

Metagenomic binning through low
density hashing

Yunan Luo1,*, Y. William Yu2,3,*, Jianyang Zeng4, Bonnie Berger2,3,**, Jian Peng1**

1 Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL,
USA

2 Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA
3 Department of Mathematics, MIT, Cambridge, MA, USA
4 Tsinghua University, Beijing, China

* These authors contributed equally to this work.
** Correspondence: bab@mit.edu and jianpeng@illinois.edu

Abstract:

Bacterial microbiomes of incredible complexity are found throughout the world, from exotic
marine locations to the soil in our yards to within our very guts. With recent advances in
Next-Generation Sequencing (NGS) technologies, we have vastly greater quantities of
microbial genome data, but the nature of environmental samples is such that DNA from
different species are mixed together. Here, we present Opal for metagenomic binning, the
task of identifying the origin species of DNA sequencing reads. Our Opal method
introduces low-density, even-coverage hashing to bioinformatics applications, enabling
quick and accurate metagenomic binning. Our tool is up to two orders of magnitude faster
than leading alignment-based methods at similar or improved accuracy, allowing
computational tractability on large metagenomic datasets. Moreover, on public
benchmarks, Opal is substantially more accurate than both alignment-based and
alignment-free methods (e.g. on SimHC20.500, Opal achieves 95% F1-score while
Kraken and CLARK achieve just 91% and 88%, respectively); this improvement is likely
due to the fact that the latter methods cannot handle computationally-costly long-range
dependencies, which our even-coverage, low-density fingerprints resolve. Notably,
capturing these long-range dependencies drastically improves Opal’s ability to detect
unknown species that share a genus or phylum with known bacteria. Additionally, the
family of hash functions Opal uses can be generalized to other sequence analysis tasks
that rely on k-mer based methods to encode long-range dependencies.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/133116doi: bioRxiv preprint

mailto:bab@mit.edu
https://doi.org/10.1101/133116
http://creativecommons.org/licenses/by-nd/4.0/

Metagenomics is the study of the microbiome— the many genomes (bacterial, fungal, and

even viral) that make up a particular environment. The microbiome has already been linked to

human health: soil from a particular region can lead to the discovery of new antibiotics [1]; the

human gut microbiome has been linked to Crohn's Disease [2], obesity [3] and even Autism

Spectrum Disorder [4]. Metagenomics fundamentally asks what organisms are present in a

genomic sample with the goal of gaining insight into function. However, the sequencing datasets

required to shine any light on these questions are gigantic and vastly more complex than standard

genomic datasets. This data results in major identification challenges for certain bacterial, as well

as viral, species, strains, and genera [5, 6].

We focus on whole-genome metagenomic DNA sequencing, since cheaper Amplicon-

based sequencing methods, which concentrate on the diversity of given marker genes (e.g. the

16S rRNA gene) and only analyze protein-coding regions, are limited in their ability to provide

microbial functions from the samples [7, 8, 9]. Unfortunately, metagenomic sequencing data is

inherently complex; the mixing of DNA from many different, sometimes related organisms in

varying quantities poses substantial computational and statistical challenges to metagenomic

binning, the process of grouping reads and assigning them to an origin organism. This important

first step occurs before downstream data analysis can be applied to elucidate the structure of

microbial populations and assign functional annotations [7]. Existing sequence alignment tools,

such as BWA [10], Bowtie 2 [11] or BLAST [8], can readily be used and usually provide high-

resolution alignments and accurate results by simply finding the highest scoring matching

genome; they have the added advantage of tolerance to small numbers of mismatches or gaps.

However, the computational cost of alignment-based methods becomes prohibitive as

metagenomic datasets continue to grow [12, 13].

Alternatively, the field has turned to alignment-free metagenomic binning (also known as

compositional binning) [14], which assigns sequence fragments to their taxonomic origins

according to specific patterns of their constituent k-mers. State-of-the-art tools Kraken [12] and

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/133116doi: bioRxiv preprint

https://doi.org/10.1101/133116
http://creativecommons.org/licenses/by-nd/4.0/

CLARK [15] use exact occurrences of uniquely discriminating k-mers in reads and are very

efficient, but are limited in both their sensitivity and ability to detect unknown organisms. Other

approaches rely on supervised machine learning (ML) classifiers, such as Naive Bayes or support

vector machines (SVMs), trained on a set of reference genome sequences to classify the origins

of metagenomic fragments [16, 17, 18, 19] using the relative k-mer frequency vector of a read.

More recently, latent strain analysis performs covariance analysis of k-mers to partition reads for

low-abundance strain assembly and detection [20]. All these approaches are often faster than

alignment-based methods [10]. However, because they require exact matches of k-mers, these

methods exhibit drawbacks including intolerance to mismatches or gaps; here we develop

algorithmic tools to address these shortcomings.

As large k-mer sizes incur high memory usage and computing requirements (the space of

k-mers grows exponentially in k), existing metagenomic binning methods generally work with a

low fixed dimensionality (k): PhyloPythia [21] uses an ensemble of SVM models trained on

contiguous 6-mers and its successor, PhyloPythiaS [17], further improves the binning accuracy

by tweaking the SVM model and simultaneously including k-mers of multiple sizes (k = 3, 4, 5, 6)

as compositional features. Some existing methods use mid-size k-mers (e.g. k=31), but primarily

for fast indexing and nearest exact search [15, 22, 23, 12] and not in a supervised manner. Longer

k-mers have the potential to capture compositional dependency within larger contexts because

they span a larger section of the read. They can lead to higher binning accuracy but are also more

prone to noise and errors if used in the supervised setting. To address this problem, locality-

sensitive hashing (LSH) techniques, such as minHash [24] and randomly spaced k-mer

construction have been developed for representing long k-mers sparsely [25], but as they are

currently used in the high-density regime [22], they still run into the same exponential space

problem of large k-mer sizes (Online Methods). However, to the best of our knowledge low-density

hashing has not previously been used for metagenomic analysis.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/133116doi: bioRxiv preprint

https://doi.org/10.1101/133116
http://creativecommons.org/licenses/by-nd/4.0/

Here we newly overcome these bottlenecks in handling long k-mers by developing a novel

compositional metagenomic binning algorithm, Opal, which efficiently encodes long k-mers using

low-dimensional profiles generated using even-coverage, low-density hashing. We take

inspiration from low-density parity-check (LDPC) error correcting codes (also known as Gallager

codes) to generate evenly-covering sets of random positions of a k-mer [26, 27], which we then

apply to the machine learning pipeline introduced by Vervier, et al. [18] for metagenomic

sequence classification. This innovation overcomes the limitations of uniformly random LSH

functions, which despite their many nice theoretical properties, are typically not efficient for the

task of constructing metagenomic fingerprints because of uneven coverage (Figure 1).

Remarkably, when tested on a large dataset with 50 microbial species, Opal achieves

both improved accuracy and up to two orders of magnitude improvement in binning speed on

large datasets as compared to BWA-MEM [10], a state-of-the-art alignment-based method

(Supplementary Fig S1-2); we can additionally use Opal as a first-pass coarse search [13, 28]

before applying BWA-MEM for nearly 20 times speedup for the aligner (Supplementary Fig S2).

As other compositional classifiers have similar speed gains over alignment-based methods, we

shall henceforth focus on comparisons against compositional methods.

We offer two major conceptual advances in this work. First, although low-density LSH with

uneven coverage has previously been used for fast sequence alignment and assembly [29, 9], it

is the first time that it has been used for compositional metagenomic binning. Second, we have

developed LSH functions based on the Gallager design for even coverage of very long k-mers

(e.g. k = 64, 128), making the use of long k-mers practically possible. Of note, high density LSH

(otherwise known as spaced-seeds) has been applied to metagenomic binning [2], but lowering

the density is problematic without our second innovation to ensure even coverage of locations

within a k-mer, as uneven coverage significantly decreases accuracy (Fig. 2). In this figure, we

first importantly observe that low-density random long k-mer LSH provides better training

accuracy than contiguous short k-mers [18], even when the feature space for the short k-mers is

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/133116doi: bioRxiv preprint

https://doi.org/10.1101/133116
http://creativecommons.org/licenses/by-nd/4.0/

larger. Second, even coverage using Gallager codes provides another substantial decrease in

the classification error; as substitution error rate increases, Opal’s advantages become ever more

apparent.

Opal outperforms the Kraken [12] and Clark [15] classifiers at assigning reads to both

known species and to higher phylogenetic levels for unknown species (Figure 3). On three

published benchmarks of real and simulated data with either 10 or 20 species used in previous

testing of Kraken and Clark [12, 15], Opal outperforms both methods when trained on 24-mers

with 2 hashes of row-weight 12 (Fig 3a). We also compared Opal to MetaPhlAn2 [30] for

metagenomic profiling; even using their (MetaPhlAn2’s) marker genes, Opal performs better on

the species and genus levels (Supplementary Table S3). Opal thus achieves better accuracy than

both alignment-based and existing compositional k-mer methods for classifying known species,

at improved or similar runtimes.

Notably, Opal’s performance increase is especially pronounced at higher phylogenetic

levels (Fig 3b). When tested on a large benchmark of 193 species [18], Opal demonstrates

greater sensitivity to novel lineages, where the source genomes of the sequenced reads share

either a genus or phylum but are dissimilar at lower phylogenetic levels (Fig 3c). By detecting the

genus or phylum of reads originating from unidentified species, Opal enables scientists to perform

further analyses on reads by starting with information on the phylogenetic histories of those

unknown species.

Additionally, Opal is effective at the subspecies level. When trained on subspecies

references, even for seven closely related subspecies of E. coli, Opal disambiguates error-free

synthetic reads with <15% classification error, while Kraken and CLARK both had over 30%

classification error (Supplemental Fig S3). For subspecies classification, we found it necessary

to train at a much higher depth of simulated read coverage than higher-order classification to

increase accuracy to acceptable levels, likely due to the fact that related subspecies share many

substrings of nucleotides in their genomes.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/133116doi: bioRxiv preprint

https://doi.org/10.1101/133116
http://creativecommons.org/licenses/by-nd/4.0/

Not only is Opal a drop-in tool for metagenomic analysis pipelines (e.g. Vervier, et al. [18]),

but the ideas that went into its construction can also potentially be applied to improve the

discriminative power of other methods. The Opal Gallager LSH functions can immediately be

used in lieu of contiguous k-mers in other metagenomic tools, such as Latent Strain Analysis [20].

Our method can also be seen as a new dimensionality reduction approach for genomic sequence

data, extending the ordinary k-mer profile-based methods with compressed signatures, or

fingerprints, of the reads.

With improvements in metagenomic sequencing technologies producing ever larger

amounts of raw data, fast and accurate classifiers will become essential for handling the data

deluge. Here we show that with a straightforward modification to the choice of hash functions, we

can substantially improve feature selection and thus accuracy over other state-of-the-art

classifiers. This improved accuracy manifests itself most strongly at higher phylogenetic levels,

allowing Opal to better classify reads originating from unknown species. We expect Opal to be an

essential component in the arsenal of metagenomic analysis toolkits.

The Opal software (available at http://opal.csail.mit.edu and

https://github.com/yunwilliamyu/opal) will greatly benefit any researchers who are producing and

analyzing large amounts of environmental metagenomic sequencing data.

Acknowledgments

An extended abstract of an earlier version of this work appeared in RECOMB 2016. Y.W.Y and
B.B. are partially supported by NIH grant GM108348 and an MIT Center for Microbiome
Informatics and Therapeutics Pilot Grant (to B.B.). Y.W.Y gratefully acknowledges support from
the Fannie and John Hertz Foundation. We thank Moran Yassour for introducing us to the
subspecies classification problem and Ashwin Narayan for fruitful discussions.

Author Contributions

J.P. and B.B. conceived the central premise of using low density locality sensitive hashing for
metagenomic binning and guided the study. Initial development, coding, and all experimentation

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/133116doi: bioRxiv preprint

http://opal.csail.mit.edu/
https://github.com/yunwilliamyu/opal
https://doi.org/10.1101/133116
http://creativecommons.org/licenses/by-nd/4.0/

except for subspecies classification was performed by Y.L. and J.Z. with guidance from J.P. and
B.B. Reframing the study, rewriting the code in Python, preparing a user-friendly UI, and running
all subspecies classification experiments were done by Y.W.Y. Writing was a joint endeavor of all
listed authors.

Competing financial interests

The authors have no competing financial interests.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/133116doi: bioRxiv preprint

https://doi.org/10.1101/133116
http://creativecommons.org/licenses/by-nd/4.0/

References
1. Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, & Dantas G. (2012). The

shared antibiotic resistome of soil bacteria and human pathogens. Science, 337(6098),
1107-1111.

2. Erickson AR, Cantarel BL, Lamendella R, Darzi Y, Mongodin EF, Pan C, Shah M,
Halfvarson J, Tysk C, Henrissat B, Raes J, Verberkmoes NC, Fraser CM, Hettich RL, &
Jansson JK. (2012). Integrated Metagenomics/Metaproteomics Reveals Human Host-
Microbiota Signatures of Crohn's Disease. PLoS ONE 7(11), e49138.
doi:10.1371/journal.pone.0049138

3. Turnbaugh, PJ, & Gordon JI. (2009). The core gut microbiome, energy balance and
obesity. J of Physiology, 587(17), 4153-4158.

4. MacFabe DF. (2012). Short-chain fatty acid fermentation products of the gut
microbiome: implications in autism spectrum disorders. Microbial ecology in health and
disease, 23.

5. Janda JM & Abbott SL. (2007). 16S rRNA gene sequencing for bacterial identification in
the diagnostic laboratory: pluses, perils, and pitfalls. Journal of clinical microbiology,
45(9), 2761-2764.

6. Tu Q, He Z., & Zhou J. (2014). Strain/species identification in metagenomes using
genome-specific markers. Nucleic acids research, 42(8): e67-e67.

7. 1000 Genomes Project Consortium. (2012). An integrated map of genetic variation from
1,092 human genomes. Nature, 491(7422), 56-65.

8. Altschul SF, Gish W, Miller W, Myers EW, & Lipman DJ. (1990). Basic local alignment
search tool. Journal of molecular biology, 215(3), 403-410.

9. Berlin K, Koren S, Chin CS, Drake JP, Landolin JM, & Phillippy AM. (2015). Assembling
large genomes with single-molecule sequencing and locality-sensitive hashing. Nature
biotechnology, 33, 623-630.

10. Li H. (2013). Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. arXiv preprint arXiv:1303.3997.

11. Langmead B & Salzberg SL. (2012). Fast gapped-read alignment with Bowtie 2. Nature
methods, 9(4), 357-359.

12. Wood DE, & Salzberg SL. (2014). Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome Biol, 15(3), R46.

13. Yu YW, Daniels NM, Danko DC, & Berger B. (2015). Entropy-scaling search of massive
biological data. Cell Systems, 2:130–140.

14. Nawy T. (2015). Microbiology: The strain in metagenomics. Nature Methods,12(11),
1005-1005.

15. Ounit R, Wanamaker S, Close TJ, & Lonardi S. (2015). CLARK: fast and accurate
classification of metagenomic and genomic sequences using discriminative k-mers.
BMC Genomics, 16:236.

16. Wang Q, Garrity GM, Tiedje JM, & Cole JR. (2007). Naive bayesian classifier for rapid
assignment of rRNA sequences into the new bacterial taxonomy. Applied and
environmental microbiology, 73(16):5261–5267.

17. Patil KR, Haider P, Pope PB, Turnbaugh PJ, Morrison M, Scheffer T, & McHardy AC.
(2011). Taxonomic metagenome sequence assignment with structured output models.
Nature methods, 8(3):191–192.

18. Vervier K, Mahe P, Tournoud M, Veyrieras J, & Vert J. (2016) Largescale machine
learning for metagenomics sequence classification. Bioinformatics 32 (7), 1023-1032.

19. Brady A & Salzberg SL. (2009). Phymm and phymmbl: metagenomic phylogenetic
classification with interpolated markov models. Nature methods, 6:673–676.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/133116doi: bioRxiv preprint

https://doi.org/10.1101/133116
http://creativecommons.org/licenses/by-nd/4.0/

20. Cleary B, Brito IL, Huang K, Gevers G, Shea T, Young S, & Alm EJ. (2015).
Detection of low-abundance bacterial strains in metagenomic datasets by
Eigengenome partitioning. Nature Biotechnology, 33, 1053–1060.

21. McHardy AC, Martın HG, Tsirigos A, Hugenholtz P, & Rigoutsos I. (2007). Accurate
phylogenetic classification of variable-length dna fragments. Nature Methods, 4(1):63–
72.

22. Brinda K, Sykulski M, & Kucherov G. (2015). Spaced seeds improve k-mer-based
metagenomic classification. Bioinformatics, 31.22: 3584-3592.

23. Ames SK, Hysom DA, Gardner SN, Lloyd GS, Gokhale MB, & Allen JE. (2014). Scalable
metagenomic taxonomy classification using a reference genome database.
Bioinformatics, 29(18), 2253-2260.

24. Broder AZ. (1997). On the resemblance and containment of documents. In IEEE
Compression and Complexity of Sequences 1997, 21-29.

25. Rasheed Z, Rangwala H, & Barbará D. (2013). 16S rRNA metagenome clustering
and diversity estimation using locality sensitive hashing. BMC Systems Biology,
7(Suppl 4):S11.

26. Gallager R. (1962). Low-density parity-check codes. IEEE Transactions on Information
Theory, 8(1):21– 28.

27. MacKay D & Neal R. (1996). Near Shannon limit performance of low density parity check
codes. Electronics Letters, 32:1645–1646.

28. Buchfink B, Xie C, & Huson DH. (2015). Fast and sensitive protein alignment using
Diamond. Nature methods, 12:59–60.

29. Buhler J. (2001). Efficient large-scale sequence comparison by locality-sensitive
hashing. Bioinformatics, 17(5):419–429.

30. Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A,
Huttenhower C, & Segata N. (2015). MetaPhlAn2 for enhanced metagenomic taxonomic
profiling. Nature methods, 12(10): 902-903.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/133116doi: bioRxiv preprint

https://doi.org/10.1101/133116
http://creativecommons.org/licenses/by-nd/4.0/

A B

Figure 1. Low-density hashing with even coverage. (a) Random projections onto subspaces
(left) cover all positions evenly only in expectation, and for small numbers of hash functions, will
give uneven coverage. Using Gallager-inspired low density parity check (LDPC) codes allows us
to guarantee even coverage of all positions in the k-mer (right) with a small number of hash
functions. (b) Intuitively, one can think of a (k, t)-hash function as a 0/1 vector of length k with t
1's specifying the locations in the k-mer that are selected. Given any (k, t)-hash function h (e.g.
the vector with t 1's followed by k-t 0's), one can uniformly randomly construct another (k, t)-hash
function by permuting the entries of h. The key to the Opal's Gallager-inspired LSH design is that
instead of starting with a single hash function and permuting it repeatedly, we start with a hash
function matrix H which is a low-density parity check matrix. H is designed such that in the first

row ℎ1, the first t entries are 1, in the second row ℎ2, the second t entries are 1, and so on, until
each column of H has exactly one 1. Permuting the columns of H repeatedly generates random
LSH functions that together cover all positions evenly, ensuring that we do not waste coding
capacity on any particular position in the k-mer. Additionally, for very long k-mers, we can
construct the Gallager LSH functions in a hierarchical way to further capture compositional
dependencies from both local and global contexts (See Online Methods). (c) The rows of H are
then used as hash functions.

C

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/133116doi: bioRxiv preprint

https://doi.org/10.1101/133116
http://creativecommons.org/licenses/by-nd/4.0/

Figure 2. Comparison of Opal against compositional SVM-based approaches. On a synthetic dataset
of fragments of length 200 drawn from an in-house dataset of 50 bacterial species, using Opal hash
functions as features outperforms uniformly random locality sensitive hash (LSH) functions, as well as using
contiguous 16-mers and 12-mers, with (a) substitution errors and (b) indels. We note particularly good
robustness against substitution errors.

0

5

10

15

20

25

30

0% 5% 10% 15%

C
la

ss
if

ic
at

io
n

 e
rr

o
r

b
y

sp
ec

ie
s

Substitution error rate

Substitution errors

Opal(48,12)

LSH(48,12)

16-mer

12-mer

0

5

10

15

20

25

30

0% 1% 2%

C
la

ss
if

ic
at

io
n

 e
rr

o
r

b
y

sp
ei

ce
s

Indel error rate

Indel errors

Opal(48,12)

LSH(48,12)

16-mer

12-mer

A B

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/133116doi: bioRxiv preprint

https://doi.org/10.1101/133116
http://creativecommons.org/licenses/by-nd/4.0/

Figure 3. Comparison of Opal against Kraken and CLARK. (a) Opal achieves higher classification
accuracies on three public benchmark data sets than two other state-of-the-art compositional classifiers.
(b) Opal’s performance increase is especially pronounced at higher phylogenetic levels on a benchmark
set of 193 species from the literature [18]; for the genus-level study, we trained Opal using the genus as
the class label instead of the species, and similarly for the phylum-level study. (c) This increase allows Opal
to have greater sensitivity to novel lineages, where the source genomes of the sequenced reads share
either a genus or phylum, but not lower phylogenetic levels, with the training data Opal is given. That is, for
the genus-level comparison, we removed a species from the dataset, and then trained at the genus-level
on the remaining species, finally testing if we could correctly identify the genus of the removed species from
its reads.

70

75

80

85

90

95

100

Species Genus Phylum

F1
-s

co
re

193 species in-house benchmark

Opal

Kraken

CLARK

70

75

80

85

90

95

100

SimHC20.500 A1.10.1000 B1.20.500

F1
-s

co
re

Public benchmarks

Opal

Kraken

CLARK

0 5 10 15 20 25 30 35

Genus

Phylum

Sensitivity

Novel lineage classification

CLARK Kraken Opal

A B

C

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/133116doi: bioRxiv preprint

https://doi.org/10.1101/133116
http://creativecommons.org/licenses/by-nd/4.0/

Online Methods for

Metagenomic binning through low density hashing

Yunan Luo1 ,*, Y. William Yu2,3 ,*, Jianyang Zeng, Bonnie Berger 2 ,3 ,**, Jian Peng1 ,2 ,* *

1 Department of Computer Science, University of Illinois at Urbana -Champaign, Champaign,
IL, USA

2 Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA

3 Department of Mathematics, MIT, Cambridge, MA, USA

* These authors contributed equally to this work.

** Correspondence: bab@mit.edu and jianpeng@illinois.edu

Compositional read classification with 𝑘-mer profiles
We assume that a sequence fragment 𝑠 ∈ 𝛴𝐿, where 𝛴 = {𝐴, 𝑇, 𝐺, 𝐶}, contains 𝐿 nucleotides. A 𝑘-

mer, with 𝑘 < 𝐿, is a short word of 𝑘 contiguous nucleotides. We define the 𝑘-mer profile of 𝑠 in a

vector representation 𝑓𝑘(𝑠) ∈ 𝑅4𝑘
 . If we index each 𝑘-mer as a binary string with length 2𝑘, then

we have a one-to-one mapping between any 𝑘-mer and an integer from 0 to 22𝑘 . In the rest of

the paper, we will not distinguish the 𝑘-mer string with its integer presentation 𝑖 for notational
simplicity. Each coordinate in the 𝑘-mer profile 𝑓𝑘(𝑠, 𝑖) stores the frequency of 𝑘-mer 𝑖 in the

sequence fragment 𝑠. For instance, for a fragment 𝑠 = 𝐴𝐴𝑇𝑇𝐴𝑇, its 2-mer profile 𝑓2(𝑠) has 4 non-
zero entries: 𝑓2(𝑠, 𝐴𝐴) = 1/5, 𝑓2(𝑠, 𝑇𝑇) = 1/5, 𝑓2(𝑠, 𝐴𝑇) = 2/5 and 𝑓2(𝑠, 𝑇𝐴) = 1/5. In this way,

instead of representing a 𝐿-nucleotide fragment in 𝑂(4𝐿), we can use 𝑘-mer profile to represent it

in 𝑂(4𝑘) . Similarly, we can construct 𝑘 -mer profiles given hash functions that specify other

positional subsequences of the 𝑘-mer, rather than only contiguous subsequences.

After the 𝑘 -mer profile has been constructed, we can use supervised machine learning
classification algorithms, such as logistic regression, naive Bayes classifier and support vector
machines, to train a binning model. The training data can be generated by sampling 𝐿-nucleotide
fragments from the reference genomes with taxonomic annotations. In particular, in this paper,
we used one-against-all support vector machines, implemented using Vowpal Wabbit. Further
details are given for specific experiments.

Locality sensitive hashing
LSH is a family of hash functions that have the property that two similar objects are mapped to
the same hash value [31]. For the metagenomic binning problem, we are only interested in strings

of length 𝑘.Then a family of LSH functions can be defined as functions ℎ: 𝛴𝑘 → 𝑅𝑑 which map 𝑘-

mers into a 𝑑 -dimensional Euclidean space. Assume that we consider Hamming distances

between 𝑘-mers, if we choose ℎ randomly and for two 𝑘-mers 𝑠1 and 𝑠2 with at most 𝑟 different
positions, ℎ(𝑠1) = ℎ(𝑠2) holds with probability at least 𝑃1. For two 𝑘-mers 𝑠3 and 𝑠4 with more

than 𝑅 different positions, ℎ(𝑠3) ≠ ℎ(𝑠4) holds with probability at least 𝑃2. With the construction of

a LSH family, we can amplify 𝑃1 or 𝑃2 by sampling multiple hash functions from the family.
Compared with the straightforward k-mer indexing representation, the LSH scheme can be more
compact and more robust. For example, we can construct LSH functions such that 𝑑 ≪ 4𝑘 .
Moreover, when a small number of sequencing errors or mutations appear in the 𝑘-mer, LSH can

still map the noisy 𝑘-mer into a feature representation that is very similar to original 𝑘-mer. This
observation is highly significant since mutations or sequencing errors are generally inevitable in
the data, and we hope to develop compositional-based methods less sensitive to such noises.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/133116doi: bioRxiv preprint

mailto:bab@mit.edu
https://doi.org/10.1101/133116
http://creativecommons.org/licenses/by-nd/4.0/

One way to construct LSH functions on strings under Hamming distance is to construct index
functions by uniformly sampling a subset of positions from the k-mer. Specifically, given a string
𝑠 of length 𝑘 over 𝛴 , we choose 𝑡 indices 𝑖1, … , 𝑖𝑡 uniformly at random from {1, … , 𝑘} without

replacement. Then, the spaced (𝑘, 𝑡)-mer can be generated according to 𝑠 and these indices.

More formally, we can define a random hash function ℎ: Σ𝑘 → 𝛴𝑡 to generate a spaced (𝑘, 𝑡)-mer
explicitly:

ℎ(𝑠) = 〈𝑠[𝑖1], 𝑠[𝑖2], … , 𝑠[𝑖𝑡]〉.

The hash value ℎ(𝑠) can also be seen as a 4𝑡 dimensional binary vector with only the string ℎ(𝑠)’s

corresponding coordinate set to 1 and otherwise 0. It is not hard to see that such LSH function ℎ
has the property that it maps two similar 𝑘-mers to the same hash value with high probability. For
example, consider two similar 𝑘-mers 𝑠1 and 𝑠2 that differ by at most 𝑟 nucleotides, then the
probability that they are mapped to the same value is given by

𝑃𝑟[ℎ(𝑠1) = ℎ(𝑠2)] ≥ (
𝑘 − 𝑟

𝑡
) (

𝑘

𝑡
)⁄

For two k-mers 𝑠3 and 𝑠4 that differ at least 𝑅 nucleotides, the probability that they are mapped to
different value is given by

𝑃𝑟[ℎ(𝑠3) ≠ ℎ(𝑠4)] ≥ 1 − ∑ (
𝑘 − 𝑗

𝑡
) (

𝑘

𝑡
)⁄

𝑗≥𝑅

With the family of LSH functions, we randomly sample a set of 𝑚 LSH functions and concatenate

them together as the feature vector for a long 𝑘-mer. Note that the complexity of the LSH-based

feature vector is only 𝑂(𝑚4𝑡), much smaller compared to 𝑂(4𝑘) that is the complexity of the

complete 𝑘-mer profile, so long as 𝑡 is much smaller than 𝑘. As an aside, this is the reason that

high-density hashing still runs into the exponential space blow-up problem. When 𝑡 = 𝑐𝑘, for some

constant 𝑐 > 0, 𝑂(4𝑐𝑘) is still exponential in 𝑘. It is for this reason that we turn to low-density

hashing, where 𝑡 is a small constant, in the next section.

More importantly, the LSH-based feature vector is not sensitive to substitution errors or mutations

in the 𝑘-mer if 𝑚 and 𝑡 are well chosen, but for the traditional k-mer profile, even one nucleotide
change can change the feature vector completely. To compute the feature vector for a
metagenomic fragment with length 𝐿, we first extract all 𝑘-mers by sliding a window of length 𝑘

over the sequence, and then apply ℎ on each 𝑘-mer to generate LSH based feature vectors and
then normalize the sum of the feature vectors by 𝐿 − 𝑘 + 1. In this way, one can easily show that
similar fragments can also be mapped to similar LSH-based feature vectors. After the feature
vectors are generated for fragments with taxonomic annotations, we train a linear classifier for
metagenomic binning. It is also fairly straightforward to show that similar fragments have similar
classification responses if the coefficients of the linear classification function are bounded. One
may expect that the complexity of linear classification with k-mer profiles would be lower since

there are at most 𝐿 − 𝑘 + 1 different 𝑘-mers in a fragment and can be computed easily using
sparse vector multiplications, but we find that the LSH based feature vector is also sparse in
practice and the indexing overhead is much smaller when constructing the feature vectors, since
the LSH-based method can have much smaller dimensionality. In practice, the LSH-based

methods can sometimes be even faster if 𝑚 and 𝑡 are not too large.

Gallager low-density locality-sensitive hashing
Despite that the random LSH function family described above has a lot of nice theoretical
properties, uniformly sampled LSH functions are usually not optimal in practice. Theoretical

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/133116doi: bioRxiv preprint

https://doi.org/10.1101/133116
http://creativecommons.org/licenses/by-nd/4.0/

properties of LSH functions hold probabilistically, which means that we need to sample a large
number of random LSH functions to make sure the bounds are tight. However, practically, we
simply cannot use a very large number of random LSH functions to build feature vectors for
metagenomic fragments, given the limited computational resources. Thus it would be ideal if we
could construct a small number of random LSH functions that are sufficiently discriminative and
informative to represent long 𝑘-mers. Here we take inspiration from the Gallager code or low-
density parity-check code that has been widely used for noisy communication. The idea behind
the Gallager code is similar to our LSH family but with a different purpose, namely error correction.
The goal of the LDPC code is to generate a small number of extra bits when transmitting a binary
string via a noisy channel [26, 27]. These extra bits are constructed to capture the long-range
dependency in the binary string before the transmission. After the message string and these extra
bits have been received, a decoder can perform error correction by performing probabilistic
inference to compare the differences between the message string and these code bits to infer the
correct message string. In the same spirit, we here adopt the idea behind the design of the LDPC
code to construct a compact set of LSH functions for metagenomic binning.

To construct compact LSH functions, we hope to not waste coding capacity on any particular
position in the 𝑘-mer. While, under expectation, uniformly sampled spaced (𝑘, 𝑡)-mers on average
cover each position equally, with a small number of random LSH functions, it is likely that we will
see imbalanced coverage among positions since the probability of a position being chosen is
binomially distributed. The Gallager’s design of LDPC, on the other hand, generates a subset of
positions not uniformly random but make sure to equally cover each position [26]. So we can use
the Gallager’s design to generate spaced (𝑘, 𝑡)-mers. The Gallager’s LDPC matrix 𝐻 is a binary

matrix with dimension 𝑚 × 𝑘, and has exactly 𝑡 1’s in each rows and 𝑤 1’s in each column. The
matrix 𝐻 can be divided into 𝑤 blocks with 𝑚/𝑤 rows in each block. We first define the first block

of rows as an (
𝑚

𝑤
) × 𝑘 matrix 𝑄:

𝑄 = [

1 1 1 ⋯ 1 1
1 1 1 ⋯ 1 1

⋱
1 1 1 ⋯ 1 1

],

where each row of matrix Q has exactly t consecutive 1’s from left to right across the columns.
Every other block of rows is a random column permutation of the first set, and the LDPC matrix
H is given by:

𝐻 = [𝑄; 𝑄𝑃1; … ; 𝑄𝑃𝑤−1]𝑇,
where 𝑃𝑖 is a uniform random 𝑛 × 𝑛 permutation matrix for 𝑖 = 1, … , 𝑤 − 1. An example with
𝑘 = 9, 𝑡 = 3, 𝑚 = 6, 𝑤 = 2 is shown in Figure 1. An equivalent bipartite graph with the
Gallager design matrix as the adjacency matrix also is shown. The algorithm for constructing the
LDPC design matrix is as follows:

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/133116doi: bioRxiv preprint

https://doi.org/10.1101/133116
http://creativecommons.org/licenses/by-nd/4.0/

We use each row of 𝐻 to extract a spaced (𝑘, 𝑡)-mer to construct an LSH function. Note that the
first set of 𝐻 gives contiguous 𝑡-mers. With 𝑚 Gallager LSH functions, we can see that each

position in a 𝑘-mer is equally covered 𝑤 times, while the same 𝑚 uniformly sampled LSH function
is very likely to have very imbalanced coverage times for different positions because of the high

variance (= 𝑚
𝑡(𝑘−𝑡)

𝑘2). To further improve the efficiency, we construct random LSH functions with

minimal overlap using a modified Gallager design algorithm. The idea is to avoid the “4-cycles” in
the bipartite graph representation, as we hope not to encode two positions together in two
“redundant” LSH functions [27]. An algorithm which finds “4-cycles” and removes them is shown
here:

For very long 𝑘-mers, we can use a hierarchical approach to generate low-dimensional LSH

functions for very long-range compositional dependency in 𝑘-mers. We first generate a number
of intermediate spaced (𝑘, 𝑙)-mers using the Gallager’s design matrix. Then from these (𝑘, 𝑙)-mers,
we again apply the Gallager’s design to generate (𝑙, 𝑡)-mers to construct the (𝑘, 𝑙, 𝑡) hierarchical
LSH functions.

Benchmarks
Comparisons against Vervier, et al. SVM approaches (Figure 2)
For the synthetic benchmark we used in measuring the robustness of using Opal’s evenly spaced
hashes for SVM features (Figure 2), we started with 50 full bacterial genomes in Fasta format
downloaded from NCBI database.

Algorithm 1: Gallager’s LDPC Matrix:
1. Input: 𝑘, 𝑡, 𝑚

2. 𝑄 ← all zero (
𝑚

𝑤
) × 𝑘 matrix

3. for 𝑖 ← 1 to
𝑚

𝑤
 do

4. for 𝑗 ← (𝑖 − 1) × 𝑡 + 1 to 𝑖 × 𝑡 do

5. 𝑄[𝑖, 𝑗] ← 1
6. end for
7. end for

8. choose 𝑤 − 1 uniform random 𝑛 × 𝑛 permutation matrix 𝑃𝑖, for 𝑖 = 1, … , 𝑤 − 1.

9. 𝐻 = [𝑄; 𝑄𝑃1; … ; 𝑄𝑃𝑤−1]𝑇
10. Output: Gallager’s LDPC Matrix 𝐻

Algorithm 2: Removing 4-cycles:
11. Input: Gallager’s LDPC Matrix 𝐻
12. repeat
13. for 𝑖 ← 1 to 𝑘 − 1 do

14. for 𝑗 ← 𝑖 + 1 to 𝑘 do
15. if |[𝐻[: , 𝑖] ∪ 𝐻[: , 𝑗]| ≥ 2 (check if 4-cycle exists) then

16. 𝑟𝑖𝑑𝑥 ← row index of the first same element in 𝐻[: , 𝑖] and 𝐻[: , 𝑗].

17. 𝑏 ← ⌈
𝑟𝑖𝑑𝑥

𝑚

𝑤

⌉

18. swap the elements of 𝐻[: , 𝑖] and 𝐻[: , 𝑗] that belong to the 𝑏-th block.
19. end if
20. end for
21. end for
22. until no 4-cycle

23. Output: 4-cycle-free Gallager’s LDPC Matrix 𝐻

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/133116doi: bioRxiv preprint

https://doi.org/10.1101/133116
http://creativecommons.org/licenses/by-nd/4.0/

Acetobacter pasteurianus Acinetobacter baumannii

Bacillus amyloliquefaciens Bacillus anthracis

Bacillus subtilis Bacillus thuringiensis

Bifidobacterium bifidum Bifidobacterium longum

Borrelia burgdorferi Brucella abortus

Brucella melitensis Buchnera aphidicola

Burkholderia mallei Burkholderia pseudomallei

Campylobacter jejuni Corynebacterium pseudotuberculosis

Corynebacterium ulcerans Coxiella burnetii

Desulfovibrio vulgaris Enterobacter cloacae

Escherichia coli Francisella tularensis

Helicobacter pylori Legionella pneumophila

Leptospira interrogans Listeria monocytogenes

Methylobacterium extorquens Mycobacterium tuberculosis

Mycoplasma fermentans Mycoplasma genitalium

Mycoplasma mycoides Mycoplasma pneumoniae

Neisseria gonorrhoeae Propionibacterium acnes

Pseudomonas aeruginosa Pseudomonas stutzeri

Ralstonia solanacearum Rickettsia rickettsii

Shigella flexneri Staphylococcus aureus

Streptococcus agalactiae Streptococcus equi

Streptococcus mutans Streptococcus pneumoniae

Streptococcus thermophilus Thermus thermophilus

Treponema pallidum Yersinia enterocolitica

Yersinia pestis Yersinia pseudotuberculosis

For training the SVM methods, synthetic reads of length 200 bp were randomly drawn from the
bacterial genomes such that average depth of coverage was 5x; features from these reads were
passed to Vowpal Wabbit 8.1.1 following the method of Vervier, et al.

Matching the behavior of Vervier, et al., we trained on 12-mer and 16-mer features. Additionally,
Opal and random LSH features were chosen by taking 12 locations in k-mers of size 48. For the
substitution error experiments, Opal and random LSH used 8 hash functions in addition to a
contiguous 12-mer as features. For the indel error experiments, Opal and random LSH used 16
hash functions in addition to a contiguous 12-mer as features.

For testing, synthetic reads of of length 200 bp were again randomly drawn, but with average
depth of coverage only 1x. For substitution error benchmarks, for each location in a read, with
probability 0.05, 0.10, or 0.15, we replaced it uniformly randomly with one of the four nucleotides
(i.e. one quarter of the time, despite a location being selected for a substitution error, it remained
unchanged). For indel error benchmarks with indel error rates of 0.01 or 0.02, for each read, [read-
length=200] * [indel rate] locations were selected to be indels. With equal probability, either that
location is deleted, or a random base is inserted.

Classification error by species was computed by getting the classification error of reads from each
species separately, and then averaging over all 50 species.

Comparisons against Kraken and CLARK (Figure 3)
We compared the performance of Opal against Kraken and CLARK on the public benchmark
datasets SimHC20.500, A1.10.1000, and B1.20.500 of 20, 10, and 20 species respectively.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/133116doi: bioRxiv preprint

https://doi.org/10.1101/133116
http://creativecommons.org/licenses/by-nd/4.0/

The SimHC20.500 synthetic read dataset was previously used as a benchmark in the paper
introducing CLARK [15], containing the following species:

Alkaliphilus metalliredigens Bradyrhizobium sp. BTAi1

Burkholderia ambifaria Chelativorans sp. BNC1

Clostridium thermocellum Dechloromonas aromatic

Desulfitobacterium hafniense Frankia sp. CcI3

Geobacter metallireducens Marinobacter aquaeolei

Methanosarcina barkeri Nitrobacter hamburgensis

Nocardioides sp. JS614 Polaromonas sp. JS666

Pseudoalteromonas atlantica Pseudomonas fluorescens

Rhodobacter sphaeroides Rhodopseudomonas palustris

Shewanella sp. MR-7 Syntrophobacter fumaroxidans

The A1.10.1000 dataset of real sequencing was previously used as a benchmark in [32],
containing the following species:

Solibacter usitatus Acidobacterium capsulatum

Fluviicola taffensis Dehalococcoides mccartyi

Cyanobacterium aponinum Acinetobacter baumannii

Escherichia coli Yersinia pestis

Rhizobium leguminosarum Methylacidiphilum infernorum

The B1.20.500 dataset of real sequencing reads was previously used as a benchmark in [32],
containing the following species:

Terriglobus saanensis Propionibacterium avidum

Prevotella melaninogenica Cyclobacterium marinum

Roseiflexus sp. RS-1 Desulfurococcus kamchatkensis

Geitlerinema sp. PCC 7407 Stanieria cyanosphaera

Thermococcus onnurineus Bacillus licheniformis

Geobacillus sp. Y4.1MC1 Roseburia hominis

Rickettsia Canadensis Yersinia pestis

Ehrlichia ruminantium Pantoea annatis

Zymomonas mobilis Streptococcus dysgalactiae

Rhizobium leguminosarum Akkermansia muciniphila

Kraken was run with default options. CLARK was run with default options with k=31. Opal was
run with L=100, depth-of-coverage=5, k=24, t=12, and 2 hashes (one contiguous and one spaced).

We additionally compared the performance of all three tools on a large 193 species benchmark
used in [18] (the “medium” dataset in the referenced paper), containing the following species
(listed here only by NCBI taxonomic ID for the sake of brevity):

24, 139, 154, 160, 172, 173, 174, 195, 196, 197, 210, 213, 235, 263, 274, 287, 294, 300,
303, 316, 339, 346, 347, 380, 382, 384, 408, 470, 485, 487, 518, 519, 520, 548, 550, 552,
553, 554, 571, 573, 615, 621, 622, 623, 624, 630, 632, 633, 636, 644, 666, 670, 672, 715,
727, 738, 770, 779, 782, 783, 785, 788, 803, 813, 817, 876, 881, 920, 948, 1085, 1096,
1245, 1280, 1282, 1304, 1307, 1308, 1309, 1311, 1313, 1314, 1318, 1328, 1334, 1336,
1338, 1351, 1352, 1390, 1392, 1396, 1398, 1402, 1404, 1406, 1423, 1428, 1488, 1491,
1502, 1513, 1515, 1534, 1579, 1580, 1581, 1582, 1584, 1587, 1590, 1598, 1604, 1613,
1624, 1639, 1681, 1685, 1717, 1718, 1719, 1747, 1764, 1765, 1767, 1769, 1772, 1773,
1804, 1833, 1912, 2096, 2102, 2105, 2115, 2209, 2261, 2285, 2287, 2743, 13373, 28025,

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/133116doi: bioRxiv preprint

https://doi.org/10.1101/133116
http://creativecommons.org/licenses/by-nd/4.0/

28035, 28197, 28450, 29449, 29459, 29461, 29501, 32046, 33959, 33990, 34021, 35554,
35791, 35794, 36809, 36855, 39152, 39491, 39492, 43080, 43771, 47715, 49338, 52584,
53399, 55601, 57975, 61624, 62322, 65058, 76759, 76860, 77038, 78331, 79967, 82996,
83554, 83558, 85991, 95486, 106590, 120577, 138563, 152480, 155892, 161493,
191026, 216816, 283734, 315405, 380021, 657445

Opal was trained at three different taxonomic levels of species, genus, and phylum, separately,
with the same options as above. Kraken and CLARK are taxonomically aware, and automatically
also attempt to give genus and phylum information.

For novel lineage classification, we removed a species/genus from the training data, but kept it in
the test set, and then measured the sensitivity of classifying those reads at the higher
genus/phylum level.

Data Availability
All data used in this paper has been previously published and can be accessed through the
references given above.

Code Availability
Source code for Opal can be found online at http://opal.csail.mit.edu, and through the linked
Github repository. All code has been published under the GNU General Public License.

References
31. Andoni A & Indyk P. (2006) Near-optimal hashing algorithms for approximate nearest

neighbor in high dimension. Foundations of Computer Science, pp. 459-468.
32. Ounit R, & Lonardi S. (2015). Higher classification accuracy of short metagenomic reads

by discriminative spaced k-mers. International Workshop on Algorithms in Bioinformatics.
Springer Berlin Heidelberg, pp. 286-295.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/133116doi: bioRxiv preprint

http://opal.csail.mit.edu/
https://doi.org/10.1101/133116
http://creativecommons.org/licenses/by-nd/4.0/

Supplementary Information

Figure S1. Opal is more accurate than BWA-MEM for classification. On the same synthetic
benchmark used in Figure 2 of fragments of length 200 drawn from an in-house dataset of 50
bacterial species, using Opal hash functions as features outperforms BWA-MEM for classification.
Again, we not particular robustness against substitution errors.

Figure S2. Opal run alone with parameters (64,32,8) achieves two orders of magnitude speedup
over a state-of-the-part alignment-based method, BWA-MEM, on fragments of length (L) 200 and
400 at varying mutation/sequencing error rates (lower is better). We observe that compositional-
based binning as “coarse search” for alignment-based methods can significantly speed up
alignment time (Opal + BWA-MEM). In particular, Opal applied as a “coarse-search” procedure
reduces the taxonomic space for a subsequent alignment-based BWA-MEM “fine search” to
achieve nearly 20 times speedup.

0

1

2

3

4

5

6

7

8

9

10

0% 5% 10% 15%

C
la

ss
if

ic
at

io
n

 e
rr

o
r

b
y

sp
ec

ie
s

Substitution error rate

Substitution errors

Opal(48,12)

BWA

0

1

2

3

4

5

6

7

8

9

10

0% 1% 2%

C
la

ss
if

ic
at

io
n

 e
rr

o
r

b
y

sp
ei

ce
s

Indel error rate

Indel errors

Opal(48,12)

BWA

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/133116doi: bioRxiv preprint

https://doi.org/10.1101/133116
http://creativecommons.org/licenses/by-nd/4.0/

Figure S3. Subspecies benchmark. We compared Opal, Kraken, CLARK, and using contiguous
12-mers on a synthetic benchmark of 7 closely related bacterial substrains with FASTA files from
bacteria.ensembl.org:

Escherichia_coli_o127_h6_str_e2348_69.ASM2654v1.dna.toplevel.fa

Escherichia_coli_o139_h28_str_e24377a.ASM1774v1.dna.toplevel.fa

Escherichia_coli_o146_h21_str_2010c_3325.Ec2010C-3325.dna.toplevel.fa

Escherichia_coli_o157_h7.ASM97884v1.dna.toplevel.fa

Escherichia_coli_o7_k1_str_ce10.ASM22762v1.dna.toplevel.fa

Escherichia_coli_str_k_12_substr_w3110.ASM1024v1.dna.toplevel.fa

Shigella_dysenteriae_1617_gca_000497505.ASM49750v1.dna.toplevel.fa

Opal was trained with 32 hashes, depth of coverage 820 (4096 batches of 0.2x coverage). The
contiguous 12-mer model was trained with depth of coverage 410 (2048 batches of 0.2x
coverage). Kraken 0.10.b-beta was run with default options. CLARK v1.2.3 was run with k=31 in
full mode. For substitution error rates, as before, Opal performs much better than its competitors.
Indel error rate, on the other hand, posed a significant challenge, though Opal still performs
comparably at the indel error rates we examined. NB: where Kraken and CLARK chose not to
classify a read as one of the 7 substrains given, we count it as randomly guessing, and give 1/7th
of a correct classification to its score; this only improves the performance of Kraken and CLARK,
providing a more apples-to-apples comparison.

0

10

20

30

40

50

60

70

80

90

0% 5% 10% 15%

C
la

ss
if

ic
at

io
n

 e
rr

o
r

b
y

sp
ec

ie
s

Substitution error rate

Substitution errors

Opal(48,24,12)

Kraken

CLARK

12-mer

0

10

20

30

40

50

60

70

80

90

0% 1% 2%

C
la

ss
if

ic
at

io
n

 e
rr

o
r

b
y

sp
ei

ce
s

Indel error rate

Indel errors

Opal(48,24,12)

Kraken

CLARK

12-mer

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/133116doi: bioRxiv preprint

https://doi.org/10.1101/133116
http://creativecommons.org/licenses/by-nd/4.0/

Table S1. Comparison of Opal against Kraken and CLARK on three benchmarks previously used
in the literature. Raw precision and recall numbers for Figure 3A in paper.

 SimHC20.500 A1.10.1000 B1.20.500

 Precision Recall Precision Recall Precision Recall

Opal 95.14 94.86 91.5 90.71 93.85 93.56

Kraken 95.47 86.64 90 87.26 94.98 90.89

CLARK 94.06 82.54 90 86.68 95 90.12

Table S2. Comparison of Opal against Kraken and CLARK at three different phylogenetic levels
on a 193-species database previously used in [18]. Raw precision and recall numbers for Figure
3B in paper. Raw sensitivity numbers for novel lineage detection in Figure 3C in paper.

Binning (193-species large dataset) Novel Lineage

 Species Genus Phylum Sensitivity

 Precision Recall Precision Recall Precision Recall Genus Phylum

Opal 86.22 76.63 90.16 89.02 95.72 95.65 31.71 22.75

Kraken 86.1 70.31 88.33 86.08 92.29 89.83 25.35 4.85

CLARK 85.82 77.8 88.09 84.05 95.92 88.39 25.38 4.63

 Table S3. Comparison of Opal against Kraken, CLARK, and MetaPhlAn2 at three different
phylogenetic levels, measured using Pearson correlation and root mean square error. We
calculated Pearson correlation and normalized RMSE between the binning percentages and the
actual fractions of reads assigned to their taxonomic origins. Opal clearly outperformed both
Kraken and Clark at all levels, likely because Kraken and Clark are based on exact k-mer matches
but Opal’s fingerprints can account for mutations or sequencing errors. We also compared Opal
against MetaPhlAn2 [30] for metagenomics profiling; even using their (MetaPhlAn2’s) marker
genes, Opal performed better on the species and genus level.

Profiling with all reads

 Species Genus Phylum

Pearson RMSE Pearson RMSE Pearson RMSE

Opal 0.8154 0.6584 0.9824 0.2262 0.9999 0.0213

Kraken 0.8063 0.6681 0.9612 0.2845 0.9987 0.052

CLARK 0.7504 0.7701 0.949 0.3266 0.9996 0.0317

Profiling with all marker genes

 Species Genus Phylum

 Pearson RMSE Pearson RMSE Pearson RMSE

Opal 0.9695 0.2682 0.988 0.1128 0.9999 0.0291

MetaPhlAn2 0.9541 0.3684 0.9922 0.1622 0.9998 0.0259

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted May 5, 2017. ; https://doi.org/10.1101/133116doi: bioRxiv preprint

https://doi.org/10.1101/133116
http://creativecommons.org/licenses/by-nd/4.0/

