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Abstract 
 Insulator proteins bind to specific genomic loci and have been shown to play a role in 
partitioning genomes into independent domains of gene expression and chromatin structure. 
Despite decades of study, the mechanism by which insulators establish these domains remains 
elusive. Here, we use genome-wide chromatin conformation capture (Hi-C) to generate a high-
resolution map of spatial interactions of chromatin from Drosophila melanogaster embryos. We 
show that from the earliest stages of development the genome is divided into distinct 
topologically associated domains (TADs), that we can map the boundaries between TADs to sub-
kilobase resolution, and that these boundaries correspond to 500-2000 bp insulator elements. 
Comparing this map with a detailed assessment of the banding pattern of a region of a polytene 
chromosome, we show that these insulator elements correspond to low density polytene 
interbands that divide compacted bands, which correspond to TADs. It has been previously 
shown that polytene interbands have low packing ratios allowing the conversion of small 
genomic distances (in base pairs) into a large physical distances. We therefore suggest a simple 
mechanism for insulator function whereby insulators increase the physical space between 
adjacent domains via the unpacking and extension of intervening chromatin. This model provides 
an intuitive explanation for known features of insulators, including the ability to block enhancer-
promoter interactions, limit the spread of heterochromatin, and organize the structural features of 
interphase chromosomes.   
 
Introduction 

Beginning in the late 19th century, cytological investigations of the polytene 
chromosomes of insect salivary glands implicated the physical structure of interphase 
chromosomes in their metabolic functions (1–5). Progressively more detailed optical and electron 
microscopic analysis of polytene chromosomes in Drosophila melanogaster have identified a 
stereotyped banding pattern with compacted, DNA-rich “bands” alternating with extended, DNA-
poor “interband” regions(6–10). While much is now known about the molecular properties of 
these two types of chromatin (11–20), the precise molecular nature of the banding structure 
remains elusive. 

Several methods have been developed in the past decade for the isolation and high-
throughput characterization of chromosomal regions that are colocalized within nuclei (21–24), 
yielding genome-wide maps of chromatin structure in a number of organisms and tissues. These 
experiments revealed that the interphase chromatin fiber is organized into topologically-
associated domains (TADs), contiguous regions of the genome that exhibit enriched three-
dimensional contacts between loci within the TAD, and depleted contacts between loci in 
different TADs. Eagen et al. recently showed that TADs identified from genome-wide chromatin 
conformation capture (Hi-C) at approximately 15 kb resolution from polytene nuclei of 
Drosophila melanogaster largely correspond to the bands of polytene chromosomes, and 
suggested that inter-TADs are regions of decompacted chromatin containing the promoters and 
regulatory elements of housekeeping genes (25). 

We have been interested in the establishment of interphase chromatin structure during 
early Drosophila development because of its relationship to transcriptional activation (26–28), 
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and have used deep sequencing of Hi-C libraries prepared with a 4-cutter restriction enzyme to 
generate a map of chromosome structure in cellular blastoderm embryos at sub-kilobase 
resolution. These data have many interesting features that we will present elsewhere, some of 
which have recently been discussed by (29,30). Here we focus exclusively on the relationship 
between our high-resolution Hi-C data, high-resolution polytene band patterns described by 
Vatolina et al. (31), and additional genomic data from our lab (26) and others (32–35) that shed 
light the molecular origins of chromosome organization.   
 
Results and Discussion 

We performed in situ Hi-C (22) in the early Drosophila melanogaster embryo using the 
MboI restriction enzyme (^GATC) and sequenced ~276 million productive linkages, a 
combination that yielded sub-kilobase resolution of chromatin architecture. From these data, we 
used methods similar to those employed by other groups (21,22,29,36,37) to identify regions of 
self-association (TADs) as well as boundary elements between those regions. Crucially, our data 
allowed the identification of TADs as small as a few kilobases. The boundary elements we 
identified between these TADs appear to correspond to classical insulator elements: regions of 
500-2000 bp that are sensitive to DNAse digestion and are strongly bound by known insulator 
proteins. Noting that interband regions are also characterized by DNase hypersensitivity and 
insulator protein association, we wondered about the detailed relationship between our Hi-C 
TADs and boundaries and the banding structure observed in polytene chromosomes.  

There is surprisingly little data associating features of polytene structure to the genome at 
high resolution. Vatolina et al. used exquisitely careful electron microscopy to identify the fine 
banding pattern of the 65 kb region between polytene bands 10A1-2 and 10B1-2, revealing that 
this region, which appears as a single interband under a light microscope, actually contains six 
faint bands and seven interbands (31). Vatolina et al. then used available molecular genomic data 
to infer genomic locations for these bands and interbands, and validated four of their interband 
assignments by FISH. We compared these inferred mappings of polytene banding patterns to our 
Hi-C data. 

Figure 1 shows the correspondence between Vatolina et al.’s polytene map from this 
region and our high-resolution Hi-C data, along with measures of early embryonic DNase 
hypersentivity from (26) and the binding of four insulator proteins (32). Strikingly, there is a 
near-perfect correspondence between the assignments of Vatolina et al. and our Hi-C data: bands 
correspond to TADs, and interbands correspond to the insulator elements that separate the TADs. 
Eagen et al. previously identified a broad correspondence between polytene interbands and inter-
TAD regions from their Hi-C data (25). However, our higher resolution Hi-C data reveals fine 
structure within these inter-TAD regions, and as a result we can now see a precise 
correspondence between insulators (regions of 500-2000 bp that are bound by insulator proteins 
and divide topological domains) and polytene interbands that has not, to our knowledge, been 
described previously.  

A key feature that distinguishes polytene interbands from bands is their low compaction 
ratio: they span a larger physical distance per base pair. Our observation that insulators 
correspond so precisely to interbands suggest a simple and intuitive mechanism for insulator 
activity whereby insulators function by increasing the physical space between adjacent domains 
via the unpacking and extension of intervening chromatin.  

Insulators have been associated with various functional properties. Principal among these, 
in addition to their role in organizing chromatin into domains, insulators block interactions 
between enhancers and promoters exclusively when inserted between them (38–44) and protect 
transgenes from position effect variegation and block the spread of chromatin silencing states 
(45–50). Without invoking complex interactions or chromosomal geometries, this chromatin 
extension model for insulator function can explain these defining characteristics via simple 
physical separation.  
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Materials and Methods 

Oregon R strain embryos were collected, aged, fixed with 5% PFA for 28 minutes, and 
hand sorted to isolate early cellularized (mid stage 5) embryos. In situ Hi-C was performed on 75-
500 embryos as described in Rao et al. (22) with minor modifications, using the restriction 
enzyme MboI. Paired-end sequencing with 100 bp per side was performed on the Illumina Hi-Seq 
2500. We prepared and sequenced libraries from seven independent biological and technical 
replicates. Combined data for all stage 5 samples is shown in this paper. 

Sequenced reads were aligned to the flybase 5_22 genome (dm3) using bowtie (51), 
retaining only read pairs in which both ends mapped uniquely to the genome. Resulting reads 
were assessed and filtered for quality similar to (22). Linkage matrices at various resolutions were 
then generated by binning the genome into bins of different sizes. Local directionality scores for 
high-resolution (500 bp) bins were generated by comparing the number of upstream and 
downstream linkages within a 15 kb window for each bin. Boundary elements were identified 
heuristically by searching for sites of transitions between upstream-bias and downstream-bias and 
applying thresholds to identify boundaries with varying stringency.  

ChIP data for insulator proteins was downloaded from the modEncode server and is 
described in (32,33,35). DNase-seq data was available at the UCSC genome browser (52,53)and 
was generated by (26). 
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Figure 1: (A) Combined view from the UCSC genome browser of polytene banding structure 
resolved by (31), Hi-C interaction heatmap, Hi-C directionality index, DNase accessibility, ChIP-
chip data for the insulator proteins CP190, BEAF-32, dCTCF, and Mod(mdg4) for the region 
covering chrX:10,971,551-11,074,797. Dashed green lines indicate the locations of TAD 
boundaries identified by Hi-C. Hi-C blocks lacking data result from genomic regions that lack 
MboI cut sites (GATC) and are uninformative. (B) Graphical representation of the chromatin 
expansion model of insulator function. The bands shown are proportionally sized according to 
genomic size (bp, top) and physical distance in polytene chromosomes (bottom) as measured by 
(31). Insulator proteins are represented to indicate that they drive the extension of these regions, 
not to imply that they coat them entirely. The presence of active promoters within the borders of a 
subset of these interbands suggests that these regions are not entirely occluded by insulator 
proteins. The mechanism(s) by which insulator proteins decompact chromatin are unclear.  
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