bioRxiv preprint doi: https://doi.org/10.1101/130195; this version posted August 14, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Dorsal anterior cingulate-midbrain ensemble as a reinforcement

meta-learner

Massimo Silvetti'*, Eliana Vassena'*, Elger Abrahamse', Tom Verguts!

1 Ghent University, Department of Experimental Psychology

2 Donders Institute for Brain, Cognition and Behaviour

* Corresponding author:

massimo.silvetti@ugent.be

key words: ACC, VTA, LC, reinforcement learning, meta-learning, Kalman filter,

effort control, higher-order conditioning, decision-making.

Acknowledgements.

Conlflicts of interest: None. Thanks are due to Clay Holroyd, Gianluca Baldassarre,
Daniele Caligiore, Giovanni Pezzulo, and Domenico Maisto for useful comments on
this project. EV was supported by H2020 Marie Sklodowska-Curie Actions, project
PreMotive, number 705630. EA was supported by Research Foundation Flanders
under contract number 12C4715N.


https://doi.org/10.1101/130195
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/130195; this version posted August 14, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Abstract
The dorsal anterior cingulate cortex (dACC) is central in higher-order cognition and
behavioural flexibility. The computational nature of this region, however, has
remained elusive. Here we propose a new model — the Reinforcement Meta Learner
(RML) — based on the bidirectional anatomical connections of the ACC with midbrain
catecholamine nuclei (VTA and LC). In this circuit, JACC learns which actions are
valuable and acts accordingly. Crucially, this mechanism is optimized by recurrent
connectivity with the midbrain: Midbrain catecholamines provide modulatory signals
to dACC, controlling its internal parameters (e.g. learning rate), while these parameter
modulations are in turn optimized by dACC afferents to the midbrain. This closed-
loop system generates emergent (i.e., homunculus-free) control and supports learning
to solve hierarchical decision problems without having an intrinsic hierarchical
structure itself. Further, it can be combined with other cortical modules to optimize
the processing of these modules. We outline how the RML solves the current
theoretical stalemate on dACC by assimilating various previous proposals on ACC
functioning, and how it captures critical empirical findings from an unprecedented
range of domains (stability/plasticity balance, effort processing, working memory,

and higher-order classical and instrumental conditioning).
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Introduction
Adapting behavior to uncertain and changing environments is the foundation of
intelligence. Important theoretical progress was made by considering this behavioural
adaptation as a problem of decision-making (Frank et al., 2004; Rushworth and
Behrens, 2008). The dorsal anterior cingulate cortex (1ACC) has been proposed as a
multifunctional hub with a pivotal role in decision-making (Rushworth and Behrens,
2008). Reinforcement Learning (RL) neural models showed that many signals
recorded in the dACC (e.g., error, error likelihood, response conflict) can be
explained in terms of value computation for optimal decision-making (Silvetti et al.,
2014). In this framework, the dACC is a multi-domain estimator of stimulus and
action values that maximizes long-term reward. Yet, it is increasingly clear that value
computation by itself cannot fully account for dACC functioning. Besides computing
environment- and behavior-related parameters (e.g., outcome prediction, etc.), dACC
is also involved in adaptive control over the organism’s internal cognitive parameters
(e.g., learning rate). Empirical evidence indeed shows that dACC controls effort
exertion (Shenhav et al., 2013; Vassena et al., 2014; Verguts et al., 2015). Moreover,
a Bayesian perspective proposes that the dACC controls learning rate to optimize
behavioural adaptation (Behrens et al., 2007; Kolling et al., 2016). Despite the lively
ongoing debate on these computational functions and empirical effects measured in
ACC no theoretical convergence has been reached so far (Ebitz and Hayden, 2016),
and no concrete computational model has been developed to reconcile (or allow
competition between) such different theoretical positions (see Vassena et al., 2017 for
areview).

To fill this lacuna, we here propose a novel RL model coined the
Reinforcement Meta Learner (RML). To achieve a comprehensive understanding of
dACC functioning, we argue that it is critical to place dACC in its larger functional
network. The RML model is the first to theoretically build on the demonstrated
bidirectional anatomical connections between the ACC and the midbrain
catecholamine nuclei (Devinsky et al., 1995; Margulies et al., 2007), the ventral
tegmental area (VTA), and the locus coeruleus (LC). Like in earlier RL. models, the
dACC in RML computes the values of specific stimuli and actions to achieve adaptive
behavior. However — and unlike earlier models — dACC internal parameters are

dynamically set by midbrain catecholamine nuclei. Crucially, VTA and LC outputs
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are in turn determined by dACC, implementing a recurrent meta-learning architecture
(Figure 1a).

The RML innovates ACC theory in two major ways. First, interaction with
both the environment and the midbrain, allows the dACC to modulate autonomously
three critical variables: i.e. reward, effort, and learning rate. This closed-loop system
solves hierarchical decision problems (i.e. about the context on where a task is
executed) without having an intrinsic hierarchical structure itself. For example,
selection of an optimal learning rate is conditional on the estimation of volatility, a
hidden variable that determines the statistical structure of task context (Silvetti et al.,
2013). As another example, the model decides how much effort to put in a task, as a
function of the overall favorability (in terms of reward) of the context.

Moreover, in the RML these three meta-learning processes (reward, effort and
learning rate) interact with one another, optimizing cognitive flexibility. For example,
learning rate changes the plasticity of effort modulation, and effort modulation
changes the interaction with the environment (modifying the preference toward
effortful options), which in turn influences learning rate.

Second, the dACC-midbrain ensemble can be considered a general provider of
control signals to other brain areas (via Ne output). The RML model can be plugged
into other models to modulate them with this functionality. As such, the RML fully
exploits both modularity (between models) and distributed computing (dACC-
midbrain loop), accounting for how cognitive control flexibly adapts across different
tasks. To the best of our knowledge, the RML is the first model that can improve the
performance of different, independently designed and published models.

Thanks to these features, the RML captures critical empirical findings from an
unprecedented range of domains, namely research on the stability/plasticity balance,
on effort processing, on working memory, and on higher-order classical and
instrumental conditioning. Critically, besides the above outlined notion that the RML
dynamically estimates three of its parameters, for the remaining parameters a single
set is used across all domains and simulations — thus without experimenter-based

tuning. In the next section, we take a closer look at the RML model.
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Figure 1. a) Model conceptual overview. At the conceptual level, the RML
dynamics can be summarized in three recurrent circuits. First, a main internal loop
(black arrows) indicating recurrent interaction between action selection processes and

parameter control processes, which together determine the emergence of meta-
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learning. Second, an external loop (light grey arrows), indicating the interactions
between the RML and environment. Third, a secondary (optional) internal loop (dark
grey), determining the interactions between the RML and other cognitive modules,
receiving catecholamines input from the RML and providing back a signal
influencing the decision-making processes in the RML itself. b) Model overview
with anatomical-functional analogy. The RML-environment interaction happens
through nine channels of information exchange (black arrows) (input = empty bars;
output = filled bars). The input channels consist of one channel encoding action costs
(O), three encoding environmental states (s) and one encoding primary rewards (RW).
The output consists of three channels coding each for one action (a), plus one channel
conveying LC signals to other brain areas (Ne). The entire model is composed of four
reciprocally connected modules (each a different color). The upper modules (blue and
green) simulate the dACC, while the lower modules (red and orange) simulate the
midbrain catecholamine nuclei (VTA and LC). dACCaction selects actions directed
toward the environment and learns through first and higher-order conditioning, while
dACCBgoost modulates catecholamine nuclei output. The VT A module provides DA
training signals to both dACC modules, while the LC controls learning rate (yellow
bidirectional arrow) in both dACC modules, and effort exertion (promoting effortful
actions) in the dACCaction module (orange arrow), influencing their decisions. Finally,
the LC signal controlling effort in the dACCaction 1s directed also toward other brain
areas for neuro-modulation. ¢) Model overview with equations. The equations are
reported in their discrete form. Communication between modules is represented by
arrows, with corresponding variables near each arrow. Variables 6 and Jp represent
the prediction errors from respectively equations 1 and 3. For the complete
description of equations and symbols, refer to the Model Description: mathematical

formalization section below.

Model description: overview
Here we describe the neuro-functional architecture of the RML model. We present the
different modules, their neuroanatomical correlates, and the proposed connectivity
patterns, followed by the computational mechanisms implemented in each module.

Importantly, we carried out two different implementations of the model: a discrete
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version, modeling trial by trial changes, and a continuous version, modeling brain
activity with ten milliseconds steps. The discrete-time description was chosen to
facilitate understanding of the model’s conceptual structure; yet, a continuous-time
(dynamical) implementation was necessary to study intra-trial dynamics, like DA
shifting from US to CS or working memory processing. For simplicity, we here
describe the discrete version and refer the reader to the Supplementary Methods for
description of the continuous version. Although we ran all the simulations not
requiring intra-trial dynamics also with the discrete model, leading to equivalent
results (see Supplementary Results: main results replication with discrete model), the
simulations described in the Results section are from the dynamical version of RML.

The RML approximates optimal decision-making (to maximize long-term
reward) based on action-outcome comparisons. Model dynamics can by summarized
by Figure 1a, where three loops are described: an inner loop (between action-selection
and parameter control processes, black arrows), and an external loop, between RML
and environment (light grey arrows). The external loop directly influences both
parameter control module (through primary rewards) and action selection module
(through state transitions), for this reason it can be considered a second
communication channel between action selection and parameter control modules. As
described more in detail below, both loops contribute to the emergence of meta-
learning dynamics. Finally, a third loop simulates how the RML can exert control
over other brain areas, via catecholaminergic signals, and how these areas can
modulate back the decision-making processes in the RML. The latter loop is not
intrinsically necessary for the RML functioning, although it shows how the dACC-
midbrain system can work as a “server” providing control signals to optimize
behavioural performance.

An overview closer to neurophysiology (Figure 1b) shows that action-
selection and parameter control belong respectively to cortical and midbrain
structures: The dACC (blue and green modules in Figure 1b) performs action-
outcome comparison and action selection, while it is augmented by meta-learning (LC
and VTA; orange and red modules in Figure 1b). We designed the model such that the
communication with the external environment is based on 9 channels. There are six
channels representing environmental states and RML actions (3 states and 3 actions).
The first two actions are aimed at changing the environmental state (e.g. turning right

or left), while the 3 action means “Stay”, i.e. refusing to engage in the task. There


https://doi.org/10.1101/130195
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/130195; this version posted August 14, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

are two other input channels, one dedicated to primary reward from environment and
the other to signal indicating costs of motor actions. Finally, there is one output
channel conveying norepinephrine (Ne) signals to other brain areas (cognitive control
signal).

In Figure 1¢ we link the model equations described below (“Model
description: mathematical formalization™) with a graphical representation. As we
describe in detail in the following section, the RML autonomously modulates three
different parameters providing a near optimal solution for the following meta-learning
problems. First, modulation of learning rate (4) ensures that knowledge is updated
only when there are relevant environmental changes, protecting it from non-
informative random fluctuations. This addresses the classical stability-plasticity trade-
off (Grossberg, 1980). Second, modulation of effort exertion (by control over Ae)
allows optimization when the benefit-cost balance changes over time and/or it is
particularly challenging to estimate (e.g. when it is necessary to exert high effort to
get an uncertain higher reward). Third, dynamic modulation of reward signals (by
means of control over DA) is the foundation for emancipating learning from primary
rewards (see Equation 7 and Equation s5), allowing the RML to learn complex tasks
without the immediate availability of primary rewards (higher order conditioning).
Moreover, adaptive DA signal implies modulating the (perceived) value of
state/action couples (DA represents outcome in Equation 1), eventually self-
motivating the RML in choosing one specific action even if it implies a high
execution cost (C, Equation 2), and thus influencing the RML behaviour also in
challenging cost-benefit problems. Meta-learning processes involving those three
variables (learning rate, effort, reward) interact with each other, based on the
dynamics described below, and thus forming an integrated system where flexibility
emerges from its recurrent dynamics.

The RML is scalable by design, i.e. there is no theoretical limit to the number
of state/action channels, and neither the number of parameters nor their values
changes as a function of task type/complexity. As specified below, we used a single
set of parameters across all simulations both for the discrete model (Table 1) and for

the dynamic model (see Table s1).
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Parameter Value Meaning Equation

Yo, 0.2 TD-learning signal 7a
decay

7 0.3 DA dynamics 7a

T 0.6 Softmax temperature 2

o 0.3 Kalman filtering meta- 6¢-d

parameter

yis 0.2 Learning rate lower 6
bound

) 0.15 Boosting cost 7b

Table 1. Parameters list and values for the discrete model. We ran all the simulations

using one set of parameter values (for both the discrete and dynamical model).

Model description: mathematical formalization

dACCAction

The dACCAaction module consists of an Actor-Critic system augmented with
meta-learning (Figure 1c, blue box). The Critic is a performance evaluator and
computes reward expectation and PE for either primary or non-primary rewards
(higher-order conditioning), learning to associate stimuli and actions to environmental
outcomes. The Actor selects motor actions (based on Critic expectation) to maximize
long-term reward.

The central equation in this module governs Critic state/action value updates:

Av,(s,a)=2(D4 —v,,(s,q)) (1)

where v(s,a) indicates the value (outcome prediction) of a specific action a given a
state 5. Equation 1 ensures that v comes to resemble the environmental outcome
encoded by dopaminergic signal (DA), which is generated by the VTA module
(Figure 1; Equation 7). It entails that the update of v at trial ¢ is based on the
difference between prediction (v) and outcome (DA), which defines the concept of

PE. The latter is weighted by learning rate A, making the update more (high A) or less

9
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(low A) dependent on recent events. We propose that A itself is modulated by the LC
based on v and PE signals from the dACCaction (Equation 6a).

The DA signal, afferent from the VTA, is either linked to primary or non-
primary reward (higher-order conditioning) and is modulated by the dACCpoost
module via parameter b (Equation 7a).

Action a is selected by the Actor subsystem, which implements action
selection (by softmax selection function, with temperature 7) based on state/action

values discounted by state/action costs C:

C(S’a),rj )

plals)= softmax(v(s,a)—
Ne

Function C assigns a cost to each state/action couple, for example energy depletion
consequent to climbing an obstacle. C is modulated by norepinephrine afferents from
LC (Ne), which is itself controlled by the dACCpgoost module, via parameter b. Ne
levels discount C, lowering the perceived costs and energizing behaviour. Here we
remind the reader that the RML can choose not to engage the task (“Stay™); this
option has C = 0. In this way, a high level of Ne energizes behaviour, promoting both
high cost actions and reducing the probability that the RML chooses to “Stay”.

The dynamical form of these equations is described in the dACC4ciion-VTA
system paragraph in Supplementary Methods.

dACCBroost

The dACCpgoost module is an Actor-Critic system that learns only from primary
rewards (Figure 1c, green box). This module controls the parameters for cost and
reward signals in equations 1-2 (dACCAaction), via modulation of VTA and LC activity
(boosting catecholamines). In other words, whereas the dACCaciion decides on actions
toward the external environment, the dACCsgoost decides on actions toward the internal
environment: It modulates midbrain nuclei (VTA and LC), given a specific
environmental state. This is implemented by selecting the modulatory signal b (boost
signal), by RL-based decision-making. In our model, b is a discrete signal that can

assume ten different values (integers 1-10), each corresponding to one action

10
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selectable by the dACCgoost. The Critic submodule inside the dACCpgoost updates the

boost values va(s,b), via the equation:
Avg, (S >b) = Ay, (DAB,t Vg (S ) b)) (3)

Equation 3 represents the value update of boosting level b in the environmental state
s. The dACCpgoost module receives dopaminergic outcome signals (DAp) from the
VTA module. As described in Equation 7b, DA represent the reward signal
discounted by the cost of boosting catecholamines (Kool et al., 2010; Kool and
Botvinick, 2013; Shenhav et al., 2013). Also in Equation 3 there is a dynamic learning
rate (Ap), estimated by Equation 6a in the LC. The Actor submodule selects boosting

actions to maximize long-term reward:
p(b|s)= softmax(vB (s,b), r) 4)

Referring to Equation 1, the dACCpgoost modulates the reward signal by
changing the DA signal coded in VTA (Equation 7a). Furthermore, dACCgoost also
modulates the cost signal by changing parameter Ne (via LC module, Equation 5) in
the function representing action cost C (Equation 2; represented in the Actor within
the dACCaction). The dynamical form of these equations is described in the d4CCpoosi-
LC-VTA system paragraph in Supplementary Methods.

LC

LC control over effort exertion and behavioural activation

The LC module plays a double role (Figure 1c, orange box). First it controls cost via
parameter Ne, as a function of boosting value b selected by the dACCgoost module.
For sake of simplicity, we assigned to Ne the value of b; any monotonic function

would have played a similar role.
Ne=b>b %)

The Ne signal is directed also toward external brain areas as a performance

modulation signal (Figure 2; Simulation 2b).

11
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LC control over learning rate

The LC module optimizes also learning rate in the two dACC modules
(A and Ap). Approximate optimization of A solves the trade-off between stability and
plasticity, increasing learning speed when the environment changes and lowering it
when the environment is simply noisy. In this way, the RML updates its knowledge
when needed (plasticity), protecting it from random fluctuations. This function is
performed by means of recurrent connections between the dACC (both modules) and
the LC module, which controls learning rate based on the signals afferent from the
dACC. The resulting algorithm approximates Kalman filtering (Kalman, 1960; Welch
and Bishop, 1995), which is a recursive Bayesian estimator. In its simplest
formulation, Kalman filter computes expectations (posteriors) from current estimates
(priors) plus PE weighted by an adaptive learning rate (called Kalman gain). If we
define process variance as the outcome variance due to volatility of the environment,
Kalman filter computes the Kalman gain as the ratio between process variance and
total variance (i.e. the sum of process and noise variance). From the Bayesian
perspective, the Kalman gain reflects the confidence about priors, so that high values
reflect low confidence in priors and more influence of evidence on posteriors
estimation.

The main limitation of this and similar methods is that one must know a priori
the model describing the environment statistical properties (noise and process
variance). This information is typically inaccessible by biological or artificial agents,
which perceive only the current state and outcome signals from the environment. Our
LC module bypasses this problem by an approximation based on the information
afferent from the dACC, without knowing a priori neither process nor noise variance.

To do that, the LC modulates A (or A5) as a function of the ratio between the

estimated variance of state/action-value (v ar(v)) over the estimated squared PE (3 :

):

h=—m" (62)

With process variance given by:

12
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Var(v)=(v, -9,_,] (6b)

Where v is the estimate of v, obtained by low-pass filtering tuned by meta-parameter

.
 =Via T OC(Vl _‘;z—l) (6C)

The same low-pass filter is applied to PE signal (6) to obtain a running estimation of

total variance &> , which corresponds to the squared estimate of unsigned PE:
§,=5,,+al5|-4.) (6d)

For numerical stability reasons, 4 was constrained in an interval between 1 (max
learning rate) and S (min learning rate).

In summary, in equations 6a-d Kalman gain is approximated using 3
components: reward expectation (v), PE signals (0) (both afferent from the dACC
modules) and a meta-parameter (), defining the low-pass filter to estimate process
and total variance. The meta-parameter o represents the minimal assumption that
noise-related variability occurs at a faster time scale than volatility-related variability.
Equations 6a-d are implemented independently for each of two dACC modules, so
that each Critic interacts with the LC to modulate its own learning rate. The dACC
modules and the LC play complementary roles in controlling A: The dACC modules
provide the LC with the time course of expectations and PEs occurring during a task,
while the LC integrates them to compute Equation 6a.

The dynamical form of these equations is described in the dACC-LC system
paragraph in Supplementary Methods.

VTA
The VTA provides training signal DA to both dACC modules, either for action
selection directed toward the environment (by dACCaction) or for boosting-level

selection (by dACCpoost) directed to the midbrain catecholamine nuclei (Figure 1c, red

13
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box). The VTA module also learns to link dopamine signals to arbitrary
environmental stimuli (non-primary rewards) to allow higher-order conditioning. We
hypothesize that this mechanism is based on DA shifting from primary reward onset

to conditioned stimulus (s, a, or both) onset (Ljungberg et al., 1992).

DA, =r,(R, + ub)+(1 —y)pmax(vt (s',a)) (7a)

a

Equation 7a represents the modulated (by ) reward signal. Here, 7 is a binary
variable indicating the presence of reward signal, and R is a real number variable
indicating reward magnitude. Parameter p is the TD discount factor, while parameter
M is a scaling factor distributing the modulation b between primary (first term of the
equation) and non-primary (second term) reward. It is worth noting that when =0,
Equation 7a simplifies to a Q-learning reward signal.

The VTA signal directed toward the dACCgoost is described by the following

equation:
DA,, =r,(R, — wb) (7b)

where o is a parameter defining the cost of catecholamine boosting (Kool et al., 2010;
Kool and Botvinick, 2013; Shenhav et al., 2013). In summary, boosting up DA by b
(Equation 7a), can improve behavioural performance (as shown in simulations below)
but it also represents a cost (Equation 7b). The dACCpgoost module finds the optimal
solution for this trade-off, choosing the optimal DA level to maximize performance
while minimizing costs (for a formal analysis about this optimization process we refer
to Verguts et al., 2015). The dynamical form of these equations is described in the

dACC 4ction-VTA and dACCpoosi-VTA paragraphs in Supplementary Methods.

Control over other brain areas

Finally, the RML can optimize performance of other brain areas. It does so via
the LC-based control signal (Ne), which is the same signal that modulates costs
(Equation 2; Figure 2). Indeed, the Actor-Critic function of the dACCaction module is
domain-independent (i.e. the state/action channels can come from any brain area

outside dACC), and this allows a dialogue with other areas. Moreover, because
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optimization of any brain area improves behavioural performance, the dACCgoost can
modulate (via LC signals) any cortical area to improve performance (see Simulation

2¢)

Results

In this section, we report the results obtained with the dynamical model. Simulation
results from the discrete model (reported in paragraph “Supplementary Results: main
results replication with discrete model) are equivalent and replicated the results
described here. Simulation 2c (related to WM task) required intra-trial dynamics, and
was therefore run only with the dynamical version.

To mimic standard experimental paradigms as closely as possible, we repeated
just 12 times each simulation (simulated subjects), to test whether the model could
generate a large effect size of results. Obviously, p-values improved (but not the

effect sizes) when running more simulated subjects.

Simulation 1: learning rate and Bayesian inference
Adaptive control of learning rate is a fundamental aspect of cognition. Humans can
solve the tradeoff between stability and plasticity in a Bayesian fashion, by changing
the learning rate as a function of environmental changes (Behrens et al., 2007; Yu,
2007), and distinguishing between variability due to noise versus variability due to
actual changes of the environment (Yu and Dayan, 2005; Silvetti et al., 2013a).

We will investigate not only whether the model can capture and explain
human adaptive control of learning rate at behavioural level, but also a set of
experimental findings at neural level, which have not yet been reconciled in one
single theoretical framework. According to these findings, L.C activity (and thus Ne
release) tracks volatility (probably controlling learning rate) while dACC activation
tracks global environmental uncertainty (Nassar et al., 2012; Silvetti et al., 2013a,

2013b).

Simulation methods
We administered to the RML a 2-armed bandit task in three different stochastic

environments (Figure 3a-b). The three environments were: stationary environment
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(Stat, where the links between reward probabilities and options were stable over time,
either 70 or 30%), stationary with high uncertainty (Stat2, also stable reward
probabilities, but all the options led to a reward in 60% of times), and volatile (Vol,
where the links between reward probabilities and options randomly changed over
time) (see also Table s2). We assigned higher reward magnitudes to choices with
lower reward probability, to promote switching between choices and to make the task
more challenging (cf. Behrens et al. 2007). Nonetheless, the value of each choice
(probability x magnitude) remained higher for higher reward probability (see
Supplementary Methods for details), meaning that reward probability was the relevant
variable to be tracked. A second experiment, where we manipulated reward
magnitude instead of reward probability (see: Supplementary Results: dynamical

model; Figure s7), led to very similar results.

Simulation Results and Discussion

The RML performance in terms of optimal choice percentages was: Stat = 66.5% (+
4% s.e.m.), Vol = 63.6% (£ 1.4% s.e.m.). For Stat2 condition there was no optimal
choice, as both options led to reward in 60% of times. Importantly, the model
successfully distinguished not only between Stat and Vol environments, but also
between Stat2 and Vol, increasing the learning rate exclusively in the latter (Figure
3d). There was a main effect of volatility on learning rate 4 (F(2,11) =29, p <
0.0001). Post-hoc analysis showed that stationary conditions did not differ (Stat2 >
Stat, t(11) = 1.65, p = 0.13), while in volatile condition learning rate was higher than
in stationary conditions (Vol > Stat2, t(11) = 5.54, p <0.0001; Vol > Stat, t(11) =
5.76, p <0.0001). Hence, interaction between dACC and LC allows disentangling
uncertainty due to noise from uncertainty due to actual changes (Yu and Dayan, 2005;
Silvetti et al., 2013a), promoting flexibility (high learning rate) when new information
must be acquired, and stability (low learning rate) when acquired information must be
protected from noise. This mechanism controls learning rates in both the dACCaction
and the dACCpgoost modules, thus influencing the whole RML dynamics. The same
learning rate effect was found in experimental data (Figure 3e). Indeed, humans
increased both learning rate and LC activity only in Vol environments (Silvetti et al.,

2013). Thus, humans could distinguish between outcome variance due to noise (Stat2
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environment) and outcome variance due to actual environmental change (Vol
environment).

The model was also consistent with the fMRI data cited above (Silvetti et al.,
see Figure 4). During a RL task executed in the same three statistical environments
used in this simulation, the human dACC activity did not follow the pattern in Figure
3d but instead peaked for Stat2 environment, suggesting that activity of human dACC
is dominated by prediction error operations rather than by explicit estimation of
environmental volatility (Figure 4a). The RML captures these results (Figure 4b) by
its PE activity. Finally, it is worth noting that Vol-related activity of both model and
human dACC was higher than in Stat environment (stationary with low uncertainty),
thus replicating the results of previous fMRI studies by Behrens et al. (2007).

Summarizing, results in Figure 3d show the effectiveness of our RL-based
Kalman approximation, suggesting that the LC codes for volatility and that our
algorithm modeling dACC-LC dialogue is both computationally effective and
neurophysiologically grounded. Results in Figure 4b, on the other hand, indicate that,
although the dACC is part of a Bayesian estimator, its activity is mostly influenced by

overall environmental variance, rather than coding for volatility.
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Figure 3. a) The task (2-armed bandit) is represented like a binary choice task (blue
or red squares), where the model decisions are represented as joystick movements.
After each choice, the model received either a reward (sun) or not (cross). b) Example
of time line of statistical environments (order of presentation of different
environments was randomized across simulations). The plot shows reward probability
linked to each option (blue or red) as a function of trial number. In this case the model
executed the task first in a stationary environment (Stat), then in a stationary
environment with high uncertainty (Stat2), and finally in a volatile (Vol) environment.
¢) Model schema showing where we recorded the signal to measure the learning rate
variation (dashed black circle). d) Learning rate as a function of environmental
volatility (+ s.e.m.) in the RML and humans e) (modified from: Silvetti et al., 2013a).
f) human LC activity (inferred by pupil size; Joshi et al. 2016; Varazzani et al. 2015;
Aston-Jones and Cohen 2005) during the same task.
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Figure 4. a) dACC activity effect size (extracted from the ROI indicated by cross) in
a RL task executed during fMRI scanning. The task was performed in the same three
environments we used in our simulations. dACC activity peaked in Stat2 and not in
Vol condition (modified from: Silvetti et al., 2013b). b) dACCaction average prediction
error activity (sum of Jdunits activity & s.e.m.) as a function of environmental
uncertainty. Differently from the LC, the dACC is maximally active in stationary

uncertain environments (Stat2).
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Simulation 2: Controlling physical and cognitive effort
A long list of experimental results indicates DA and Ne neuromodulators as crucial
not only for learning environmental regularities, but also for exerting cognitive
control (e.g. Aston-Jones & Cohen 2005; Sara 2009; Vijayraghavan et al. 2007;
Langner & Eickhoff 2013; D’Esposito & Postle 2015). Although these mechanisms
have been widely studied, only few computational theories explain how the midbrain
catecholamine output is controlled to maximize performance (Doya, 2002; Yu and
Dayan, 2005; Niv et al., 2007), and how the dACC is involved in such a process. In
this section, we describe how the dACCgoost module learns to regulate LC and VTA
activity to control effort exertion, at both cognitive and physical level (Chong et al.,
2017), to maximize long-term reward. In Simulation 2a, we test the cortical-
subcortical dynamics regulating catecholamine release in experimental paradigms
involving decision-making in physically effortful tasks, where cost/benefit trade off
must be optimized (Salamone et al., 1994). In Simulation 2b, we show how the LC
can provide a Ne signal to external “client” systems to optimize cognitive effort
allocation and thus behavioural performance in a visuo-spatial WM task. In both

simulations, we also test the RML dynamics and behaviour after DA lesion.

Simulation 2a: Physical effort control and decision-making in challenging

cost/benefit trade off conditions

Deciding how much effort to invest to obtain a reward is crucial for human and non-
human animals. Animals can choose high effort-high reward options when reward is
sufficiently high. The impairment of the DA system strongly disrupts such decision-
making (Salamone et al., 1994; Walton et al., 2009). Besides the VTA, experimental
data indicate also the dACC as having a pivotal role in decision-making in this
domain (Kennerley et al., 2011; Apps and Ramnani, 2014; Vassena et al., 2014). In
this simulation, we show how cortical-subcortical interactions between the dACC,
VTA and LC can drive optimal decision-making when effortful choices leading to
large rewards compete with low effort choices leading to smaller rewards. We thus
test whether the RML can account for both behavioral and physiological experimental

data. Moreover, we test whether simulated DA depletion in the model can replicate
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the disruption of optimal decision-making, and, finally, how effective behaviour can

be restored.

Simulation Methods

We administered to the RML a 2-armed bandit task with one option requiring high
effort to obtain a large reward, and one option requiring low effort to obtain a small
reward (Walton et al. 2009; here called Effort task; Figure 5a). The task was also
administered to a DA lesioned RML (simulated by reducing all the outputs from VTA

module, see Experimental Methods section in Supplementary Matherial).
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Figure 5. a) Effort task, where a high effort choice (thick arrow from joystick)

resulting in high reward (HR, large sun) was in competition with a low effort choice

(thin arrow) leading to low reward (LR, small sun). b) Catecholamines boosting () as

a function of task type (Effort or No Effort task) and DA lesion. The boosting value

(recorded from the decision units within the dACCgoost module) is higher in the Effort

task (main effect of task), but there is also a task x lesion interaction indicating the

dACCpoost attempts to compensate the loss of DA, to achieve at least LR (see main

text). ¢) Behavioural results (average HR/(LR+HR) ratio +s.e.m., and average Stay-

to-total choices ratio percentage +s.e.m.) from RML and d) empirical data. e)

Behavioural results after DA lesion in RML and f) in empirical data. In this case
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animals and the RML switch their preference toward the LR option (requiring low

effort). In both d) and f), animal data are from Walton et al. (2009).

Like in Walton et al. (2009), before the execution of the Effort task, the RML learned
the reward values in a task where both options implied low effort (No Effort task).
Besides the high effort and low effort choices, the model could choose to execute no

action if it evaluated that no action was worth the reward (“Stay” option).

Simulation Results and Discussion
As shown in Figure 5b, the dACCpoost increased the boosting level () in the Effort
task (main effect of task, F(1,11) =231.73, p <0.0001) enhancing both LC and VTA
output (equations 5, 7a). Increased Ne influences the Actor of the dACCaction (effect
of Ne on action cost estimation in decision-making process, Equation 2), facilitating
effortful actions, while increased DA affects the learning process of the dACCaction
(equations 1, 7a), increasing the reward signal related to effortful actions (therefore
“subjectively” increasing their value with respect to the “objective” reward signal
provided by the environment). At the same time, the dACCgoost had to face the cost of
boosting (wb term in Equation 7b), so that the higher b, the higher was the reward
discount for the dACCpoost module. The result of these two opposite forces
(maximizing performance by catecholamines boosting and minimizing the cost of
boosting itself) converges to the optimal value of b and therefore of catecholamines
release by VTA and LC (Figure 6a).

After DA lesion, the dACCgoost decreased the boosting output during the
Effort task, while it increased the boosting output during the No Effort task (task x
lesion interaction F(1,11) =249.26, p <0.0001). Decreased boosting derives from
decreased DA signal to dACCpgoost module (Figure 6b). On the other side, increased
boosting b in No Effort task can be interpreted as a compensatory mechanism
ensuring the minimal catecholamines level to achieve the large reward when just a
low effort is necessary (Figure 6d). Indeed, the lack of compensation in No Effort task
would result in a policy mimicking behavioral apathy, where the RML would often
select the “Stay” action, saving on minimal costs of moving but also reducing the

amount of reward. in other words, when the incentive is high (high reward available)
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and the effort required to obtain the reward is low, the RML predicts that the DA
lesioned animal would choose to exert some effort (boosting up the remaining
catecholamines) to promote active behaviour versus apathy.

At behavioural level, in the Effort task, the RML preferred the high effort
option to get a large reward (Figure 5c; t(11) =4.71, p = 0.0042). After the DA lesion,
the preference toward high effort-high reward choice reversed (Figure 5d; t(11) = -
3.71, p = 0.0034). Both results closely reproduce animal data (Walton et al., 2009).
Furthermore, the percentage of “Stay” choices increased dramatically (compare
figures 5c and Se; t(11) = 18.2, p <0.0001). Interestingly, the latter result is also in
agreement with animal data and could be interpreted as a simulation of apathy due to

low catecholamines level.
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Figure 6. Cost-benefits plots and optimal control of 4 in the dACCgoost module. To

obtain these plots we systematically clamped b at several values (from 1 to 10, x axis
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of each plot) and then we administered the same paradigms of Figure 5b (all the
combinations Effort X DA lesion). In all the pots, y axis represents simultaneously
behavioural performance in terms of average reward (for blue plots), boosting cost
(red plots) and net value (performance — boost cost, in other words, Equation 7b). To
minimize computation time, we use for these simulations only the discrete model. a)
Effort task, no lesion. Plot showing RML behavioural performance as a function of b
(blue plot), boosting cost (red plot, @b member in Equation 7b) and net value for the
dACCpoost module (yellow plot, resulting from Equation 7b). Red dotted circles
highlight the optimal b value which maximizes the final net reward signal received by
the dACCgoost module. b) Effort task, DA lesion. Same as a, but in this case the
RML was DA lesioned. Due to lower average reward signal (blue plot), the net value
plot (yellow) is much lower than in a), as the cost of boosting (red plot) did not
change. Red dotted circle highlights the optimal b value, which is lower than in a). It
must be considered that, despite the optimal b value is 1, the average b (as shown in
figures 5b and s11b) is biased toward higher values, as it is selected by a stochastic
process (Equation 4) and values lower than 1 are not possible (asymmetric
distribution). ¢) No effort task, no lesion. In this case, being the task easy, the RML
reaches a maximal performance without high values of b, therefore the optimal b
value is low also in this case. d) No effort task, DA lesion. As shown also in Figure
5b, in this case the optimal b value (dotted circle), is higher than in c), because a
certain amount of boosting is necessary to avoid apathy (moving as an intrinsic cost)
and it can give access to large rewards. Apathy is determined by the RML preference
for “Stay” option, which gives no reward but it has no costs, boosting can help

avoiding apathy.

Simulation 2b: performance recovery after DA lesion, in cost/benefit trade off

conditions

In DA lesioned subjects, the preference for HR option can be restored by removing
the difference in effort between the two options (Walton et al., 2009), in other words
by removing the critical trade-off between costs and benefits. In these simulations, we
show how the RML can recover a preference toward HR options when exposed to the

same experimental paradigms used in rats.
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Simulation Methods

The same DA lesioned subjects of Simulation 2a were exposed to either a No Effort
task (where both the option required low effort) or a Double Effort task (where both
the options required a high effort) (Figure 7a-b). All other experimental settings were

identical to those of Simulation 2a.

Simulation Results and Discussion

DA-lesioned RML performance recovers immediately when a No Effort task is
administered after the Effort task (Figure 7¢), in agreement with animal data by
Walton et al. (2009; Figure 7d). This result shows that performance impairment after
DA lesion is not due to learning deficit (although partial learning impairment must
occur due DA role in learning), but rather to down-regulation of catecholamines
boosting, driven by dACCpoost.- A task where both the options require a low effort
does not require a strong behavioural energization, therefore the information about the
high reward location is sufficient for an optimal execution.

The same performance recovery occurs also in a task where both options are
effortful (Double Effort task, Figure 7¢), again in agreement with experimental data
(Figure 7f). Also in this case, when there is no trade-off between costs and benefits
(both the options are the same in terms of effort), the information about the high
reward location is sufficient to correctly execute the task, although there is a reduced
catecholamine boosting. Nonetheless, differently from the previous scenario, here
emerges a new phenomenon: apathy (percentage of “Stay”, Figure 7e-f). Indeed, both
the RML and animals often refuse to engage in the task, and rather than working hard
to get the high reward (whose position is well known) they prefer to remain still.
Apathic behaviour in this experiment is more evident than in Figure Se-f, because
both RML and animals are forced to make an effort to get a reward, while in

Simulation 2a (Figure Se-f) they could opt for the low effort-low reward choice.
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Figure 7. Recovery of HR option preference in DA lesioned subjects. a) No Effort
task, consists in two possible choices, both requiring low effort to be executed (small
black arrow), one leading to a high reward (large sun; HR), the other to a low reward
(LR). b) Double Effort task, where both options implied high effort. ¢-d) Recovery of
the preference for HR option (HR/(HR+LR)) when a No Effort task is administered
after an Effort task session (Effort — No Effort), in both RML and animals (mean
percentage + s.e.m.). e-f) Same phenomenon when a Double Effort session follows an
Effort one (Effort — Double Effort), in both RML and animals. Note that in this case
the amount of “Stay” choices (Stay/number of trials) increased, simulating the

emergence of apathic behaviour. Animal data from Walton et al., 2009.
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Simulation 2¢: Adapting cognitive effort in a WM task

Ne neuromodulation plays also a crucial role in WM, improving signal to noise ratio
by gain modulation mediated by o2-A adrenoceptors (Aston-Jones and Cohen, 2005;
Wang et al., 2007), and low level of Ne transmission leads to WM impairment (Li and
Mei, 1994; Li et al., 1999). At the same time, as described above, it is a major
biological marker of effort exertion (Kahneman, 1973; Varazzani et al., 2015).
Besides Ne release by the LC, experimental findings showed that also dACC activity
increases as a function of effort in WM tasks, e.g. in mental arithmetic (Borst and
Anderson, 2013; Vassena et al., 2014). Here we show that the same machinery that
allows optimal physical effort exertion (Simulation 2a) may be responsible for
optimal catecholamine management to control the activity of other brain areas, thus
rooting physical and cognitive effort exertion in a common decision-making
mechanism. This is possible because the design of the RML allows easy interfacing
with external systems. Stated otherwise, the macro-circuit dACC-midbrain works as a
“server” providing control signals to “client” areas to optimize their function. Given
the dynamical nature of this simulation (we used a dynamical model of WM, and the
task implies an intra-trial delay when information must be retained), we used in this

case only the dynamical version of the RML.

Simulation Methods

We connected the RML to a WM model (FROST model; Ashby et al. 2005; see
"FROST model description” section in Supplementary Methods). Information was
exchanged between the two models through the state/action channels in the
dACCaction module and the external LC output. The FROST model was chosen for
convenience only; no theoretical assumptions prompted us to use this model
specifically. FROST is a dynamical recurrent neural network simulating a macro-
circuit involving the DLPFC, the parietal cortex and the basal ganglia. This model
simulates behavioural and neurophysiological data in several visuo-spatial WM tasks.
FROST dynamics simulates the effect of memory loads on information coding, with a
decrement of coding precision proportional to memory load (i.e. the number of spatial

locations to be maintained in memory). This feature allows to simulate the increment
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of behavioural errors when memory load increases (Ashby et al., 2005). The external
LC output (/NVe) improves the signal gain in the FROST DLPFC neurons, increasing
the coding precision of spatial locations retained in memory (Equation s21 in
Supplementary Methods), thus improving behavioural performance. We administered
to the RML-FROST circuit a delayed matching-to-sample task with different memory
loads (a template of 1, 4 or 6 items to be retained; Figure 8a). We used a block design,
where we administered three blocks of 70 trials, each with one specific memory load
(1, 4, or 6). In 50% of all trials, the probe fell within the template. The statistical
analysis was conducted by a repeated measure 3x2 ANOVA (memory load and DA

lesion).

Simulation Results and Discussion

The dACCgoost module dynamically modulates Ne release as a function of memory
load, in order to optimize performance (Figure 8b, left panel; main effect of memory
load on LC output: F(2,22)=16.74, p <0.0001). Like in Simulation 2a, in case of DA
lesion, the VTA-dACC-LC interaction is disrupted, leading to a devaluation of
boosting and the consequent decision (by the dACCpgoost module) of downregulating
LC activity (Figure 8c, left panel; main effect of DA lesion on LC output: F(1,11)=
24.88, p <0.0001). This happened especially for high memory loads (lesion x
memory-load interaction: F(2,22) = 7.1, p = 0.0042). LC modulation impairment
results in poor performance in particular for high memory loads, when high level of
Ne is necessary (Figure 8c, accuracy, right panel; lesion x memory-load interaction:

F(2,22) = 8.6, p = 0.0017).
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Figure 8. a) Delayed Matching-to-sample task: events occurring in one trial. b) Left:
LC activity (Ne signal) as a function of memory load (number of items presented in
the template). Right: behavioural performance as a function of memory load. ¢) LC
activity (Ne signal) and behavioural performance after DA lesion. Error bars indicate

+s.e.m.

Simulation 3: Reinforcement Learning, meta-learning and higher-order

conditioning

Animal behavior in the real world is seldom motivated by conditioned stimuli directly
leading to primary rewards. Usually, animals have to navigate through a problem
space, selecting actions to come progressively closer to a primary reward. In order to
do so, animals likely exploit both model-free and model-based learning (Niv et al.,
2006; Pezzulo et al., 2013; Walsh and Anderson, 2014). Nonetheless, model-free
learning from non-primary rewards (i.e. higher-order conditioning) remains a basic

key feature for fitness, and the simplest computational solution to obtain adaptive
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behaviour in complex environments. For this reason, we focus on model-free learning
here.

A unifying account explaining behavioral results and underlying
neurophysiological dynamics of higher-order conditioning is currently lacking. First,
at behavioral level, literature suggests a sharp distinction between higher-order
conditioning in classical versus instrumental paradigms. Indeed, although it is
possible to train animals to execute complex chains of actions to obtain a reward
(instrumental higher-order conditioning, Pierce and Cheney, 2004), it is impossible to
install a third- or higher-order level of classical conditioning (i.e. when no action is
required to get a reward; Denny and Ratner, 1970). Although the discrepancy has
been well known for decades, its reason has not been resolved. Second, a number of
models have considered how TD signals can support conditioning and learning more
generally (Holroyd and Coles, 2002; Williams and Dayan, 2005). However, no model
addressing DA temporal dynamics also simulated higher-order conditioning at
behavioural level.

Here we use the RML to provide a unified theory to account for learning in
classical and instrumental conditioning. We show how the RML can closely simulate
the DA shifting in classical conditioning (Figure s8 in: “Supplementary Results:
dynamical model”). We also describe how the VTA-dACC interaction allows the
model to emancipate itself from primary rewards (higher-order conditioning). Finally,
we investigate how the synergy between the VT A-dACCgoost and LC-dACCgoost
interactions (the catecholamines boosting dynamics) is necessary for obtaining
higher-order instrumental conditioning. This provides a mechanistic theory on why
higher-order conditioning is possible only in instrumental and not in classical

conditioning.

Simulation 3a: Higher-order classical conditioning

Equation 7a (and its dynamical homologous Equation s5b) expresses a progressive
linking of DA response to conditioned stimuli. This is due to the max(v()) term in
Equation 7a and the time derivative of v in Equation s5b for the dynamical version of
RML. As VTA can vigorously respond to conditioned stimuli, it is natural to wonder
whether a conditioned stimulus can work as a reward itself, allowing to build a chain
of progressively higher-order conditioning (i.e. not directly dependent on primary

reward). However, for unknown reasons, classical higher-order conditioning is
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probably impossible to obtain in animal paradigms (Denny and Ratner, 1970;
O’Reilly et al., 2007). We thus investigate what happens in the model in such a

paradigm.

Simulation Methods

We first administered a first-order classical conditioning. We then conditioned a
second cue by using the first CS as a non-primary reward. The same procedure was
repeated up to third-order conditioning. Each cue was presented for 2s followed by
the successive cue or by a primary reward. All cue transitions were deterministic and

the reward rate after the third cue was 100%.

Simulation Results and Discussion

In Figure 9 we show the VTA response locked to the onset of each conditioned
stimulus. Surprisingly, but in agreement with experimental animal data, the
conditioned cue-locked DA release is strongly blunted at the 2" order, and
disappeared almost completely at the 3™ order. This aspect of VTA dynamics is
naturally captured by the dynamical version of the RML (closer to neurophysiology
than the discrete version), because at each order of conditioning, the cue-locked signal
is computed as the temporal derivative of reward prediction unit activity (Equation
s5b), losing part of its power at each conditioning step. In the discrete version of the
model, this aspect is expressed in Equation 7a, where (like in Q-learning) the cue-
locked DA response is scaled by a positive real number smaller than one (p). This
mechanism implies a steep decay of the conditioning effectiveness of non-primary
rewards, as at each order of conditioning, the reinforcing property of cues is lower
and lower. From the ecological viewpoint, it makes sense that the weaker is the link
between a cue and a primary reward, the weaker should be its conditioning
effectiveness. Nonetheless, as we describe in the following paragraph, this

phenomenon is in some way counteracted in instrumental conditioning.
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Figure 9. a) Experimental paradigm for higher-order classical conditioning. Sequence
of conditioned stimuli (colored disks) followed by primary reward (sun). b) VTA
activity (DA signal) locked to each of conditioned stimuli. Dashed black circle
indicates where the plotted signals were recorded from: DA signal from Equation s5b

(for RML dynamical version) or from Equation 7a (for RML discrete version).

Simulation 3b: Chaining multiple actions and higher-order conditioning
Differently from classical conditioning paradigms, animal learning studies

report that in instrumental conditioning it is possible to train complex action chains

using conditioned stimuli (environmental cues) as reward proxies, delivering primary

reward only at the end of the task (Pierce and Cheney, 2004).

Simulation Methods

We administered to the RML a maze-like problem, structured as a series of
binary choices before the achievement of a final reward (Figure s6). Each choice led
to an environmental change (encoded by a colored disk, like in Figure 2). The training
procedure was the same as for higher-order classical conditioning. We first

administered a first-order instrumental conditioning (2-armed bandit task). Then, we
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used the conditioned environmental cue as non-primary reward to train the RML for
second-order conditioning. The procedure was repeated up to third-order
conditioning. State-to-state transitions were deterministic and primary reward rate

was 100% for correct choices and 0% for wrong choices.

Simulation Results and Discussion

At the end of training, the system was able to perform three sequential choices
before getting a final reward, for an average accuracy of 77.3% (90% C.I. = +13%)
for the first choice (furthest away from primary reward; purple disk, Figure 10a);
95.8% (90% C.I. = [4.2, 5.6]%) for the second; and 98% (90% C.I. = +0.4%) for the
third choice (the one potentially leading to primary reward; orange disk, Figure 10a).
Figure 10b shows the cue-locked VTA activity during a correct sequence of choices.
Differently from classical conditioning, the DA signal amplitude persists over several
orders of conditioning, making colored disks (also far away from final reward)
effective non-primary rewards, able to shape behaviour.

The reason for this difference between classical and instrumental conditioning,
is in the role played by the dACCgoost module. Figure 10c compares average boosting
levels b (selected by the dACCproost) in classical and instrumental conditioning. The
dACCpoost learned that boosting catecholamines was useful in instrumental
conditioning; furthermore it learned that it was not useful in classical conditioning
(t(11) =5.64, p <0.0001). This decision amplified DA release during task execution
only in instrumental conditioning (compare Figure 10b and Figure 9b). Enhanced
VTA activity during the presentation of conditioned stimuli (the colored lights
indicating a change in the problem space) means more effective higher-order
conditioning, therefore a more efficient behaviour. Conversely, in classical
conditioning, the model does not need to make any motor decision, as the task
consists exclusively of passive observation of incoming cues (colored lights).
Therefore, boosting Ne and/or DA does not affect performance (reward amount), as
this is completely decided by the environment. In this case, boosting would only be a
cost (Equation 7b and its dynamic homologous Equation s18), and the dACCgoost
module learned not to boost, with a low DA levels for conditioned stimuli. This
explains the strong limitations in establishing higher-order classical conditioning, and

shows how decisions about effort exertion are involved in higher-order conditioning.
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Figure 10. VTA dynamics during higher order instrumental conditioning. a) Events
occurring during a sequence of correct choices in the task represented also in Figure
2. See Supplementary Methods for details. b) Cue-locked (colored disk indicating the
environment state) VTA activity. Dashed black circle on the model schema indicates
where the plotted signals were recorded from. Differently from higher order classical
conditioning, the DA release persists over progressive abstraction of rewards
(associative distance from primary reward). ¢) Boosting level (b) is higher in

instrumental conditioning as compared to classical conditioning (cfr. Figure 9).
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General Discussion

We proposed a novel account of the role of dACC in cognition, suggesting
that its elusive computational role can be understood by broadening the theoretical
view to a recurrent macro-circuit including the catecholaminergic midbrain nuclei. At
a theoretical level, this reconciled several previous frameworks of dACC function,
including behavioural adaptation from a Bayesian perspective (Kolling et al., 2016),
effort modulation for cognitive control (Shenhav et al., 2016), and RL-based action-
outcome comparison (Silvetti et al., 2014). Furthermore, the model explained a wide
array of heterogeneous empirical data, including learning rate optimization, effort
exertion in physical and cognitive tasks, and higher-order classical and instrumental
conditioning.

The first meta-learning process we analyzed concerned learning rate
(Simulation 1). The RML provides an explicit theory and neuro-computational
architecture of how autonomous control of learning rate can emerge from dACC-LC
interaction. We propose that the dACC provides signals about environment statistical
structure to the LC; in turn, LC estimates optimal learning rate by using Bayesian
inference. This explains why both structures are necessary for optimal control of
flexibility (Behrens et al., 2007; Nassar et al., 2012; Jepma et al., 2016), and why the
dACC activity seems to be related to RL. computation (Silvetti et al., 2013b) while the
LC activity to volatility estimation (Silvetti et al., 2013a). The RML not only
proposes a novel implementation of near optimal learning rate control, but it also
unifies RL and Bayesian perspectives, and explains how the mammalian brain can
estimate environmental volatility by using RL signals generated during animal-
environment interaction (Simulation 1).

The second meta-learning process concerned effort exertion and optimal
allocation of cognitive and physical resources to achieve a goal (simulations 2a-c).
We proposed that investing effort (cognitive or physical) and controlling associated
costs can be seen as an RL problem (Verguts et al., 2015). Differently from earlier
models, the RML generalizes this mechanism to any cognitive domain, showing how
the dACC-midbrain system could work as a server providing optimal control signals
to other brain areas to maximize success while minimizing costs. Moreover, the RML

provides an explicit theory about the role of catecholamines in cognitive control and
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effort exertion. Finally, the modulation of catecholamines release (of which the
dACCgoost 1s a key element) itself is based on Bayesian learning. This aspect provides
Bayesian flexibility to cognitive control, a novelty that unifies both these theoretical
perspectives.

The third meta-learning process that we simulated concerned control over
reward signal (both primary and non-primary), introducing for the first time the
dimension of subjectivity in RL. The reward signal is no longer an “objective”
feedback from the environment, but it can be proactively modulated 1) to increase the
value of actions implying effort (thus energizing behaviour; Equation 7a, simulations
2a-c) or 2) to increase the value of non-primary rewards (simulations 3a-b). The latter
mechanism, in particular, allowed to explain why higher-order conditioning is
possible in instrumental but not in classical paradigms. Moreover, as VTA activity is
modulated by the same signal modulating Ne release (b from dACCgoost), this feature
provides a unified theoretical view between optimal effort allocation and control over
motivational and learning aspects.

In the RML learning rate, effort estimation and reward-related processes are
integrated (Figure 1¢). For example, dynamic control of learning rate (1) is based on
RL signals from dACC modules (v and o). Learning rate modulation influences both
decision-making for action selection (a) and for boosting control (b). Boosting control
modulates in parallel both LC and VTA, changing both effort investment (Ne) and
reward signals (DA). Catecholamines modulation changes behavioural performance,
influencing action selection and environmental feedback, and then influencing back
LC control over learning rate.

The RML framework has two main limitations. First, in the RML DA plays a
role only in learning. As with any other neuromodulator, experimental results suggest
less clear-cut picture, with DA being involved also in performance directly (e.g.
attention and WM) (Wang et al., 2004; Vijayraghavan et al., 2007; Shiner et al., 2012;
Van Opstal et al., 2014). The goal of a simpler characterization was to elucidate how
the two neuromodulators can influence each other for learning (DA) and performance
(Ne). However, we stress that the ACCgoost control mechanism could be easily, and
without further assumptions, extended to DA modulation in the mesocortical
dopaminergic pathway, for performance control in synergy with Ne (thus accounting

for the more complex picture given by available empirical evidence).
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The second limitation is the separation of the LC functions of learning rate
modulation and cognitive control exertion. The cost of this separation between these
two functions is outweighed by stable approximate optimal control of learning rate
and catecholamines boosting policy. It must be stressed that the ACCpgoost module
receives the LC signal A related to learning rate in any case, making the boosting

policy adaptive to environmental changes.

Relationship to other models and the central role of RL in dACC function

The RML belongs to a set of computational models suggesting RL as main function
of mammalian dACC. Both the RVPM (RML direct predecessor; Silvetti et al., 2011)
and the PRO model (Alexander and Brown, 2011) shares with the RML the main idea
of the dACC as a state-action-outcome predictor. The RVPM is a subset of the
dynamical version of the RML model (Model description: dynamical form, in
Supplementary Methods). This implies that the RML can simulate also the results
obtained by the RVPM (e.g., conflict monitoring, error likelihood estimation),
extending even further the amount of empirical data that can be explained by this
framework. Although the RML goes beyond these earlier works, by implementing
meta-learning and higher-order conditioning, it shares with them the hypothesis that
PE plays a core role for learning and decision-making. Indeed, we hypothesize that
PE is a ubiquitous computational mechanism, which allows both dACC operations
(equations 1 and 3) and the approximation of optimal learning rate in the LC
(equations 6a-d).

Recent computational neuroscience of RL and decision-making focused on
hierarchical architectures. For instance, Alexander and Brown (2015) proposed a
hierarchical RL model (based on their previous PRO model), where hierarchical
design is implemented within the dACC, unfolding in parallel with a hierarchical
model of the DLPFC. In this model, PE afferents from hierarchically lower dACC
layers work as an outcome proxy to train higher layers; at the same time, error
predictions formulated at higher layers of DLPFC modulate outcome predictions at
lower ones. This architecture successfully learned tasks where information is
structured at different abstraction levels (like the 1-2AX task), exploring the RL basis

of autonomous control of information access to WM.
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In line with the recent interest for hierarchical RL, also Holroyd and McClure
(2015) proposed a model exploiting hierarchical RL architecture (the HRL), where
the dorsal striatum played a role of action selector, the dACC of task selector and the
prelimbic cortex (in rodents) of context selector (where and when to execute a task).
Moreover, each hierarchical layer implements a PE-based cognitive control signal that
discounts option selection costs on the lower hierarchical level. This model can
explain a wide variety of data about task selection and decision-making in cognitive
and physical effort regulation.

The RML differs from these two models for the following reasons. 1)
Although higher-order conditioning in the RML is based, to some extent, on a
hierarchical organization of reward signals (where DA signals linked to lower-level
conditioned stimuli work as reward proxies to train higher-level stimuli), the RML
lacks a genuine hierarchical structure. Its dynamics is emergent from the circular
interaction between cortical and subcortical circuits, allowing meta-learning. ii) The
RML provides mechanistic explanations to experimental findings from a broader
range of domains (from effort modulation to higher-order conditioning), including
findings that were earlier explained by the predecessor model RVPM (e.g. error
processing, error likelihood estimation, etc.). iii) Both HER and HRL needed ad hoc
parameter tuning to simulate different experimental results, while the RML (in both
its dynamical and discrete versions) required just one single parameter set.

The RML represents cognitive control as dynamic selection of effort exertion,
a mechanism that has been recently studied also by Verguts et al. (2015). In the latter
model, effort exertion was dynamically optimized by the dACC as a process of RL-
based decision-making, so that effort levels were selected to maximize long-term
reward. This solution successfully simulated many experimental results from
cognitive control and effort investment. A second model by Verguts (2017) described
how dACC could implement cognitive control by functionally binding two or more
brain areas by bursts of theta waves, whose amplitude would be proportional to the
level of control. This theory describes how but not when (and neither how much)
control should be exerted. The mechanisms proposed in the RML are an excellent
complement to this theory, hypothesizing how, when and to what extent the dACC
itself can decide to modulate theta bursts amplitude. It is worth noting that, in a very
recent work, the PRO model provided a pure RL interpretation of dACC activation in

preparation for an effortful task (Vassena et al., 2017a), where dACC activation
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preceding effortful action is due to effort intensity prediction and not to value of
exerting effort or to any effort-related control signal. Although this theory is notable
for parsimony, it does not provide any explanation about autonomous control of effort
exertion.

Finally, Khamassi et al. (2011) also hypothesizes a role of dACC in meta-
learning. The authors proposed a neural model (embodied in a humanoid robotic
platform) where the temperature of the action selection process (i.e. the parameter
controlling the trade-off between exploration and exploitation) was dynamically
regulated as a function of PE signals. Like in the RML, dACC plays both a role in
reward-based decision-making and in autonomous control of parameters involved in
decision-making itself. Differently from the RML, this model provided a more
classical view on PE origin, which were generated by the VTA and not by the dACC
like in the RML. Moreover, mechanism proposed for temperature control was reactive
to overall environmental variance (PE), lacking the capability to disentangle noise
from volatility.

Concerning control of learning rate, earlier Bayesian models (e.g. Kalman
1960; Behrens et al. 2007; Mathys et al. 2011) also adapted their learning rates,
proposing a computational account of behavioural adaptation. The main limitations of
those models are their loose anatomical-functional characterization, the fact that they
are computationally hard (in particular for optimal Bayesian solutions, e.g. Behrens et
al. 2007), and the need of hyper-parameters specifying a priori the statistical structure
of the environment (Kalman, 1960; Mathys et al., 2011). The latter feature reflects the
peculiarity of these models of needing an ad-hoc hierarchical forward model
representing the environment. At the top of this hierarchy, the experimenter defines a-
priori crucial characteristics about the environment (like the precision of the
probability function describing environmental volatility). At the best of our
knowledge, the only Bayesian model able to estimate volatility without the need of
specifying hyper-parameters is the one by Behrens et al. (2007), which works only for
binary outcomes. Also Wilson et al., (2013) proposed an approximate Bayesian
estimator that is based on PE, like the RML, without the need of specifying a forward
model of the environment. However, the authors provided a solution for one subclass
of volatility estimation problems (the change-point problems) and also in this case, an
a priori hyper-parameter describing volatility (the process variance) was needed. In

contrast, the RML provides an explicit neurophysiological theory on how near-
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optimal control emerges from the dialogue between dACC and LC, without the need
of an a priori forward model and of information about environmental volatility itself.
Indeed, our hyper-parameter « represents the minimal assumption that noise variance
occurs at higher frequencies than process variance (volatility). This derives from the
fact that the RML is not built hierarchically, but instead different interlocking
modules influence one another, creating a circular interaction. Moreover, the RML
can adapt learning rate in any kind of problem (binary, continuous, etc.), and finally,
it integrates approximate Bayesian optimization with other cognitive functions, like

effort control and higher-order conditioning.

Experimental predictions

The flexibility of RML, and the explicit neurophysiological hypotheses on
which it is based, allow several experimental predictions. Here we list some potential
experiments deriving from RML predictions. The first three could potentially falsify
the model.

First, the RML architecture suggests that PE signal are generated by the dACC
and then they converge toward the brainstem nuclei. This hypothesis implies two
experimental predictions following dACC lesion: a) disruption of DA dynamics in
higher-order conditioning, coupled with impossibility of higher-order instrumental
training; b) disruption of LC dynamics related to learning rate control, coupled with
behavioural flexibility impairment.

Second, a neurophysiological prediction concerns the mechanisms subtending
higher-order conditioning and the difference between classical and instrumental
paradigms. In the RML, higher-order conditioning is possible only when the agent
plays an active role in learning (i.e., instrumental conditioning). We predict that
hijacking the dACC decision of boosting catecholamines (e.g., via optogenetic
intervention) would make possible higher-order conditioning in classical paradigms
(ref. simulations 3a-b).

Third, in Simulation 2a (Figure 5b), the DA-lesioned RML predicts stronger
dACC activation during an easy task (without effort) in presence of a high reward.
This mechanism has been interpreted as a compensatory phenomenon allowing to

avoid apathy (i.e. refusal to engage the task) if a small effort can make available a big
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reward. This is an explicit experimental prediction that could be tested both in animal
paradigms and in mesolimbic DA impaired humans.

Furthermore, the model provides a promising platform for investigating the
pathogenesis of several psychiatric disorders. In a previous computational work, we
proposed how motivational and decision-making problems in attention-
deficit/hyperactivity disorder (ADHD) could originate from disrupted DA signals to
the dACC (Silvetti et al., 2013c). In the current paper, we also simulated a deficit
related to cognitive effort (Simulation 2c¢) in case of DA deficit. Together, these
findings suggest how DA deficit can cause both motivational and cognitive
impairment in ADHD, with an explicit prediction on how DA deficit can impair also
Ne dynamics (Hauser et al., 2016) in ADHD. This prediction could be tested by
measuring performance and LC activation during decision-making or working
memory tasks, while specifically modulating DA transmission in both patients (via
pharmacological manipulation) and RML.

Another result with potential translational implication comes from Simulation
2 (and 2b in Supplementary Results), where the model suggested a possible
mechanism linking boosting disruption and catecholamines dysregulation. This could
be suggestive of pathogenesis of some depressive symptoms. More specifically, the
RML predicts that DA antagonization intensifies effort in easy tasks (making them de
facto subjectively harder) and decreases it in harder tasks (simulating apathy when
effort is required by the environment; Figure 3b). Furthermore, it predicts an
increased probability to refuse executing the task (thus simulating apathy). This effect
could be experimentally tested by comparing effort-related dACC activation and
behavioral patterns in tasks implying high and low effort with or without DA
impairment. Another clinical application concerns a recent theory on autism spectrum
disorder (ASD) pathogenesis. (Van de Cruys et al., 2014) proposed that a substantial
number of ASD symptoms could be explained by dysfunctional control of learning
rate and chronically elevate Ne release. This qualitative hypothesis could be easily
implemented and explored quantitatively by altering learning rate meta-learning

mechanisms in the RML leading to chronically high learning rate and LC activation.

Future perspectives
The RML shows how meta-learning involving three interconnected neuro-cognitive

domains can account for the flexibility of the mammalian brain. However, our model
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is not meant to cover all aspects of meta-learning. Many other parameters may be
meta-learned too. One obvious candidate is the temperature parameter of the softmax
decision process (Khamassi et al., 2015), which arbitrates the exploration/exploitation
trade-off. We recently proposed that this parameter is similarly meta-learned trading
off effort costs versus rewards (Verguts et al., 2015). It must be noted that
experimental findings indicated a link between LC activation and the arbitration on
exploration/exploitation trade-off (Jepma and Nieuwenhuis, 2011), suggesting that the
same mechanism used for earning rate optimization could be extended also to this
domain. Other parameters from the classical RL modeling include discounting rate or
eligibility traces (Schweighofer and Doya, 2003); future work should investigate the
computational and biological underpinnings of their optimization.

Given the exceptionally extended dACC connectivity (Devinsky et al., 1995),
other brain areas are likely relevant for the implementation of decision making in
more complex settings. For example, we only considered model-free dynamics in RL
and decision-making. However, both humans and nonhuman animals can rely also on
complex environment models to improve learning and decision making (e.g. spatial
maps for navigation or declarative rules about environment features). In this respect,
future work should particularly focus on dACC-DLPFC-hippocampus interactions
(Womelsdorf et al., 2014; Stoll et al., 2016), in order to investigate how environment
models can modulate reward expectations and how the nervous system can represent
and learn decision tree navigation (Pfeiffer and Foster, 2013).

Finally, the dynamical version of the RML functions in continuous time and in
the presence of noise. These features are crucial to make a model survive outside the
simplified environment of trial-level simulations, and make possible to simulate
behaviour in the real world, like, for example, in robotic platforms (in preparation).
RML embodiment into robotic platforms could be useful for both neuroscience and
robotics. Indeed, testing our model outside the simplified environment of computer
simulations could reveal model weaknesses that are otherwise hidden. Moreover,
closing the loop between decision-making, body and environment (Pezzulo et al.,
2011) is important to have a complete theory on the biological and computational
basis of decision-making in the mammalian brain. At the same time, the RML could
suggest new perspectives on natural-like flexibility in machine learning, helping, for

example, in optimizing plasticity as a function of environmental changes.
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Summing up, we formulated a model of how dACC-midbrain interactions may
implement meta-learning in a broad variety of tasks. Besides understanding extant
data and providing novel predictions, it holds the promise of taking cognitive control
and, more in general, adaptive behaviour out of the experimental psychology lab and

into the real world.
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