

1 **Dense Bicoid Hubs Accentuate Binding along the Morphogen Gradient**

2 Mustafa Mir¹, Armando Reimer², Jenna E. Haines¹, Xiao-Yong Li³, Michael Stadler¹, Hernan
3 Garcia^{1,2,4}, Michael B. Eisen^{1,2,3,5}, Xavier Darzacq^{1,*}

4 ¹Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720,
5 USA

6 ²Biophysics Graduate Group, University of California, Berkeley, CA, 94720, USA

7 ³Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720, USA

8 ⁴Department of Physics, University of California, Berkeley, CA, 94720, USA

9 ⁵Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA

10 *Correspondence to: darzacq@berkeley.edu

11 **ABSTRACT**

12 Morphogen gradients direct the spatial patterning of developing embryos, however, the
13 mechanisms by which these gradients are interpreted remain elusive. Here we perform *in vivo*
14 single molecule imaging in early *Drosophila melanogaster* embryos of the transcription factor
15 Bicoid that forms a gradient and initiates patterning along the anteroposterior axis. We observe
16 that Bicoid binds to DNA with a rapid off-rate, such that its average occupancy at target loci is
17 on-rate dependent, a property required for concentration-sensitive regulation. Surprisingly, we
18 also observe abundant specific DNA binding in posterior nuclei, where Bicoid levels are
19 vanishingly low. Live embryo imaging reveals spatiotemporal “hubs” of local high Bicoid
20 concentration that are dependent on the ubiquitous maternal factor Zelda. We propose that
21 localized modulation of transcription factor on-rates via clustering, provides a general
22 mechanism to facilitate binding to low-affinity targets, and that this may be a prevalent feature
23 directing other developmental transcription networks.

25 **INTRODUCTION**

26 Spatial patterning during embryonic development is orchestrated through concentration
27 gradients of regulatory molecules known as morphogens (Turing, 1952; Wolpert, 1969). The
28 maternally deposited transcription factor (TF) Bicoid (BCD) in *Drosophila melanogaster* was
29 the first identified morphogen (Driever & Nusslein-Volhard, 1988b), and remains an iconic and
30 widely studied developmental regulator. Bicoid is distributed in an exponentially decaying
31 concentration gradient along the anteroposterior (A-P) axis of embryos and predominantly
32 regulates the activity of ~100 genes in distinct spatial expression domains ranging from the
33 anterior tip to the middle of the embryo (Driever & Nusslein-Volhard, 1988a; Driever &
34 Nussleinvolhard, 1989; Driever, Siegel, & Nusslein-Volhard, 1990; Struhl, Struhl, & Macdonald,
35 1989). The ability of BCD and other morphogens to activate target genes in different locations
36 across gradients is classically thought to arise from the modulation of the number and strength of
37 cognate DNA binding sites within target enhancers (Burz, Rivera-Pomar, Jackle, & Hanes, 1998;
38 Lebrecht et al., 2005; H. Xu, Sepulveda, Figard, Sokac, & Golding, 2015), with sharp expression
39 domain boundaries set through cooperative binding (Ephrussi & St Johnston, 2004; Lebrecht et
40 al., 2005).

41 In recent years this classical model of concentration dependent activation has been
42 challenged through experiments on mutant embryos with flattened BCD distributions which
43 reveal that segment order and polarity can be maintained even without a concentration gradient
44 (Ochoa-Espinosa, Yu, Tsirigos, Struffi, & Small, 2009). It has been suggested that instead of a
45 pure concentration dependence, the activation of BCD target genes and the resulting sharp
46 expression domain boundaries is tightly regulated by spatially opposing gradients of repressors
47 (Chen, Xu, Mei, Yu, & Small, 2012) and the combinatorial actions of other transcription factors
48 (P. Combs & Eisen, 2017). The recent discovery of the ubiquitous factor Zelda and its role in the

49 regulation of chromatin accessibility (Foo et al., 2014; Harrison, Li, Kaplan, Botchan, & Eisen,
50 2011; Li, Harrison, Villata, Kaplan, & Eisen, 2014; Liang et al., 2008; Schulz et al., 2015; Sun et
51 al., 2015; Z. Xu et al., 2014) and in modulating the timing and strength of Bicoid (Hannon,
52 Blythe, & Wieschaus, 2017; Z. Xu et al., 2014) and Dorsal (Foo et al., 2014) controlled enhancer
53 activation in a concentration dependent fashion has further strengthened the hypothesis
54 (Lucchetta, Lee, Fu, Patel, & Ismagilov, 2005) that the interpretation of the BCD and other
55 morphogen gradients is more complex than previously thought.

56 The validity of these models and essential mechanistic questions about how BCD, and
57 morphogens in general, differentially activate genes along a concentration gradient have been
58 challenging to resolve with current approaches. For example, extant models cannot address how
59 BCD is sufficient for activating its targets such as Knirps (Rivera-Pomar, Lu, Perrimon, Taubert,
60 & Jackle, 1995) and Hairy (La Rosee, Hader, Taubert, Rivera-Pomar, & Jackle, 1997), in the
61 posterior of the embryo, where BCD nuclear concentrations are <2nM (Morrison, Scheeler,
62 Dubuis, & Gregor, 2012) in the short interphase times (5-10 minutes) of the early nuclear cycles.
63 Since the question of how BCD molecules can find their targets in these short times requires
64 dynamic measurements, genomic assays and biochemical approaches which provide static
65 snapshots are inadequate. In this study, we address this gap in our understanding by performing
66 direct measurements of BCD-DNA interactions *in vivo* by single molecule imaging.

67 Single molecule imaging in living cells has been increasingly used in recent years to
68 measure the dynamics of TF-DNA interactions (Liu, Lavis, & Betzig, 2015). However, the
69 techniques commonly used are not suitable for whole embryos and thick tissues. Total Internal
70 Reflection (TIRF) and Highly-Inclined illumination (Hi-Lo) (Tokunaga, Imamoto, & Sakata-
71 Sogawa, 2008) which have enabled single molecule imaging in monolayer cell cultures use

72 wide-field excitation geometries and restrict the illumination volume to a small distance above
73 the microscope coverslip in order to limit the excitation of out-of-focus fluorophores. This
74 confinement of the illumination volume is necessary to achieve the signal-to-background ratios
75 (SBRs) required for single molecule detection. Consequentially, if the thickness of the
76 illumination volume is extended to image further away from the coverslip, the SBR degrades as
77 more and more out-of-focus fluorophore emission raises the background level and reduces
78 contrast. This degradation is further exacerbated when imaging highly auto- fluorescent samples
79 such as embryos or thick tissues.

80 Lattice Light-Sheet Microscopy (LLSM) was recently developed to overcome these
81 technical barriers (B. C. Chen et al., 2014). Here we apply LLSM to developing *Drosophila*
82 *melanogaster* embryos in order to characterize the single molecule DNA-binding kinetics of
83 BCD. We find that BCD binds to chromatin in a highly transient manner across the concentration
84 gradient, and were surprised to observe a significant number of binding events even at low
85 concentrations in the posterior-most regions of the embryo. Examination of the spatial
86 distribution of BCD binding events reveals spatiotemporal hubs of high local BCD
87 concentration. Through genome wide analysis of BCD-DNA binding on dissected posterior
88 segments of embryos, we show that the binding we observe via single molecule imaging in
89 posterior nuclei occurs at specific regulatory regions. We find that the regions which are
90 enriched for BCD in the posterior segments are highly correlated with Zelda (ZLD) binding,
91 signifying its role in mediating the formation of BCD hubs. Through single molecule imaging of
92 BCD in ZLD null embryos we show that ZLD is required for the formation of BCD hubs in the
93 posterior embryo. Together, these data advocate for a model in which ZLD mediates the

94 formation of hubs of high local BCD concentration and enables the activation of BCD dependent
95 targets at all position across the anteroposterior axis of the embryo.

96 **RESULTS**

97 **Single molecule imaging in living Drosophila embryos using Lattice Light-Sheet**
98 **Microscopy**

99 The principle of LLSM (Figure 1-figure supplement 1) is to create an excitation light-
100 sheet that matches the depth-of-field of the detection objective such that only fluorophores that
101 are in focus are excited (B. C. Chen et al., 2014). As in all light-sheet microscopes, in LLSM the
102 excitation and detection objectives are independent and oriented orthogonally to each other.
103 However, unlike conventional light-sheet modalities that use Gaussian beam illumination, in
104 LLSM an array of Bessel beams is used. The spacing and phase of the Bessel beams in the array
105 is controlled such that their side-lobes destructively interfere in order to achieve maximal axial
106 confinement of the light-sheet. Thus, unlike in wide-field excitation geometries the thickness of
107 the excitation volume in LLSM is independent of the distance from the coverslip which is being
108 probed. This approach enables single molecule imaging of BCD-eGFP in living *Drosophila*
109 embryos over a large field of view with high temporal resolution (Figure 1 A-B, Figure 1-figure
110 supplement 2 and Videos 1-3). We utilize a *yw; his2av-mrfp1; bcdE1, egfp-bcd* fly line in which
111 only the labelled BCD is expressed indicating proper functionality and expression levels
112 (Gregor, Wieschaus, McGregor, Bialek, & Tank, 2007) to ensure that all molecules we observe
113 are functionally relevant. The single molecule nature of the data is reflected in the distribution of
114 intensities (Video 2 and Figure 1-figure supplement 2A-B) and discrete characteristics (Video 2
115 and Figure 1-figure supplement 2C-D) of the observed binding events.

116 Bicoid nuclear concentrations range from ~50 nM at the anterior most positions down to
117 <2 nM (Morrison et al., 2012) in the posterior. This translates to a range on the order of 10^4 - 10^2
118 BCD molecules/nucleus. Assuming an isotropic distribution of molecules and a 400 nm thick
119 imaging volume, we can estimate a range on the order of 10^3 - 10^1 BCD molecules/ imaging
120 plane. This range of concentrations is reflected in the data shown in Video 1, where
121 unambiguous single molecule detections can be seen in the middle and posterior positions from
122 the start, whereas in the anterior positions they can only be detected when a sufficient amount of
123 bleaching has occurred. This natural concentration range allows us to perform single molecule
124 tracking at all positions in the embryo without utilizing sparse labelling strategies or photo-
125 switchable fluorophores.

126 **Bicoid binds chromatin in a highly transient manner across the concentration gradient**

127 The classical model for morphogens predicts a difference in the average dissociation rates
128 of Bicoid along the A-P axis. For example, genes that are activated at lower concentrations
129 should have higher affinity sites resulting in lower off-rates to enable a higher time-average
130 occupancy (i.e. residence time, RT). To test this model at the single molecule level we therefore
131 first performed single molecule imaging and tracking at long (100 millisecond) exposure times,
132 effectively blurring out the fast moving (unbound) population (Videos 1-2 and Figure 1-figure
133 supplement 2) (J. J. Chen et al., 2014) to estimate the residence times of BCD binding in nuclei
134 at all positions along the A-P axis.

135 Previous single molecule studies of transcription factors have consistently found two
136 populations in the survival probability distributions, a short-lived population with RTs on the
137 order of hundreds of milliseconds, and a longer-lived population with RTs on the order of 10's of
138 seconds to minutes (J. J. Chen et al., 2014; Hansen, Pustova, Cattoglio, Tjian, & Darzacq, 2017;

139 Normanno et al., 2015). These two populations have often been shown to be the non-specific and
140 specific binding populations, respectively. The survival probability distributions of BCD
141 similarly are fit better with a two-exponent model than with a single-exponent model indicating
142 the presence of two sub-populations (Figure 1- figure supplement 3 and Figure 1-figure
143 supplement 4). Fits to the survival probability distributions of BCD binding events (Figure 1C
144 and Table 1) in the anterior, middle and posterior thirds of the embryo identified short-lived
145 populations with average RTs (after photo-bleaching correction) on the order of 100s of
146 milliseconds and longer lived populations with average RTs on the order of seconds, and with no
147 significant dependence on position along the A-P axis for either population (Table 1). This
148 finding is contrary to the classical model which predicts a modulation of binding affinity as the
149 mechanism for concentration readout. The validity of our RT estimations are supported by
150 additional measurements at 500 millisecond exposure times (Figure 1-figure supplement 4).

151 Remarkably, the RT of the long-lived population is much shorter than lifetimes (10-60
152 sec) typically observed for other sequence specific DNA binding TFs using single molecule
153 tracking (J. J. Chen et al., 2014; Hansen et al., 2017). The transient nature of BCD binding is
154 further supported by Fluorescence Recovery After Photobleaching (FRAP) experiments (Figure.
155 1D) which reveal fast halftimes of recovery on the order of hundreds of milliseconds (Figure 1-
156 figure supplement 5) and previous measurements by others using Fluorescence Correlation
157 Spectroscopy (Porcher et al., 2010). The dominance of the short-lived interactions (Figure 1C)
158 highlights the preponderance of low-affinity BCD binding sites in the *Drosophila melanogaster*
159 genome and the resulting large number of non-specific interactions as previously suggested by
160 genomic studies that captured its promiscuous binding behavior (Li et al., 2008; Ochoa-Espinosa
161 et al., 2005). In addition to the expected large number of binding events in the anterior and

162 middle segments of the embryo, we also observed a surprisingly large number of potentially
163 specific binding events in the posterior-most nuclei where BCD has been reported to be at
164 vanishingly low (<2nM posterior vs ~50 nM anterior) concentrations (Morrison et al., 2012).

165 **Spatiotemporal hubs of Bicoid binding enrich local concentrations in the posterior embryo**

166 The lack of a detectable difference in the survival probability distributions along the A-P
167 axis and the observation of significant binding in posterior nuclei prompted us to examine how
168 much of the small BCD population remaining in the posterior embryo is actually bound vs.
169 mobile. Since longer exposure times only allow detection of molecules bound for at least the
170 span of the exposure and don't provide any data on the mobile population, we performed single
171 molecule tracking measurements at a decreased exposure time of 10 milliseconds. The signal-to-
172 noise ratios at these lower exposure times are adversely affected as expected, limiting the type of
173 analysis that can be performed on this data (Video 3). However, despite this reduced contrast we
174 were able to perform single particle tracking, and through analyses of displacement distributions
175 (Figure 2 –figure supplement 1), we estimated the fraction of BCD that is bound along the A-P
176 axis (Figure. 2A). This analysis suggests that a greater fraction of the BCD population is bound
177 in more posterior positions of the embryo where BCD is present at the lowest concentrations.
178 This counter-intuitive result motivated us to further examine the 100 millisecond exposure time
179 dataset beyond the analysis of residence times described above.

180 Analyses of the spatial distribution of binding events in the 100 millisecond dataset
181 revealed a distinct clustering of binding events which becomes more pronounced toward
182 posterior positions (Figure 2B, Figure 2- figure supplement 2). Remarkably, although the number
183 of binding events per nucleus follows the trend dictated by the global concentration gradient
184 across the embryo (Figure 2C), the distribution of BCD molecules detected per cluster or “hub”

185 is maintained even in the posterior (Figure 2D). These data suggest that the formation of BCD
186 hubs with high time-averaged occupancy at specific sites in nuclei across the A-P axis is
187 conserved independent of the global concentration gradient. This surprising finding raises the
188 questions of whether the binding in the hubs observed in posterior nuclei is to specific targets
189 and whether a mechanism then exists to selectively enrich local time-averaged concentrations in
190 order to promote these interactions.

191 **Bicoid binds specific regulatory regions in the posterior embryo in a Zelda dependent**
192 **manner**

193 To test whether BCD is binding with specificity in the posterior embryo we analyzed its
194 binding profiles in a spatially segregated manner (P. A. Combs & Eisen, 2013) by comparing
195 ChIP-seq profiles derived from individually dissected posterior thirds of embryos to previously
196 published data from whole embryos (Bradley et al., 2010). Our analysis reveals that BCD indeed
197 binds to known targets in the posterior but with increased relative enrichment at specific
198 enhancer elements (Figure 3A). For example, in the *hunchback* locus, binding at the posterior
199 stripe enhancer (Perry, Bothma, Luu, & Levine, 2012) is highly enriched over the background in
200 nuclei from the dissected posterior third relative to the whole embryo. Intriguingly, genomic
201 regions that exhibit a relative increase in BCD occupancy in the posterior are correlated with an
202 enrichment of Zelda (ZLD) binding (Figure 3A and Figure 3-figure supplement 1), a ubiquitous
203 activator often described as a pioneer factor active during early embryonic development (Foo et
204 al., 2014; Harrison et al., 2011; Liang et al., 2008; Z. Xu et al., 2014). Remarkably, enrichment
205 of ZLD is more predictive of BCD binding in the posterior than previously determined position
206 of enhancer activity for the loci shown in Figure 3A. Analysis of the correlation between BCD
207 and ZLD enrichment at the cis-regulatory modules of 12 gene loci, and at ZLD and BCD peaks

208 genome-wide reveal that binding of BCD in posterior nuclei is highly correlated with ZLD co-
209 binding (Figure 3A, Figure 3-figure supplement 1, and Figure 3-figure supplement 2).

210 **Formation of Bicoid hubs in the posterior embryo is dependent on Zelda**

211 The posterior thirds genomic data and the published evidence for Zelda's role in the
212 regulation of chromatin accessibility (Foo et al., 2014; Harrison et al., 2011; Li et al., 2014;
213 Liang et al., 2008; Schulz et al., 2015; Sun et al., 2015; Z. Xu et al., 2014) and its suggested role
214 in the modulation of TF binding at low concentrations (Schulz et al., 2015; Z. Xu et al., 2014)
215 naturally led us to hypothesize that the observed clustering of BCD binding events may be, in
216 part, mediated by ZLD. We thus generated *zelda* null embryos and measured BCD binding at
217 100 millisecond exposure times, and found an abolishment of BCD hubs in the posterior embryo
218 and a small but insignificant decrease in RTs (Figure 3C, Table 1). Due to this loss of clustering
219 the same analysis that was performed in the WT case (Figure 2C) could not be done in the ZLD
220 mutants. We thus calculated the pair-correlation function for the spatial distribution of binding
221 events in both the WT and ZLD mutants (Cisse et al., 2013). This analysis allows us to infer
222 whether binding events are spatially randomly distributed or clustered (Figure 3-figure
223 supplement3). Both the magnitude and correlation length indicate a diminishment of clustering
224 in the posterior nuclei of the ZLD mutants. We also note that due to the lower labelling density
225 of BCD in the *zelda* null embryos the presumably ZLD independent clustering in the anterior
226 embryo now becomes more apparent (Figure 3-figure supplement 3). The loss of clustering in
227 the ZLD mutants also confirms that the clustering we originally observed is not due to
228 aggregation of eGFP, or other artifacts reasons.

229 Although the exact mechanism by which ZLD mediates BCD hub formation and binding
230 remains unclear, we speculate that a combination of protein-protein interactions facilitated by

231 intrinsically disordered low-complexity domains(Hamm, Bondra, & Harrison, 2015) of ZLD and
232 its reported role in promoting chromatin accessibility (Foo et al., 2014; Li et al., 2014; Schulz et
233 al., 2015; Sun et al., 2015) may contribute to BCD clustering (Figure 4).

234 **DISCUSSION**

235 Our initial observation of the low affinity nature of BCD binding to chromatin fits the
236 classical view of BCD as a concentration-dependent morphogen. We envision that high TF
237 concentrations (in the anterior embryo) potentiate rapid on-rates along with a high chromatin
238 occupancy. The observed high off-rate also suggests that BCD is free to frequently sample non-
239 specific sites (Figure 4). Thus, as BCD concentrations decrease posteriorly along the gradient,
240 there should be progressively lower on-rates and the binding at specific sites should be
241 correspondingly diminished, regardless of the roles of opposing repressor gradients. However,
242 this simplistic model essentially consigns BCD to no posterior function and contradicts a wealth
243 of evidence in the literature pointing to a specific role for BCD in the regulation of posterior
244 gene expression (Burz et al., 1998; Chen et al., 2012; La Rosee et al., 1997; Ochoa-Espinosa et
245 al., 2009; Rivera-Pomar et al., 1995; Small, Blair, & Levine, 1996). Although this paradox is
246 inexplicable under the classical morphogen model and not addressed by more recent studies that
247 cannot access dynamic information, our evidence for local high-concentration BCD “hubs”
248 capable of modulating specific binding with help from ZLD in the posterior suggests a novel
249 mechanism for TFs to carry out their regulatory role even when present at very low
250 concentrations (Figure. 4). The formation of such clusters or hubs has been reported for other
251 TFs (J. J. Chen et al., 2014; Justin Crocker et al., 2017; Liu et al., 2014) and for RNA
252 Polymerase II (Cisse et al., 2013) and indicate that such spatial organization of the nucleus may
253 be a general mechanism to catalyze important regulatory interactions. During embryonic

254 development, it is likely that clustering of TFs mediated by co-factors has evolved in eukaryotes
255 to allow exquisite spatial and segmental modulation during development through enabling
256 interactions with low-affinity enhancers (J. Crocker, Noon, & Stern, 2016).

257 **MATERIALS AND METHODS**

258 **Fly husbandry**

259 All fly cages were prepared by combining males and females of the desired strains in a plastic
260 cage left at room temperature in light at least 3 days prior to imaging. The lids on the cages were
261 filled with agar dissolved in apple juice (2.4% g/w Bacto agar, 25% apple juice, 75% distilled
262 water, and .001% of mold inhibitor from solution of 0.1g/ml (Carolina 87-6165). A paste of dry
263 yeast was smeared on the lids to induce egg laying. Lids were exchanged once each day.

264 The fly strain used for all WT BCD imaging experiments was: *yw; his2av-mrfp1; BcdE1*,
265 *egfp-bcd*. This fly line results in embryos where only the labelled BCD is expressed indicating
266 proper functionality and expression levels (Gregor et al., 2007). For the *zld*- experiments, *bcd*-
267 *egfp* heterozygous virgins with *zld*- germline cells (maternal germline clones prepared as in
268 (Liang et al., 2008)) were crossed to *yw* males, and progeny were used for imaging 2-3 hours
269 after laying. The heterozygosity results in only half of the BCD labelled in the *zld*- embryos. For
270 photo-bleaching controls the line used was *yw, his2av-egfp; +/+* (Bloomington # 24163).

271 **Live embryo collection for imaging**

272 For embryo collection, lids on fly cages were exchanged one hour prior to imaging. After one
273 hour, embryos were collected from the lids using an inoculation loop. A 5mm diameter glass
274 cover slip (#64-0700, Warner Instruments) was prepared by immersion in a small amount of glue
275 (prepared by dissolving adhesive from about 1/5 of a roll of double-sided Scotch tape overnight
276 in heptane) and was left to dry for 5-10 minutes while collecting embryos. Collection was

277 performed on a dissection scope with trans-illumination. Embryos were bathed in Halocarbon oil
278 27 (Sigma) for staging and then selected between developmental stages 1 and 4. Selected
279 embryos were placed on a small square of paper towel, then de-chorionated in 100% bleach for 1
280 minute. Bleach was wicked off with a Kimwipe after one minute, then the square was washed
281 with a small amount of distilled water. Excess water was wicked off the square and the square
282 was dipped in a small water bath. Un-punctured embryos that floated to the top of the bath were
283 selected for imaging and placed on a small paper towel square to slightly dry. To prevent excess
284 desiccation embryos were immediately placed on the glass cover slip in rows and then immersed
285 in a drop of phosphate-buffered saline (PBS).

286 **Lattice Light-Sheet Microscopy**

287 Imaging was performed using a home built lattice light-sheet microscope (Figure 1-figure
288 supplement 1) following the design described by Chen et al. (B. C. Chen et al., 2014) and
289 detailed blueprints provided by the Betzig group at HHMI Janelia Research Campus. To perform
290 the single molecule experiments we added a detection module containing two EMCCDs (Andor
291 iXon Ultra) for dual color imaging. The EMCCDs provided a significant improvement in signal
292 to noise over the sCMOS (Hamamatsu Orca Flash V2.0) used in the original system and made it
293 possible to use lower excitation powers while maintaining single molecule sensitivity. In brief,
294 the output beam from each laser is expanded and collimated independently to a size of 2.5 mm.
295 The expanded beams for each laser are combined and input into an Acoustic Optical Tunable
296 Filter (AOTF) to allow for rapid switching between excitation wavelengths and adjustment of
297 power (Figure 1-figure supplement 1A). A pair of cylindrical lenses is then used to elongate and
298 collimate the output Gaussian beam to illuminate a stripe on a spatial light modulator (SLM).
299 The SLM is used to generate a coherent pattern of an array of 30 Bessel beams spaced such that

300 they coherently interfere to create a 2D optical lattice pattern with a maximum numerical
301 aperture (NA) of 0.6 and minimum NA of 0.505. A 500 mm lens is used to project the Fourier
302 transform of the SLM plane onto an annular mask, conjugate to the back pupil plane (BPP) of the
303 excitation objective, to spatially filter the pattern (Figure 1-figure supplement 1B). The BPP is
304 then projected first onto a galvo scanning mirror for z-scanning and then onto a second galvo
305 scanning mirror for x-dithering. The x-galvo scanning plane is projected onto the BPP of the
306 excitation objective (Figure 1-figure supplement 1C). The excitation objective focuses the lattice
307 pattern onto the sample, exciting any fluorophores within the axial range (~400nm) of the sheet.
308 The emitted fluorescence is collected by the detection objective which is oriented orthogonally to
309 the excitation objective and projected onto an intermediate image plane by a 500 mm tube lens
310 (Figure 1-figure supplement 1D). An 80 mm and 200 mm lens pair is then used to de-magnify
311 the image further to provide a 100 nm sampling per pixel on each of the EMCCD sensors. A
312 dichroic mirror (Semrock FF560-FDi01) is placed between the last lens pair to allow for dual
313 color imaging in red and green with maximal spectral separation. An emission filter is placed in
314 the path of each camera to both reject the excitation wavelengths and also select the wavelength
315 range of interest (Semrock FF03-525/50 for eGFP and FF01-593/46 for RFP) (Figure 1-figure
316 supplement 1E). During each camera exposure the x-galvo mirror is dithered twice over a 5.1 μm
317 range in 100 nm steps to provide uniform illumination.

318 The prepared coverslip, with embryos arranged in rows as described above, was then
319 loaded into the sample holder and secured on to the positioning stages of the lattice light-sheet
320 microscope. The sample chamber was filled with PBS for imaging and kept at room temperature.
321 The slide was then scanned to find an embryo of suitable age (between nuclear cycles 10 and 11)
322 and the positions of the anterior and posterior extremes of the embryo were then marked. For

323 each dataset acquired, the stage position was recorded to determine the position as a fraction of
324 the embryonic length (EL) as the distance of the position from the anterior pole divided by the
325 total length of the embryo.

326 For the residence time measurements on BCD-eGFP, a 488 nm excitation laser was used
327 with a power of 2.9 mW measured at the back pupil plane of the excitation objective. Images
328 were acquired with 100 millisecond exposure times and an EM Gain setting of 300. At each
329 location at least 1000 frames were acquired resulting in a total time of 105 seconds, with a frame
330 rate of 105 ms. Prior to and after acquiring the BCD-eGFP data an image was taken in His2-
331 AVmRFP using a 561 nm excitation laser at an excitation power of ~0.17 mW at the back pupil
332 plan to determine the nuclear cycle phase, data not acquired during interphase was discarded
333 upon examination of these images. For residence time measurements at 500 ms exposure times,
334 the 488 nm excitation laser power at the back pupil plane was reduced to 0.5 mW all other
335 settings were the same as above. For the displacement distribution measurements the exposure
336 time was set to 10 ms, resulting in a frame rate of 15 ms and the excitation power was increased
337 to 8.28 mW for the 488 nm laser line. All other settings were the same as described above.
338 Viability of the embryos was determined by allowing them to develop till gastrulation after
339 imaging. For the *zelda*- embryos lethality was confirmed after imaging.

340 **Curation of data for analysis**

341 For all datasets the following procedure was followed: First, for each movie the corresponding
342 before-and-after histone images were checked for any evidence of chromatin condensation to
343 ensure that analysis was only performed in interphase nuclei. Data from mid-to-late nuclear cycle
344 14, where the nuclei exhibit an elongated shape, were also excluded. A metadata file was then
345 created for each movie file containing the position as a fraction of the embryonic length (0 for

346 anterior, 1 for posterior), the nuclear cycle (determined by counting the number of mitoses before
347 the 14th cycle). Visual examination of the dataset was used to determine if there was any motion
348 of the nuclei during the acquisition period. Movies that contained any detectable motion were
349 discarded or cropped to only include the time interval where there was no motion. A rectangular
350 region of interest was then drawn around each nucleus which was then used to crop areas around
351 individual nuclei. The boundary of each nucleus was then marked using a hand-drawn polygon.
352 A masked movie was then created for each nucleus where regions outside the nucleus were set to
353 0 gray scale values so that all the analyses described below were only performed on molecules
354 within nuclear regions.

355 **Single molecule localization and tracking using Dynamic Multiple-target tracing (MTT)**

356 Localization and tracking of single molecules was conducted using a MATLAB implementation
357 of the MTT algorithm (Serge, Bertiaux, Rigneault, & Marguet, 2008). In brief, the algorithm first
358 performs a bi-dimension Gaussian fitting to localize particles constrained by a log-likelihood
359 ratio test subject to the localization error threshold. Deflation looping is performed to detect
360 molecules that are partially overlapping. The parameters of the localization and tracking
361 algorithms were empirically determined through iterative examination of the results. For all data
362 sets the following settings were used: For localization, maximum number of deflation loops was
363 set to 10, localization error to 10^{-6} . For tracking the maximum expected diffusion coefficient was
364 set to $5 \mu\text{m}^2/\text{s}$, maximum number of competitors was set to 1, and maximum off/blingking-frames
365 was set to 1.

366 **Residence time analysis**

367 The residence times were estimated from the 100 millisecond data using the results from
368 the single particle tracking using the MTT algorithm. The data was pooled into bins

369 corresponding to the position along the A-P axis of the embryo in 1/3 fractions of the embryonic
370 length (EL, 0-1 anterior to posterior), with the following number of nuclei and single molecule
371 trajectories per position bin:

372 Anterior: 34 nuclei, 17735, trajectories

373 Middle: 70 nuclei, 40092 trajectories

374 Posterior: 83 nuclei; 20823 trajectories

375 In the ZLD- embryos we measured the following number of nuclei and single molecule
376 trajectories per position bin:

377 Anterior: 23 nuclei, 11415, trajectories

378 Middle: 31 nuclei, 7572 trajectories

379 Posterior: 31 nuclei; 3606 trajectories

380 The survival probability distribution was then calculated as 1- the cumulative distribution
381 function of the trajectory lengths and was fit to both single and double exponential
382 models(Mazza, Abernathy, Golob, Morisaki, & McNally, 2012). The double exponential model
383 fit the data better in all cases (Figure 1-figure supplement. 3 and 4). The model used to fit the
384 data and to calculate the time constants and fraction of the population is:

385
$$\text{Survival Probability}(t) = A(F_a e^{-k_s t} + (1 - F_a) e^{-k_{ns} t})$$

386 Where k_s and k_{ns} are the low (specific) and high (non-specific) off-rates respectively. The total
387 pooled datasets of 78650 trajectories from the MTT results from 187 nuclei were also fit in the
388 same manner.

389 To correct for photo-bleaching we used a *His2Av-eGFP* to estimate the bleaching
390 constant (0.00426 s^{-1}) and correct the off-rate as $k_{s,\text{corrected}} = k_s - k_{\text{bleach}}$. (Table 1). We note that the
391 bleaching correction has minimal effect on our estimated off-rates. The fact that we are not

392 limited by bleaching due to the transient nature of BCD binding is further validated through even
393 longer, 500 milliseconds exposure time measurements on 17 nuclei which provides an estimate
394 for the specific and non-specific off-rates that do not differ significantly from those measured at
395 100 milliseconds (Figure 1-figure supplement 4 and Table 1). The results of the fits to all data
396 are shown in Table 1.

397 **Fluorescence Recovery After Photobleaching (FRAP)**

398 Experiments were performed on a Zeiss LSM 800 laser scanning confocal system
399 (coupled to a Zeiss Axio Observer Z1) using a Plan-Achromat 63x/1.4 NA Oil immersion
400 objective and GaAsP-PMT detector and a 488 nm laser. A circular bleach region with a diameter
401 of 1.5 μ m was used and the bleach location was selected manually in each nucleus at
402 approximately the center and a total bleach time of 78.1 ms was used. Data was acquired for at
403 least 1 second prior to bleaching and for at least 6 seconds post bleaching, with a time interval of
404 0.430 ms. Experiments were performed using live embryos from the same fly-line as for lattice
405 light-sheet imaging and which were collected and prepared in the same manner as described
406 above with the exception of the mounting procedure. For FRAP the embryos were mounted
407 between a semipermeable membrane (Biofolie; In Vitro Systems & Services) and a coverslip and
408 then embedded in Halocarbon 27 oil (Sigma). As in the case of the single molecule
409 measurements, the embryos were staged using the HIS2-AV-MRFP channel and all data was
410 acquired on embryos in nuclear cycle 13. The data was acquired on 21 nuclei all within the first
411 25% of the embryonic length from the anterior pole. FRAP experiments could not be performed
412 at more anterior locations due to the low BCD concentrations and thus signal to noise ratio.

413 For analysis, the spatial and temporal location of the bleach region was retrieved from the
414 meta-data recorded by the microscope control software and manually verified by inspecting the

415 data. Due to the short duration of the movies and rapid recovery drift correction was not
416 necessary. Each nucleus was manually segmented from the rest of the image by defining a
417 polygon region of interest. A region of interest the same size as the bleach region was also
418 marked in an area of each image outside of the nuclear region to be used to measure the
419 background or dark intensity. The FRAP curve for each nucleus was then calculated as follows:

420 First, the mean intensity in the nuclear region, $I_{nuc}(t)$, bleach region, $I_{bleach}(t)$, and
421 background region $I_{dark}(t)$ regions were calculated at each frame.

422 The background intensity was then subtracted from both the mean nuclear and bleach
423 region intensities. To correct for photo-bleaching from imaging the bleach region intensity was
424 then divided by the mean nuclear intensity at each time point. The resulting photo-bleaching
425 corrected intensity was then normalized to the mean pre-bleach intensity, calculated as the
426 average intensity in all frames prior to bleaching ($I_{pre-bleach}$). The final FRAP curve for each
427 nucleus was thus calculated as:

428
$$FRAP(t) = [(I_{bleach}(t) - I_{dark}(t)) / (I_{nuc}(t) - I_{dark}(t))] / I_{pre-bleach}$$

429 The calculated FRAP curves for each nucleus were then aligned to the bleach frame and
430 averaged to generate the average FRAP curve shown in Fig. 1D. The averaged recovery data was
431 then fit to both a single exponential ($1 - A * \exp(-k_a * t)$) and double exponential ($1 - A * \exp(-k_a * t) -$
432 $B * \exp(-k_b * t)$) model (Figure 1-figure supplement 5 A,B), to measure the recovery time
433 constants. There is no significant difference in the quality of fit between the two models. For
434 comparison, the exact same experimental and analysis procedure was followed for His2AV-
435 MRFP1 (Figure 1-figure supplement 5 C) in the same embryos with the exception of using a 561
436 nm bleach laser, 3 nuclei were measured with these settings. For the histone measurements the

437 two-exponent fit was significantly better than the one-exponent as expected (Figure 1-figure
438 supplement 5).

439 **Displacement Distribution Analysis**

440 Single molecule trajectories were analyzed as described above. A total of 158 nuclei from
441 4 embryos were analyzed. The data from nuclei were binned according to their position along the
442 A-P axis in 1/3 fractions of the embryonic length (EL, 0-1 anterior to posterior), with the
443 following number of nuclei and single molecule displacements per bin: In the anterior most (0-
444 0.2) positions, tracking could not be performed reliably due to the high concentrations of Bicoid
445 at those locations at these high frame rates and presumably a large mobile population.

446 Anterior: 30 nuclei, 12923, trajectories

447 Middle: 67 nuclei, 23640 trajectories

448 Posterior: 66 nuclei; 8600 trajectories

449 The fraction of the population that is bound vs. mobile was estimated using two
450 approaches. First, a cumulative distribution function of the displacements was calculated for each
451 EL bin (Figure 2-figure supplement 1A), displacements corresponding to distances less than a
452 value of 225 nm were scored as part of the bound population. In the second approach the
453 probability density functions of the displacements were fit to a two population model (Figure 2-
454 figure supplement 1B).

$$455 P(r) = F_{\text{Bound}} \frac{r}{A} e^{\frac{r^2}{2A}} + (1 - F_{\text{Bound}}) \frac{r}{B} e^{\frac{r^2}{2B}}$$

456 Where F_{Bound} is the fraction of the population that is considered bound and r is the
457 displacement distance. The two population model fits the displacement data with R^2 values of
458 0.97, 0.98, and 0.96, for the anterior, middle and posterior distributions respectively and provides
459 an estimate of the fraction present in the mobile and bound populations. The trend of an increase

460 in the population bound estimate in the middle and posterior positions relative to the anterior is
461 similar from both approaches. Although the bound population includes non-specific binding
462 events as well, what we are interested in the relative change across the A-P axis.

463 We note that the diffusion coefficients for the bound and mobile populations can in
464 principle be estimated from displacement distributions, however as explained by Mazza et al.
465 (Mazza et al., 2012):, they cannot be estimated accurately from a fit to a displacement
466 distribution at a single time step and are thus not reported. To accurately measure the diffusion
467 coefficients more stable and photo switchable fluorophores are necessary to be able to track
468 single molecules for more time points and at higher time resolutions.

469 **DBSCAN based analyses of clusters**

470 The clustering of Bicoid binding events in the 100 millisecond WT embryos dataset is
471 readily apparent in nuclei across the A-P axis in the projection of all localizations from the MTT
472 algorithm (Figure. 2B). In order to automatically identify clusters and count the number of
473 detections/ cluster vs. the whole nucleus (Figure. 2C), a MATLAB implementation (Yarpiz
474 Team 2015) of the widely used Density-based spatial clustering of applications with noise
475 (DBSCAN) was used with a minimum points setting of 10 points and an epsilon (maximum
476 radius of neighborhood) setting of 0.8. These settings were empirically determined by iteratively
477 changing parameters and examining the results. A balance had to be struck in an ability to
478 accurately identify clusters in the high density situations in anterior nuclei and also low density
479 situations in the posterior. Only datasets with timespans of at least 105 seconds were included. A
480 total of 12, 49, and 48 nuclei and 436, 1168, and 367 clusters were analyzed in this manner for
481 the Anterior, Middle, and Posterior positions respectively. Examples of clusters identified in
482 nuclei at various positions are shown in Figure 3-figure supplement 2. For comparing

483 distributions outliers were removed (< 5th or > 95th percentile) to disregard clusters that were
484 significantly over or under-partitioned. In the case of the ZLD- embryos, due to the loss of
485 apparent clustering, DBSCAN was not able to detect clusters so instead the spatial distribution of
486 points was compared using pair-correlation analysis as described below to provide insight on the
487 change beyond visual examination.

488 **Pair correlation analysis of clustering**

489 The pair correlation function for the spatial distribution of particles computes the probability of
490 finding a particle at the range of distances from another particles. In the case of complete spatial
491 randomness which can be represented by a Poisson process the pair correlation function is equal
492 to 1. The analysis is conducted on point lists generated from the MTT algorithm using the first
493 spatial coordinate of each trajectory. A total of 22, 48, and 42 nuclei were used for the Anterior,
494 Middle, and Posterior positions respectively for the WT embryos and a total of 23, 31, and 31
495 nuclei were used for the Anterior, Middle, and Posterior positions respectively for the *zld*-
496 embryos. A MATLAB implementation (Ilya Valmianski 2014) was used to calculate the
497 correlation function for the spatial distribution in each nucleus, the results were then averaged for
498 each position (Anterior, Middle, Posterior) embryo for comparison (Figure 3-figure supplement
499 3).

500 **Chromatin Immunoprecipitation and Sequencing (ChIP-Seq)**

501 Embryos were collected from a population cage for 90 minutes and then aged for 2 hours in
502 order to enrich for embryos at developmental stage five. Embryos were then fixed with
503 formaldehyde as previously described (Li et al., 2008) and sorted by morphology for those at
504 early stage 5. The posterior thirds of embryos were sliced off by hand with a scalpel. A pool of
505 the embryo segments from approximately 300 embryos was combined with 20 µg of whole

506 *Drosophila pseudoobscura* embryos at stage 5 (to serve as carrier), and homogenized in
507 homogenization buffer containing 15mM NaCl, 15mM TrisHCl pH 7.5, 60mM KCl, 1mM
508 EDTA, and 0.1% Triton-X100, with 1mM DTT, 0.1 mM PMSF, and protease inhibit cocktail
509 (Roche) added before use. After homogenization, 0.5% NP40 was added, and following a 5
510 minute incubation, samples were spun down at a low speed. Nuclei in the pellet were then
511 washed once with the homogenization buffer containing 0.2M NaCl. The low speed
512 centrifugation was repeated, and the recovered nuclei pellet was then re-suspended in nuclear
513 lysis buffer (10 mM TrisCl, pH 7.9, 100 mM NaCl, 1 mM EDTA, 0.5 % Sarkosyl) +1%SDS,
514 +1.5% sarkosyl. The chromatin was recovered by spinning the sample at full speed in a micro-
515 centrifuge at 4°C for 1 hour and was re-suspended in a small volume of nuclear lysis buffer.
516 Chromatin was sheared to an average size of 300bp using a Covaris sonicator (peak power= 140,
517 duty factor = wo, cycle burst = 200, time = 2:20 minutes). Chromatin immunoprecipitation was
518 performed using 72ng of chromatin and 1.5ug of an anti-Bicoid polyclonal antibody described
519 previously (Li et al., 2008). The Bicoid antibody was coupled to Dynabead M-280 sheep anti-
520 rabbit magnetic beads and the immunoprecipitation was conducted with the standard protocol
521 from the manufacturer. DNA libraries for the chromatin immunoprecipitation samples were
522 prepared using the Rubicon genomics thru-plex DNA-seq kit using 16 PCR cycles and
523 sequenced using Illumina High-seq with 2500 rapid run100bp single end reads. The sequencing
524 reads were aligned to a combined *D. pseudoobscura* (Flybase Release 1.0) and *D. melanogaster*
525 genome (Flybase Release 5) using Bowtie with options set as -3 70 -n 2 -m 1. The aligned reads
526 were converted to wig files using custom scripts available upon request. Wig files were
527 normalized to 10 million mapped reads.

528 **ChIP-Seq analysis**

529 The posterior embryo ChIP-seq data was compared to published data on whole embryos from the
530 same developmental stage (Bradley et al., 2010) downloaded from the NCBI GEO database with
531 accession number GSM511083. To compare against Zelda binding, previously published data
532 (Harrison et al., 2011) was downloaded from the NCBI GEO database with accession number
533 GSM763061. Since the purpose of the analysis was to compare relative enrichment at genomic
534 loci over each datasets respective background, the following normalization procedure was used:
535 First, for each chromosome the average of the signal over the entire chromosome (a proxy for the
536 background signal) was subtracted, negative values were then treated as below the background
537 and discarded. The data was then normalized to the background subtracted average of each
538 chromosome such that the normalized data now represents enrichment over background. For
539 visualization data was smoothed using a Savitzky-Golay filter of order 3 over a 0.250 kbp sliding
540 window. For analysis on CRMs the RedFly annotation database was used. For analysis centered
541 on called peaks in either the whole embryo BCD data or the Zelda data .bed files containing peak
542 locations were downloaded from the NCBI GEO database.

543 **ACKNOWLEDGMENTS**

544 We thank Astou Tangara and the Betzig group at HHMI Janelia Research campus for help in
545 constructing the Lattice Light Sheet Microscope. We thank Robert Tjian for extensive
546 discussions and advice along the course of this work, and for his help in writing this manuscript.
547 We thank Elizabeth Eck for her help in generating the zelda germ-line clones. We thank
548 members of the Darzacq, Tjian, Garcia, and Eisen labs for suggestions and discussion. This work
549 was supported by the California Institute of Regenerative Medicine (CIRM) LA1-08013 and the
550 National Institutes of Health (NIH) UO1-EB021236 & U54-DK107980 to X.D., by the
551 Burroughs Wellcome Fund Career Award at the Scientific Interface, the Sloan Research

552 Foundation, the Human Frontiers Science Program, the Searle Scholars Program, and the Shurl
553 & Kay Curci Foundation to H.G., a Howard Hughes Medical Institute investigator award to
554 M.E., J.H. and A.R are supported by NSF Graduate Research Fellowships.

555 COMPETING INTERESTS

556 We have no competing interests to declare.

557 REFERENCES

558 Bradley, R. K., Li, X. Y., Trapnell, C., Davidson, S., Pachter, L., Chu, H. C., . . . Eisen, M. B. (2010). Binding Site
559 Turnover Produces Pervasive Quantitative Changes in Transcription Factor Binding between Closely
560 Related Drosophila Species. *Plos Biology*, 8(3). doi: ARTN e1000343
561 10.1371/journal.pbio.1000343

562 Burz, D. S., Rivera-Pomar, R., Jackle, H., & Hanes, S. D. (1998). Cooperative DNA-binding by Bicoid provides a
563 mechanism for threshold-dependent gene activation in the Drosophila embryo. *EMBO J*, 17(20), 5998-
564 6009. doi: 10.1093/emboj/17.20.5998

565 Chen, B. C., Legant, W. R., Wang, K., Shao, L., Milkie, D. E., Davidson, M. W., . . . Betzig, E. (2014). Lattice light-
566 sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution. *Science*, 346(6208),
567 439-439. doi: DOI 10.1126/science.1257998

568 Chen, H., Xu, Z., Mei, C., Yu, D., & Small, S. (2012). A system of repressor gradients spatially organizes the
569 boundaries of Bicoid-dependent target genes. *Cell*, 149(3), 618-629. doi: 10.1016/j.cell.2012.03.018

570 Chen, J. J., Zhang, Z. J., Li, L., Chen, B. C., Revyakin, A., Hajj, B., . . . Liu, Z. (2014). Single-Molecule Dynamics
571 of Enhanceosome Assembly in Embryonic Stem Cells. *Cell*, 156(6), 1274-1285. doi: DOI
572 10.1016/j.cell.2014.01.062

573 Cisse, II, Izeddin, I., Causse, S. Z., Boudarene, L., Senecal, A., Muresan, L., . . . Darzacq, X. (2013). Real-time
574 dynamics of RNA polymerase II clustering in live human cells. *Science*, 341(6146), 664-667. doi:
575 10.1126/science.1239053

576 Combs, P., & Eisen, M. (2017). *Genome-wide measurement of spatial expression in patterning mutants of
577 Drosophila melanogaster [version 1; referees: 2 approved]* (Vol. 6).

578 Combs, P. A., & Eisen, M. B. (2013). Sequencing mRNA from Cryo-Sliced Drosophila Embryos to Determine
579 Genome-Wide Spatial Patterns of Gene Expression. *PLoS One*, 8(8). doi: ARTN e71820
580 10.1371/journal.pone.0071820

581 Crocker, J., Noon, E. P., & Stern, D. L. (2016). The Soft Touch: Low-Affinity Transcription Factor Binding Sites in
582 Development and Evolution. *Curr Top Dev Biol*, 117, 455-469. doi: 10.1016/bs.ctdb.2015.11.018

583 Crocker, J., Tsai, A., Muthusamy, A. K., Lavis, L. D., Singer, R. H., & Stern, D. L. (2017). Nuclear
584 Microenvironments Modulate Transcription From Low-Affinity Enhancers. *bioRxiv*. doi: 10.1101/128280

585 Driever, W., & Nusslein-Volhard, C. (1988a). The bicoid protein determines position in the Drosophila embryo in a
586 concentration-dependent manner. *Cell*, 54(1), 95-104.

587 Driever, W., & Nusslein-Volhard, C. (1988b). A gradient of bicoid protein in Drosophila embryos. *Cell*, 54(1), 83-
588 93.

589 Driever, W., & Nusslein-Volhard, C. (1989). The Bicoid Protein Is a Positive Regulator of Hunchback Transcription
590 in the Early Drosophila Embryo. *Nature*, 337(6203), 138-143. doi: Doi 10.1038/337138a0

591 Driever, W., Siegel, V., & Nusslein-Volhard, C. (1990). Autonomous determination of anterior structures in the
592 early Drosophila embryo by the bicoid morphogen. *Development*, 109(4), 811-820.

593 Ephrussi, A., & St Johnston, D. (2004). Seeing is believing: the bicoid morphogen gradient matures. *Cell*, 116(2),
594 143-152.

595 Foo, S. M., Sun, Y., Lim, B., Ziukaite, R., O'Brien, K., Nien, C. Y., . . . Rushlow, C. A. (2014). Zelda potentiates
596 morphogen activity by increasing chromatin accessibility. *Current Biology*, 24(12), 1341-1346. doi:
597 10.1016/j.cub.2014.04.032

598 Gregor, T., Wieschaus, E. F., McGregor, A. P., Bialek, W., & Tank, D. W. (2007). Stability and nuclear dynamics of
599 the bicoid morphogen gradient. *Cell*, 130(1), 141-152. doi: 10.1016/j.cell.2007.05.026

600 Hamm, D. C., Bondra, E. R., & Harrison, M. M. (2015). Transcriptional activation is a conserved feature of the
601 early embryonic factor Zelda that requires a cluster of four zinc fingers for DNA binding and a low-
602 complexity activation domain. *Journal of Biological Chemistry*, 290(6), 3508-3518. doi:
603 10.1074/jbc.M114.602292

604 Hannon, C. E., Blythe, S. A., & Wieschaus, E. F. (2017). Concentration Dependent Chromatin States Induced by the
605 Bicoid Morphogen Gradient. *bioRxiv*. doi: 10.1101/133348

606 Hansen, A. S., Pustova, I., Cattoglio, C., Tjian, R., & Darzacq, X. (2017). CTCF and cohesin regulate chromatin
607 loop stability with distinct dynamics. *Elife*, 6, e25776. doi: 10.7554/eLife.25776

608 Harrison, M. M., Li, X. Y., Kaplan, T., Botchan, M. R., & Eisen, M. B. (2011). Zelda binding in the early
609 Drosophila melanogaster embryo marks regions subsequently activated at the maternal-to-zygotic
610 transition. *PLoS Genet*, 7(10), e1002266. doi: 10.1371/journal.pgen.1002266

611 La Rosee, A., Hader, T., Taubert, H., Rivera-Pomar, R., & Jackle, H. (1997). Mechanism and Bicoid-dependent
612 control of hairy stripe 7 expression in the posterior region of the Drosophila embryo. *EMBO J*, 16(14),
613 4403-4411. doi: 10.1093/emboj/16.14.4403

614 Lebrecht, D., Foehr, M., Smith, E., Lopes, F. J. P., Vanario-Alonso, C. E., Reinitz, J., . . . Hanes, S. D. (2005).
615 Bicoid cooperative DNA binding is critical for embryonic patterning in Drosophila. *Proceedings of the
616 National Academy of Sciences of the United States of America*, 102(37), 13176-13181. doi:
617 10.1073/pnas.0506462102

618 Li, X. Y., Harrison, M. M., Villata, J. E., Kaplan, T., & Eisen, M. B. (2014). Establishment of regions of genomic
619 activity during the Drosophila maternal to zygotic transition. *Elife*, 3. doi: ARTN e03737
620 10.7554/eLife.03737

621 Li, X. Y., MacArthur, S., Bourgon, R., Nix, D., Pollard, D. A., Iyer, V. N., . . . Biggin, M. D. (2008). Transcription
622 factors bind thousands of active and inactive regions in the Drosophila blastoderm. *Plos Biology*, 6(2), 365-
623 388. doi: ARTN e27
624 10.1371/journal.pbio.0060027

625 Liang, H. L., Nien, C. Y., Liu, H. Y., Metzstein, M. M., Kirov, N., & Rushlow, C. (2008). The zinc-finger protein
626 Zelda is a key activator of the early zygotic genome in Drosophila. *Nature*, 456(7220), 400-U467. doi:
627 10.1038/nature07388

628 Liu, Z., Lavis, L. D., & Betzig, E. (2015). Imaging Live-Cell Dynamics and Structure at the Single-Molecule Level.
629 *Mol Cell*, 58(4), 644-659. doi: 10.1016/j.molcel.2015.02.033

630 Liu, Z., Legant, W. R., Chen, B. C., Li, L., Grimm, J. B., Lavis, L. D., . . . Tjian, R. (2014). 3D imaging of Sox2
631 enhancer clusters in embryonic stem cells. *Elife*, 3. doi: ARTN e04236
632 DOI 10.7554/eLife.04236.001

633 Lucchetta, E. M., Lee, J. H., Fu, L. A., Patel, N. H., & Ismagilov, R. F. (2005). Dynamics of Drosophila embryonic
634 patterning network perturbed in space and time using microfluidics. *Nature*, 434(7037), 1134-1138. doi:
635 10.1038/nature03509

636 Mazza, D., Abernathy, A., Golob, N., Morisaki, T., & McNally, J. G. (2012). A benchmark for chromatin binding
637 measurements in live cells. *Nucleic Acids Res*, 40(15), e119. doi: 10.1093/nar/gks701

638 Morrison, A. H., Scheeler, M., Dubuis, J., & Gregor, T. (2012). Quantifying the Bicoid morphogen gradient in
639 living fly embryos. *Cold Spring Harb Protoc*, 2012(4), 398-406. doi: 10.1101/pdb.top068536

640 Normanno, D., Boudarene, L., Dugast-Darzacq, C., Chen, J., Richter, C., Proux, F., . . . Dahan, M. (2015). Probing
641 the target search of DNA-binding proteins in mammalian cells using TetR as model searcher. *Nat Commun*,
642 6, 7357. doi: 10.1038/ncomms8357

643 Ochoa-Espinosa, A., Yu, D. Y., Tsirigos, A., Struffi, P., & Small, S. (2009). Anterior-posterior positional
644 information in the absence of a strong Bicoid gradient. *Proceedings of the National Academy of Sciences of
645 the United States of America*, 106(10), 3823-3828. doi: 10.1073/pnas.0807878105

646 Ochoa-Espinosa, A., Yucel, G., Kaplan, L., Pare, A., Pura, N., Oberstein, A., . . . Small, S. (2005). The role of
647 binding site cluster strength in Bicoid-dependent patterning in Drosophila. *Proceedings of the National
648 Academy of Sciences of the United States of America*, 102(14), 4960-4965. doi: 10.1073/pnas.0500373102

649 Perry, M. W., Bothma, J. P., Luu, R. D., & Levine, M. (2012). Precision of hunchback expression in the Drosophila
650 embryo. *Current Biology*, 22(23), 2247-2252. doi: 10.1016/j.cub.2012.09.051

651 Porcher, A., Abu-Arish, A., Huart, S., Roelens, B., Fradin, C., & Dostatni, N. (2010). The time to measure positional
652 information: maternal Hunchback is required for the synchrony of the Bicoid transcriptional response at the
653 onset of zygotic transcription. *Development*, 137(16), 2795-2804. doi: 10.1242/dev.051300

654 Rivera-Pomar, R., Lu, X., Perrimon, N., Taubert, H., & Jackle, H. (1995). Activation of posterior gap gene
655 expression in the *Drosophila* blastoderm. *Nature*, 376(6537), 253-256. doi: 10.1038/376253a0

656 Schulz, K. N., Bondra, E. R., Moshe, A., Villalta, J. E., Lieb, J. D., Kaplan, T., . . . Harrison, M. M. (2015). Zelda is
657 differentially required for chromatin accessibility, transcription factor binding, and gene expression in the
658 early *Drosophila* embryo. *Genome Research*, 25(11), 1715-1726. doi: 10.1101/gr.192682.115

659 Serge, A., Bertaux, N., Rigneault, H., & Marguet, D. (2008). Dynamic multiple-target tracing to probe
660 spatiotemporal cartography of cell membranes. *Nat Methods*, 5(8), 687-694. doi: 10.1038/nmeth.1233

661 Small, S., Blair, A., & Levine, M. (1996). Regulation of two pair-rule stripes by a single enhancer in the *Drosophila*
662 embryo. *Developmental Biology*, 175(2), 314-324. doi: DOI 10.1006/dbio.1996.0117

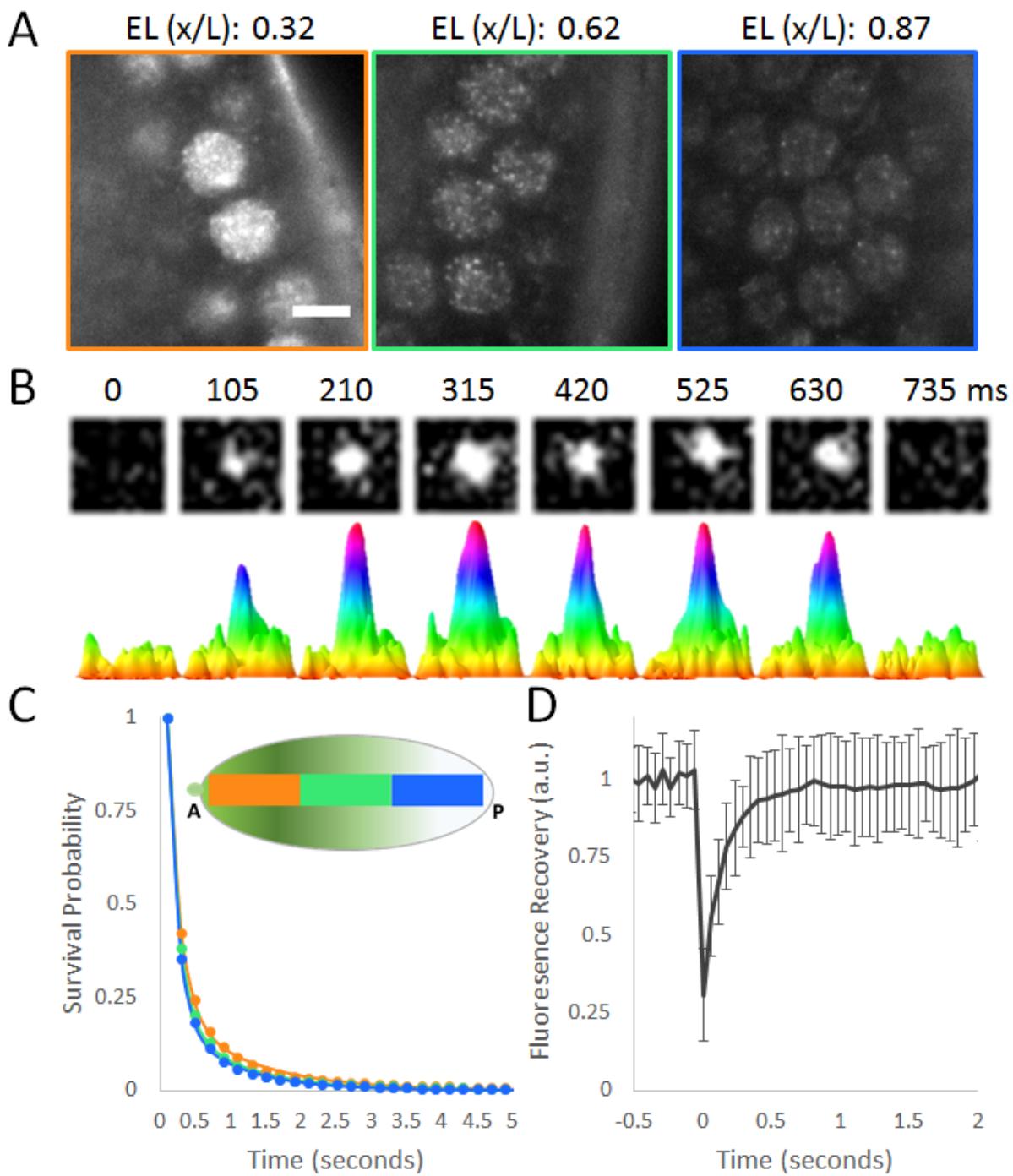
663 Struhl, G., Struhl, K., & Macdonald, P. M. (1989). The Gradient Morphogen Bicoid Is a Concentration-Dependent
664 Transcriptional Activator. *Cell*, 57(7), 1259-1273. doi: Doi 10.1016/0092-8674(89)90062-7

665 Sun, Y. J., Nien, C. Y., Chen, K., Liu, H. Y., Johnston, J., Zeitlinger, J., & Rushlow, C. (2015). Zelda overcomes the
666 high intrinsic nucleosome barrier at enhancers during *Drosophila* zygotic genome activation. *Genome*
667 *Research*, 25(11), 1703-1714. doi: 10.1101/gr.192542.115

668 Tokunaga, M., Imamoto, N., & Sakata-Sogawa, K. (2008). Highly inclined thin illumination enables clear single-
669 molecule imaging in cells. *Nature Methods*, 5(2), 159-161. doi: 10.1038/Nmeth.1171

670 Turing, A. M. (1952). The Chemical Basis of Morphogenesis. *Philosophical Transactions of the Royal Society of*
671 *London Series B-Biological Sciences*, 237(641), 37-72. doi: DOI 10.1098/rstb.1952.0012

672 Wolpert, L. (1969). Positional Information and Pattern of Cellular Differentiation. *Biophysical Journal*, 9, A8-&.


673 Xu, H., Sepulveda, L. A., Figard, L., Sokac, A. M., & Golding, I. (2015). Combining protein and mRNA
674 quantification to decipher transcriptional regulation. *Nat Methods*, 12(8), 739-742. doi:
675 10.1038/nmeth.3446

676 Xu, Z., Chen, H., Ling, J., Yu, D., Struffi, P., & Small, S. (2014). Impacts of the ubiquitous factor Zelda on Bicoid-
677 dependent DNA binding and transcription in *Drosophila*. *Genes Dev*, 28(6), 608-621. doi:
678 10.1101/gad.234534.113

679

680

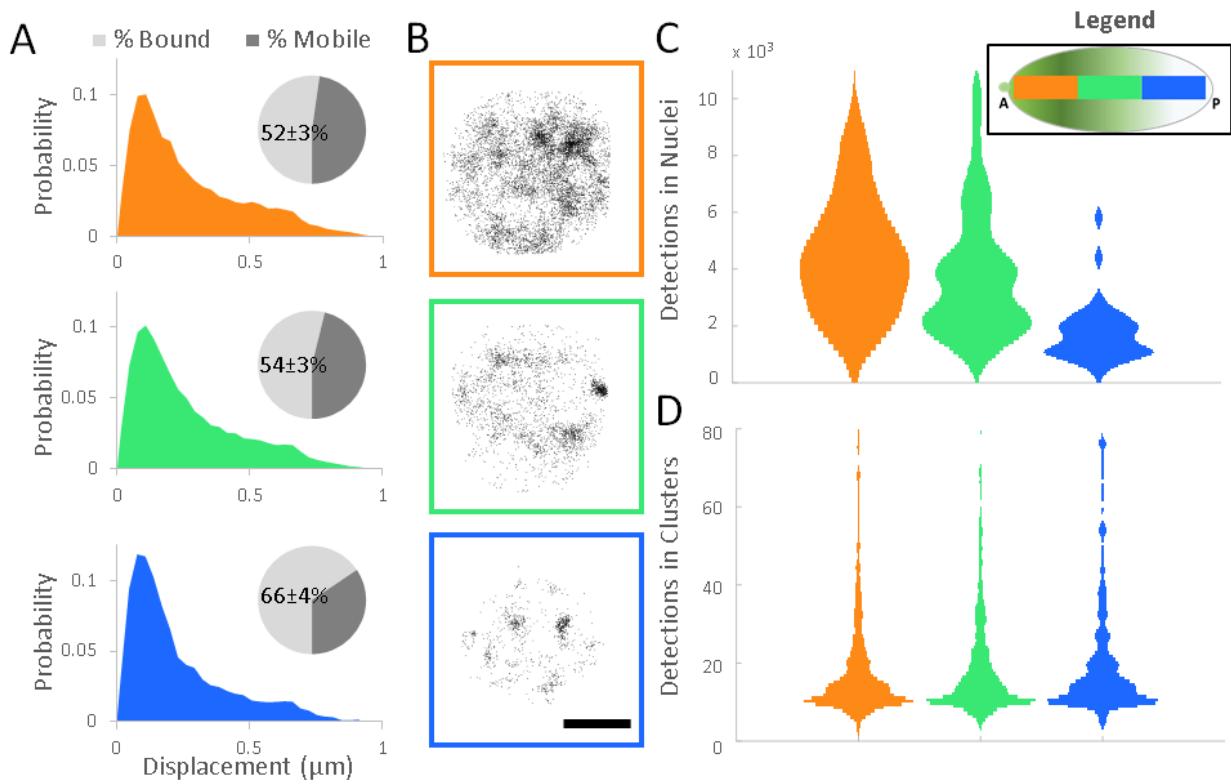
681

683

Figure. 1. Single molecule kinetics of Bicoid in living *Drosophila* Embryos. (A) Raw images of BCD-eGFP molecules in a living *Drosophila* embryo acquired with a 100 millisecond exposure time. Scale bar is 5 um. Positions along the A-P axis are shown as a fraction of the

686 Embryonic Length (EL, x/L). **(B)** Example of a single molecule binding event. Top row shows
687 raw images from a 1.2 x 1.2 μm area, bottom row shows corresponding surface plot
688 representations to illustrate the signal-to-noise. **(C)** Uncorrected survival probability curves for
689 Bicoid binding (markers) in the Anterior (34 nuclei), Middle (70 nuclei) and Posterior (83
690 nuclei) segments of the embryo and corresponding fits to a two-exponent model (solid lines)
691 show no significant differences. **(D)** FRAP curve for Bicoid shows a recovery time on the order
692 of hundreds of milliseconds, error bars show standard deviation over 21 nuclei.

693

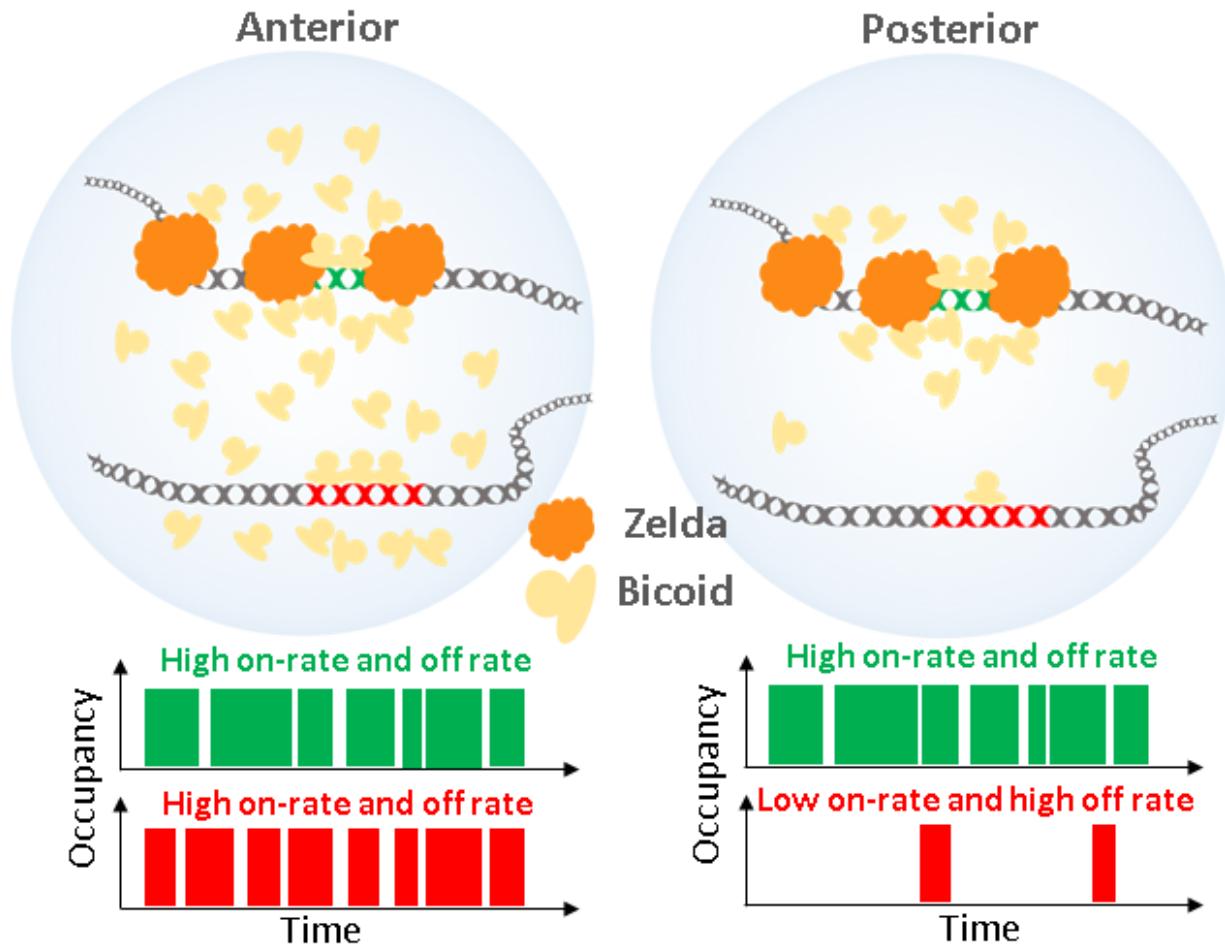

Data Set	A-P Position	Non-specific binding time ($1/k_{ns}$ (sec))	Specific Binding time ($1/k_s$ (sec))	Corrected Specific Binding time $1/(k_s - k_{bleach})$ (sec)	Number of trajectories
100 ms	Ant	0.175 [0.166, 0.184]	1.100 [1.013, 1.203]	1.105	17735
	Mid	0.160 [0.152, 0.168]	0.940 [0.859, 1.038]	0.944	40092
	Post	0.146 [0.141, 0.151]	0.865 [0.806, 0.932]	0.868	20823
	All Together	0.159 [0.166, 0.152]	0.959 [0.882, 1.050]	0.963	78650
100 ms (Zelda-)	Ant	0.152 [0.146, 0.160]	0.777 [0.726, 0.836]	0.780	11415
	Mid	0.131 [0.126, 0.137]	0.629 [0.587, 0.679]	0.631	7572
	Post	0.112 [0.108, 0.117]	0.463 [0.435, 0.495]	0.464	3606
	All Together	0.139 [0.133, 0.145]	0.694 [0.647, 0.748]	0.696	22593
500 ms	All Together	0.265 [0.255, 0.277]	1.876 [1.69, 2.107]	-	1211

694

695 **Table 1. Results from 2-exponent model fits to survival probability distributions.**

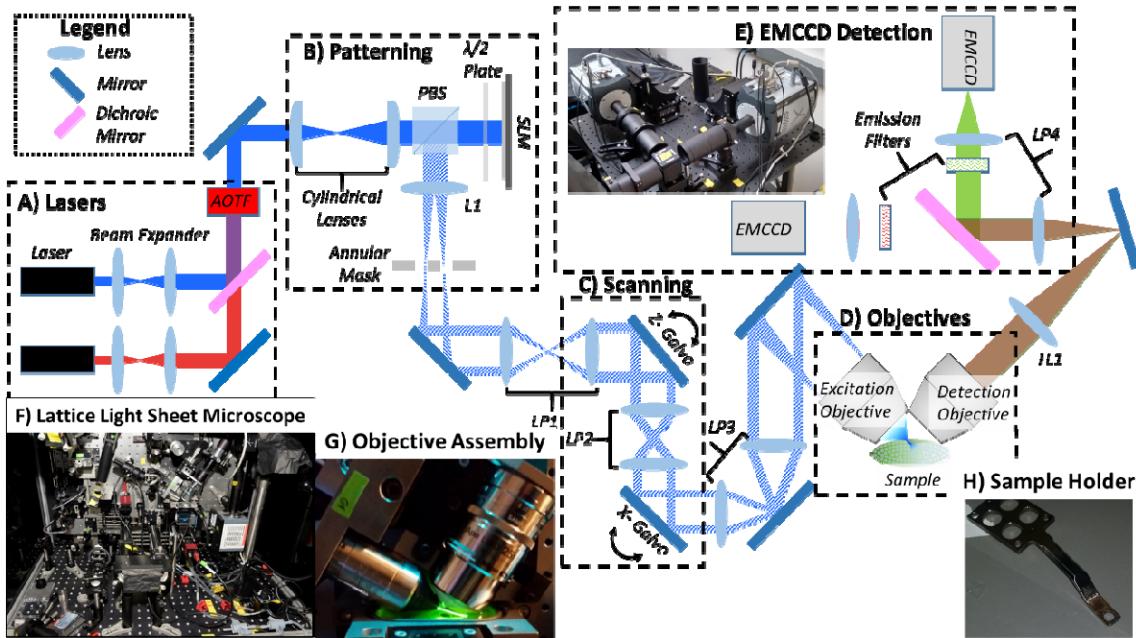
696 k_{ns} and k_s are the un-corrected off-rates for the short-lived (non-specific) and longer-lived
697 (specific) populations respectively determined from a two-exponent fits to the survival
698 probability distributions. The binding time (one-over the off rates) are shown with 95%
699 confidence intervals in square brackets. The photo-bleaching corrected binding times are
700 calculated as $1/(k_s - k_{bleach})$ where k_{bleach} is 0.0043 s^{-1} .

701


702

703 **Figure. 2. Local modulation of Bicoid Concentration** **(A)** Normalized probability distributions
704 of measured displacements in the Anterior (30 nuclei), Middle (67 nuclei), and Posterior (66
705 nuclei) positions of the embryos, pie charts show the estimated mobile and bound fractions from
706 fits to a two population distribution with the bound population percent labelled with the standard
707 error of the fit parameter. **(B)** Examples of the spatial distribution of all detections in nuclei
708 along the A-P axis, scale bar is 2.5 μm. **(C)** Distribution of the number of detections in all nuclei.
709 **(D)** Distributions of the number of detections within all clusters.

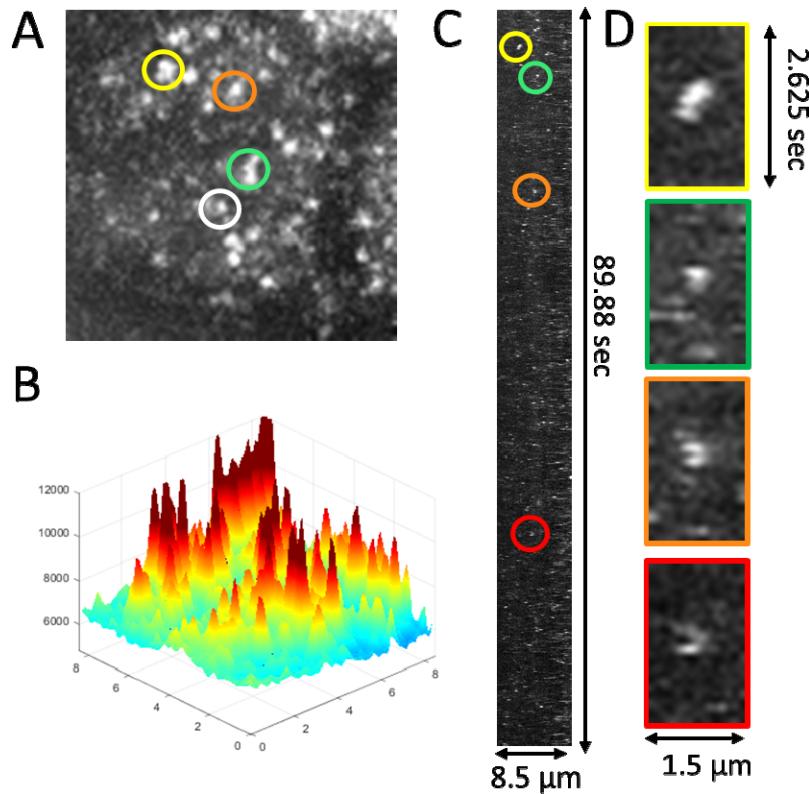
710


723

724

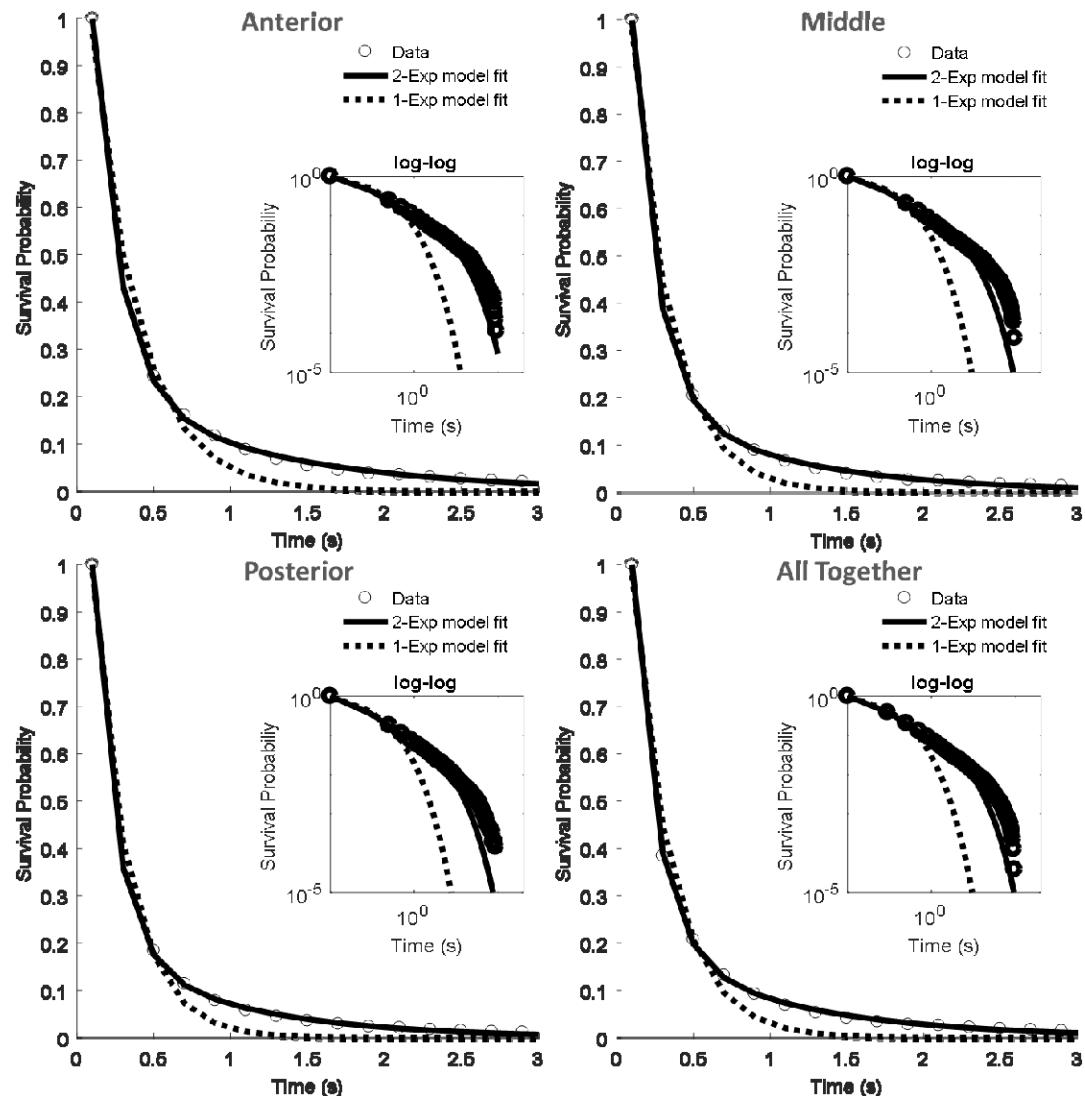
725 **Figure. 4. Model of Zelda dependent modulation of the Bicoid on-rate at specific loci in the**
726 **posterior embryo.** At high concentrations in the anterior of the embryo, all target sites are
727 highly occupied. At low concentrations, loci with Zelda occupancy have an increased time
728 averaged occupancy through the formation of spatiotemporal hubs that enrich local
729 concentrations and increase the on-rate.

730


731
732

733 **Figure1-figure supplement 1. Lattice Light-Sheet Microscope Implementation**

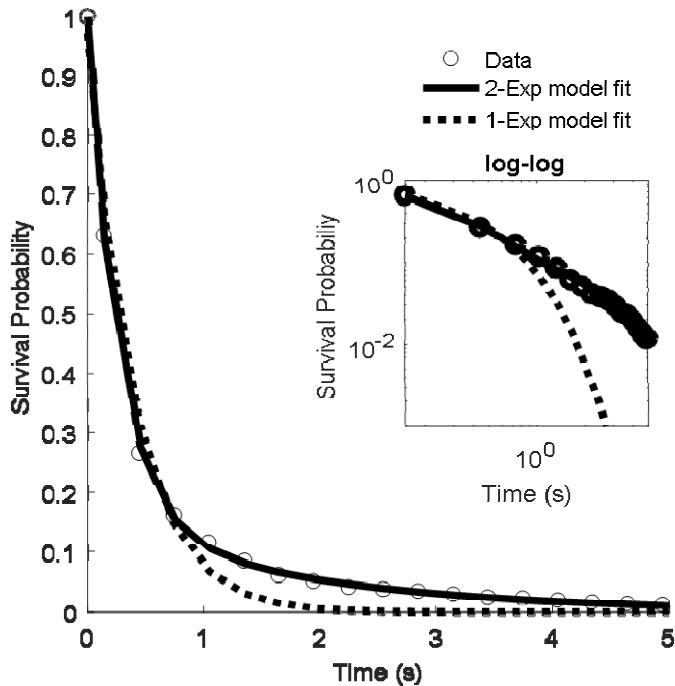
734 The Lattice light-sheet was built as described by Chen et al, Science, 2014. This simplified
735 schematic shows the major modules of the microscope as follows: **(A)** Laser Module, contains 6
736 lasers ranging from 405 nm to 639 nm, which are independently expanded, collimated, and input
737 into an Acousto-Optic Tunable Filter (AOTF). **(B)** The patterning module contains a pair of
738 cylindrical lens to expand the input Gaussian beam to a stripe, and a half-wave ($\lambda/2$) plate, a
739 polarizing beam splitter (PBS), and a Spatial Light Modulator (SLM) to perform the patterning.
740 Lens L1 projects the Fourier Transform of the SLM pattern onto an annular mask for spatial
741 filtering **(C)** Lens pair 1 (LP1) is then used to de-magnify the annular mask plane and project it
742 onto the z-scan galvo and LP2 projects the z-galvo plane onto the x-scanning galvo. **(D)** LP3
743 magnifies the x-galvo plane and projects it onto the back pupil plane of the excitation objective,
744 where it is focused (Fourier transform) to project the final light sheet pattern onto the sample.
745 Emitted fluorescence is collected by the detection objective. **(E)** The tube lens (TL1) focuses an
746 intermediate image plane which is then magnified using LP4 and projected onto an EMCCD. A


747 dichroic mirror is placed between the first and second lenses of LP4 to split the signal into high
748 and low wavelengths. An emission filter is placed after the dichroic on both sides to select the
749 chromatic bandwidth of the signal reaching each EMMCD independently. Inset shows an image
750 of the EMCCD detection module (**F**) Image of our lattice light sheet microscope. (**G**) Image of
751 the Objective assembly with a dye solution in the sample chamber to visualize the excitation
752 light. (**H**) Image of the sample holder on which the 5 mm coverslip is mounted.

753

754
755 **Figure 1-figure supplement 2. Single Molecule Imaging of BCD-eGFP at 100 milliseconds**
756 **to estimate residence times.** (A) The max projection in time of a 90 second segment of a
757 representative 100 millisecond dataset acquired at an anterior nucleus (EL (x/L) of 0.1),
758 corresponding to the last frame of Video 2. (B) Surface plot representation of (A) to illustrate the
759 signal-to-background ratio of single molecule binding events. The smaller peaks likely
760 correspond to slowly diffusing molecules that are not in the imaging volume for the entire
761 exposure time. (C) Maximum projection through x-t (kymograph representation) of the data
762 shown in Video 2 from which (A-B) were calculated. Colored circles correspond to those in (A).
763 (D) Zoomed in x-t view of the circled regions in (A) and (C), illustrating the transient nature of
764 BCD binding.

765

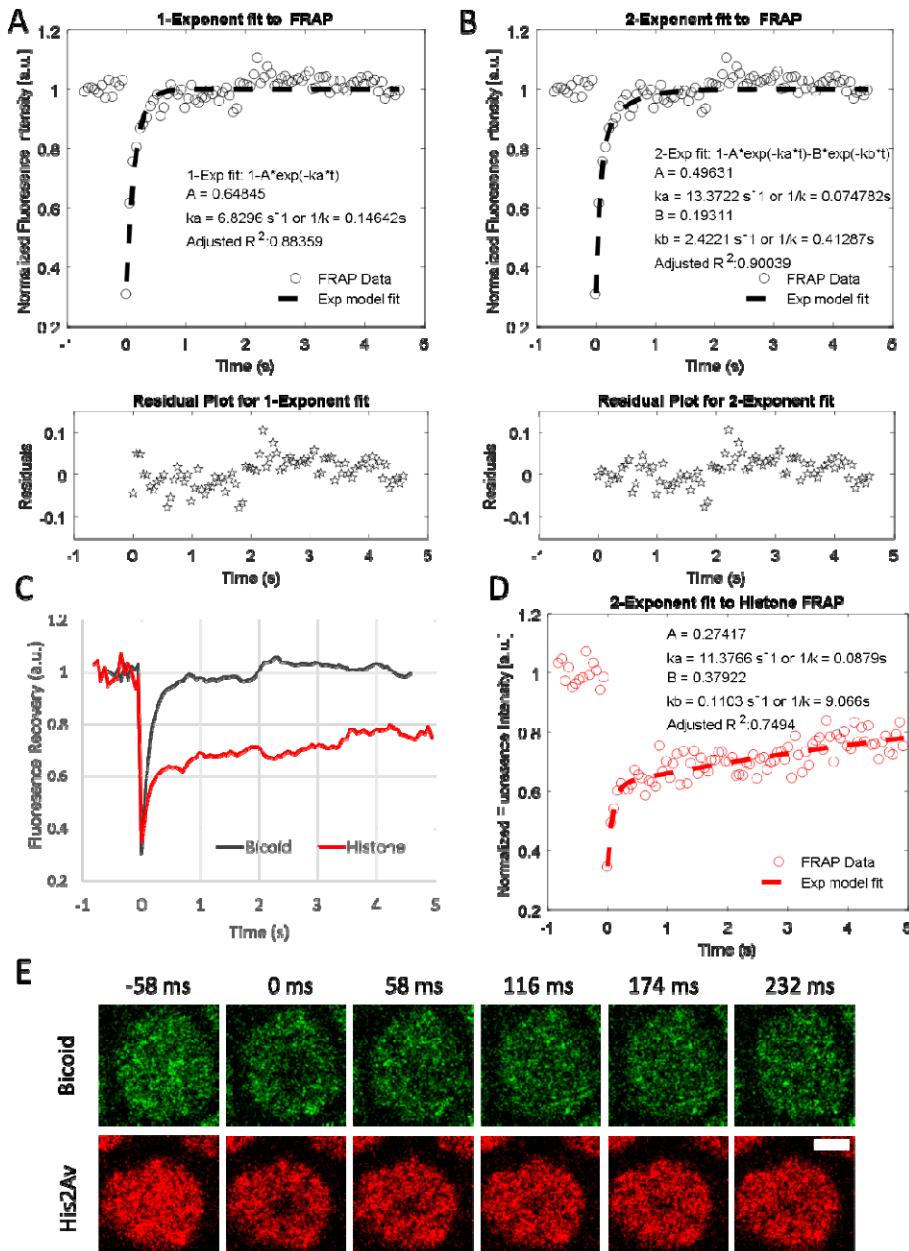

766

767 **Figure 1-figure supplement 3. Fits to the survival probability distributions of the 100**
768 **millisecond datasets.** The survival probability distributions calculated from the trajectories
769 output by the MTT analysis on the 100 millisecond data set for the Anterior (34 nuclei, 17735,
770 trajectories), Middle (70 nuclei, 40092 trajectories), Posterior (83 nuclei; 20823 trajectories)
771 segments and all the data pooled together (187 nuclei, 78650 trajectories). The solid lines show
772 the fit to a 2 exponent-model and the dashed lines to a 1-exponent model. Insets show the same

773 on a log-log scale to visualize the difference between 1 and 2 exponent fits at longer time scales.

774 All two-exponent fits have an R^2 value >0.99. See Table 1 for a summary of the fit parameters.

775

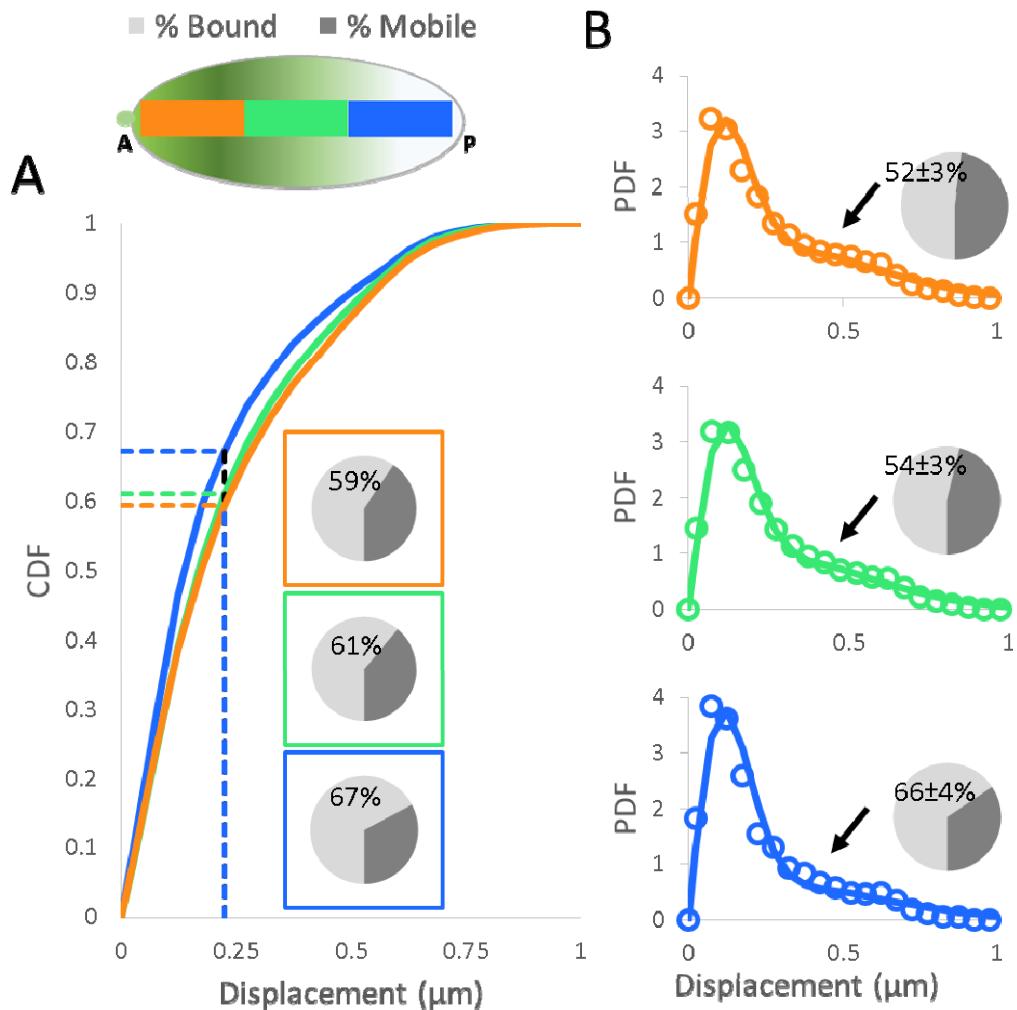


776

777 **Figure 1- figure supplement 4. Fits to the survival probability distribution of the 500**
778 **millisecond dataset.** The survival probability distribution of residence times calculated from the
779 MTT algorithm on the 500 ms data set of 17 nuclei and 1211 trajectories. The solid lines show
780 the fit to a 2-exponent model and the dotted lines to a 1-exponent model. The insets shows the
781 same on a log-log scale to visualize the difference between 1 and 2 exponent fits. R^2 value for
782 the 2-exponent fit is 0.99

783

784

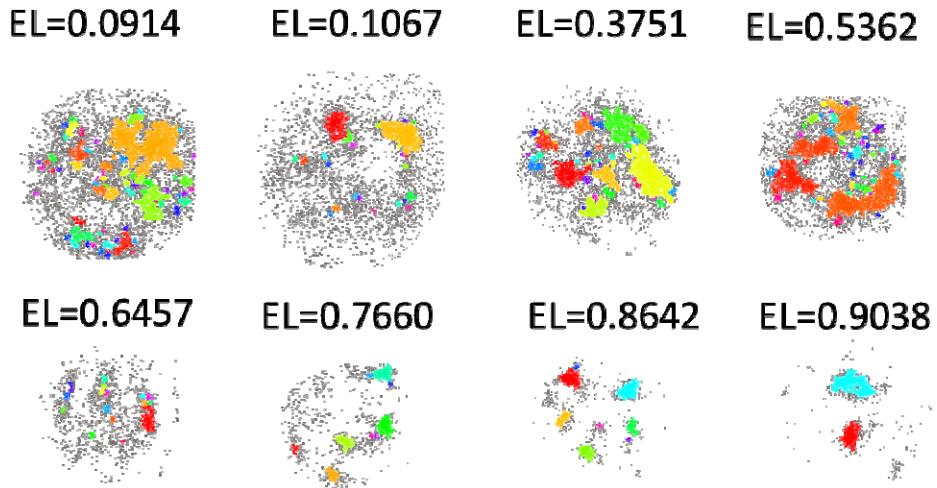


785

Figure 1- figure supplement 5. Analysis of FRAP data

786 (A) Averaged Bcd-eGFP FRAP data and single exponential fit results. (B) Double exponential fit
787 results to average Bcd-eGFP FRAP. (C) Comparison of averaged BCD-eGFP (21 nuclei) and
788 His2AV FRAP data (3 nuclei). (D) Double exponential fit to Histone (His2AV) FRAP. (E)
789 Representative images from BCD-eGFP and His2AV FRAP experiments, white scale bar is
790 2 μ m.
791

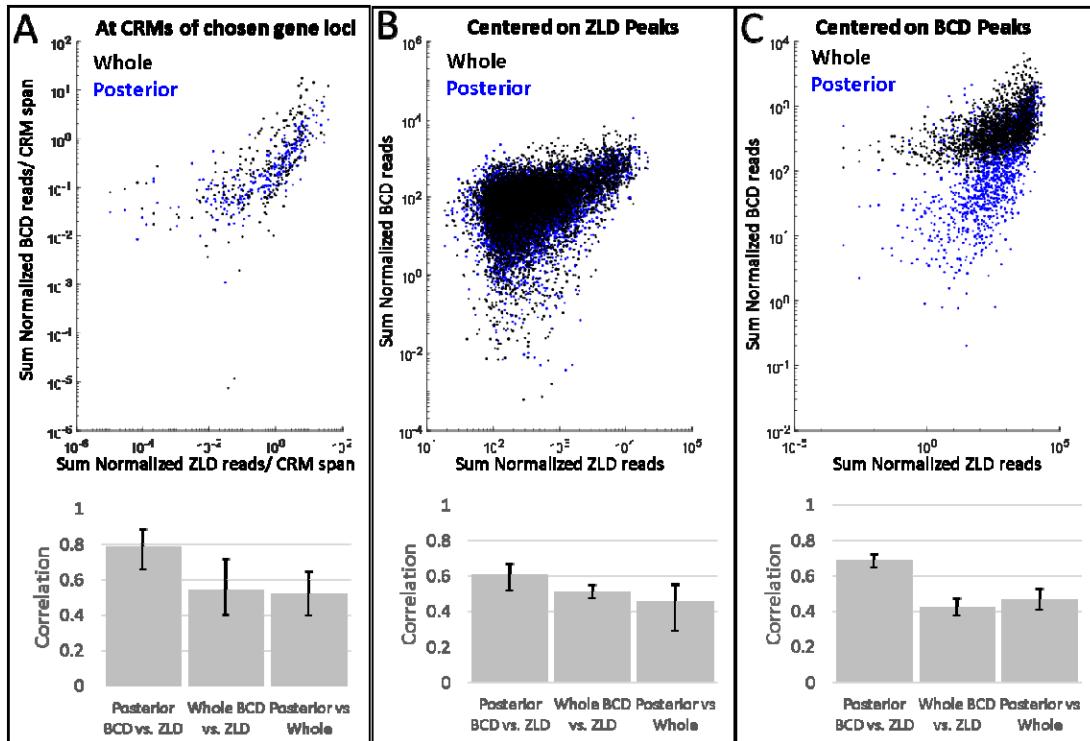
792



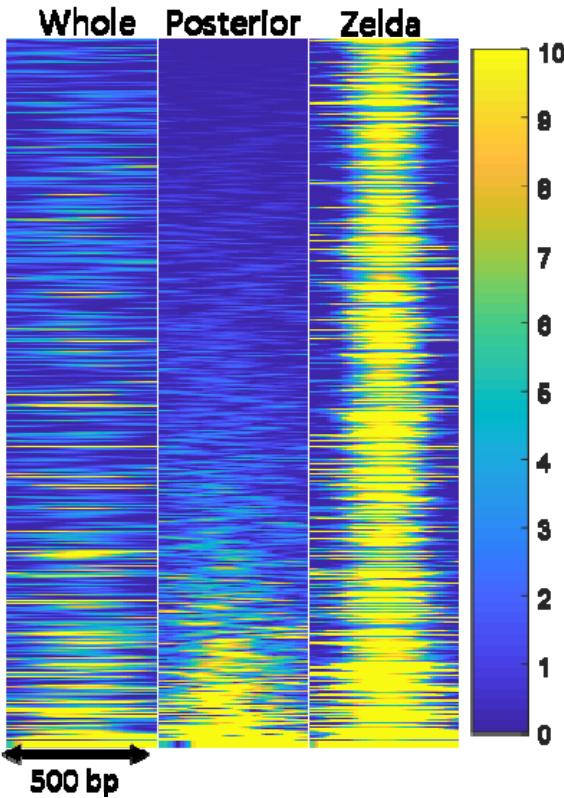
793
794 **Figure 2- figure supplement 1. Analysis of Displacement Distributions** (A) Cumulative
795 distribution functions of the displacement data, pie charts indicate the Bound and Mobile fraction
796 as measured by the CDF value at 0.225 μm (dashed lines). (B) Probability Density Function of
797 the displacement data (markers) and fits to the two population model (solid lines), pie charts
798 show the mobile and bound fractions from the results of the fit, labels indicate the bound fraction
799 and the error is the standard error associated with the fit parameter. Arrows point to the mobile
800 population in the distributions that is decreasing from anterior to posterior positions. (A-B) For
801 each position the following number of nuclei and trajectories were included in the analysis

802 Anterior: 30 nuclei, 12923, trajectories, Middle: 67 nuclei, 23640 trajectories, Posterior: 66

803 nuclei; 8600 trajectories.

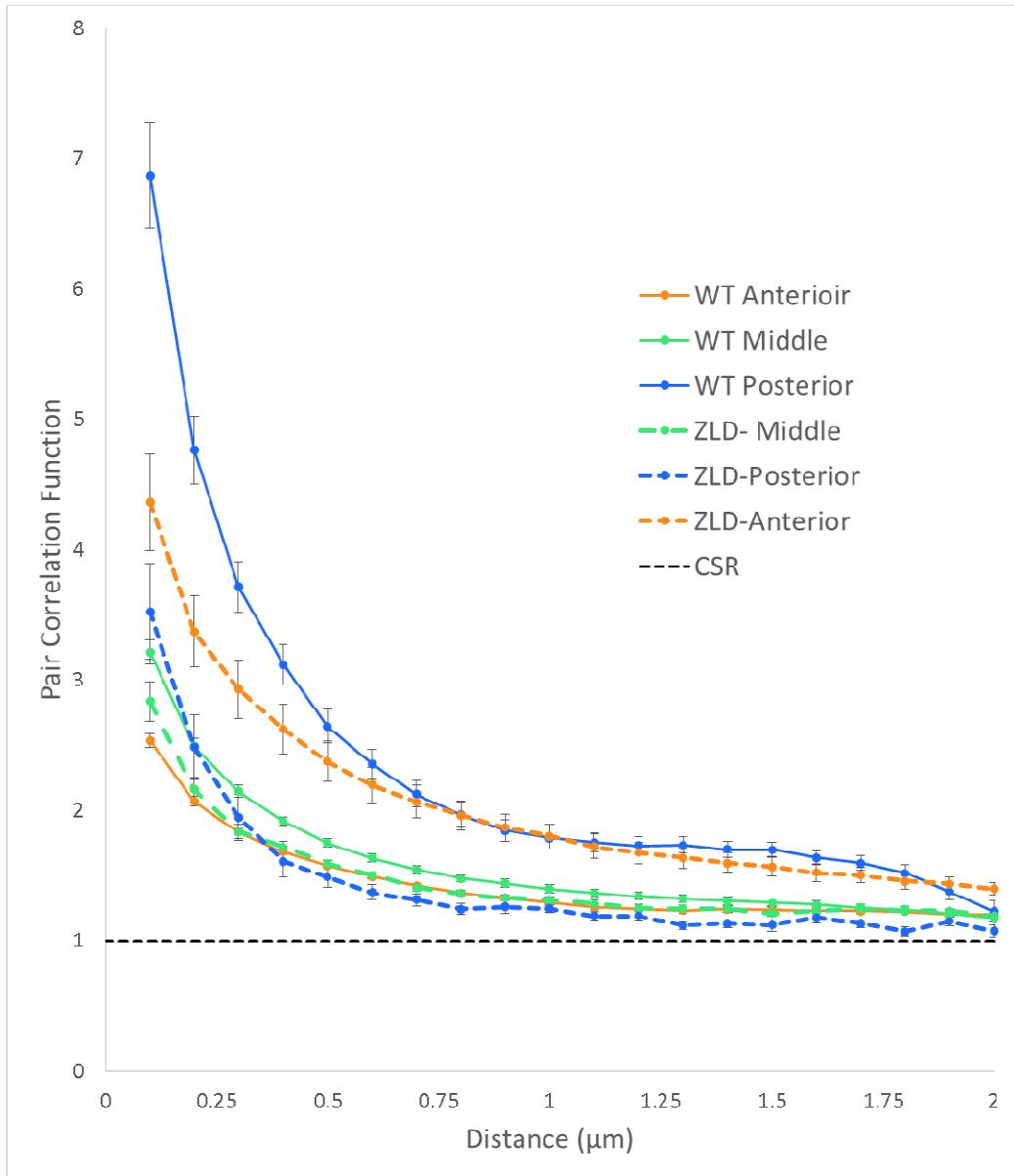

804

805


806 **Figure 2- figure supplement 2. Cluster identification results from DBSCAN across the A-P**
807 **axis.** Examples of clusters identified along the A-P axis using DBSCAN with the position
808 shown as fraction of embryonic length (EL). Particles included in the same clusters are
809 represented with the same color.

810

812 **Figure 3- figure supplement 1. BCD binding in whole and posterior thirds embryos**
813 **compared to ZLD binding. (A)** Sum of Normalized BCD ChIP-seq reads divided by the length
814 of the respective CRMs for posterior thirds (blue) and whole embryo (black) vs. Sum of
815 Normalized ZLD ChIP-seq reads divided by the length of the respective CRM at annotated cis-
816 regulatory modules (CRMs) of *eve*, *giant*, *hunchback*, *knirps*, *hairy*, *kruppel*, *caudal*, *fushi-*
817 *tarazu*, *engrailed*, *wingless*, *runt*, and *gooseberry* loci. A total of 293 CRMs from the RedFly
818 database were analyzed. **(A-B)** Sum of Normalized BCD ChIP-seq reads for posterior thirds
819 (blue) and whole embryo (black) vs. Sum of Normalized ZLD ChIP-seq reads over a 500 bp
820 region centered on **(B)** 8331 ZLD peaks and **(C)** 2145 BCD peaks. **(A-C)** Corresponding bar
821 plots show Pearson correlation coefficients and error bars show 95% confidence intervals as
822 determined by bootstrapping.


823

824

825 **Figure 3-figure supplement 2. BCD and ZLD binding at Zelda peaks.** Heat-map
826 representation of normalized ChIP-seq reads for BCD (1st two panels) and ZLD (3rd panel) in a
827 500 bp window centered on ZLD peaks sorted according to increasing BCD signal in the
828 posterior embryo data. A total of 8331 peaks are shown.

829

835 **VIDEO CAPTIONS**

836 **Video 1**-Movies corresponding to the still frames shown in Figure 1A.

837 **Video 2**- Representative data from a 90 second segment of a 100 millisecond exposure time
838 movie acquired at an anterior position (EL (x/L) of 0.1). Top left shows the raw data and top
839 right the corresponding surface plot representation. Bottom left shows a running max projection
840 of the data and bottom right shows a surface plot representation of the same

841 **Video 3**-Representative data acquired at 10 millisecond exposure times for 4 nuclei.