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Abstract 

Background: Custom staging assays, including the Sedia HIV-1 Limiting Antigen Avidity EIA 

(LAg) and avidity modifications of the Ortho VITROS anti-HIV-1+2 and Abbott ARCHITECT HIV 

Ag/Ab Combo assays, are used to identify ‘recent’ infections in clinical settings and for cross-

sectional HIV incidence estimation. However, the high dynamic range of chemiluminescent 

platforms allows differentiating recent and longstanding infection on signal intensity, and this 

raises the prospect of using unmodified diagnostic assays for infection timing and surveillance 

applications. 

Methods: We tested a panel of 2,500 well-characterised specimens with estimable duration 

of HIV infection with the three assays and the unmodified ARCHITECT. Regression models 

were used to estimate mean durations of recent infection (MDRI), context-specific false-

recent rates (FRR) and correlation between signal intensity and LAg measurements. A 

hypothetical epidemiological scenario was constructed to evaluate utility in surveillance 

applications. 

Results: Over a range of MDRIs (reflecting recency discrimination thresholds), a diluted 

ARCHITECT-based RITA produced lower FRRs than the VITROS platform (FRR ≈ 0.5% and 1.5% 

respectively at MDRI of 200 days) and the unmodified diagnostic ARCHITECT produces 

incidence estimates with comparable precision to LAg (RSE ≈ 17.5% and 15% respectively at 

MDRI of 200 days). ARCHITECT S/CO measurements were highly correlated with LAg ODn 

measurements (r = 0.80) and values below 200 are strongly predictive of LAg recency and 

duration of infection less than one year. 

Conclusions: Low quantitative measurements from the unmodified ARCHITECT obviate the 

need for additional recency testing and its use is feasible in clinical staging and incidence 

surveillance applications. 

Key Words: infection timing; infection staging; incidence; recent infection; diagnostic assays; 

staging assays 
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Introduction 

Laboratory assays for the detection, staging and management of HIV have been a significant 

priority over the course of the HIV/AIDS epidemic, with a great deal of innovation. In 

particular, the idea of using a test for ‘recent’ HIV infection to generate incidence estimates 

from cross-sectional surveys has attracted substantial attention and investment (1–11). A 

variety of candidate immunological and virological markers have been investigated, with most 

early applications focused on the expansion of the dynamic range of serological assays used 

to identify recent infection (i.e. increasing the length of time an incident case could still be 

classified as recently infected). In conventional plate reader-based ELISA platforms, high 

diagnostic sensitivity requires a rapid rise of signal strength with increasing antibody titre and 

avidity, so that patients’ readings rapidly traverse the range of quantifiable detection as the 

infection progresses. Customisations to expand the dynamic range and facilitate the 

introduction of a reproducible recent/non-recent threshold have variously taken the form of 

dilution, incubation time reduction, or antibody-antigen binding degradation (sometimes in 

combination) to produce markers indicative of antibody titre, HIV-specific proportion, or 

avidity.  

Individuals who are virally suppressed (either through effective endogenous control or by 

antiretroviral treatment) tend to undergo at least partial seroreversion, leading to ‘false’ 

recent classifications under protocols designed for cross-sectional incidence estimation. 

Inspired by the hypothesis that antibody quality reverts less than antibody titre or proportion, 

the notion of a ‘two-well avidity modification’ has gained some traction as a promising generic 

approach. In this case a specimen is subjected to two runs on the diagnostic platform, under 

different conditions: an ‘untreated’ (i.e. close to standard conditions) reaction well and a 

‘treated’ reaction well, in which conditions are altered to restrict antibody-antigen binding. 

The ratio of the signals generated by ‘treated’ vs. ‘untreated’ reaction wells – usually named 

an ‘avidity index’ – is interpreted as a measure of antibody binding capacity. Avidity typically 

increases over time after infectious exposure as the antibody response matures. 

Two-well avidity modifications of two modern chemiluminescent platforms with high intrinsic 

dynamic range, the Ortho VITROS anti-HIV-1+2 Assay (12) and the Abbott ARCHITECT HIV 
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Ag/Ab Combo Assay (13), have been proposed. These employ ‘chaotropic’ agents – i.e. agents 

that interfere with antibody-antigen binding – in the ‘treated’ reaction well to inhibit the 

formation of antibody-antigen complexes or disrupt complexes after formation. While not 

relying on specimen dilution (which is an alternative, non-avidity approach to dynamic range 

expansion), the use of an additional reagent in the modified run requires some dilution of 

samples in the ‘untreated’ run to match input volumes and render the resulting signals 

comparable.  

Performance of the VITROS and ARCHITECT avidity assays for use in cross-sectional incidence 

estimation has been investigated by the CEPHIA collaboration, as part of an independent 

evaluation of leading candidates for HIV incidence assays (9,10). During application of the 

proposed procedures for recency ascertainment using the CEPHIA ‘evaluation panel’, these 

two-well avidity protocols additionally produced results from diluted (1:10) but otherwise 

unmodified runs. These previously unreported data, and a new evaluation of the unmodified 

Abbott ARCHITECT HIV Ag/Ab Combo Assay (i.e., applied according to the manufacturer’s 

Instructions for Use [IFU] in diagnostic applications) by CEPHIA form the subject of this work. 

We further report, for comparison, results from the Sedia™ HIV-1 Limiting Antigen Avidity 

(LAg) assay on the same CEPHIA evaluation panel. 

Until recently, no practical recent/non-recent infection classification scheme has been 

constructed using only markers available through unmodified diagnostic platforms and 

algorithms. This is a noteworthy opportunity, given that the Western blot, at times widely 

used as a ‘confirmatory’ diagnostic test, provides a compelling picture of immune response 

evolution (14). In many settings, it has been noted that ‘indeterminate’ Western blot patterns 

tend to evolve into unambiguously HIV-positive patterns within a few weeks. However, lack 

of consistent production and quantitation of Western blot band intensity has been one key 

limitation preventing use of the Western blot as a staging assay. Similarly, the cost and 

complexity of using customised recency assays in disease surveillance has limited adoption 

(15), and the potential to interpret data already routinely available from diagnostic assays to 

classify infections as recent/non-recent may improve the feasibility of incidence surveillance 

in many settings. 
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In clinical settings, the only well-known early infection staging scheme is ‘Fiebig staging’ (14), 

nominally based on unmodified commercial assays, but using only the qualitative/categorical 

results. ‘Fiebig stages’ are based on discordance between tests of varying diagnostic 

sensitivity, or, more precisely, the mean time from infectious exposure to test conversion. 

Given progress in the reduction of diagnostic delays (window periods), such a staging system 

has utility only in the very early stages of infection, and inferences about the duration of 

infection can in practice only be made when specific diagnostic platforms, many of which are 

no longer available, are employed.  

We report the first evidence that certain unmodified chemiluminescent 4th generation 

diagnostic assays can provide meaningful recent/non-recent infection staging information 

applicable to incidence surveillance, or for clinical interpretation in post-diagnosis 

counselling. The latter application is already being practised in several countries where 

custom recency staging assays (such as LAg) are applied to specimens from newly diagnosed 

persons. This involves additional laboratory resources and longer turnaround times, as 

specimens are usually reflexed to a small number of centralised specialist laboratories for 

recency ascertainment.  

Methods 

The CEPHIA Specimen Repository and Evaluation Panel 

The CEPHIA specimen repository houses over 25,000 HIV-1-positive specimens. Specimen 

details and background clinical data (obtained from contributing clinical cohort studies) are 

stored in harmonised form in a research database. As previously described (9,10,16), the 

CEPHIA Evaluation Panel consists of 2,500 plasma specimens, selected to allow a full 

independent assessment of promising tests for recent infection, including estimation of test 

properties relevant to HIV incidence estimation. The specimens were obtained from 932 

unique subjects (1-13 specimens per subject). Most specimens were obtained from subjects 

infected with subtype B (53% of specimens), subtype C infection (27%), subtype A1 (12%) and 

D (6%). The panel further contained multiple blinded aliquots of three control specimens (25 

replicates of each) with antibody reactivity characteristic of recent, intermediate and 

longstanding infection to allow evaluation of the reproducibility of assay results. The majority 
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(67%) of subjects contributing specimens to the panel had sufficient clinical data to produce 

Estimated Dates of Detectable Infection (EDDIs), which are obtained by systematically 

interpreting diverse diagnostic testing histories by means of the ‘diagnostic delays’ – the 

average time elapsed from exposure to HIV to a first positive result on the assay in question 

(11).  

The UCSF Human Research Protection Program & IRB (formerly CHR, #10-02365) approved 

study procedures. 

Laboratory procedures 

For the present analysis, data for the VITROS Avidity, ARCHITECT Avidity and Sedia LAg Avidity 

assays were generated as previously described (9,10), with the exception that the data from 

the CEPHIA evaluations of the VITROS Avidity and the ARCHITECT Avidity assays were 

reanalysed using only the ‘untreated’ (diluted) run (i.e. the sample diluted 1:10 with PBS). 

Additional testing of the CEPHIA evaluation panel was undertaken according to the 

manufacturer’s IFU for the Abbott ARCHITECT HIV Ag/Ab Combo assay. Data for the LAg assay 

is included for comparison. 

Specimens were independently tested in CEPHIA laboratories (Blood Systems Research 

Institute, San Francisco, CA – VITROS Avidity and National Infection Service, Public Health 

England, London, UK – ARCHITECT Avidity, unmodified ARCHITECT, Sedia LAg) by technicians 

blinded to specimen background data. 

The procedures used in the testing of the two avidity modifications and LAg have been 

previously described (9). The unmodified ARCHITECT HIV Ag/Ab Combo assay is a two-step 

immunoassay which detects both the presence of HIV p24 antigen and antibodies to HIV-1 

and HIV-2 in human serum and plasma. For this evaluation, we only investigated anti-HIV-1 

detection. In the first step, the sample, assay diluent, and paramagnetic microparticles are 

combined. HIV p24 antigen and HIV-1/HIV-2 antibodies present in the sample bind to the HIV-

1/HIV-2 antigen and HIV p24 monoclonal (mouse) antibody-coated microparticles. After 

washing, the HIV p24 antigen and HIV-1/HIV-2 antibodies bind to the acridinium-labelled 

conjugates (HIV-1/HIV-2 antigens, synthetic peptides, and HIV p24 antibody). Following 

another wash cycle, pre-trigger and trigger solutions are added to the reaction mixture. The 
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resulting chemiluminescent reaction is measured as relative light units (RLUs). The assay 

incorporates a number of controls and calibrator specimens, and regular maintenance of the 

ARCHITECT platform is required to ensure accuracy of results. For the purpose of this 

evaluation specimens were tested and analysed in singleton but for diagnostic purposes the 

manufacturer suggests specimens be tested in duplicate. 

Statistical Analysis 

For use in incidence surveillance, the performance of recent infection tests is summarised by 

two parameters, the Mean Duration of Recent Infection (MDRI) and the False-Recent Rate 

(FRR). 

MDRI denotes the average amount of time that individuals spend exhibiting the ‘recent’ 

biomarker, while infected for less than some cut-off time (denoted 𝑇, 2 years in the present 

work). This captures the defining biological aspects of the recency test, and should be more 

than approximately half a year to yield informative incidence estimates from feasibly-sized 

surveys, even in high incidence settings. As described previously (3, 4), MDRI was estimated 

by fitting a linear binomial regression model for the probability of testing recent as a function 

of estimated time since infection, 𝑃𝑅(𝑡), using a logit link function and a cubic polynomial in 

time (since estimated date of detectable infection). The function was fit to data points up to 

800 days post-infection. The MDRI was then obtained by integrating the function from 0 to 

𝑇. Confidence intervals were obtained by resampling subjects in 10,000 bootstrap iterations.1 

The FRR is the proportion of those individuals who are infected for longer than the cut-off 

time 𝑇, but who nevertheless produce a recent result on the test. For surveillance, values of 

FRR above approximately 1-2% are highly vulnerable to bias and artefacts during the 

incidence estimation procedure.  

FRR is inevitably context-dependent. In order to estimate FRR, a hypothetical epidemiological 

scenario was constructed and the FRR in untreated and treated individuals was estimated 

separately and weighted according to the treatment coverage specified in the scenario. The 

                                                           
1 Since the estimation procedure does not rely on longitudinal biomarker progression within individuals, the 
bootstrapping procedure resamples subjects rather than individual data points (with replacement) to account 
for the non-independence of measurements on specimens drawn from the same individual. 
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epidemiological scenario used in the present study can be summarised as: 1) HIV prevalence 

of 30%; 2) incidence of 1.5 cases per 100 person-years; and 3) treatment coverage (defined 

as proportion of HIV-infected individuals who are on ART, all of whom are assumed to be 

virally suppressed) of 80%. 

To estimate the FRR in untreated individuals, the function 𝑃𝑅(𝑡) was fit using data from all 

times post-infection, and weighted according to the probability density function for times 

since infection in the untreated population. The distribution of times since infection was 

parameterised as a Weibull survival function, with the shape and scale parameters chosen to 

produce the desired treatment coverage in a population with the specified incidence and 

prevalence, and normalised to the specified recent incidence. The FRR in treated subjects, 

𝑃(𝑅|𝑡𝑥) is simply the binomially estimated probability that treated subjects infected for 

longer than 𝑇 would produce a recent result.2  

𝐹𝑅𝑅 = 𝑐 ⋅ 𝑃(𝑅|𝑡𝑥) + (1 − 𝑐) ⋅ ∫ 𝜌(𝑡)𝑃𝑅(𝑡)
∞

𝑇

 𝑑𝑡 

where 𝑐 is the treatment coverage, 𝜌(𝑡) =  
𝑓(𝑡)

∫ 𝑓(𝑡)𝑑𝑡
∞

𝑇

 and 𝑓(𝑡) =  𝑒−(
𝑡

𝛼
)

𝛽

 

For surveillance applications, utility is defined in terms of the standard error on the incidence 

estimator (17). To assess this, MDRI and context-specific FRR were calculated for a range of 

‘recent/non-recent’ discrimination thresholds, and the variance on the incidence estimator 

was calculated for the specified epidemiological context (assuming a demonstrative simple 

random sample of 10,000 individuals). A key difference between a previously constructed 

scenario (10) and the present analysis is in the HIV-positive case definition, which previously 

required a fully-developed Western blot, and in the present case is expanded to all individuals 

who test positive on a qualitative NAT assay (threshold of detection 30 HIV-RNA copies/mL). 

This has ramifications for MDRI, which was estimated using EDDIs in which detectable 

infection is defined as positivity on a hypothetical viral load assay with a detection threshold 

of 1 copy/mL. Reported MDRI estimates must be interpreted against this reference standard, 

                                                           
2 In the CEPHIA Evaluation Panel, all treated subjects were virally suppressed, resulting in an estimate of 
P(R|tx) = 0 in all cases where a supplemental viral load threshold is applied. In real-world populations, it is 
likely that a certain (unknown) proportion of treated subjects would be virally unsuppressed and that the FRR 
in treated subjects would therefore be non-zero. 
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and for the purposes of incidence estimation, MDRI was adjusted to account for the sensitivity 

of the HIV screening algorithm (i.e., 4.8 days shorter than reported MDRI to account for the 

diagnostic delay of the Aptima HIV-1 RNA Qualitative Assay used in NAT screening). 

MDRI, FRR and the variance of the incidence estimate in the hypothetical scenario were 

computed using the R package inctools (18). 

Linear regression was used to assess the correlation between ARCHITECT S/CO readings and 

LAg ODn readings on the untreated subset of the evaluation panel. Binomial logistic 

regression models were employed to assess the predictive value of ARCHITECT S/CO values 

for (1) duration of infection ≤ one year, and (2) LAg ODn values ≤ 1.5 (the conventional recency 

discrimination threshold). The logistic regression models had the following form: 

𝑔(𝑃𝑅) = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋2 

with 𝑃𝑅 the probability of recency (duration of infection ≤ 1 year or LAg ≤ 1.5), 𝑔() the logit 

link function and 𝑋 the ARCHITECT S/CO measurements. 

Results  

Figure 1 shows, in four panels customised to the apparent dynamic range of each assay, the 

MDRI (y-axis) as a function of recent/non-recent discrimination threshold (x-axis, range 

chosen to yield MDRI values from 50 to 400 days). A viral load threshold of 100 HIV RNA 

copies/mL is applied in all cases. MDRI is tuneable by adjusting the recent/non-recent 

discrimination threshold, but FRR increases with increasing MDRI. 

Low ARCHITECT S/CO measurements are highly ‘predictive’ of low LAg normalised optical 

density (ODn) measurements, as can be seen in Figure 2, which shows a scatterplot and linear 

regression model for LAg ODn vs. ACRHITECT S/CO (panel A) and binomial logistic regression 

for the probability of obtaining an ODn ≤ 1.5 (the conventional recent/non-recent 

discrimination threshold) and duration of infection less than one year (panel B). Table 1 

further reports that 78% of untreated specimens in the evaluation panel with S/CO readings 

< 200 and viral load measurements > 100 copies/mL produce LAg ODn values ≤ 1.5, and 87% 

of these specimens were drawn within one year of EDDI. Low quantitative readings from the 
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diagnostic assay, together with above-threshold viral load, therefore appear to obviate the 

need for additional staging assays. 

Figure 3 summarises performance metrics for the minimally diluted ‘untreated wells’ of the 

VITROS and ACRHITECT Avidity assays, the unmodified ARCHITECT diagnostic assay and LAg 

as part of a RITA in surveillance applications. Panel A shows context-specific FRR in the 

scenario outlined above against MDRI (encoding recency discrimination threshold) and panel 

B shows the relative standard error on the incidence estimate against MDRI. Comparison of 

the diluted VITROS and ACRHITECT platforms shows a much more rapid rise in FRR for the 

VITROS platform, reaching more than 5% when MDRI is approximately one year. For this 

reason, the ARCHITECT platform was selected for further evaluation in entirely unmodified 

form (manufacturer’s IFU). The results indicate that a RITA based on the unmodified 

ARCHITECT achieves an only marginally greater FRR than the diluted version, and that its 

performance for surveillance purposes (as captured in the precision of incidence estimate) is 

very similar to that of a RITA based on the widely-employed LAg assay. 

Table 1 shows performance metrics for a range of S/CO thresholds: MDRI, context-specific 

FRR and relative standard error on an incidence estimate in the epidemiological context 

outlined above, with MDRI adjusted for the sensitivity of a practical screening algorithm. In 

this context, a S/CO threshold of 200 appears close to optimal, yielding an MDRI of 186 days 

(95% CI: 165,208), a context-specific FRR of 0.4%, and a relative standard error on the 

incidence estimate of 16.9%). S/CO thresholds < 100 or > 300 produce less precise incidence 

estimates in surveillance applications as a result of shorter MDRI and higher FRR respectively, 

but the lower threshold could be useful for clinical staging applications.  

Discussion 

In Figure 1 we can see that, although the actual ranges of plausible thresholds vary 

considerably between platforms, the chemiluminescent diagnostic assays have sufficient 

dynamic range to support simple threshold-based definitions of recent infection. For 

surveillance applications, such as case-based surveillance where central laboratories apply 

comparable, or comparably well-calibrated, recency staging assays to a large number of cases 

identified in a health system; blood banking applications; and large population-based surveys. 
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Optimal threshold choice depends on the specific epidemiological and methodological 

context of application, but would involve a similar trade-off between MDRI and FRR as that 

demonstrated in Table 1 and Figure 3. It is worth noting that even state-of-the-art staging 

algorithms exhibit disappointing performance in surveillance applications, with precise 

incidence estimates emerging only at extraordinarily high sample sizes or high values of 

incidence (10,19). Recency staging data is unlikely ever to be the only source of incidence-

related information – meaning that it should be used in conjunction with estimation 

procedures (still under development) which also use the demographic (age and time) 

structure of prevalence data and mortality (20,21).  

In interpreting data for individual use it is important to consider an inherent limitation of any 

diagnostic test: the potential for false positive results. While a diagnostic HIV interpretation 

would not be based on the outcome of a single test, the lack of confirmatory tests for ‘recent’ 

infection means that a single test is often used for recency determination. It is likely that a 

false positive or non-specific reaction would give a low S/CO reading, and thus would be more 

likely to be misclassified as a recent infection. Consideration must be given to confirming the 

antibody positive status of the individual. In addition, the very nature of combined 

antigen/antibody 4th generation tests means that antigen-only positive samples may also be 

detected. These results, which are almost certainly truly recent infections, may also generate 

a low S/CO depending on a number of factors, including the amount of antigen present and 

whether this antigen has complexed with developing antibody, and should not be discarded 

over the absence of antibody reactivity.  Given this, before interpreting a test for recency it is 

critical to ensure that the HIV diagnosis is confirmed by local testing algorithms and criteria 

that identify non-specific reactivity and differentiate antibody and antigen reactivity.  

One must not dismiss the performance of the unmodified ARCHITECT demonstrated in the 

present analysis, simply because it is not quite as good as what can currently be achieved by 

other staging algorithms based on more complex protocols. Substantial logistical and cost 

advantages, in both routine contexts and population-based surveys, could be achieved by 

using a single serological assay for diagnostic and staging purposes, especially in the light of 

the high-throughput, automated nature of these platforms. 
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Estimating time since infection based on HIV biomarker progression is made difficult by the 

complex nonlinear growth exhibited by immune markers of disease progression, and the 

absence of a robust model for capturing inter-subject variability leads to an inability to 

formally measure the precision of the timing estimate. Nevertheless, simply ‘looking up’ the 

assay result on the threshold-MDRI curve, and noting that “X reactivity level of this diagnostic 

assay is one that subjects, on average, spend Y time beneath”, provides clinically meaningful 

information. In principle, the most natural and coherent way to provide realistic estimates for 

individual-level times since infection would involve the use of testing histories and other 

contextually-derived ‘prior information’ in a Bayesian framework. This would require a high 

level of confidence that the model of biomarker growth correctly captures complex inter-

subject variability. 

Critical clinical decisions – such as whether to offer antiretroviral treatment – could be based 

on the transformation, through a calibration curve of a test result into a timescale (only 

loosely interpreted as an estimate of time since infection). Typically, a simple “likely 

recent/non-recent” result is currently fed back to clinician and patient, qualified by a mean 

time meant by recent, with caveats outlining a number of known confounders of accurate 

assay performance. Our proposal uses the specific assay result, rather than simply 

dichotomising results into a recent/non-recent classification (based on a single threshold, 

which may be far from the particular patient’s result), and therefore offers an interpretation 

that is much more informative. 

This analysis provides the first evidence that unmodified diagnostic assays can provide 

meaningful staging information applicable in clinical and surveillance settings. Even a recent 

analysis of the Bio-Rad GeeniusTM HIV1/2 supplemental assay (16), though using a platform 

available in diagnostic settings, requires a research-use-only modification of the cartridge 

reader software to facilitate the extraction of quantitative band intensities, which form the 

basis of the recency classification.  

Tests that intrinsically serve both as part of a diagnostic algorithm and a staging algorithm 

offer obvious practical advantages, and perhaps more significantly, create a genuine market 

advantage. This may stimulate investment in the otherwise unattractive sector of staging 

assays (15). While customised staging assays will remain useful in many contexts, the ability 
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to extract staging information from diagnostic assays constitutes a significant advance for the 

fields of clinical staging and incidence surveillance. 
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Table 1: Performance characteristics of the unmodified ARCHITECT assay 

Mean Duration of Recent Infection, context-specific False-Recent Rate (in the specified 

hypothetical epidemiological scenario), Relative Standard Error on the incidence estimate (in 

the specified hypothetical scenario#), proportion LAg-recent and proportion infected less than 

one year, by Signal-to-Cutoff Ratio recency discrimination threshold and viral load threshold. 

S/CO 
Threshold 

< 

VL 
Threshold 

> 

MDRI (95% CI) 

days* 

Context-

specific FRR 

% 

RSE on 
Incidence 
Estimate*‡ 

% 

Proportion 
LAg ODn < 1.5 

% 

Proportion 
Time since 

EDDI < 1 year 

% 

50 100 71 (57,86) 0.0% 24.7% 94% 90% 

100 100 105 (90,121) 0.1% 20.4% 91% 91% 

150 100 150 (132,169) 0.1% 17.4% 85% 91% 
200 100 186 (165,208) 0.4% 16.9% 78% 87% 

250 100 232 (207,257) 0.7% 17.0% 72% 85% 

300 100 281 (254,310) 1.3% 19.0% 63% 81% 

350 100 337 (307,366) 1.7% 18.3% 57% 77% 

* Reported relative to hypothetical viral load assay with detection threshold of 1 copy/ml. 

 Epidemiological context: HIV prevalence = 30%, incidence = 1.5% p.a., treatment coverage = 80%. Unstructured 

sample of 10,000. 

‡ MDRI of RITA adjusted for HIV screening with Aptima HIV-1 RNA Qualitative Assay (4.8 days shorter). 
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Figure 1: Mean Duration of Recent Infection by recency discrimination threshold 

Mean Duration of Recent Infection (y axis), as a function of recency discrimination threshold (x axis, range 
chosen to yield MDRI values from approximately 50 to 400 days). 

A) Minimally diluted (‘untreated well’) of the Ortho VITROS anti-HIV-1+2 Assay avidity modification 
B) Minimally diluted (‘untreated well’) of the Abbott ARCHITECT HIV Ag/Ab Combo Assay avidity 

modification 
C) The completely unmodified (manufacturer IFU) Abbott ARCHITECT HIV Ag/Ab Combo Assay 
D) (As a reference) the Sedia HIV-1 Limiting Antigen Avidity EIA (LAg) 
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Figure 2: Low ARCHITECT S/CO measurements ‘predict’ low LAg ODn measurements and 
short duration of infection 

A) Scatterplot of ARCHITECT (x-axis) and LAg (y-axis) readings, and linear regression model 
B) Binomial logistic regression models for the probability of obtaining a LAg ‘recent’ result (ODn ≤ 1.5) 

and probability of duration of infection ≤ 1 year 
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Figure 3: Performance characteristics by Mean Duration of Recent Infection 
Context-specific False-Recent Rate (FRR) and relative standard error (RSE) on incidence estimate in a 
demonstrative epidemiological context (30% HIV prevalence, 1.5% per annum incidence, 80% treatment 
coverage) and using an unstructured sample of 10,000 respondents. 

A) Context-specific False-Recent Rate 
B) Precision of Incidence Estimate 

A 

 

 
B 

 

 

0

1

2

3

4

5

6

50 100 150 200 250 300 350 400

MDRI (days)

C
o
n

te
x
t−

s
p

e
c
if
ic

 F
R

R
 (

%
)

VITROS Avidity (untr. well) ARCHITECT Avidity (untr. well) ARCHITECT (unmodified) LAg

0

10

20

30

40

50

50 100 150 200 250 300 350 400

MDRI (days)

R
S

E
 o

n
 i
n

c
id

e
n
c
e
 e

s
ti
m

a
te

 (
%

)

VITROS Avidity (untr. well) ARCHITECT Avidity (untr. well) ARCHITECT (unmodified) LAg

.CC-BY-NC-ND 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted May 3, 2017. ; https://doi.org/10.1101/132332doi: bioRxiv preprint 

https://doi.org/10.1101/132332
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Diagnostic, Infection Timing and Incidence Surveillance Applications of High Dynamic Range Chemiluminescent HIV Immuno-Assay Platforms
	Abstract
	Introduction
	The CEPHIA Specimen Repository and Evaluation Panel
	Laboratory procedures
	Statistical Analysis

	Results
	Discussion
	References
	Table 1: Performance characteristics of the unmodified ARCHITECT assay
	Figure 1: Mean Duration of Recent Infection by recency discrimination threshold
	Figure 2: Low ARCHITECT S/CO measurements ‘predict’ low LAg ODn measurements and short duration of infection
	Figure 3: Performance characteristics by Mean Duration of Recent Infection


