l
on the liability scale for

these case-control conditions assuming a prevalence of: MDD 7.1% [52], BIP 0.5% [53], SCZ 1% [54], CAD 3% [55], UC 0.1% [56], CD 0.1%
[56], AD 14% (for people aged 71 and older in the USA [57, 58]), and ALS 5 × 10−5 [59]. The estimated number of causal SNPs is given
by n̂causal = π̂1nsnp where nsnp = 11, 015, 833 is the total number of SNPs, whose LD structure and MAF underlie the model; the GWAS
z-scores are for subsets of these SNPs. Neff is the effective case-control sample size – see text. Reading the plots: on the vertical axis,
choose a p-value threshold (more extreme values are further from the origin), then the horizontal axis gives the proportion of SNPs exceeding
that threshold (higher proportions are closer to the origin). Numerical values for the model parameters are also given in Table 1. See also
Supplementary Material Figs. S12-S18.

or unobserved) effect size, δ. Nevertheless, we can formu-
late an approximation to A(N) which, assuming the pdf
for z-scores (Eq. 29) is reasonable, will be inaccurate to
the degree that the average LD structure of genome-wide
significant SNPs differs from the overall average LD struc-
ture. As before (see the subsection “Model PDF: Convo-
lution”), consider a fixed set of n equally-spaced nominal
z-scores covering a wide range of possible values (chang-
ing from the summations in Eq. 35 to the uniform sum-
mation spacing ∆z now requires bringing the probability
density into the summations). For each z from the fixed
set (and, as before, employing data reduction by averaging
so that H and L denote values for the 10 × 10 grid), use
E(δ2|z,N,H,L) given in Eq. 33 to define

C(z|N,H,L) ≡ E(δ2|z,N,H,L)P (z|N,H,L) (36)

(emphasizing dependence on N, H, and L). Then, for any
N , A(N) can be estimated by

A(N) =

∑
H,L

∑
z:|z|>zt

C(z,N,H,L)
∑

H,L

∑
all z C(z,N,H,L)

(37)

where
∑

H,L denotes sum over the H-L grid elements. The
ratio in Eq. 37 should be accurate if the average effects
of LD in the numerator and denominator cancel – which

will always be true as the ratio approaches 1 for large N .
Plotting A(N) gives an indication of the power of future
GWAS to capture chip heritability.

Quantile-Quantile Plots and Genomic Control

One of the advantages of quantile-quantile (QQ) plots is
that on a logarithmic scale they emphasize behavior in the
tails of a distribution, and provide a valuable visual aid in
assessing the independent effects of polygenicity, strength
of association, and variance distortion – the roles played by
the three model parameters – as well as showing how well a
model fits data. QQ plots for the model were constructed
using Eq. 29, replacing the normal pdf with the normal
cdf, and replacing z with an equally-spaced vector ~znom of
length 10,000 covering a wide range of nominal |z| values (0
through 38). SNPs were divided into a 10×10 grid of H×L
bins, and the cdf vector (with elements corresponding to
the z-values in ~znom) accumulated for each such bin (using
mean values of H and L for SNPs in a given bin).

For a given set of samples and SNPs, the genomic con-
trol factor, λ, for the z-scores is defined as the median z2

divided by the median for the null distribution, 0.455 [19].
This can also be calculated from the QQ plot. In the plots
we present here, the abscissa gives the -log10 of the pro-
portion, q, of SNPs whose z-scores exceed the two-tailed

9

.CC-BY 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 13, 2019. ; https://doi.org/10.1101/133132doi: bioRxiv preprint 

https://doi.org/10.1101/133132
http://creativecommons.org/licenses/by/4.0/


0

5

10

15

20

Empirical -log
10

(q)

λ =0.98

σ̂2
0 =0.97

N =9.43e4

π̂1 =2.37e-5

σ̂2
β =1.25e-3

ĥ
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ĥ
2 =0.13

Intelligence

N

0

5

10

15

20

ĥ
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ĥ
2 =0.17

0 2 4 6

Height (2014)

Figure 2: QQ plots of (pruned) z-scores and model fits for quantitative phenotypes: (A) educational attainment; (B) intelligence; (C) body
mass index (BMI); (D) height; (E) putamen volume; (F) low-density lipoprotein (LDL); (G) high-density lipoprotein (HDL); and (H) total
cholesterol (TC). N is the sample size. See Fig. 1 for further description. Numerical values for the model parameters are also given in Table
1. See also Supplementary Material Figs. S19-S24.

significance threshold p, transformed in the ordinate as -
log10(p). The median is at qmed = 0.5, or −log10(qmed) ≃
0.3; the corresponding empirical and model p-value thresh-
olds (pmed) for the z-scores – and equivalently for the z-
scores-squared – can be read off from the plots. The ge-
nomic inflation factor is then given by

λ = [Φ−1(pmed/2)]2/0.455.

Note that the values of λ reported here are for pruned SNP
sets; these values will be lower than for the total GWAS
SNP sets.

Knowing the total number, ntot, of p-values involved in
a QQ plot (number of GWAS z-scores from pruned SNPs),
any point (q, p) (log-transformed) on the plot gives the
number, np = q ntot, of p-values that are as extreme as
or more extreme than the chosen p-value. This can be
thought of as np “successes” out of ntot independent tri-
als (thus ignoring LD) from a binomial distribution with
prior probability q. To approximate the effects of LD,
we estimate the number of independent SNPs as ntot/f
where f ≃ 10. The 95% binomial confidence interval for
q is calculated as the exact Clopper-Pearson 95% interval
[62], which is similar to the normal approximation interval,
q ± 1.96

√
q(1 − q)/ntot/f .

Number of Causal SNPs

The estimated number of causal SNPs is given by the
polygenicity, π1, times the total number of SNPs, nsnp:
ncausal = π1nsnp. nsnp is given by the total number of
SNPs that went into building the heterozygosity/LD struc-
ture, H in Eq. 29, i.e., the approximately 11 million SNPs
selected from the 1000 Genomes Phase 3 reference panel,
not the number of typed SNPs in the particular GWAS.

The parameters estimated are to be seen in the context of
the reference panel, which we assume contains all common
causal variants. Stable quantities (i.e., fairly independent
of the reference panel size. e.g., using the full panel or
ignoring every second SNP), are the estimated effect size
variance and number of causal variants – which we demon-
strate below – and hence the heritability. Thus, the poly-
genicity will scale inversely with the reference panel size.
A reference panel with a substantially larger number of
samples would allow for inclusion of more SNPs (non-zero
MAF), and thus the actual polygenicity estimated would
change slightly.

Narrow-sense Chip Heritability

Since we are treating the β coefficients as fixed effects in
the simple linear regression GWAS formalism, with the
phenotype vector standardized with mean zero and unit
variance, from Eq. 1 the proportion of phenotypic vari-
ance explained by a particular causal SNP whose refer-
ence panel genotype vector is g, q2=var(y; g), is given by
q2 = β2H. The proportion of phenotypic variance ex-
plained additively by all causal SNPs is, by definition, the
narrow sense chip heritability, h2. Since E(β2)=σ2

β and
ncausal = π1nsnp, and taking the mean heterozygosity over
causal SNPs to be approximately equal to the mean over
all SNPs, H, the chip heritability can be estimated as

h2 = π1nsnpHσ2
β . (38)

Mean heterozygosity from the ∼11 million SNPs is H =
0.2165.

For all-or-none traits like disease status, the estimated
h2 from Eq. 38 for an ascertained case-control study is on
the observed scale and is a function of the prevalence in
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Phenotype π1 σ2
β σ2

0 ncausal h2
(l)

MDD 4.01E-3 7.20E-6 1.06 4.4E4 0.07
Bipolar Disorder 2.70E-3 5.25E-5 1.05 3.0E4 0.16
Schizophrenia 2.84E-3 5.51E-5 1.14 3.1E4 0.21
CAD 1.14E-4 1.47E-4 0.97 1.3E3 0.03
Ulcerative Colitis 1.26E-4 8.82E-4 1.14 1.4E3 0.11
Crohn’s Disease 9.56E-5 1.70E-3 1.17 1.1E3 0.18
AD (no APOE)∗ 1.11E-4 2.22E-4 1.05 1.2E3 0.08
ALS† 1.43E-5 3.04E-3 1.02 7 0.00

Education 3.20E-3 1.57E-5 1.00 3.5E4 0.12
Intelligence 2.20E-3 2.32E-5 1.28 2.4E4 0.13
BMI 6.44E-4 4.28E-5 0.88 7.5E3 0.07
Height (2010)$ 4.32E-4 1.66E-4 0.94 4.8E3 0.17
Height (2014) 5.66E-4 1.23E-4 1.66 6.2E3 0.17
Height (2018)$ 8.56E-4 9.46E-5 2.50 9.4E3 0.19
Putamen Volume 4.94E-5 9.72E-4 1.00 540 0.11
LDL 3.58E-5 6.61E-4 0.96 390 0.06
HDL 2.37E-5 1.25E-3 0.97 260 0.07
TC 4.26E-5 8.99E-4 0.96 469 0.09

Table 1: Summary of model results for phenotypes shown in Fig-
ures 1 and 2. The subscript in h2

(l)
indicates that for the qualitative

phenotypes (the first eight) the reported SNP heritability is on the
liability scale. MDD: Major Depressive Disorder; CAD: coronary
artery disease; AD: Alzheimer’s Disease (excluding APOE locus; ∗for
the full autosomal reference panel, i.e., including APOE, h2

l
= 0.15

for AD – see Supplementary Material Figure S7 (A) and (B)); BMI:
body mass index; †ALS: amyotrophic lateral sclerosis, restricted to
chromosome 9; LDL: low-density lipoproteins; HDL: high-density
lipoproteins. $In addition to the 2014 height GWAS (N=251,747
[46]), we include here model results for the 2010 (N=133,735 [65])
and 2018 (N=707,868 [49]) height GWAS; there is remarkable con-
sistency for the 2010 and 2014 GWAS despite very large differences
in the sample sizes – see Supporting Material Figure S8. Confidence
intervals are in Supporting Material Table S4.

the adult population, K, and the proportion of cases in
the study, P . The heritability on the underlying contin-
uous liability scale [63], h2

l , is obtained by adjusting for
ascertainment (multiplying by K(1 − K)/(P (1 − P )), the
ratio of phenotypic variances in the population and in the
study) and rescaling based on prevalence [64, 6]:

h2
l = h2 K(1 − K)

P (1 − P )
× K(1 − K)

a2
, (39)

where a is the height of the standard normal pdf at the
truncation point zK defined such that the area under the
curve in the region to the right of zK is K.

Confidence Intervals

Confidence intervals for parameters were estimated us-
ing the inverse of the observed Fisher information matrix
(FIM). The full FIM was estimated for all three parame-
ters used in the model. For the derived quantity h2, which
depends on all parameters, the covariances among the pa-
rameters, given by the off-diagonal elements of the inverse
of the FIM, were incorporated. Numerical values are in

Supporting Material Table S4.

RESULTS

Simulations

Table 2 shows the simulation results, comparing true and
estimated values for the model parameters, heritability,
and the number of causal SNPs, for twelve scenarios where
π1 and σ2

β both range over three orders of magnitude,
encompassing the range of values for the phenotypes; in
Supplementary Material, Figure S3 shows QQ plots for a
randomly chosen (out of 10) β-vector and phenotype in-
stantiation for each of the twelve (π1, h2) scenarios. Most
of the π̂1 estimates are in very good agreement with the
true values, though for the extreme scenario of high heri-
tability and low polygenicity it is overestimated by factors
of two-to-three. The numbers of estimated causal SNPs
(out of ∼11 million) are in correspondingly good agree-
ment with the true values, ranging in increasing powers
of 10 from 110 through 110,158. The estimated discov-
erabilities (σ̂2

β) are also in good agreement with the true

values. In most cases, σ̂2
0 is close to 1, indicating little or

no global inflation, though it is elevated for high heritabil-
ity with high polygenicity, suggesting it is capturing some
ubiquitous effects.

In Supplementary Material, we examine the issue of
model misspecification. Specifically, we assign causal ef-
fects β drawn from a Gaussian whose variance is not sim-
ply a constant but depends on heterozygosity, such that
rarer causal SNPs will tend to have larger effects [15]. The
results – see Supplementary Material Table S1 – show that
the model still makes reasonable estimates of the underly-
ing genetic architecture. Additionally, we tested the sce-
nario where true causal effects are distributed with respect
to two Gaussians [14], a situation that allows for a small
number of the causal SNPs to have quite large effects – see
Supplementary Material Table S2. We find that heritabil-
ities are still reasonably estimated using our model. In all
these scenarios the overall data QQ plots were accurately
reproduced by the model. As a counter example, we sim-
ulated summary statistics where the prior probability of a
reference SNP being causal decreased linearly with total
LD (see Supplementary Material Table S3). In this case,
our single Gaussian fit (which assumes no LD dependence
on the prior probability of a reference SNP being causal)
did not produce model QQ plots that accurately tracked
the data QQ plots (see Supplementary Material Figure
S11). The model parameters and heritabilities were also
poor. But this scenario is highly artificial; in contrast, in
situations where the data QQ plots were accurately repro-
duced by the model, the estimated model parameters and
heritability were plausible.

Phenotypes

Figures 1 and 2 show QQ plots for the pruned z-scores for
eight qualitative and eight quantitative phenotypes, along
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h2 ĥ2 π1 π̂1 σ2
β σ̂2

β σ̂2
0 ncausal n̂causal

0.1 0.12 (0.01) 1E-5 1.4E-5 (2E-6) 4.3E-3 (7E-4) 3.6E-3 (5E-4) 1.01 (0.002) 110 151 (20)
0.1 0.10 (0.01) 1E-4 1.0E-4 (2E-5) 4.2E-4 (2E-5) 4.1E-4 (5E-5) 1.01 (0.003) 1101 1130 (206)
0.1 0.09 (0.01) 1E-3 0.9E-3 (1E-4) 4.2E-5 (5E-7) 4.1E-5 (4E-6) 1.02 (0.003) 11015 10340 (1484)
0.1 0.09 (0.01) 1E-2 0.8E-2 (2E-3) 4.2E-6 (4E-8) 5.6E-6 (2E-6) 1.02 (0.002) 110158 83411 (25448)

0.4 0.52 (0.05) 1E-5 2.3E-5 (2E-6) 1.7E-2 (3E-3) 9.1E-3 (1E-3) 1.02 (0.002) 110 259 (20)
0.4 0.45 (0.02) 1E-4 1.2E-4 (8E-6) 1.7E-3 (7E-5) 1.5E-3 (9E-5) 1.04 (0.002) 1101 1310 (92)
0.4 0.39 (0.01) 1E-3 1.0E-3 (5E-5) 1.7E-4 (2E-6) 1.6E-4 (8E-6) 1.05 (0.003) 11015 10607 (578)
0.4 0.37 (0.01) 1E-2 0.9E-2 (1E-3) 1.7E-5 (2E-7) 1.7E-5 (2E-6) 1.06 (0.003) 110158 95135 (10851)

0.7 0.91 (0.09) 1E-5 2.9E-5 (2E-6) 3.0E-2 (5E-3) 1.3E-2 (2E-3) 1.02 (0.003) 110 324 (24)
0.7 0.82 (0.02) 1E-4 1.4E-4 (7E-6) 2.9E-3 (1E-4) 2.4E-3 (1E-4) 1.05 (0.002) 1101 1493 (79)
0.7 0.70 (0.01) 1E-3 1.0E-3 (4E-5) 2.9E-4 (4E-6) 2.8E-4 (1E-5) 1.08 (0.003) 11015 10866 (406)
0.7 0.66 (0.01) 1E-2 0.9E-2 (7E-4) 2.9E-5 (3E-7) 2.9E-5 (2E-6) 1.09 (0.003) 110158 95067 (8191)

Table 2: Simulation results: comparison of mean (std) true and estimated (ˆ) model parameters and derived quantities. Results for each
line, for specified heritability h2 and fraction π1 of causal SNPs, are from 10 independent instantiations with random selection of the ncausal

causal SNPs that are assigned a β-value from the standard normal distribution. Defining Yg = Gβ, where G is the genotype matrix, the total
phenotype vector is constructed as Y =Yg+ε, where the residual random vector ε for each instantiation is drawn from a normal distribution
such that var(Y ) = var(Yg)/h2 for predefined h2. For each of the instantiations, i, this implicitly defines the true value σ2

βi
, and σ2

β
is their

mean. An example QQ plot for each line entry is shown in Supplementary Material, Figure S3.

with model estimates (Supplementary Material Figs. S12-
S28 each show a 4×4 grid breakdown by heterozygosity
× total-LD of QQ plots for all phenotypes studied here;
the 4×4 grid is a subset of the 10×10 grid used in the
calculations). In all cases, the model fit (yellow) closely
tracks the data (dark blue). For the sixteen phenotypes,
estimates for the model polygenicity parameter (fraction
of reference panel, with ≃11 million SNPs, estimated to
have non-null effects) range over two orders of magnitude,
from π1 ≃ 2× 10−5 to π1 ≃ 4× 10−3. The estimated SNP
discoverability parameter (variance of β, or expected β2,
for causal variants) also ranges over two orders of magni-
tude from σ2

β ≃ 7× 10−6 to σ2
β ≃ 2× 10−3 (in units where

the variance of the phenotype is normalized to 1).
We find that schizophrenia and bipolar disorder appear

to be similarly highly polygenic, with model polygenicities
≃ 2.84× 10−3 and ≃ 2.70× 10−3, respectively. The model
polygenicity of major depressive disorder, however, is 40%
higher, π1 ≃ 4×10−3 – the highest value among the sixteen
phenotypes. In contrast, the model polygenicities of late
onset Alzheimer’s disease and Crohn’s disease are almost
thirty times smaller than that of schizophrenia.

In Supplementary Material Figure S7 we show results
for Alzheimer’s disease exclusively for chromosome 19 (wh-
ich contains APOE), and for all autosomal chromosomes
excluding chromosome 19. We also show results with the
same chromosomal breakdown for a recent GWAS involv-
ing 455,258 samples that included 24,087 clinically diag-
nosed LOAD cases and 47,793 AD-by-proxy cases (individ-
uals who were not clinically diagnosed with LOAD but for
whom at least one parent had LOAD) [66]. These GWAS
give consistent estimates of polygenicity: π1 ∼ 1 × 10−4

excluding chromosome 19, and π1 ∼ 6× 10−5 for chromo-
some 19 exclusively.

Of the quantitative traits, educational attainment has
the highest model polygenicity, π1 = 3.2×10−3, similar to
intelligence, π1 = 2.2×10−3. Approximately two orders of
magnitude lower in polygenicity are the endophenotypes
putamen volume and low- and high-density lipoproteins.

The model effective SNP discoverability for schizophre-
nia is σ̂2

β = 5.51×10−5, similar to that for bipolar disorder.
Major depressive disorder, which has the highest poly-
genicity, has the lowest SNP discoverability, approximately
one-eighth that of schizophrenia; it is this low value, com-
bined with high polygenicity that leads to the weak signal
in Figure 1 (A) even though the sample size is relatively
large. In contrast, SNP discoverability for Alzheimer’s
disease is almost four times that of schizophrenia. The
inflammatory bowel diseases, however, have much higher
SNP discoverabilities, 16 and 31 times that of schizophre-
nia respectively for ulcerative colitis and Crohn’s disease
– the latter having the second highest value of the sixteen
phenotypes: σ̂2

β = 1.7 × 10−3.
Additionally, for Alzheimer’s disease we show in Sup-

plementary Material Figure S7 that the discoverability is
two orders of magnitude greater for chromosome 19 than
for the remainder of the autosome. Note that since two-
thirds of the 2018 “cases” are AD-by-proxy, the discover-
abilities for the 2018 data are, as expected, reduced rel-
ative to the values for the 2013 data (approximately 3.5
times smaller).

The narrow sense SNP heritability from the ascertained
case-control schizophrenia GWAS is estimated as h2=0.37.
Taking adult population prevalence of schizophrenia to be
K=0.01 [67, 68] (but see also [69], for K=0.005), and
given that there are 51,900 cases and 71,675 controls in
the study, so that the proportion of cases in the study
is P=0.42, the heritability on the liability scale for schizo-
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phrenia from Eq. 39 is ĥ2
l =0.21. For bipolar disorder, with

K=0.005 [53], 20,352 cases and 31,358 controls, ĥ2
l =0.16.

Major depressive disorder appears to have a much lower
model-estimated SNP heritability than schizophrenia: ĥ2

l

= 0.07. The model estimate of SNP heritability for height
is 17%, lower than the oft-reported value ∼50% (see Dis-
cussion). However, despite the huge differences in sample
size, we find the same value, 17%, for the 2010 GWAS
(N=133,735 [65]), and 19% for the 2018 GWAS (N =
707,868 [49, 46]) – see Table 1.

Figure 3 shows the sample size required so that a given
proportion of chip heritability is captured by genome-wide
significant SNPs for the phenotypes (assuming equal num-
bers of cases and controls for the qualitative phenotypes:
Neff = 4/(1/Ncases +1/Ncontrols), so that when Ncases =
Ncontrols, Neff = Ncases + Ncontrols = N , the total sam-
ple size, allowing for a straightforward comparison with
quantitative traits). At current sample sizes, only 4% of
narrow-sense chip heritability is captured for schizophrenia
and only 1% for bipolar disorder; using current methodolo-
gies, a sample size of Neff ∼ 1 million would be required
to capture the preponderance of SNP heritability for these
phenotypes. Major depressive disorder GWAS currently
is greatly under-powered, as shown in Figure 3(A). For
education, we predict that 3.5% of phenotypic variance
would be explained at N = 1.1 million, in good agreement
with the value found from direct computation of 3.2% [70].
For other phenotypes, the proportions of total SNP heri-
tability captured at the available sample sizes are given in
Figure 3.

The sample size for ALS was quite low, and we re-
stricted the analysis to chromosome 9, which had most
of the genome-wide significant typed SNPs; we estimate
that there are ∼7 causal SNPs with high discoverability
on chromosome 9 [71, 72], with very high discoverability,
σ2

β ≃ 0.003. In contrast, for AD restricted to chromosome
19, there were an estimated 14 causal SNPs with discover-
ability σ2

β ≃ 0.02 (see Supplementary Material Figure S7
(B)).

In this study, we assume that population stratification
in the raw data has been corrected for in the publicly-
available summary statistics. However, given that some of
the sample sizes are extremely large, we allow for the pos-
sibility of residual cryptic relatedness. This would result
in a scaling of the z-scores, Eq. 9 [19]. Thus, to test the
modeling of inflation due to cryptic relatedness, we scaled
the simulation z-scores as described earlier (z = σ0zu with
σ0 > 1, where zu are the original z-scores, i.e., not arti-
ficially inflated) and reran the model. E.g., for education
and schizophrenia we inflated the z-scores by a factor of
1.2. For schizophrenia we found σ2

0 = 1.366, which is al-
most exactly as predicted (1.14 × 1.2 = 1.368), while the
polygenicity and discoverability parameters are essentially
unchanged: π1 = 2.81 × 10−3, and σ2

β = 5.56 × 10−5. For

education we found σ2
0 = 1.206, which again is almost ex-

actly as predicted (1.0× 1.2 = 1.2), while the polygenicity

log
10

(N)

0

0.2

0.4

0.6

0.8

1

A
(N

)

Crohn's Disease (36%)

HDL (49%)

LDL (30%)

Alzheimer's (3%)

Height2010 (13%)

Height2014 (37%)

Schizophrenia (4%)

Bipolar (1%)

Intelligence (7%)

Education (4%)

MDD (<1%)

Putamen Volume (3%)

Ulcerative Colitis (20%)

Current N

Prediction

3 4 5 6 7 8

Figure 3: Proportion of narrow-sense chip heritability, A(N) (Eq.
37), captured by genome-wide significant SNPs as a function of sam-
ple size, N , for phenotypes shown in Figures 1 and Figure 2. Values
for current sample sizes are shown in parentheses. Left-to-right curve
order is determined by decreasing σ2

β
. The prediction for education

at sample size N=1.1 million is A(N) = 0.27, so that the proportion
of phenotypic variance explained is predicted to be 3.5%, in good
agreement with 3.2% reported in [70]. (The curve for AD excludes
the APOE locus. For HDL, see Supplementary Material for addi-
tional notes.)

and discoverability parameters are again essentially un-
changed: π1 = 3.19 × 10−3, and σ2

β = 1.57 × 10−5.
A comparison of our results with those of [14] and [15]

is in Supplementary Material Table S5. Critical method-
ological differences with model M2 in [14] are that we use a
full reference panel of 11 million SNPs from 1000 Genomes
Phase 3, we allow for the possibility of inflation in the
data, and we provide an exact solution, based on Fourier
Transforms, for the z-score pdf arising from the posited
distribution of causal effects, resulting in better fits of the
model and the data QQ plots – as can be seen by com-
paring our QQ plots with those reported in S5. Although
our estimated number of causal are often within a factor
of two of those from the nominally equivalent model M2
of Zhang et al, there is no clear pattern to the mismatch.

GWAS Replication

In the Supplementary Material, we provide an extensive
example of testing the compatibility of summary statis-
tics from two large bipolar disorder GWASs. Because z-
scores are so noisy, it is possible for a typed SNP with a
highly significant p-values in one GWAS to completely fail
to reach significance in a subsequent GWAS, and for these
outcomes to be statistically consistent. SNP heterozygos-
ity and total LD, as well as sample sizes, are relevant in
making such assessments.

Dependence on Reference Panel

Given a liberal MAF threshold of 0.002, our reference
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panel should contain the vast majority of common SNPs
for European ancestry. However, it does not include other
structural variants (such as small insertions/deletions, or
haplotype blocks) which may also be causal for pheno-
types. To validate our parameter estimates for an incom-
plete reference, we reran our model on real phenotypes us-
ing the culled reference where we exclude every other SNP.
The result is that all estimated parameters are as before
except that π̂1 doubles, leaving the estimatde number of
causal SNPs and heritability as before. For example, for
schizophrenia we get π1 = 5.3× 10−3 and σ2

β = 5.8× 10−5

for the reduced reference panel, versus π1 = 2.8 × 10−3

and σ2
β = 5.5 × 10−5 for the full panel, with heritabil-

ity remaining essentially the same (37% on the observed
scale).

DISCUSSION

Here we present a unified method based on GWAS sum-
mary statistics, incorporating detailed LD structure from
an underlying reference panel of SNPs with MAF>0.002,
for estimating: phenotypic polygenicity, π1, expressed as
the fraction of the reference panel SNPs that have a non-
null true β value, i.e., are “causal”; and SNP discoverabil-
ity or mean strength of association (the variance of the
underlying causal effects), σ2

β . In addition the model can
be used to estimate residual inflation of the association
statistics due to variance distortion induced by cryptic re-
latedness, σ2

0 . The model assumes that there is very little,
if any, inflation in the GWAS summary statistics due to
population stratification (bias shift in z-scores due to eth-
nic variation).

We apply the model to sixteen diverse phenotypes,
eight qualitative and eight quantitative. From the esti-
mated model parameters we also estimate the number of
causal common-SNPs in the underlying reference panel,
ncausal, and the narrow-sense common-SNP heritability,
h2 (for qualitative phenotypes, we re-express this as the
proportion of population variance in disease liability, h2

l ,
under a liability threshold model, adjusted for ascertain-
ment); in the event rare SNPs (i.e., not in the reference
panel) are causal, h2 will be an underestimate of the true
SNP heritability. In addition, we estimate the proportion
of SNP heritability captured by genome-wide significant
SNPs at current sample sizes, and predict future sample
sizes needed to explain the preponderance of SNP heri-
tability.

We find that schizophrenia is highly polygenic, with
π1 = 2.8 × 10−3. This leads to an estimate of ncausal ≃
31, 000, which is in reasonable agreement with a recent
estimate that the number of causal SNPs is >20,000 [73].
The SNP associations, however, are characterized by a nar-
row distribution, σ2

β = 6.27 × 10−5, indicating that most
associations are of weak effect, i.e., have low discoverabil-
ity. Bipolar disorder has similar parameters. The smaller
sample size for bipolar disorder has led to fewer SNP dis-

coveries compared with schizophrenia. However, from Fig-
ure 3, sample sizes for bipolar disorder are approaching a
range where rapid increase in discoveries becomes possible.
For educational attainment [74, 42, 75], the polygenicity is
somewhat greater, π1 = 3.2×10−3, leading to an estimate
of ncausal ≃ 35, 000, half a recent estimate, ≃ 70, 000, for
the number of loci contributing to heritability [74]. The
variance of the distribution for causal effect sizes is a quar-
ter that of schizophrenia, indicating lower discoverability.
Intelligence, a related phenotype [43, 76], has a larger dis-
coverability than education while having lower polygenic-
ity (∼ 10, 000 fewer causal SNPs).

In marked contrast are the lipoproteins and putamen
volume which have very low polygenicity: π1 < 5 × 10−5,
so that only 250 to 550 SNPs (out of ∼11 million) are
estimated to be causal. However, causal SNPs for puta-
men volume and HDL appear to be characterized by rela-
tively high discoverability, respectively 17-times and 23-
times larger than for schizophrenia (see Supplementary
Material for additional notes on HDL).

The QQ plots (which are sample size dependent) reflect
these differences in genetic architecture. For example, the
early departure of the schizophrenia QQ plot from the null
line indicates its high polygenicity, while the steep rise for
putamen volume after its departure corresponds to its high
SNP discoverability.

For Alzheimer’s disease, our estimate of the liability-
scale SNP heritability for the full 2013 dataset [39] is 15%
for prevalence of 14% for those aged 71 older, half from
APOE, while the recent “M2” and “M3” models of Zhang
et al [14] gave values of 7% and 10% respectively – see Sup-
plementary Materials Table S5. A recent report from two
methods, LD Score Regression (LDSC) and SumHer [77],
estimated SNP heritability of 3% for LDSC and 12% for
SumHer (assuming prevalence of 7.5%). A raw genotype-
based analysis (GCTA), including genes that contain rare
variants that affect risk for AD, reported SNP heritability
of 53% [78, 7]; an earlier related study that did not in-
clude rare variants and had only a quarter of the common
variants estimated SNP heritability of 33% for prevalence
of 13% [79]. GCTA calculations of heritability are within
the domain of the so-called infinitesimal model where all
markers are assumed to be causal. Our model suggests,
however, that phenotypes are characterized by polygenici-
ties less than 5× 10−3; for AD the polygenicity is ≃ 10−4.
Nevertheless, the GCTA approach yields a heritability es-
timate closer to the twin-based (broad sense) value, esti-
mated to be in the range 60-80% [80]. The methodology
appears to be robust to many assumptions about the dis-
tribution of effect sizes [81, 82]; the SNP heritability esti-
mate is unbiased, though it has larger standard error than
methods that allow for only sparse causal effects [65, 83].
For the 2013 data analyzed here [39], a summary-statistics-
based method applied to a subset of 54,162 of the 74,046
samples gave SNP heritability of almost 7% on the ob-
served scale [84, 12]; our estimate is 12% on the observed
scale – see Supplementary Material Figure S7 A and B.
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Onset and clinical progression of sporadic Alzheimer’s
disease is strongly age-related [85, 86], with prevalence in
differential age groups increasing at least up through the
early 90s [57]. Thus, it would be more accurate to assess
heritability (and its components, polygenicity and discov-
erability) with respect to, say, five-year age groups be-
ginning with age 65 years, and using a consistent control
group of nonagenarians and centenarians. By the same
token, comparisons among current and past AD GWAS
are complicated because of potential differences in the age
distributions of the respective case and the control co-
horts. Additionally, the degree to which rare variants are
included will affect heritability estimates. The summary-
statistic-based estimates of polygenicity that we report
here are, however, likely to be robust for common SNPs:
π1 ≃ 1.1× 10−4, with only a few causal SNPs on chromo-
some 19.

Our point estimate for the liability-scale SNP heritabil-
ity of schizophrenia is h2

l = 0.21 (assuming a population
risk of 0.01), and that 4% of this (i.e., 1% of overall disease
liability) is explainable based on common SNPs reaching
genome-wide significance at the current sample size. This
h2

l estimate is in reasonable agreement with a recent re-
sult, h2

l = 0.27 [73, 87], also calculated from the PGC2
data set but using raw genotype data for 472,178 mark-
ers for a subset of 22,177 schizophrenia cases and 27,629
controls of European ancestry; and with an earlier result
of h2

l = 0.23 from PGC1 raw genotype data for 915,354
markers for 9,087 schizophrenia cases and 12,171 controls
[88, 7]. The recent “M2” (single non-null Gaussian) model
estimate is h2

l = 0.29 [14] (see Supplementary Materials
Table S5). No QQ plot was available for the M2 model
fit to schizophrenia data, but such plots (truncated on
the y-axis at −log10(p) = 10) for many other phenotypes
were reported [14]. We note that for multiple phenotypes
(height, LDL cholesterol, total cholesterol, years of school-
ing, Crohn’s disease, coronary artery disease, and ulcer-
ative colitis) our single causal Gaussian model appears
to provide a better fit to the data than M2: many of
the M2 plots show a very early and often dramatic de-
viation between prediction and data, as compared with
our model QQ plots which are also built from a single
causal Gaussian, suggesting an upward bias in polygenic-
ity and/or variance of effect sizes, and hence heritability
as measured by the M2 model for these phenotypes. The
LDSC liability-scale (1% prevalence) SNP heritability for
schizophrenia has been reported as h2

l = 0.555 [12] and
more recently as 0.19 [77], in very good agreement with
our estimate; on the observed scale it has been reported
as 45% [84, 12], in contrast to our corresponding value of
37%. Our estimate of 1% of overall variation on the lia-
bility scale for schizophrenia explainable by genome-wide
significant loci compares reasonably with the proportion
of variance on the liability scale explained by Risk Profile
Scores (RPS) reported as 1.1% using the “MGS” sample
as target (the median for all 40 leave-one-out target sam-
ples analyzed is 1.19% – see Extended Data Figure 5 and

Supplementary Tables 5 and 6 in [36]; this was incorrectly
reported as 3.4% in the main paper). These results show
that current sample sizes need to increase substantially in
order for RPSs to have predictive utility, as the vast ma-
jority of associated SNPs remain undiscovered. Our power
estimates indicate that ∼500,000 cases and an equal num-
ber of controls would be needed to identify these SNPs
(note that there is a total of approximately 3 million cases
in the US alone).

A subtle but important issue is downward bias of large-
sample maximum-likelihood estimates of SNP heritability,
due to over-ascertainment of cases in case-control stud-
ies [87]; it has been examined in the context of restricted
maximum likelihood (REML) in GCTA, which assumes a
polygenicity of 1, i.e., every SNP is causal. For schizophre-
nia, this has been assessed in the context of BOLT-REML,
which assumes a mixture distribution of small (‘spike’) and
large (‘slab’) effects [73]: from 22,177 cases and 27,629 con-
trols, the observed-scale heritability is reported as h2 =
0.415, equivalent to h2

l = 0.23 on the liability scale, as-
suming 1% disease prevalence. However, using “pheno-
type correlation-genetic correlation” (PCGC) regression,
a moments-based approach requiring raw-genotype data
which produces unbiased estimates for case-control studies
of disease traits [87], the unbiased liability-scale heritabil-
ity is reported as h2

g = 0.27, indicating that the likelihood-
maximization estimate is biased down by 15% of the un-
biased value (the degree of underestimation decreases for
smaller sample sizes). Our estimate for the liability-scale
heritability of schizophrenia, from a larger sample than in
[73], is h2

l = 0.21. This at least would be consistent with
downward bias operating in point-normal causal distribu-
tions, in a manner similar to that in GCTA and BOLT-
REML. This would then translate into either an underes-
timate of the number of causal SNPs, or more likely an
underestimate of the variance of the distribution of causal
effects.

For educational attainment, we estimate SNP heritabil-
ity h2 = 0.12, in good agreement with the estimate of
11.5% given in [42]. As with schizophrenia, this is sub-
stantially less than the estimate of heritability from twin
and family studies of ≃ 40% of the variance in educational
attainment explained by genetic factors [89, 74].

For putamen volume, we estimate the SNP heritabil-
ity h2 = 0.11, in reasonable agreement with an earlier
estimate of 0.1 for the same overall data set [47, 4]. For
LDL and HDL, we estimate h2 = 0.06 and h2 = 0.07 re-
spectively, in good agreement with the LDSC estimates
h2 = 0.08 and h2 = 0.07 [77], and the M2 model of [14] –
see Supporting Material Table S5.

For height (N=251,747 [46]) we find that its model
polygenicity is π1 = 5.66 × 10−4, a quarter that of in-
telligence, while its discoverability is five times that of
intelligence, leading to a SNP heritability of 17%. The
number of causal SNPs (out of a total of approximately
11 million) is approximately 6k; although this is about
one twentieth the estimate reported in [90], it remains
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large and allows for height to be interpreted as “omni-
genic”. For the 2010 GWAS (N=133,735 [65]) and 2018
GWAS (N=707,868 [49]), we estimate SNP heritability of
17% and 19% respectively (see Table 1 and Supplementary
Material Fig. S8). These heritabilities are in considerable
disagreement with the SNP heritability estimate of ≃50%
[46] (average of estimates from five cohorts ranging in size
from N=1,145 to N=5,668, with ∼1 million SNPs). For
the 2010 GWAS, the M2 model [14] gives h2 = 0.30 (see
Supporting Material Table S5); the upward deviation of
the model QQ plot in [14] suggests that this value might
be inflated. For the 2014 GWAS, the M3 model estimate
is h2 = 33% [14]; the Regression with Summary Statistics
(RSS) model estimate is h2 = 52% (with ≃ 11, 000 causal
SNPs) [91], which, not taking any inflation into account, is
definitely a model overestimate; and in [77] the LDSC esti-
mate is reported as h2 = 20% while the SumHer estimate
is h2 = 46% (in general across traits, the SumHer heri-
tability estimates tend to be two-to-five times larger than
the LDSC estimates). The M2, M3, and RSS models use
a reference panel of ∼1 million common SNPs, in contrast
with the ∼11 million SNPs used in our analysis. Also,
it should be noted that the M2, M3, and RSS model esti-
mates did not take the possibility of inflation into account.
For the 2014 height GWAS, that inflation is reported as
the LDSC intercept is 2.09 in [77], indicating considerable
inflation; for the 2018 dataset we find σ2

0=2.5, while the
LD score regression intercept is 2.1116 (se 0.0458). Given
the various estimates of inflation and the controversy over
population structure in the height data [50, 51], it is not
clear what results are definitely incorrect.

Our power analysis for height (2014) shows that 37% of
the narrow-sense heritability arising from common SNPs is
explained by genome-wide significant SNPs (p ≤ 5×10−8),
i.e., 6.3% of total phenotypic variance, which is substan-
tially less than the 16% direct estimate from significant
SNPs [46]. It is not clear why these large discrepancies
exist. One relevant factor, however, is that we estimate
a considerable confounding (σ2

0=1.66) in the height 2014
dataset. Our h2 estimates are adjusted for the potential
confounding measured by σ2

0 , and thus they represent what
is likely a lower bound of the actual SNP-heritability, lead-
ing to a more conservative estimate than what has previ-
ously been reported. We note that after adjustment, our
h2 estimates are consistent across all three datasets (height
2010, 2014 and 2018), which otherwise would range by
more than 2.5-fold. Another factor might be the relative
dearth of typed SNPs with low heterozygosity and low to-
tal LD (see top left segment in Supporting Material Figure
S21, n = 780): there might be many causal variants with
weak effect that are only weakly tagged. Nevertheless,
given the discrepancies noted above, caution is warranted
in interpreting our model results for height.

CONCLUSION

The common-SNP causal effects model we have presented
is based on GWAS summary statistics and detailed LD
structure of an underlying reference panel, and assumes a
Gaussian distribution of effect sizes at a fraction of SNPs
randomly distributed across the autosomal genome. While
not incorporating the effects of rare SNPs, we have shown
that it captures the broad genetic architecture of diverse
complex traits, where polygenicities and the variance of
the effect sizes range over orders of magnitude.

The current model (essentially Eq. 4) and its imple-
mentation (essentially Eq. 29) are basic elements for build-
ing a more refined model of SNP effects using summary
statistics. Higher accuracy in characterizing causal alleles
in turn will enable greater power for SNP discovery and
phenotypic prediction.
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