

1 Dengue virus hijacks a noncanonical oxidoreductase function of a cellular
2 oligosaccharyltransferase complex

3

4 David L. Lin^a, Natalia A. Cherepanova^b, Leonia Bozzacco^c, Margaret R. Macdonald^c,
5 Reid Gilmore^b, and Andrew W. Tai^{a,d,e,*}

6

7 Department of Microbiology and Immunology, University of Michigan Medical School,
8 Ann Arbor, Michigan, USA^a; Department of Biochemistry and Molecular Pharmacology,
9 University of Massachusetts Medical School, Worcester, Massachusetts, USA^b;
10 Laboratory of Virology and Infectious Disease, The Rockefeller University, New York,
11 New York, USA^c; Division of Gastroenterology, Department of Internal Medicine,
12 University of Michigan Medical School, Ann Arbor, Michigan, USA^d; Medicine Service,
13 Ann Arbor Veterans Administration Health System, Ann Arbor, Michigan, USA^e

14

15 **Running Head:** MAGT1 is required for DENV replication

16

17 * Address correspondence to Andrew W. Tai, andrewwt@umich.edu

18

19 **This work is not peer-reviewed.**

20

21 The authors who have taken part in this study declare that they do not have anything to
22 disclose regarding funding or conflict of interest with respect to this manuscript.

23 **Abstract**

24 Dengue virus (DENV) is the most common arboviral infection globally, infecting
25 an estimated 390 million people each year. We employed a genome-wide CRISPR
26 screen to identify host dependency factors required for DENV propagation, and
27 identified the oligosaccharyltransferase (OST) complex as an essential host factor for
28 DENV infection. Mammalian cells express two OSTs containing either STT3A or STT3B.
29 We found that the canonical catalytic function of the OSTs as
30 oligosaccharyltransferases is not necessary for DENV infection, as cells expressing
31 catalytically inactive STT3A or STT3B are able to support DENV propagation. However,
32 the OST subunit MAGT1, which associates with STT3B, is also required for DENV
33 propagation. MAGT1 expression requires STT3B, and a catalytically inactive STT3B
34 also rescues MAGT1 expression, supporting the hypothesis that STT3B serves to
35 stabilize MAGT1 in the context of DENV infection. We found that the oxidoreductase
36 CxxC active site motif of MAGT1 was necessary for DENV propagation as cells
37 expressing an AxxA MAGT1 mutant were unable to support DENV infection.
38 Interestingly, cells expressing single-cysteine CxxA or AxxC mutants of MAGT1 were
39 able to support DENV propagation. Utilizing the engineered peroxidase APEX2, we
40 demonstrate the close proximity between MAGT1 and NS1 or NS4B during DENV
41 infection. These results reveal that the oxidoreductase activity of the STT3B-containing
42 OST is necessary for DENV infection, which may guide the development of antivirals
43 targeting DENV.

44

45 **Importance**

46 The host oligosaccharyltransferase (OST) complexes have been identified as
47 essential host factors for Dengue virus (DENV) replication; however, their functions
48 during DENV infection are unclear. A previous study showed that the canonical OST
49 activity was dispensable for DENV replication, suggesting that the OST complexes
50 serve as scaffolds for DENV replication. However, our work demonstrates that one
51 function of the OST complex during DENV infection is to provide oxidoreductase activity
52 via the OST subunit MAGT1. We also show that MAGT1 associates with DENV NS1
53 and NS4B during viral infection, suggesting that these non-structural proteins may be
54 targets of MAGT1 oxidoreductase activity. These results provide insight to the cell
55 biology of DENV infection, which may guide the development of antivirals against DENV.

56

57 **Introduction**

58 Dengue virus (DENV) is an enveloped positive-sense single-stranded RNA
59 flavivirus that infects an estimated 390 million people each year, making it the most
60 commonly acquired arbovirus infection (1). An effective vaccine that protects against all
61 four DENV serotypes remains elusive, and to date there are no antivirals approved for
62 the treatment of DENV infection (2).

63 DENV encodes a single open reading frame that is translated into a polyprotein,
64 which is processed by both cellular and viral proteases at the endoplasmic reticulum
65 (ER)(3). DENV, as an obligate intracellular parasite, is dependent on host-cell proteins
66 to replicate its genome and produce progeny virus. The cellular factors involved in
67 DENV replication have not been well described; however, two genome wide screens to

68 identify such DENV host dependency factors have recently been published, identifying
69 the oligosaccharyltransferase (OST) complexes as essential to DENV replication (4, 5).

70 STT3A and STT3B, the catalytic components of the OST complexes, were
71 identified as essential host factors for DENV replication in these screens. There are two
72 distinct OST complexes in mammalian cells that incorporate either STT3A or STT3B as
73 their catalytic subunit (6). Both STT3A and STT3B are oligosaccharyltransferases that
74 catalyze the transfer of high mannose oligosaccharides onto target proteins in the
75 lumen of the ER (6). STT3A and STT3B can glycosylate specific asparagine residues
76 within the Asn-X-Ser/Thr sequon on target proteins. While STT3A is likely responsible
77 for co-translational glycosylation of nascent proteins entering the ER lumen, STT3B is
78 responsible for post-translational glycosylation of proteins with sequons skipped by
79 STT3A (7).

80 Both of the OST complexes share several non-catalytic subunits—RPN1, RPN2,
81 OST4, OST48, DAD1, and TMEM258 (6). MAGT1 and its paralog TUSC3 are specific
82 subunits of the STT3B complex that are important for complete glycosylation of STT3B
83 target proteins. MAGT1 and TUSC3 are thioredoxin homologs that harbor a conserved
84 CxxC motif important for oxidoreductase activity (8, 9). MAGT1 and TUSC3, through
85 their CxxC active sites, may form mixed disulfides with cysteines of a target protein,
86 delaying native disulfide bond formation, and granting STT3B access to target sequons
87 poorly accessible to STT3A. Loss of MAGT1 and TUSC3, or abrogation of the CxxC
88 motif, leads to hypoglycosylation of STT3B specific substrates (8).

89 Marceau et al. demonstrated that DENV is dependent on both STT3A and
90 STT3B, and that the oligosaccharyltransferase activity of each of these subunits is not

91 necessary for DENV replication (4). The authors proposed that the OST complexes act
92 as scaffolds for DENV replication complexes to form. However, our data provide
93 evidence that the STT3B-containing OST, through the MAGT1 subunit, provides a
94 required catalytic activity for efficient DENV replication and not simply a scaffolding
95 function.

96 In this work, a whole-genome CRISPR knockout screen was used to identify
97 cellular factors required for DENV propagation. We confirm that both of the OST
98 complexes are required for DENV replication, and that the oligosaccharyltransferase
99 activities of either STT3A or STT3B OSTs are dispensable for DENV propagation.
100 Importantly, however, knockout of *STT3B* leads to loss of MAGT1 expression, and
101 *MAGT1* knockout is sufficient to block DENV propagation. Additionally, the CxxC
102 catalytic oxidoreductase active site of MAGT1 or TUSC3 is required for DENV
103 propagation. We provide evidence that DENV NS4B interacts with STT3B/MAGT1 OST
104 complexes based on NS4B glycosylation and proximity labeling experiments, and that
105 NS4B synthesis is reduced in *STT3B* knockout cells. Together, these data suggest that
106 STT3B serves to stabilize MAGT1 in the context of DENV infection, and that the
107 catalytic oxidoreductase activity of MAGT1 is required for DENV propagation, possibly
108 through an effect on viral protein synthesis and/or folding.

109

110 **Results**

111 **A whole genome CRISPR screen reveals that DENV is dependent on the**
112 **oligosaccharyltransferase complexes.**

113 We employed a CRISPR-Cas9 pooled screening approach to identify host
114 proteins necessary for DENV-mediated cell death in Huh7.5.1 human hepatoma cells
115 (Fig. 1A). Among the top-ranked hits were multiple subunits of the host
116 oligosaccharyltransferase (OST) complexes, including the two catalytic subunits *STT3A*
117 and *STT3B*. Single-guide RNAs (sgRNAs) targeting genes encoding the two unique
118 subunits of the STT3A and STT3B complexes, *DC2* and *MAGT1* respectively, were also
119 significantly enriched in the screen. In addition, two shared OST subunits, *RPN2* and
120 *OST4*, were significant hits. To validate three of the hits from the screen, we generated
121 *STT3A*, *STT3B* and *MAGT1* knockout Huh7.5.1 cells through stable transduction of the
122 pLENTICRISPRv2 construct encoding both the *S. pyogenes* Cas9 protein and an
123 sgRNA. The knockouts were confirmed by Western blot. Importantly, in *STT3B*
124 knockout cells, *MAGT1* protein was also depleted (Fig. 2A), as its stability requires
125 interaction with *STT3B* (8). We then infected these cells with a luciferase reporter
126 dengue virus (luc-DENV), where luciferase activity directly correlates with viral
127 propagation. Three days post-infection, we assessed luciferase activity and saw a
128 significant and marked decrease in luciferase activity in *STT3A*, *STT3B*, and *MAGT1*
129 knockout cells compared to control cells transduced with a control GFP-targeting
130 sgRNA, demonstrating that protection from DENV-mediated cell death in these
131 knockout cells is mediated by inhibition of DENV infection rather than by a block of cell
132 death signaling pathways (Fig. 2A). The viability and growth of *STT3A*, *STT3B*, or
133 *MAGT1* knockout cells was similar to control cells (Fig. 2E). These data validate the
134 results from the screen and show that *STT3A*, *STT3B*, and *MAGT1* are all required for
135 efficient DENV propagation.

136 Comparison of this screen's hits to two previously published whole-genome
137 DENV screens, one using siRNA knockdown and another using a pooled CRISPR
138 knockout format (4, 5) (Table S1), revealed high overlap with the CRISPR screen by
139 Marceau et al. Fifteen of the top 25 hits in our screen were identified in their screen
140 (Table S1). The remarkable similarity between the two CRISPR screens demonstrates
141 the technical reproducibility of pooled CRISPR screens for the identification of host
142 dependency factors.

143

144 **The OSTs are required to support efficient infection by Zika virus but not other**
145 **flaviviruses**

146 We next asked whether other arboviruses also depend on the same OST
147 complexes, and used flow cytometry to determine whether infection was impaired in
148 STT3A or STT3B knockout cells. We infected cells with DENV-2, Zika virus (ZIKV),
149 West Nile virus (WNV), Yellow Fever virus (YFV), Sindbis virus (SINV), Venezuelan
150 Equine Encephalitis virus (VEEV), or Chikungunya virus (CHIKV) and compared the
151 percentage of infected cells in OST knockout cells compared to control. Consistent with
152 our other results, we found that DENV-2 infection was dramatically reduced in OST
153 knockout cells compared to control (Fig. S1). We also found that ZIKV infection was
154 moderately, but significantly, reduced in STT3A and STT3B knockout cells indicating
155 that the OSTs may also play a role during ZIKV infection (Fig. S1). However, we did not
156 find a significant decrease in the propagation of the other viruses tested.

157

158 **The catalytic oligosaccharyltransferase activity of the OST complexes is not**
159 **required for DENV replication.**

160 In order to confirm the specificity of our knockout cell lines, sgRNA-resistant
161 *STT3A* and *STT3B* were then introduced by lentiviral transduction into the
162 corresponding knockout cell lines to rescue *STT3A* (Fig. 2B) or *STT3B* (Fig. 2C)
163 expression. Importantly, we found that exogenous expression of *STT3B* in *STT3B*
164 knockout cells led to restoration of endogenous MAGT1 expression (Fig. 2C).
165 Exogenous expression of *STT3A* or *STT3B* rescued luc-DENV infection in *STT3A*-
166 knockout or *STT3B*-knockout cells, respectively (Figs. 2B and C). These data confirm
167 that *STT3A* and *STT3B* are specifically required for efficient DENV propagation.

168 Both *STT3A* and *STT3B* are oligosaccharyltransferases necessary for the
169 transfer of glycans to asparagines on target substrates (7). Mutation of a conserved
170 WWDYG motif to WAAYG inactivates oligosaccharyltransferase activity (10). *STT3A* or
171 *STT3B* knockout cells expressing catalytically dead *STT3A* (*STT3A*-dead) or *STT3B*
172 (*STT3B*-dead) were able to support similar levels of DENV infection as their wild-type
173 counterparts, demonstrating that the catalytic activity of *STT3A* or *STT3B* is not required
174 for DENV propagation (Figs. 2B and C).

175 We also confirmed that these constructs were indeed catalytically inactive by
176 transfecting the rescued cells with plasmids to express either prosaposin (pSAP) or
177 SHBG, specific N-glycosylation substrates of *STT3A* and *STT3B* respectively. By
178 Western blot, a majority of pSAP remained hypoglycosylated, as evidenced by a more
179 rapidly migrating band on SDS-PAGE from both *STT3A* knockout cells and *STT3A*-
180 dead expressing cells (Fig. 2B). Similarly, a fraction of SHBG appeared as a more

181 rapidly migrating hypoglycosylated protein in both *STT3B* knockout cells and *STT3B*-
182 dead expressing cells (Fig. 2C). These results demonstrate that glycosylation of *STT3A*
183 and *STT3B* specific substrates remains impaired in *STT3A*-dead and *STT3B*-dead
184 expressing cells.

185 We also transfected a luciferase-DENV replicon into knockout cells to assess
186 whether the specific step of viral replication requires *STT3A* or *STT3B*. We found
187 significant decreases in luciferase activity in *STT3A* and *STT3B* knockout cells
188 compared to wild-type control at both 48 and 72 hours post-transfection (Fig. 2D).
189 These data confirm that both of the OST complexes are required for DENV replication,
190 consistent with previous data(4). The viability of OST knockout cells was unchanged
191 compared to controls (Fig. 2E).

192 Together, these data suggest that *STT3B* stabilizes MAGT1 and that the
193 canonical oligosaccharyltransferase activity of *STT3B*-containing OST complexes is not
194 required for DENV propagation. These results support a model where *STT3B* is
195 required to stabilize MAGT1, which in turn has its own specific function to support
196 DENV replication. Therefore, we explored whether the catalytic activity of MAGT1 is
197 required for DENV replication.

198 **The catalytic activities of TUSC3 or MAGT1 are necessary to support DENV
199 propagation**

200 Both MAGT1 and its paralog TUSC3 are thioredoxin homologs that harbor
201 oxidoreductase activity through a conserved catalytic CxxC motif, and interact with
202 *STT3B* but not *STT3A* (8). TUSC3 contains a peptide-binding pocket that may interact
203 with proteins in a sequence specific manner (9). Cells lacking both MAGT1 and TUSC3

204 are unable to fully glycosylate STT3B specific substrates (8). These data support a
205 model where MAGT1 or TUSC3 serve to form a mixed disulfide with a protein substrate,
206 granting STT3B access to glycosylation sites that may otherwise be inaccessible.

207 In some cell types, TUSC3 expression is upregulated in the absence of MAGT1
208 (8). Importantly, although TUSC3 has been shown to be expressed in HEK293 cells (8),
209 we found that TUSC3 is not expressed in wild-type or *MAGT1* knockout Huh-7.5.1 cells
210 by immunoblotting (Fig. 3A) or by RT-PCR (not shown). Therefore, we asked whether
211 TUSC3 is capable of functionally replacing MAGT1 in the context of DENV infection. We
212 found that *MAGT1* knockout Huh 7.5.1 cells transduced with a TUSC3-encoding
213 lentiviral vector were able to support significantly increased DENV propagation
214 compared to cells expressing neither MAGT1 nor TUSC3 (Fig. 3A). These data
215 demonstrate that the expression of either MAGT1 or TUSC3 is required for DENV
216 propagation, and that these two proteins are functionally redundant in the context of
217 DENV propagation.

218 We next asked whether the enzymatic activity of MAGT1 or TUSC3 is required
219 for DENV propagation. Expression of catalytically inactive AxxA mutants of MAGT1 or
220 TUSC3 failed to rescue DENV propagation in *MAGT1* knockout Huh7.5.1 cells (Fig. 3A
221 and 3B), indicating that the oxidoreductase activity of MAGT1 or TUSC3 is required for
222 DENV replication.

223 We also investigated whether MAGT1 knockout cells expressing single-cysteine
224 active site MAGT1 mutants (CxxA and AxxC) are able to support DENV replication.
225 Some single-cysteine mutants of ER resident oxidoreductases, such as protein disulfide
226 isomerase (PDI), have been shown to retain oxidoreductase activity (11, 12), and

227 single-cysteine MAGT1 mutants can form mixed disulfides with target proteins,
228 demonstrating that they are reactive in cells (8). Interestingly, *MAGT1* knockout cells
229 expressing a single cysteine MAGT1 mutant were able to support increased levels of
230 DENV replication compared to knockout cells, albeit at levels lower than with wild-type
231 MAGT1 rescue (Fig. 3B). This indicates that single cysteine MAGT1 mutants retain
232 significant catalytic activity to support DENV infection. Together, these data
233 demonstrate that the oxidoreductase activity of MAGT1 is required for DENV
234 propagation, and that cells expressing single-cysteine MAGT1 are still able to support
235 DENV replication.

236

237 **MAGT1 partially localizes to DENV replication compartments**

238 We next performed immunofluorescence microscopy on cells expressing an HA-
239 tagged MAGT1 construct (MAGT1-HA) to visualize the localization of MAGT1 during
240 DENV infection. In uninfected Huh-7 cells, both wild-type MAGT1 and MAGT1 mutants
241 were distributed in an intracellular reticular pattern consistent with ER localization (Fig.
242 3C). This supports the evidence that MAGT1 is an ER-localized component of the OST
243 complex, rather than the proposal that MAGT1 contributes to magnesium import at the
244 plasma membrane (8, 13). We also found that the distribution of the mutant MAGT1-
245 AxxA was similar to that of wild-type MAGT1, demonstrating that the inability of cells
246 expressing MAGT1-AxxA to support DENV replication is not due to defects in
247 subcellular localization. DENV infection was associated with partial colocalization of
248 MAGT1 with viral NS1 protein (Fig. 3C). Additionally, co-immunoprecipitation assays
249 demonstrated MAGT1-AxxA interaction with STT3B, indicating that MAGT1-AxxA's

250 inability to support DENV replication is not due to a defect in association with the OST
251 complex (Fig. 3D). These data are consistent with previous data showing that the OST
252 localized to sites of DENV induced vesicle packets and replication compartments(4).

253

254 **NS1 is not detectably different in STT3A, STT3B, and MAGT1 knockout cells**

255 We hypothesize that MAGT1 functions as an oxidoreductase, potentially affecting
256 the folding of a DENV non-structural protein. We asked which DENV proteins could be
257 candidate substrates for MAGT1 oxidoreductase activity. All four DENV serotypes are
258 impaired in their ability to propagate in *STT3B* knockout cells (4), which based on our
259 data must also lack MAGT1 expression. Therefore, we hypothesized that a viral target
260 of MAGT1 oxidoreductase activity should have cysteines exposed to the ER lumen that
261 are conserved across all four serotypes.

262 Four of the seven nonstructural proteins have cysteine residues predicted to be
263 exposed to the ER lumen: NS1, NS2A, NS4A, and NS4B. Of these proteins, only NS1
264 and NS4B have cysteines that are conserved across all four DENV serotypes. The
265 DENV protein NS1 forms a dimer in the ER, is secreted as a soluble hexamer, and
266 contains twelve cysteines, six disulfide bonds, and two N-glycosylation sites (14). The
267 DENV protein NS4B contains three cysteines and two N-glycosylation sites (15).

268 We first investigated whether we could detect any changes in NS1 properties by
269 immunoblotting of NS1 expressed in knockout and wild-type cells. We were unable to
270 detect any changes in NS1 dimerization or glycosylation in *STT3A* or *STT3B* knockout
271 cells (Fig. S2A). We also found that the pattern of NS1 glycosylation was unchanged
272 after performing pulse-chase experiments in *STT3A*, *STT3B*, or *MAGT1/TUSC3*

273 knockout cells (Fig. S2B). We were also unable to detect any interaction between NS1
274 and STT3B or MAGT1 by co-immunoprecipitation (not shown). In summary, these data
275 suggest that glycosylation of NS1 is unaffected by the loss of STT3A, STT3B, or
276 MAGT1, and that NS1 is not a target of MAGT1 oxidoreductase activity.

277

278 **NS4B synthesis is altered in STT3B knockout cells**

279 We next sought to find differences in NS4B exogenously expressed in OST
280 subunit knockout cells by generating tagged constructs expressing C-terminally tagged
281 DENV 2k-NS4B-HA (pNS4B-HA) or 2k-NS4B-V5 (pNS4B-V5). NS4B has been
282 proposed to be glycosylated at two residues, N58 and N62 (15). In 293T cells, we found
283 that a fraction of transiently transfected NS4B-HA appeared as a series of more slowly
284 migrating bands suggestive of possible glycosylation (Fig. 4A). Notably, the pattern of
285 higher molecular weight NS4B-HA species was altered in *STT3B* knockout cells, with
286 decreased levels of higher molecular weight HA-reactive bands. Additionally, following
287 transient expression of NS4B in Huh7.5.1 cells, we found three specific PNGaseF-
288 sensitive bands that migrated at a higher molecular weight than unglycosylated NS4B,
289 confirming that NS4B can be partially glycosylated under our experimental conditions
290 (Fig. 4B). Together these data show that NS4B can be glycosylated and that this is
291 mediated at least in part by STT3B. Although glycosylation of NS4B is not necessary for
292 viral replication, as catalytically inactive STT3B rescues DENV replication in *STT3B*
293 knockout cells, this finding suggests that NS4B physically interacts with the STT3B OST
294 complex in the ER lumen.

295 We noticed a consistent reduction in NS4B protein levels in *STT3B* and *MAGT1*
296 knockout cells, and hypothesized that NS4B protein folding may be affected by the loss
297 of *STT3B* or *MAGT1*. To measure the steady state levels of NS4B in *STT3B* knockout
298 cells, we co-transfected a plasmid expressing either NS1 or GFP to control for
299 transfection efficiency and quantitated chemiluminescent band intensities to measure
300 relative levels of NS4B synthesis in *STT3B* knockout cells. We found a consistent and
301 statistically significant ($p<0.0001$) ~20% decrease in NS4B band intensity in *STT3B*
302 knockout cells compared to wild-type controls relative to transfection control (Fig. 4C).
303 Despite this difference in NS4B steady-state levels, we did not find a difference in the
304 half-life of NS4B in *STT3B* knockout cells compared to WT (Fig. 4D), suggesting that
305 the rate of synthesis, and not degradation, of NS4B is altered in *STT3B* knockout cells.

306 Together, these data show that NS4B is an *STT3B* substrate that requires
307 *MAGT1* to be efficiently glycosylated. Furthermore, NS4B synthesis appears to be
308 reduced by the loss of *STT3B*/*MAGT1*. Taken together, although NS4B glycosylation is
309 not necessary for DENV infection, these findings suggest that NS4B physically interacts
310 with *STT3B*/*MAGT1* OST complexes. Furthermore, they suggest that one mechanism
311 by which *MAGT1* facilitates DENV propagation may be through promoting efficient
312 synthesis of NS4B.

313

314 **Close proximity of *MAGT1* to NS4B and NS1 during DENV infection**

315 Although our data so far suggested a possible interaction between
316 *STT3B*/*MAGT1* and NS4B, using conventional immunoprecipitation methods, we were
317 unable to demonstrate a stable interaction between *MAGT1* and NS4B (not shown).

318 Therefore, we used the engineered peroxidase APEX2 to label proteins in close
319 proximity to MAGT1 during DENV infection. APEX2 catalyzes the biotinylation of
320 proteins within a 5-10nm radius in the presence of biotin-phenol and hydrogen
321 peroxide(16). We generated a construct in which APEX2 was inserted between the
322 signal sequence and MAGT1, placing APEX2 in the ER lumen near the MAGT1 active
323 site. We stably transduced *MAGT1* knockout cells to express the APEX2-MAGT1 fusion
324 protein, and induced APEX2-mediated biotinylation in DENV infected cells. After lysis of
325 the cells, we performed affinity purification of biotinylated proteins using streptavidin
326 beads followed by SDS-PAGE and immunoblotting.

327 We found that both NS1 and NS4B were specifically biotinylated by APEX2-
328 MAGT1 in DENV infected cells (Fig. 5). To assess the specificity of APEX2 labeling, we
329 probed for biotinylation of STT3A, which also associates with sites of DENV replication
330 but does not interact with MAGT1 (4, 8), and found that STT3A is not biotinylated by
331 APEX2-MAGT1 under these conditions (Fig. 5). Similarly, the integral ER membrane
332 protein VAPA is not biotinylated by APEX2-MAGT1. On the other hand, EMC3, another
333 ER protein necessary for flavivirus propagation that was a hit in our screen and interacts
334 with the OST complex (5), was biotinylated. These data are consistent with the model
335 that MAGT1 likely resides at sites of DENV replication and either associates with or is in
336 close physical proximity to DENV non-structural proteins.

337

338 **The redox status of NS4B is unchanged in the absence of MAGT1**

339 We hypothesized that the NS4B cysteine redox state is modulated by MAGT1.
340 To test this, we used Western blots to examine changes in NS4B migration on SDS-

341 PAGE after treating cell lysates with maleimide-PEG (mPEG), which covalently bonds
342 to free reduced cysteine residues. The mPEG reagent has an average molecular weight
343 of 5 kDa, resulting in a shift in the apparent molecular weight of modified proteins
344 visualized by Western blot. DENV NS4B has three conserved cysteines that may
345 participate in disulfide bonds. As a negative control, we lysed cells in the presence of N-
346 ethylmaleimide (NEM), which covalently blocks all reduced cysteines, rendering them
347 mPEG-nonreactive (Fig. S3, lanes 1 and 2). As a positive control, we treated lysates
348 with Tris(2-carboxyethyl)phosphine hydrochloride (TCEP), which reduces all cysteines,
349 allowing subsequent mPEG modification of all cysteines (Fig. S3, lane 5).

350 mPEG modified NS4B, when expressed in isolation, migrates the same in both
351 wild-type and *STT3B* knockout cells, indicating that MAGT1 does not affect the cysteine
352 redox state of NS4B (Fig. S3, lanes 3 and 4). Additionally, a fraction of mPEG-modified
353 NS4B (lanes 3 and 4) runs at the same apparent molecular weight as fully reduced
354 TCEP-treated NS4B treated with mPEG (lane 5), indicating that at steady state, a
355 fraction of NS4B molecules contains fully-reduced cysteines. However, another fraction
356 of NS4B is modified by fewer mPEG molecules (lanes 3 and 4), demonstrating that
357 some NS4B molecules may contain oxidized cysteines in the form of intra- or
358 intermolecular disulfide bonds.

359 While our results indicate that MAGT1 does not modulate NS4B cysteine redox
360 state when expressed in isolation, they do not rule out the possibility that MAGT1
361 modulates NS4B cysteine redox status transiently and/or in the context of authentic viral
362 infection. Further experiments will have to be carried out to determine whether NS4B
363 disulfide bonds exist during infection.

364

365 **Discussion**

366 Our results demonstrate the high reproducibility of whole genome CRISPR
367 screens compared to the low overlap among hits from siRNA-based screens for host
368 cofactors of viral infection. We compared the top hits from our CRISPR screen to those
369 recently published and found that 15 of the top 25 hits from our screen were in the top
370 1% of the other's (4). In contrast, three independent siRNA screens for host
371 dependency factors of DENV infection performed by the same group identified over 150
372 high confidence hits; however, only 14% of hits from one independent siRNA library
373 overlapped with hits from another siRNA library, even when performed by the same
374 investigators using the same infection conditions (5). This is consistent with meta-
375 analyses demonstrating the low reproducibility of siRNA screens for viral host factors
376 (17).

377 While there is a high degree of overlap between CRISPR screens for DENV, the
378 number of significant hits is relatively low compared to those obtained from RNAi
379 screens. For example, the pooled results of the three siRNA screens for DENV yielded
380 hundreds of hits whereas our CRISPR screen yielded fewer than 50 significant hits.
381 This may be due in part to some DENV host factors also being necessary for cellular
382 survival or growth. Additionally, using cell survival from lethal viral challenge as a
383 readout is highly stringent and will increase the false-negative rate, as only partial
384 suppression of DENV infection may not be sufficient to protect cells from death. Thus,
385 experimental readouts that can capture intermediate phenotypes are likely to reveal
386 additional host dependency factors for DENV infection.

387 The events at the endoplasmic reticulum that direct the formation of a functional
388 dengue virus replication organelle remain incompletely understood. In this study, a
389 whole-genome CRISPR screen reveals a non-canonical function of the OST complex
390 that serves to support DENV infection. STT3B, the subunit of the OST complex that
391 provides oligosaccharyltransferase activity, is required to stabilize MAGT1 to support
392 DENV replication. We show that MAGT1, or its homolog TUSC3, provides a catalytic
393 oxidoreductase activity necessary for DENV to replicate.

394 On the other hand, we find that the N-glycosylation activity of STT3A or STT3B is
395 dispensable for DENV propagation, in agreement with previous findings by Marceau et
396 al. (4). Based on this observation, these authors suggested that the OST complexes
397 serve as structural scaffolds for DENV to replicate. However, it is unclear why both
398 STT3A- and STT3B-containing OST complexes would be required to serve a
399 scaffolding function for DENV replication. Our data show that STT3B-containing
400 complexes serve more than a structural scaffolding function to support DENV replication,
401 and in fact contribute a direct catalytic activity for DENV replication: namely, the
402 oxidoreductase activity of MAGT1. We propose that the dependency of DENV
403 replication on STT3B without requiring its oligosaccharyltransferase activity is explained
404 by the loss of MAGT1 expression in the absence of STT3B.

405 Analogous to the dependence of MAGT1 on STT3B for stable expression, some
406 subunits of the STT3A complex require STT3A for stable expression (18). We propose
407 that there may be a specific function granted by the STT3A complex subunits
408 DC2/OSTC or KCP2 that is necessary for DENV replication. In support of this

409 hypothesis, DC2 was a hit in both CRISPR screens(4). However, the precise cellular
410 function of DC2 is unknown.

411 We have shown that the CxxC catalytic motif of MAGT1 or TUSC3 is required for
412 DENV propagation, and that TUSC3 can functionally replace MAGT1 in the context of
413 DENV infection. Some cell types, including HEK293 cells, express both TUSC3 and
414 MAGT1, while others, including hepatocytes and Huh7.5.1 hepatoma cells, express only
415 MAGT1 (13). Importantly, TUSC3 expression is upregulated in HEK293 cells when
416 MAGT1 is knocked out (19). Thus, essential but functionally redundant functions of
417 MAGT1 and TUSC3 in DENV replication will not be revealed in cell types capable of
418 expressing both proteins.

419 We carried out several experiments directed at the hypothesis that viral NS1
420 and/or NS4B is a substrate of MAGT1, as these viral proteins harbor multiple cysteines
421 conserved across all DENV serotypes that are also predicted to be accessible to
422 MAGT1. We were unable to find any differences in NS1 dimerization or glycosylation in
423 MAGT1 knockout cells compared to wild-type, suggesting that NS1 is correctly folded
424 and processed in the absence of MAGT1. In addition, we probed the disulfide status of
425 NS4B expressed in isolation, and found no apparent differences in NS4B cysteine
426 accessibility to mPEG modification in the absence or presence of MAGT1 activity.
427 Typically, both cysteines in the CxxC active site motif of an oxidoreductase are involved
428 in catalyzing disulfide bond formation in a target protein. Surprisingly, *MAGT1* knockout
429 cells expressing CxxA or AxxC active site mutants of MAGT1 can support DENV
430 propagation. Single-cysteine active site mutants of protein disulfide isomerase (PDI)
431 have been shown to retain partial reductase activity *in vitro*, and are still able to shuffle

432 disulfide bonds and mediate native protein folding (11, 12). Previous studies have
433 shown that a single-cysteine MAGT1 mutant exhibits partial catalytic activity when
434 assessing glycosylation of an STT3B substrate (8). As depicted in Fig. S4, a single-
435 cysteine reductase can act as a disulfide isomerase by attacking a non-native disulfide
436 bond on a target protein, generating a mixed disulfide between the reductase (here
437 MAGT1) and its target. An alternate cysteine from the target protein then resolves the
438 mixed disulfide, forming the native disulfide bond and releasing the target protein from
439 MAGT1. Single-cysteine MAGT1 could therefore serve as a disulfide isomerase in the
440 context of DENV infection. Alternatively, single-cysteine MAGT1 could function in
441 tandem with another ER-resident oxidoreductase to resolve the mixed disulfide, and
442 generate a correctly folded target substrate. However, this model is not easily
443 reconciled with the observation that either single-cysteine or wild-type MAGT1 is
444 capable of supporting DENV replication, because the majority of wild-type MAGT1
445 appears to be oxidized in cells, without reduced cysteines to attack disulfide bonds (8).
446 One possibility is that the minor fraction of reduced MAGT1 or TUSC3 is sufficient to
447 support DENV replication.

448 If MAGT1 does not directly catalyze disulfide bond rearrangement in a DENV
449 protein such as NS4B, another possibility is that MAGT1, through its oxidoreductase
450 activity, recruits a DENV protein to another cellular protein or complex. For example, the
451 OST complex has recently been identified to associate with proteins in the ER
452 membrane complex (EMC), which has been reported to act as a chaperone for
453 multipass transmembrane proteins, of which NS4B is an example (20, 21). In this model,
454 MAGT1, through its oxidoreductase activity, might transiently interact with NS4B,

455 recruiting it to the EMC as an NS4B chaperone. Although we were unable to
456 demonstrate a stable interaction between MAGT1 and DENV non-structural proteins by
457 coimmunoprecipitation, likely due to the transient association between oxidoreductases
458 and their target substrates(22), APEX2-MAGT1 induced biotinylation of both NS4B and
459 NS1 in DENV infected cells, indicating that MAGT1 interacts with, or is at least in close
460 proximity to, components of the DENV replication organelle in the ER.

461 Consistent with the possibility that MAGT1 might help to recruit dengue
462 nonstructural proteins to the EMC complex, the rate of NS4B synthesis appears to be
463 reduced in cells lacking MAGT1 and STT3B. While we see only relatively modest
464 reductions in NS4B expression in cells lacking STT3B and MAGT1, one caveat is that
465 NS4B is expressed in isolation in our system. It is possible that loss of MAGT1 may
466 have more detrimental effects on NS4B expression (or the expression of other DENV
467 proteins) in the context of authentic DENV infection. However, the strong inhibition of
468 DENV infection in OST knockout cells prevents accurate assessment of protein
469 expression.

470 We also found that ZIKV infection is significantly reduced in *STT3A* or *STT3B*
471 knockout cells, suggesting that ZIKV may also require the OST complex for efficient
472 infection or replication. However, the other flaviviruses tested did not appear to be
473 dependent on OST complex function, despite the common dependence of most
474 flaviviruses on the host cell ER for replication organelle formation. Interestingly, the
475 NS4B cysteines are not conserved among flaviviruses despite being conserved across
476 all DENV serotypes.

477 In conclusion, our data demonstrate that the STT3B-containing OST complex
478 serves a catalytic and non-canonical function during DENV replication, and not merely a
479 scaffolding function. We hypothesize that this non-canonical oxidoreductase activity of
480 MAGT1 acts on a DENV non-structural protein, such as NS4B, to mediate efficient
481 synthesis, folding, and/or recruitment of non-structural proteins to specific sites in the
482 ER. Our results improve our understanding of the cell biology of DENV infection, and
483 also may potentially guide the development of DENV antivirals that target MAGT1.

484

485 **Materials and Methods**

486 **Pooled CRISPR screen**

487 The Human GeCKOv2 plasmid library was a gift from Feng Zhang, acquired from
488 AddGene. VSV-G pseudotyped GeCKOv2 lentiviruses were generated at the University
489 of Michigan vector core. In brief, 16 million Huh-7 cells were transduced with the
490 GeCKOv2 A or B lentiviral half-library at an MOI = 0.3 in 10 cm dishes. Cells were
491 selected for 6 d post-transduction with 2 μ g/mL puromycin, then infected with DENV-2
492 16681 at an MOI = 0.1 for 2 weeks. Genomic DNA from surviving cells was harvested
493 using a Quick-gDNA Midi kit (Zymo Research, Irvine, CA). The integrated sgRNAs were
494 amplified using PCR, and Illumina adapters and barcodes were subsequently added by
495 PCR as previously described (24). Sequencing was performed at the University of
496 Michigan sequencing core on a MiSeq (Illumina, San Diego, CA), and data was
497 analyzed using MaGeCK (25).

498

499 **Plasmids and lentiviral transduction**

500 Individual sgRNAs targeting *STT3A*, *STT3B*, and *MAGT1* were generated in
501 pLENTICRISPRv2 as previously described using the crRNA sequences listed in Table
502 S2. The lentiCRISPR - EGFP sgRNA 1 was a gift from Feng Zhang (Addgene plasmid #
503 51760).

504 The cDNA clone for *STT3A* was purchased from OriGene (RC201991; Rockville,
505 MD). The cDNA clones for *STT3B* and *MAGT1* were described previously (19). The
506 *TUSC3* gene was cloned by PCR from 293T cDNA. The sgRNA-resistant *STT3A*,
507 *STT3B*, and *MAGT1* constructs were made using overlap extension PCR to introduce
508 silent mutations either modifying the CRISPR protospacer adjacent motif or sgRNA
509 basepair complementarity. Constructs encoding catalytically inactive *STT3B*, *STT3B*,
510 *MAGT1*, and *TUSC3* were generated using overlap extension PCR. These constructs
511 were cloned into the lentiviral expression vector pSMPUW (Cell Biolabs, San Diego,
512 CA). The constructs for expression of pSAP and SHBG have been previously described
513 (26, 27). The pNS1-flag, pNS1-NS2A-V5, and pNS4B-HA constructs were generated by
514 PCR using pD2/IC-30P-NBX as a template (28). Detailed descriptions of construction of
515 these plasmids are available upon request.

516 Lentiviral expression constructs were used to generate VSV-G pseudotyped
517 lentiviruses and for stable transduction of target cells as described in (29). Knockouts
518 and expression were confirmed by Western blot.

519

520 **Viruses**

521 The infectious cDNA clone pD2/IC-30P-NBX encoding Dengue virus serotype 2
522 strain 16681 was used to generate full-length viral RNA, and for construction of a

523 reporter virus and replicon (28). In brief, the luciferase reporter virus luc-DENV was
524 generated by overlap extension PCR, by fusion of a Renilla luciferase (Rluc) with C-
525 terminal self-cleaving 2A peptide to the DENV capsid in a pD2/IC-30P-NBX
526 background. The luciferase reporter replicon was generated as previously
527 described(30). To generate wild-type DENV-2 virus, the pD2/IC-30P-NBX plasmid was
528 linearized with XbaI (New England Biolabs, Ipswich, MA), in vitro transcribed, and
529 capped with the m⁷G(5')ppp(5')A cap analog (New England Biolabs) using T7
530 Megascript (Thermo Fisher Scientific, Waltham, MA). This RNA was transfected into
531 Vero cells using TransIT mRNA reagent (Mirus Bio, Madison, WI). One week post-
532 transfection, supernatant from transfected cells was 0.45 µm filtered and buffered with
533 20 mM HEPES. Cells were infected by replacing media on the cells with viral
534 supernatant for 4 hr at 37C and 5% CO₂. Afterwards, unbound virus was aspirated and
535 replaced with fresh media. For luciferase reporter assays, cells were infected with the
536 luciferase reporter virus luc-DENV at an MOI = 0.1 for 2 or 3 d and luciferase activity
537 was measured with the Renilla Luciferase Assay System (Promega, Madison, WI) and a
538 Synergy 2 plate reader (BioTek, Winooski, VT).

539 The recombinant infectious viruses used were as follows:
540 SINV-GFP, generated from pTE/5'2J/GFP (31), YFV-Venus, generated from pYF17D-
541 5'C25Venus2AUbi (32), WNV-GFP, generated from pBELO-WNV-GFP-RZ ic (33),
542 CHIKV-GFP generated from pCHIKV-LR 5'GFP (34), VEEV-GFP, a TC83 vaccine strain
543 derivative generated from pVEEV/GFP (35), and DENV2-GFP a 16681 strain derivative
544 generated from pDENV2-ICP30P-A-EGFP-P2AUb (36). Viral stocks were generated by
545 electroporation of in vitro-transcribed RNA into WHO Vero cells (for DENV2-GFP) and

546 BHK-21 cells (for SINV, YFV, WNV, CHIKV and VEEV). Zika virus (ZIKV), 2015 Puerto
547 Rican PRVABC59 strain (37), was obtained from the CDC and passaged twice in Huh-
548 7.5 cells.

549 Multiplicity of infection (MOI) was based on titers obtained on BHK-J cells for
550 SINV, WNV, YFV and VEEV infections, and on Huh-7.5 cells for ZIKV. Titers were not
551 available for YFV, CHIKV and DENV2, therefore different dilutions of viral stocks were
552 tested.

553 Cells were seeded in a 24-well plate at 5×10^4 cells/well for ZIKV or at 1×10^5
554 cells/well for other viruses. The next day, cells were infected for 90 min at 37°C in 2%
555 FBS/PBS using a MOI of 1 for SINV, 0.01 and 0.001 for WNV and 0.8 for VEEV. We
556 used a 1:4 dilution for YFV, 1:10000 for CHIKV and 1:5 for DENV-2. Virus inoculum was
557 removed, fresh complete media was added to the cells, and infections allowed to
558 proceed for 10 h for SINV and VEEV, 24 h for CHIKV, 33 h for YFV, 48 h and 72 h for
559 WNV, 58 h for DENV-2 and 48 h and 96 h for ZIKV. Experiments with WNV and CHIKV
560 were carried out under biosafety level 3 containment. Infected cells were detached
561 using Accumax Cell Aggregate Dissociation Medium (eBiosciences). Cells were
562 pelleted, fixed in 2% paraformaldehyde and permeabilized using Cytofix/Cytoperm (BD
563 Biosciences). For ZIKV infected cells, E protein expression was detected with the 4G2
564 monoclonal antibody (1:500 dilution), followed by incubation with Alexa Fluor 488-
565 conjugated anti-mouse IgG antibody (Invitrogen) at 1:1,000 dilution. All samples were
566 resuspended in 2% FBS/PBS. Fluorescence was monitored by FACS using an LSRII
567 flow cytometer (BD Biosciences). Data were analyzed with FlowJo Software.

568

569 **Antibodies**

570 Western blots were performed using antibodies against STT3A (12034-1-AP), STT3B
571 (15323-1-AP), MAGT1 (17430-1-AP), and proSaposin (10801-1-AP) from the
572 Proteintech Group (Rosemont, IL). Antibodies against TUSC3 (SAB4503183) and Actin
573 (A5316) were purchased from Sigma Aldrich (St. Louis, MO). The antibody against
574 EMC3 (sc-365903) was purchased from Santa Cruz Biotechnology (Dallas, TX). The
575 antibody against SHBG (MAB2656) was purchased from R&D systems (Minneapolis,
576 MN). The antibody against HA (C29F4) was acquired from Cell Signaling Technology
577 (Danvers, MA). The anti-V5 antibody (R960-25) was purchased from Thermo Fisher
578 Scientific. The anti-NS1 monoclonal antibody 1F11 was a gift from the Dr. Malasit at the
579 National Center for Genetic Engineering and Biotechnology in Thailand.

580

581 **Western blotting**

582 Cells were lysed in a buffer containing 20mM Tris pH 7.5, 100mM NaCl, 1% NP-40,
583 10% glycerol, and 1mM EDTA with the addition of Halt protease inhibitor (Thermo
584 Fisher). Lysates were cleared by centrifugation at 10,000 rpm for 10 minutes at 4C. LDS
585 sample buffer was added and lysates were resolved by SDS-PAGE on 4-12% Bis-Tris
586 NuPAGE Novex gels. Proteins were transferred to PVDF membranes, which were then
587 blocked for 30 min in 5% nonfat dry milk in TBST. Antibodies were added at the
588 following dilutions: STT3A (1:1000), STT3B (1:500), MAGT1 (1:1000), TUSC3 (1:1000),
589 β-actin (1:20000), HA (1:1000), V5 (1:5000), NS1 (1: 100). Membranes were incubated
590 in primary antibody overnight at 4°C, then subsequently washed 3x with TBST for 15
591 min each. Membranes were then incubated in blocking buffer with 1:500 of secondary

592 HRP conjugated antibodies (ThermoFisher) for 1 h at room temperature. Blots were
593 then washed and proteins were detected by the addition of SuperSignal West Femto
594 substrate and immediate visualization on a LI-COR (Lincoln, Nebraska) imager or by X-
595 ray film.

596

597 **APEX labeling and immunoprecipitation**

598 The APEX2-MAGT1 fusion construct was generated by overlap extension PCR.
599 APEX2-mediated biotinylation and enrichment of biotinylated proteins was performed as
600 previously described (38). A modification to the protocol was the addition of 20 mM N-
601 ethylmaleimide (NEM; Sigma Aldrich) to the lysis buffer to preserve native disulfide
602 bonds. 10% of the lysates were reserved to be run as input controls. 1 µg of either V5 or
603 HA antibody was added to immunoprecipitate respectively tagged proteins. Mixtures
604 were rotated for 2 h at 4°C. 5 µl of Dynabeads protein G (ThermoFisher) were added to
605 each tube and rotated for 1 h at 4°C. Complexes were washed 3x in 1x PBS with 0.1%
606 Triton X-100. Proteins were eluted in 1x LDS sample buffer with 50mM Tris(2-
607 carboxyethyl)phosphine hydrochloride (TCEP, Sigma Aldrich). Lysates were then
608 subjected to SDS-PAGE and Western blotting as described above.

609

610 **Pulse-chase analysis of NS1 glycosylation**

611 HEK293 cells were grown to 60% confluency in 60 mm dishes and transfected with 6 µg
612 of NS1-FLAG expression plasmids using Lipofectamine 2000 (ThermoFisher) in Opti-
613 MEM (ThermoFisher) according to the manufacturer's instruction. After 24 h, NS1
614 substrates were labeled with Tran³⁵S label (Perkin Elmer, Waltham, MA) by incubation

615 in methionine- and cysteine free media containing 10% dialyzed FBS for 20 min before
616 the addition of 200 μ Ci/mL of Tran³⁵S label. Cells were labeled for 5 min, then 3.7 mM
617 unlabeled methionine and 0.75 mM unlabeled cysteine were added and cells were
618 incubated for an additional 20 min. Cells were lysed at 4°C by a 30 min incubation with
619 1 mL of RIPA lysis buffer. Lysates were clarified by centrifugation (2 min at 13,000 rpm)
620 and precleared by incubation for 2 h with rabbit IgG and a mixture of protein A/G
621 Sepharose beads (Santa Cruz Biotechnology) before an overnight incubation with anti-
622 FLAG antibody (Sigma Aldrich). Immunoprecipitates were collected with protein A/G–
623 Sepharose beads then washed five times with RIPA lysis buffer and twice with 10 mM
624 Tris-HCl, pH 7.5 before eluting proteins with gel loading buffer. Where indicated,
625 immunoprecipitated proteins were digested with Endoglycosidase H (New England
626 Biolabs). Dry gels were exposed to a phosphor screen (Fujifilm, Valhalla, NY), and
627 scanned with a Typhoon FLA9000 laser scanner (GE Healthcare, Chicago, IL).

628

629 **PNGase F digestion and maleimide-PEG assays**

630 Lysates were subjected to PNGase F (New England Biolabs) digestion as suggested by
631 the manufacturer guidelines. Methoxypolyethylene glycol maleimide 5000 (mPEG;
632 Sigma Aldrich) was dissolved in water to a 100 mM stock immediately prior to use. Cells
633 were lysed in lysis buffer with the addition of either 20 mM NEM, 5 mM mPEG, or 0.5
634 mM TCEP. Lysates were incubated at room temperature for 30 min prior to clearing by
635 centrifugation at 10,000 rpm for 10 min. Supernatants with TCEP added were then
636 supplemented with 5 mM mPEG to modify the now reduced cysteines. Lysates were
637 resolved by SDS-PAGE and visualized by Western blot as described above.

638

639 **Half-life quantification and band densitometry**

640 Cells were transfected in 6-well plates, then four hours later trypsinized and plated in 6
641 wells of a 12-well plate. 24 hours post-transfection, media was replaced with fresh
642 media containing 40 µg/ml cycloheximide (Cell Signaling Technology). Cells were lysed
643 at various time points after cycloheximide treatment in RIPA buffer, and lysates were
644 subjected to Western blot analysis as described. Band densities were quantified using
645 LI-COR Image Studio (LI-COR, Lincoln, NE).

646

647 **Immunofluorescence**

648 Huh 7.5.1 cells were plated on poly-D-lysine coated coverslips and infected with DENV-
649 2 at an MOI = 0.1 or mock infected. Two days post-infection, cells were fixed in ice cold
650 methanol for 1 h at -20C. Immunostaining with anti-HA (1:200) and anti-NS1 (1:50)
651 antibodies was performed as described previously(39).

652

653 **Funding Information**

654 This work was supported by National Institutes of Health grants R01DK097374 (AWT),
655 the Molecular Mechanisms of Microbial Pathogenesis Training Program 5T32AI007528
656 (DLL), R01AI124690 (MRM) and R01GM043768 (RG). Microscopy was performed at
657 the University of Michigan Microscopy & Image Analysis Laboratory with support from
658 the University of Michigan Center for Gastrointestinal Research (National Institutes of
659 Health P30DK034933). The funders had no role in study design, data collection and
660 interpretation, or the decision to submit the work for publication.

661

662 **Acknowledgments**

663 We thank Claire Huang (CDC) for providing the pD2/IC-30-P-NBX DENV cDNA clone,
664 and Dr. Chunya Puttikhunt (Mahidol University, Thailand) for providing the NS1
665 monoclonal antibody.

666

667 **References**

668

- 669 1. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI. 2013. The global distribution and burden of dengue. *Nature* 496:504-7.
- 670 2. Villar L, Dayan GH, Arredondo-Garcia JL, Rivera DM, Cunha R, Deseda C, Reynales H, Costa MS, Morales-Ramirez JO, Carrasquilla G, Rey LC, Dietze R, Luz K, Rivas E, Miranda Montoya MC, Cortes Supelano M, Zambrano B, Langevin E, Boaz M, Tornieporth N, Saville M, Noriega F, Group CYDS. 2015. Efficacy of a tetravalent dengue vaccine in children in Latin America. *N Engl J Med* 372:113-23.
- 671 3. Sreaton G, Mongkolsapaya J, Yacoub S, Roberts C. 2015. New insights into the immunopathology and control of dengue virus infection. *Nat Rev Immunol* 15:745-59.
- 672 4. Marceau CD, Puschnik AS, Majzoub K, Ooi YS, Brewer SM, Fuchs G, Swaminathan K, Mata MA, Elias JE, Sarnow P, Carette JE. 2016. Genetic dissection of Flaviviridae host factors through genome-scale CRISPR screens. *Nature* 535:159-63.
- 673 5. Savidis G, McDougall WM, Meraner P, Perreira JM, Portmann JM, Trincucci G, John SP, Aker AM, Renzette N, Robbins DR, Guo Z, Green S, Kowalik TF, Brass AL. 2016. Identification of Zika Virus and Dengue Virus Dependency Factors using Functional Genomics. *Cell Rep* 16:232-46.
- 674 6. Cherepanova N, Shrimal S, Gilmore R. 2016. N-linked glycosylation and homeostasis of the endoplasmic reticulum. *Curr Opin Cell Biol* 41:57-65.
- 675 7. Ruiz-Canada C, Kelleher DJ, Gilmore R. 2009. Cotranslational and posttranslational N-glycosylation of polypeptides by distinct mammalian OST isoforms. *Cell* 136:272-83.
- 676 8. Cherepanova NA, Shrimal S, Gilmore R. 2014. Oxidoreductase activity is necessary for N-glycosylation of cysteine-proximal acceptor sites in glycoproteins. *J Cell Biol* 206:525-39.

698 9. Mohorko E, Owen RL, Malojcic G, Brozzo MS, Aebi M, Glockshuber R. 2014.
699 Structural basis of substrate specificity of human oligosaccharyl transferase
700 subunit N33/Tusc3 and its role in regulating protein N-glycosylation. *Structure*
701 22:590-601.

702 10. Yan Q, Lennarz WJ. 2002. Studies on the function of oligosaccharyl transferase
703 subunits. Stt3p is directly involved in the glycosylation process. *J Biol Chem*
704 277:47692-700.

705 11. Walker KW, Lyles MM, Gilbert HF. 1996. Catalysis of oxidative protein folding by
706 mutants of protein disulfide isomerase with a single active-site cysteine.
707 *Biochemistry* 35:1972-80.

708 12. Laboissiere MC, Sturley SL, Raines RT. 1995. The essential function of protein-
709 disulfide isomerase is to unscramble non-native disulfide bonds. *J Biol Chem*
710 270:28006-9.

711 13. Zhou H, Clapham DE. 2009. Mammalian MagT1 and TUSC3 are required for
712 cellular magnesium uptake and vertebrate embryonic development. *Proc Natl
713 Acad Sci U S A* 106:15750-5.

714 14. Watterson D, Modhiran N, Young PR. 2016. The many faces of the flavivirus
715 NS1 protein offer a multitude of options for inhibitor design. *Antiviral Res* 130:7-
716 18.

717 15. Naik NG, Wu HN. 2015. Mutation of Putative N-Glycosylation Sites on Dengue
718 Virus NS4B Decreases RNA Replication. *J Virol* 89:6746-60.

719 16. Lam SS, Martell JD, Kamer KJ, Deerinck TJ, Ellisman MH, Mootha VK, Ting AY.
720 2015. Directed evolution of APEX2 for electron microscopy and proximity labeling.
721 *Nat Methods* 12:51-4.

722 17. Houzet L, Jeang KT. 2011. Genome-wide screening using RNA interference to
723 study host factors in viral replication and pathogenesis. *Exp Biol Med (Maywood)*
724 236:962-7.

725 18. Roboti P, High S. 2012. The oligosaccharyltransferase subunits OST48, DAD1
726 and KCP2 function as ubiquitous and selective modulators of mammalian N-
727 glycosylation. *J Cell Sci* 125:3474-84.

728 19. Cherepanova NA, Gilmore R. 2016. Mammalian cells lacking either the
729 cotranslational or posttranslocational oligosaccharyltransferase complex display
730 substrate-dependent defects in asparagine linked glycosylation. *Sci Rep* 6:20946.

731 20. Satoh T, Ohba A, Liu Z, Inagaki T, Satoh AK. 2015. dPob/EMC is essential for
732 biosynthesis of rhodopsin and other multi-pass membrane proteins in *Drosophila*
733 photoreceptors. *Elife* 4.

734 21. Bagchi P, Inoue T, Tsai B. 2016. EMC1-dependent stabilization drives
735 membrane penetration of a partially destabilized non-enveloped virus. *Elife* 5.

736 22. Hatahet F, Ruddock LW. 2007. Substrate recognition by the protein disulfide
737 isomerases. *FEBS J* 274:5223-34.

738 23. Hwang J, Ribbens D, Raychaudhuri S, Cairns L, Gu H, Frost A, Urban S,
739 Espenshade PJ. 2016. A Golgi rhomboid protease Rbd2 recruits Cdc48 to cleave
740 yeast SREBP. *EMBO J* 35:2332-2349.

741 24. Sanjana NE, Shalem O, Zhang F. 2014. Improved vectors and genome-wide
742 libraries for CRISPR screening. *Nat Methods* 11:783-4.

743 25. Li W, Xu H, Xiao T, Cong L, Love MI, Zhang F, Irizarry RA, Liu JS, Brown M, Liu
744 XS. 2014. MAGeCK enables robust identification of essential genes from
745 genome-scale CRISPR/Cas9 knockout screens. *Genome Biol* 15:554.

746 26. Bocchinfuso WP, Ma KL, Lee WM, Warmels-Rodenhiser S, Hammond GL. 1992.
747 Selective removal of glycosylation sites from sex hormone-binding globulin by
748 site-directed mutagenesis. *Endocrinology* 131:2331-6.

749 27. Shrimal S, Gilmore R. 2015. Reduced expression of the
750 oligosaccharyltransferase exacerbates protein hypoglycosylation in cells lacking
751 the fully assembled oligosaccharide donor. *Glycobiology* 25:774-83.

752 28. Huang CY, Butrapet S, Moss KJ, Childers T, Erb SM, Calvert AE, Silengo SJ,
753 Kinney RM, Blair CD, Roehrig JT. 2010. The dengue virus type 2 envelope
754 protein fusion peptide is essential for membrane fusion. *Virology* 396:305-15.

755 29. Salloum S, Wang H, Ferguson C, Parton RG, Tai AW. 2013. Rab18 binds to
756 hepatitis C virus NS5A and promotes interaction between sites of viral replication
757 and lipid droplets. *PLoS Pathog* 9:e1003513.

758 30. Heaton NS, Perera R, Berger KL, Khadka S, Lacount DJ, Kuhn RJ, Randall G.
759 2010. Dengue virus nonstructural protein 3 redistributes fatty acid synthase to
760 sites of viral replication and increases cellular fatty acid synthesis. *Proc Natl
761 Acad Sci U S A* 107:17345-50.

762 31. Frolova EI, Fayzulin RZ, Cook SH, Griffin DE, Rice CM, Frolov I. 2002. Roles of
763 nonstructural protein nsP2 and Alpha/Beta interferons in determining the
764 outcome of Sindbis virus infection. *J Virol* 76:11254-64.

765 32. Yi Z, Sperzel L, Nurnberger C, Bredenbeek PJ, Lubick KJ, Best SM, Stoyanov
766 CT, Law LM, Yuan Z, Rice CM, MacDonald MR. 2011. Identification and
767 characterization of the host protein DNAJC14 as a broadly active flavivirus
768 replication modulator. *PLoS Pathog* 7:e1001255.

769 33. McGee CE, Shustov AV, Tsetsarkin K, Frolov IV, Mason PW, Vanlandingham DL,
770 Higgs S. 2010. Infection, dissemination, and transmission of a West Nile virus
771 green fluorescent protein infectious clone by *Culex pipiens quinquefasciatus*
772 mosquitoes. *Vector Borne Zoonotic Dis* 10:267-74.

773 34. Tsetsarkin K, Higgs S, McGee CE, De Lamballerie X, Charrel RN,
774 Vanlandingham DL. 2006. Infectious clones of Chikungunya virus (La Reunion
775 isolate) for vector competence studies. *Vector Borne Zoonotic Dis* 6:325-37.

776 35. Atasheva S, Krendelchchikova V, Liopo A, Frolova E, Frolov I. 2010. Interplay of
777 acute and persistent infections caused by Venezuelan equine encephalitis virus
778 encoding mutated capsid protein. *J Virol* 84:10004-15.

779 36. Schoggins JW, Dorner M, Feulner M, Imanaka N, Murphy MY, Ploss A, Rice CM.
780 2012. Dengue reporter viruses reveal viral dynamics in interferon receptor-
781 deficient mice and sensitivity to interferon effectors in vitro. *Proc Natl Acad Sci U
782 S A* 109:14610-5.

783 37. Lanciotti RS, Lambert AJ, Holodniy M, Saavedra S, Signor Ldel C. 2016.
784 Phylogeny of Zika Virus in Western Hemisphere, 2015. *Emerg Infect Dis* 22:933-
785 5.

786 38. Hung V, Udeshi ND, Lam SS, Loh KH, Cox KJ, Pedram K, Carr SA, Ting AY.
787 2016. Spatially resolved proteomic mapping in living cells with the engineered
788 peroxidase APEX2. *Nat Protoc* 11:456-75.

789 39. Wang H, Perry JW, Lauring AS, Neddermann P, De Francesco R, Tai AW. 2014.
790 Oxysterol-binding protein is a phosphatidylinositol 4-kinase effector required for
791 HCV replication membrane integrity and cholesterol trafficking. *Gastroenterology*
792 146:1373-85 e1-11.
793

794

795 **Figure legends**

796

797 **Figure 1**

798 **The CRISPR-Cas9 screen reveals the oligosaccharyltransferase complex as**
799 **essential to DENV propagation.** **A**, Depiction of the whole-genome CRISPR screen
800 selecting for knockout cells resistant to dengue virus infection. **B**, Diagram of the two
801 OST complexes that contain either STT3A or STT3B. Subunits of the OST complex
802 shaded in blue were significantly enriched in the screen. **C**, Table of the hits from the
803 screen showing the gene ID, p-value, and false discovery rate as calculated by
804 MaGECK analysis.

805

806 **Figure 2**

807 **The catalytic activities of STT3A or STT3B are not required for DENV replication.**
808 **A**, Huh 7.5.1 cells were transduced with a lentivirus encoding a puromycin resistance
809 marker, Cas9, and a single guide RNA (sgRNA) targeting the indicated genes. The
810 sgRNAs targeting GFP act as a negative control. Two independent sgRNAs (indicated
811 below the bars as “1” or “2”) were used per target gene to generate knockout cell pools.
812 Cells were infected with luc-DENV for 3 days and luciferase activity was measured in
813 relative light units (RLU). Below, Western blots for the indicated proteins are shown.
814 Arrows indicate non-specific bands. **B and C**, knockout cell pools were transduced with
815 lentiviral vectors to rescue expression of the indicated protein. “STT3A dead” is a
816 catalytically inactive W526A/D527A double mutant. “STT3B dead” is a catalytically
817 inactive W605A/D606A double mutant with a C-terminal V5 tag. Transient transfection

818 of constructs to express pSAP and SHBG were used to assess STT3A and STT3B
819 catalytic activity. Below, Western blots show the expression of the indicated proteins. **D**,
820 knockout cell pools were transiently transfected with a luc-DENV replicon and luciferase
821 activity was measured at 4 hours, 48 hours, and 72 hours post-transfection (hpt). Data
822 is plotted as a ratio of RLU / 4 hpt to control for transfection efficiency. GDD indicates a
823 polymerase dead replicon with replacement of the GNN active site sequence in the NS5
824 RNA polymerase by GDD. **E**, cell viability for knockout cell pools was measured by Cell-
825 Titer Glo over the course of 4 days for 3 independent wells. Data are normalized to day
826 1 values. P indicates the parental Huh7.5.1 cells. For A-E, data are expressed as
827 means with SD for three independent biological replicates. In A-D, statistical
828 significance was determined by Student's t-test, where *p<0.05, **p<0.005, and
829 ***p<0.0005. In A, means were compared to GFP sgRNA #2. In B and C, means were
830 compared to their respective knockouts. In D, means were compared to the GFP control.

831

832 **Figure 3**

833 **The oxidoreductase activity of MAGT1 is required for DENV replication.**

834 **A**, CRISPR modified Huh 7.5.1 *MAGT1* knockout cell pools were transduced to express
835 *MAGT1* or *TUSC3-HA*. The AxxA *MAGT1* and *TUSC3-HA* mutants were generated by
836 mutating CxxC active sites to AxxA. Below, Western blots for the indicated proteins are
837 shown. The *MAGT1* antibody cross-reacts weakly with *TUSC3*. **B**, *MAGT1* knockout
838 cells were transduced to express *MAGT1* mutants with the indicated mutations. Below,
839 Western blots for the indicated proteins are shown. For A and B, cells were infected with
840 luc-DENV and luciferase activity was measured at 3 days post-infection. **C**,

841 immunofluorescence localization of MAGT1 in uninfected cells or two days post-
842 infection with DENV. *MAGT1* knockout cells were stably transduced to express HA
843 tagged MAGT1 (WT or AxxA), as indicated on the left. Cells were fixed, permeabilized,
844 and stained with antibodies to the indicated proteins. **D**, 293T cells expressing the
845 indicated MAGT1-HA mutants were transfected to express STT3B-V5. Cells were lysed
846 and co-immunoprecipitation was carried out using an anti-HA antibody. Shown are
847 Western blots detecting the specified proteins. Mutants of MAGT1 migrate as two
848 distinct bands. Data in panels A and B are expressed as means with SD for three
849 independent infections. Statistical significance was determined by Student's t-test,
850 where *p<0.05, **p<0.005, and ***p<0.0005 compared to *MAGT1* knockout cells without
851 any additions (lane 2).

852

853 **Figure 4**

854 **Effect of STT3B on NS4B glycosylation and synthesis**

855 **A**, 293T cell pools expressing Cas9 and sgRNAs targeting the indicated genes were
856 transiently transfected to express NS4B-HA. Lysates were resolved by SDS-PAGE and
857 visualized by Western blotting for the indicated proteins. **B**, Huh 7.5.1 cell pools
858 expressing Cas9 and sgRNAs targeting the indicated genes were transiently transfected
859 to express NS4B-V5 (lanes 1-6) or were mock transfected (lane 7). Lysates were
860 subjected to PNGase F treatment in lanes 4-6 to remove N-linked glycans from proteins.
861 Proteins were resolved by SDS-PAGE and visualized by Western blotting for the
862 indicated proteins. The arrow indicates a nonspecific background band, and asterisks
863 (*) mark NS4B-specific, PNGase F-sensitive bands. **C**, the indicated 293T cells were

864 co-transfected to express NS4B-HA and either NS1 or GFP (as transfection controls).
865 Cell lysates were treated with PNGase F to facilitate quantitation of NS4B protein by
866 removing N-glycans and Western blotting was performed for the indicated proteins.
867 Chemiluminescent band intensities were quantified as NS4B-HA in *STT3B* knockout
868 cells relative to NS4B-HA in WT cells compared to the same ratio of GFP or NS1 to
869 control for transfection efficiency. Each point plotted is the quantification of an
870 independent transfection, where the open triangles compare NS4B levels with NS1 and
871 closed circles with GFP. The mean and SD plotted are for all points. **D**, the indicated
872 293T cells were transiently transfected to express NS4B-HA and treated with
873 cycloheximide at 24 hours post-transfection to block further translation. Cells were lysed
874 at the indicated times post-cycloheximide treatment and proteins were resolved by
875 Western blotting. On the left are representative blots, and on the right are the decay
876 curves plotted with data from 3 independent experiments. Values are means \pm SD.

877

878 **Figure 5**

879 **MAGT1 is in close proximity to NS4B and NS1 during DENV infection**

880 Huh7.5.1 cells stably transduced to express APEX2-MAGT1 were infected with DENV-2
881 or mock infected for 2 days. In all conditions, biotin-phenol was added to the cell media
882 for 30 min. Where indicated, APEX2 was activated with hydrogen peroxide for 1 min to
883 biotinylate APEX2-MAGT1 proximal proteins prior to quenching and lysis. The far right
884 lane is a negative control where APEX2 was not activated. Biotinylated proteins were
885 immunoprecipitated with streptavidin beads, and lysates were resolved by SDS-PAGE.

886 Western blotting was performed for the indicated proteins for both the IP samples and
887 the input.

888

889 **Supplemental Figures**

890

891 **S1. Inhibition of flavivirus infection in OST knockout cells.**

892 Huh 7.5.1 cells were transduced to express two independent sgRNAs targeting *STT3A*,
893 *STT3B*, or one sgRNA targeting *GFP* as a control. Stably transduced cell pools were
894 then infected with the indicated fluorescent protein-expressing reporter viruses (see
895 Materials and Methods for detailed description of the viruses) and subjected to flow
896 cytometry to measure the number of infected cells. ZIKV infection was detected by
897 immunostaining followed by flow cytometry. Data are plotted as a percentage relative to
898 control cells expressing an sgRNA targeting *GFP* for three independent infections.

899 Statistical significance was determined by Student's t-test, where means were
900 compared to GFP control, and *p<0.05, **p<0.005, and ***p<0.0005.

901

902 **S2. NS1 glycosylation and dimerization are unchanged in the absence of STT3A,
903 STT3B, or MAGT1**

904 **A**, the indicated CRISPR knockout 293T cells were transfected to express NS1-FLAG.
905 Lysates were treated with PNGase F to remove N-linked glycans followed by Western
906 blotting to visualize differences in migration of NS1. The glycosylated and de-
907 glycosylated forms of NS1 are indicated. **B**, A 5 min pulse with ³⁵S-cysteine/methionine
908 was followed by a 20 min chase to visualize differences in the efficiency of NS1

909 glycosylation and dimerization in CRISPR-edited HEK293 cells. Endoglycosidase H
910 treatment was used to indicate the mobility of unglycosylated NS1 by SDS-PAGE.

911

912 **S3. The redox status of NS4B is unchanged in the absence of MAGT1.**

913 The indicated CRISPR knockout 293T cells were transfected to express pNS4B-HA. We
914 used *STT3B* knockout cells to deplete both MAGT1 and TUSC3. Cells were lysed in
915 buffer with the specified additions of NEM, mPEG, or TCEP. Western blots were carried
916 out to determine the migration patterns of NS1 and NS4B in the given conditions. The
917 number of estimated maleimide-PEG modifications is indicated on the right.

918

919 **S4. A potential model for disulfide isomerization by single-cysteine MAGT1**

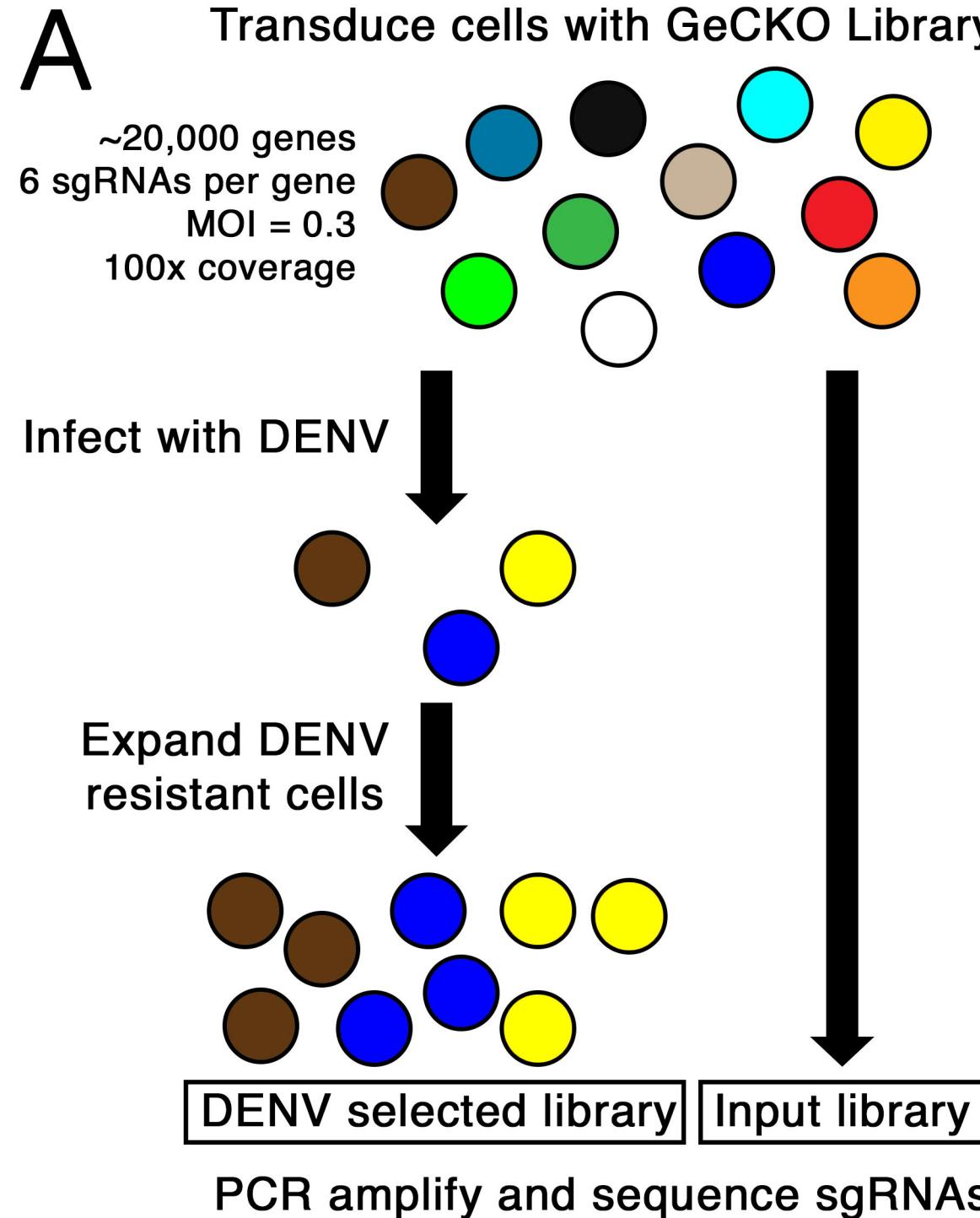
920 A MAGT1 mutant containing a single cysteine active site (AxxC or CxxA) is shown in
921 yellow. In blue is a target protein, such as NS4B, which contains multiple cysteines that
922 may form disulfide bonds. This protein has a non-native disulfide arrangement that is
923 identified by MAGT1. Through its active site cysteine, MAGT1 forms a mixed disulfide
924 with the target protein, reducing the incorrect disulfide bond. The correct disulfide bond
925 is then formed by a cysteine from the target protein, resolving the mixed disulfide
926 between MAGT1 and its target.

927

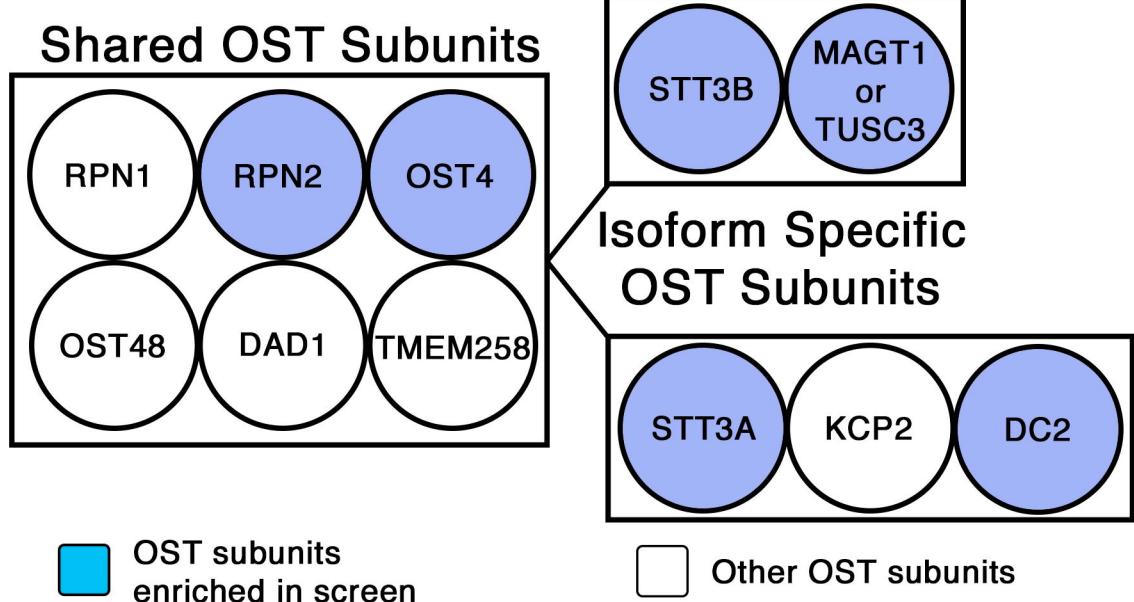
928 **Table S1. Comparison of hits from the screen**

929 A list of the top 25 significant hits from biological replicates were compared to hits from
930 two previously published screens. Gene names are colored to indicate groups of ER
931 complexes. Yellow indicates genes encoding components of the EMC complex, blue

932 indicates components of the OST complexes, and green indicates components of the
933 ER associated degradation pathway (ERAD). The rank of each hit in independent
934 biological replicates is shown in the second and third columns. The false discovery rate
935 calculated by MaGeCK and the number of sgRNAs classified as a hit by MaGECK in
936 our screen are shown. Hits from our screen that were also identified in the top 25 hits of
937 Marceau *et al.* or the top 150 of Savidis *et al.* are marked with an X.

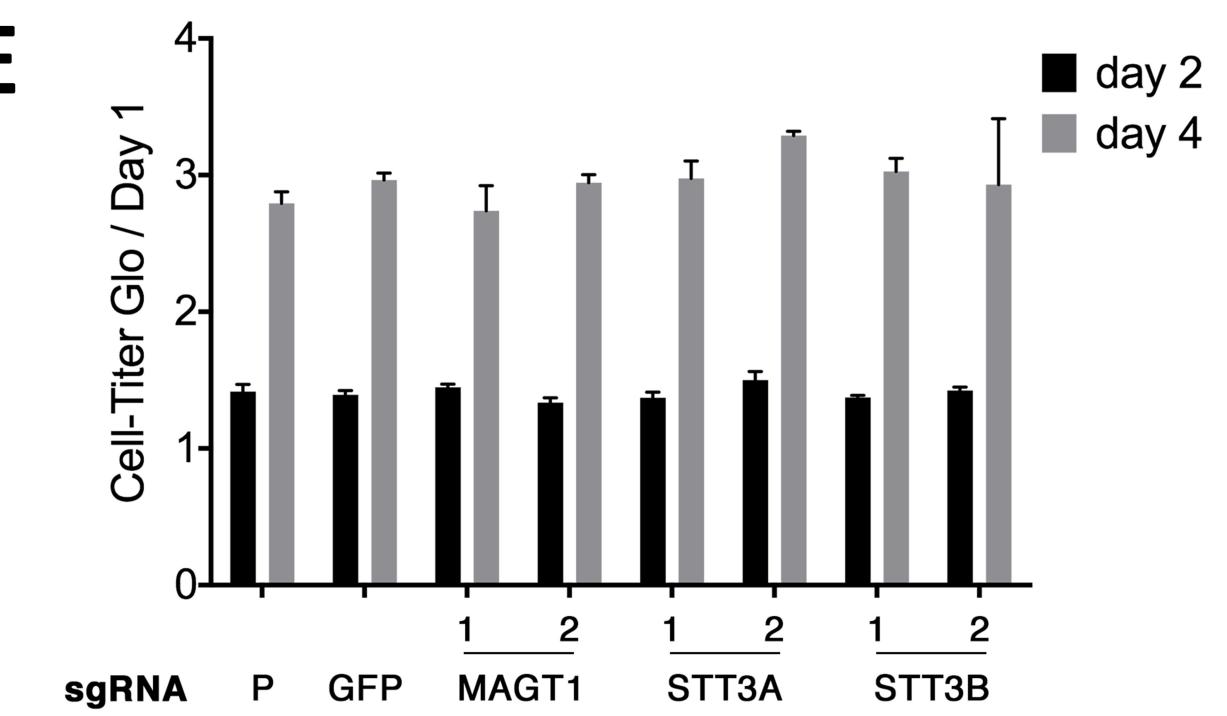
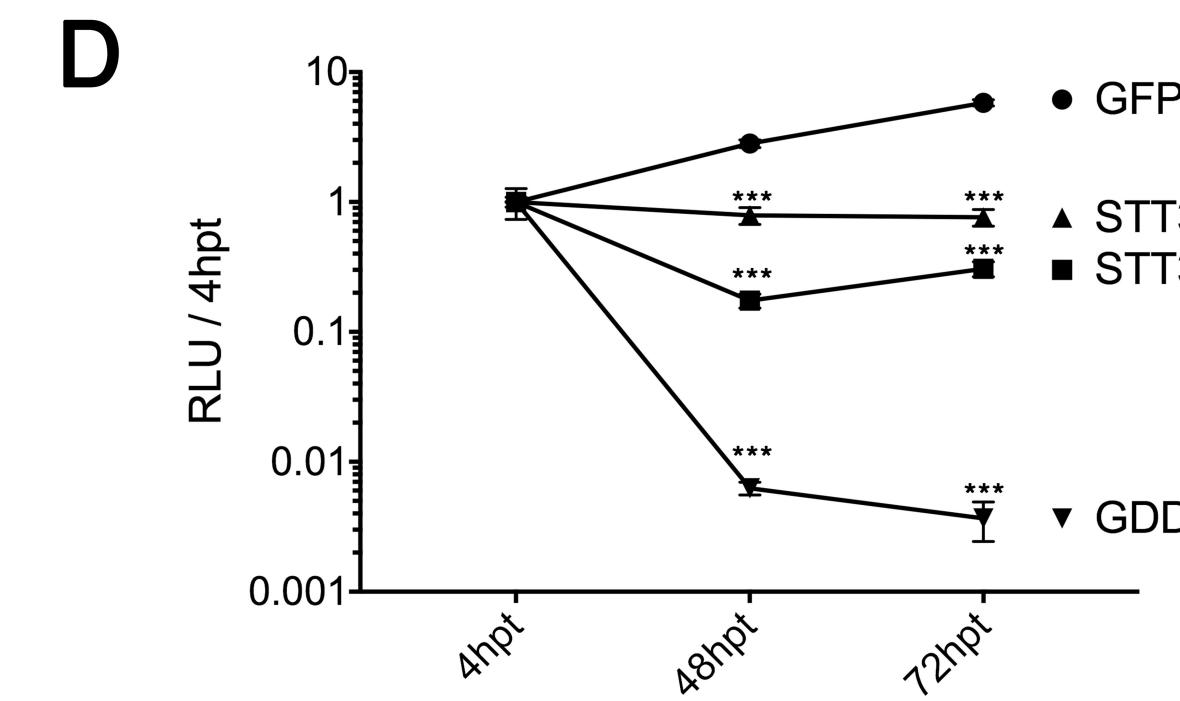
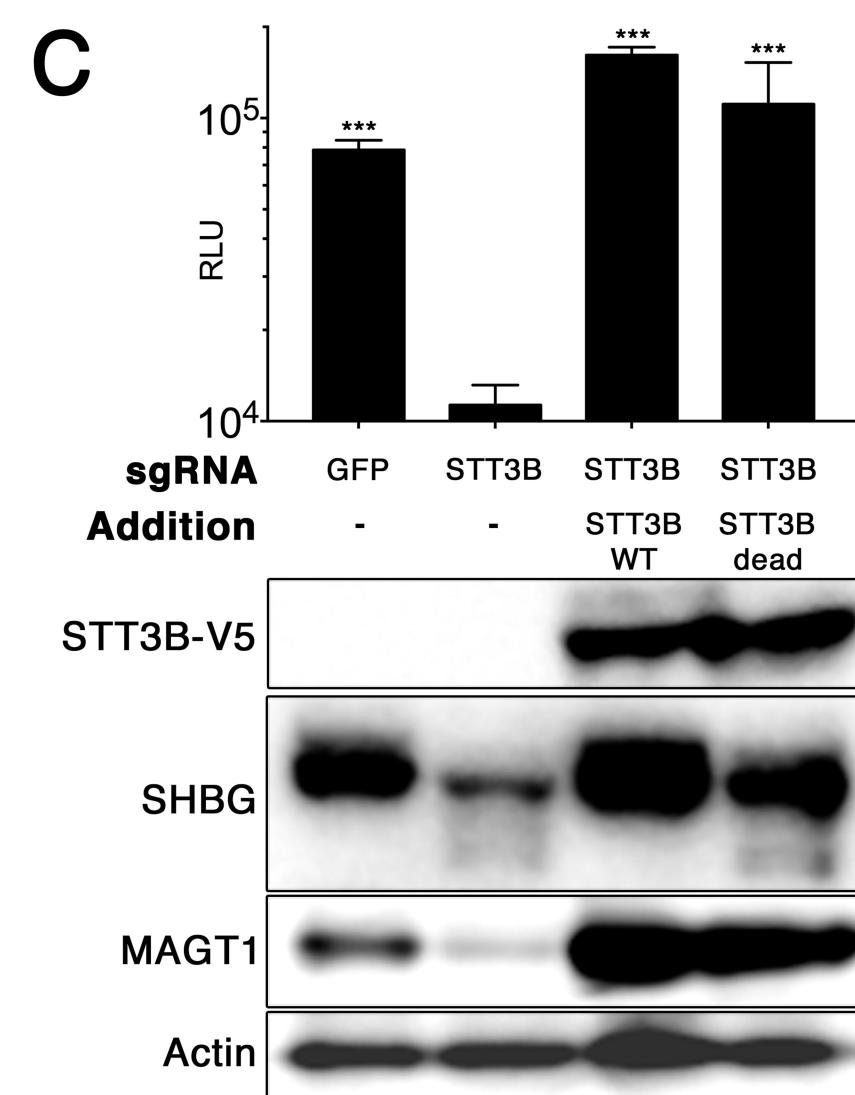
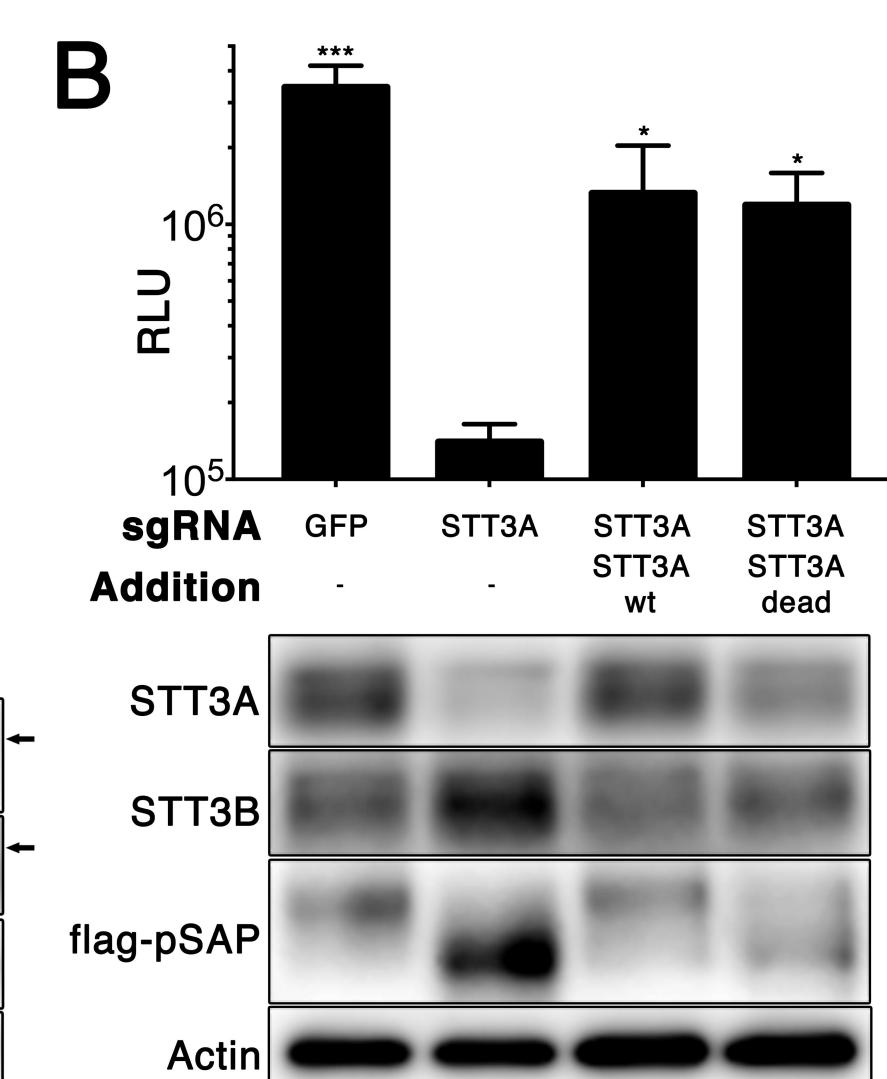
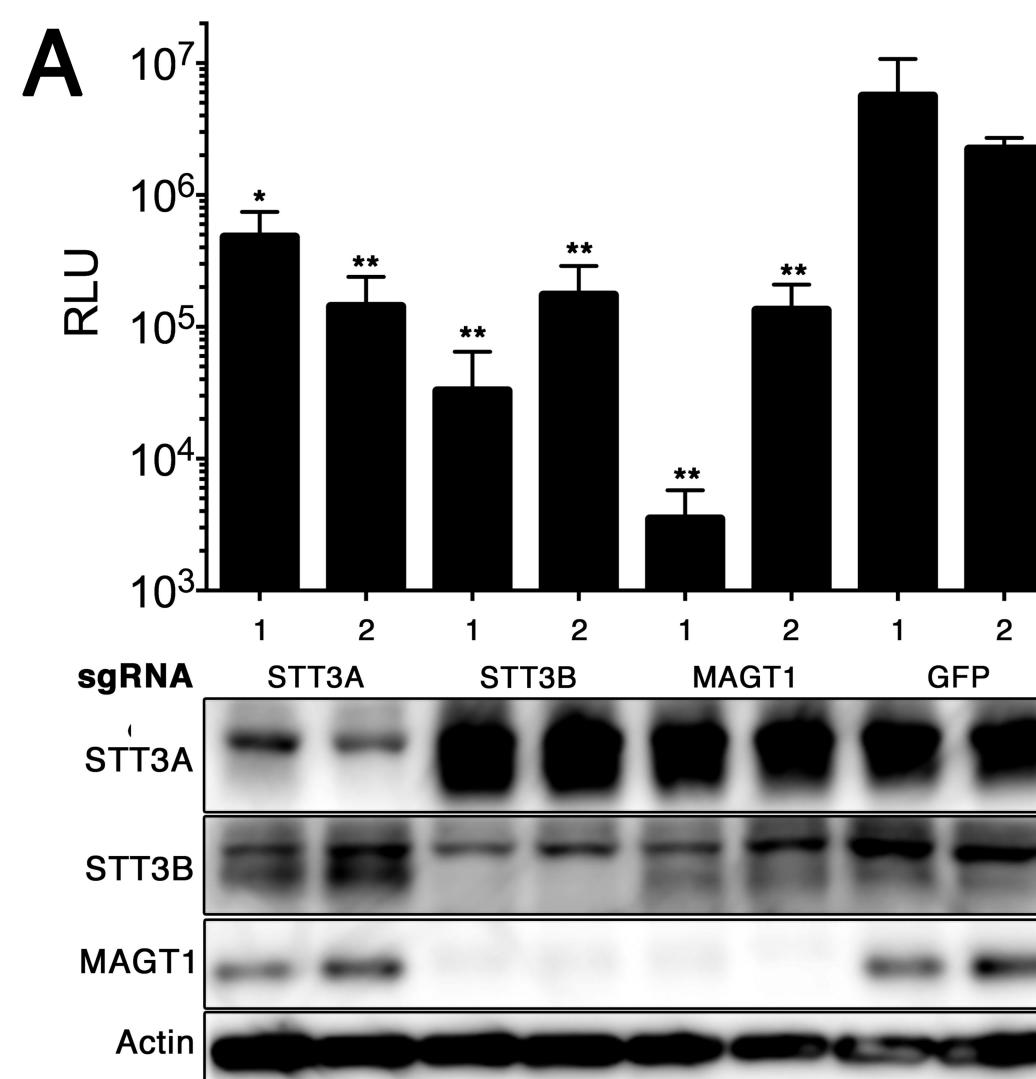

938

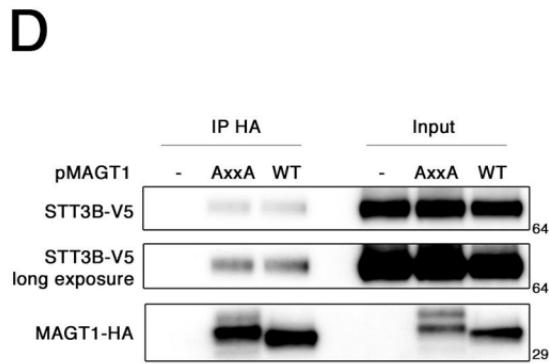
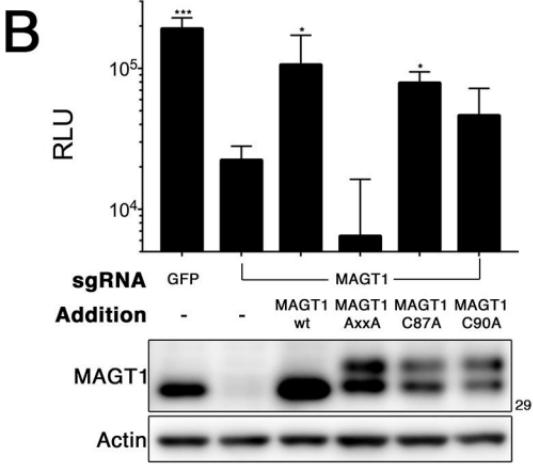
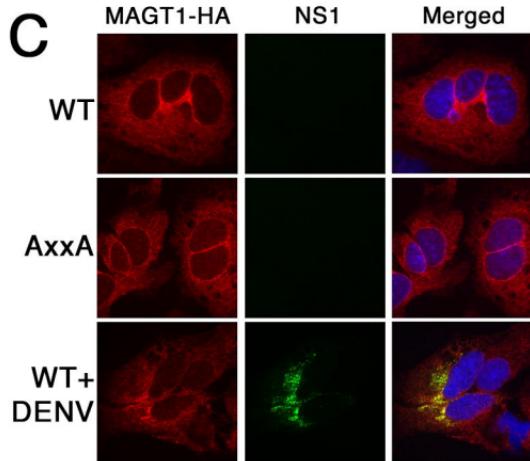
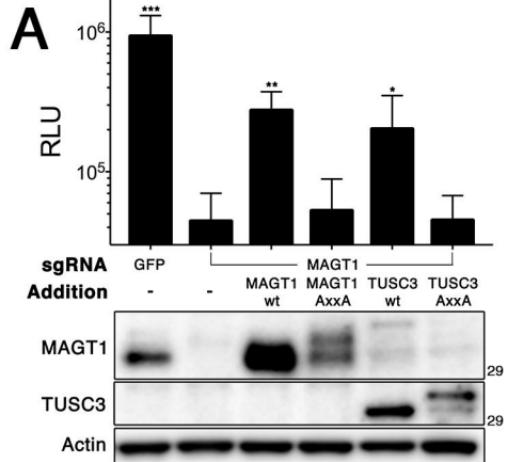
939 **Table S2. List of crRNAs used to generate knockout cells**

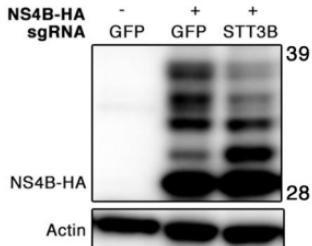
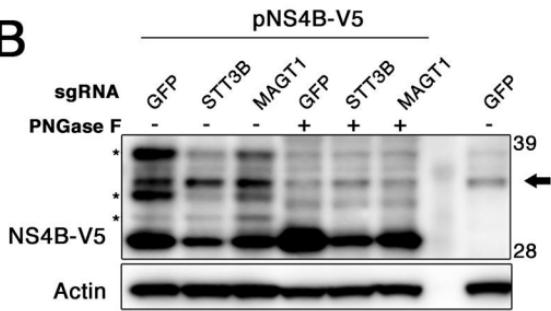
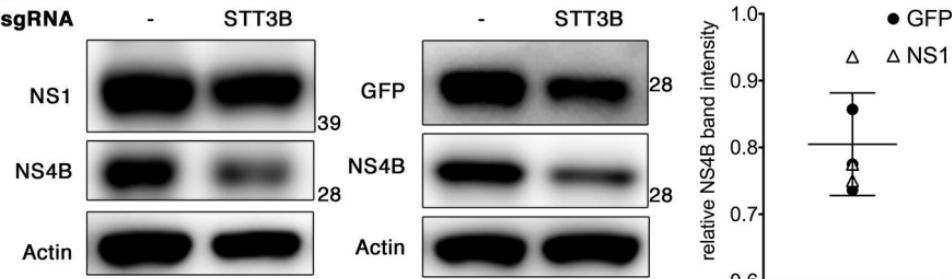
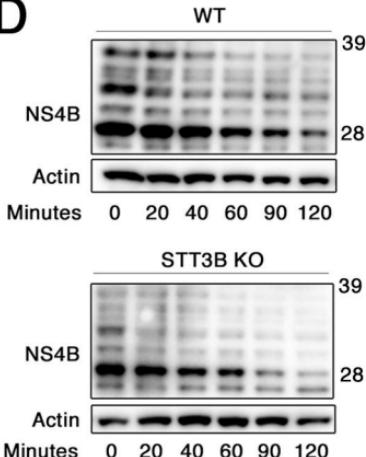

940 Oligonucleotides were cloned into pLENTICRISPRv2 to generate lentiviruses for
941 CRISPR mediated knockout of specific OST genes.

942

Transduce cells with GeCKO Library






B





C

	P-value	False Discovery Rate	Enriched sgRNAs
STT3A	2.22E-07	0.00045	6
MAGT1	2.22E-07	0.00045	6
STT3B	2.22E-07	0.00045	5
RPN2	2.22E-07	0.00045	5
OST4	4.73E-05	0.058581	3
DC2	0.0013308	0.570164	3

PCR amplify and sequence sgRNAs

A**B****C****D**

DENV-2

+

-

+

BP

+

+

+

H_2O_2

+

+

-

STT3A

IP

EMC3

NS1

NS4B

STT3A

VAPA

EMC3

NS1

NS4B

Input