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Abstract 
 
Structural genomic variants form a common type of genetic alteration underlying human            
genetic disease and phenotypic variation. Despite major improvements in genome          
sequencing technology and data analysis, the detection of structural variants still poses            
challenges, particularly when variants are of high complexity. Emerging long-read          
single-molecule sequencing technologies provide new opportunities for detection of         
structural variants. Here, we demonstrate sequencing of the genomes of two patients with             
congenital abnormalities using the ONT MinION at 11x and 16x mean coverage,            
respectively. We developed a bioinformatic pipeline - NanoSV - to efficiently map genomic             
structural variants (SVs) from the long-read data. We demonstrate that the nanopore data             
are superior to corresponding short-read data with regard to detection of ​de novo             

rearrangements originating from complex chromothripsis events in the patients. Additionally,          
genome-wide surveillance of SVs, revealed 3,253 (33%) novel variants that were missed in             
short-read data of the same sample, the majority of which are duplications < 200bp in size.                
Long sequencing reads enabled efficient phasing of genetic variations, allowing the           
construction of genome-wide maps of phased SVs and SNVs. We employed read-based            
phasing to show that all ​de novo ​chromothripsis breakpoints occurred on paternal            
chromosomes and we resolved the long-range structure of the chromothripsis. This work            
demonstrates the value of long-read sequencing for screening whole genomes of patients            
for complex structural variants. 
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Introduction 
 
Second-generation DNA sequencing has become an essential technology for research and           
diagnosis of human genetic disease. Sequencing of human exomes has resulted in the             
identification of genes involved in Mendelian disorders ​1​, while whole-genome sequencing           
has revealed that a myriad of diseases is caused by genetic changes that can occur both                
within genes as well as in the noncoding genome ​2​. As a result, genome sequencing has                
seen rapid adoption in clinical decision making as a complete picture of a patient’s unique               
mutation profile enables personalization of treatment strategies ​3,4​.  
 
Robust methods to detect structural variants (SVs) in human genomes are essential, as SVs              
represent an important class of genetic variation that accounts for a far greater number of               
variable bases than single nucleotide variations (SNVs) ​5​. Moreover, SVs have been            
implicated in a wide range of genetic disorders ​6​. 
 
A particularly revolutionary development in genome sequencing is the usage of protein            
nanopores to measure DNA sequence directly and in real time ​1,7​. The first successful              
implementation of this principle in a consumer device was achieved in 2014 by Oxford              
Nanopore Technologies with the introduction of the MinION ​8​. The MinION can sequence             
stretches of DNA of up to hundreds of kilobases in length, which already resulted in the                
sequencing of the genomes of several organisms​9,10​. 
 
An important and natural application of the long reads produced by nanopore sequencing is              
identifying structural variations. Long-read sequencing is breaking ground for the discovery           
of SVs at an unprecedented scale and depth ​11​. The first success has been achieved using                
the Pacific BioSciences SMRT long-read sequencing platform ​12,13 and alternative methods           
including BioNano ​14 and 10X Genomics ​15​. While short-read next-generation sequencing           
data rely on multiple (often) indirect sources of information in order to accurately identify              
SVs, structural changes can be directly reflected in long read data. 
 
In this work, we demonstrate, for the first time, the sequencing of the whole diploid human                
genome on the MinION sequencer. We sequenced the genomes of two patients with             
congenital disease resulting from chromothripsis at 11-16X coverage depth. We employ a            
novel computational pipeline to demonstrate the possibility of using nanopore reads to detect             
de novo ​complex SV breakpoints at high sensitivity. The long reads from the MinION allowed               
efficient phasing of genetic variations genome wide (SNVs as well as SVs) and enabled us               
to resolve the long-range structure of the chromothripsis in the patients. Moreover, we             
identify a significant proportion of SVs that are not detected in short-read Illumina             
sequencing data of the same patient genomes.  
 
These results highlight the feasibility to sequence clinical human samples in real-time on a              
low-cost device. Because nanopore-based sequencing requires almost no capital investment          
and current devices have a very small footprint, mainstream adoption of these sequencers             
has the potential to fundamentally change the current paradigm of sequencing in centralized             
centers.  
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Results 
 
Long-read whole genome sequencing of patients genomes using the MinION 
As a first step toward real-time clinical genome sequencing, we evaluated the use of the               
MinION device to sequence the genomes of two patients with multiple congenital            
abnormalities ​16​, denoted hereforth as Patient1 and Patient2 respectively.  
 
We extracted DNA from patient cells and sequenced this on the MinION. For Patient1, we               
used R7, R9 and R9.4 pore chemistries (​Supplementary Table 1 ​) generating a total of 8.2M               
template sequencing reads from 122 sequencing runs. For Patient2, we exclusively used            
R9.4 runs and performed only 13 runs (1.89M reads), which required approximately five             
days of sequencing on seven parallel MinION instruments at a cost of around $7,000. This               
demonstrates the feasibility of sequencing whole human genomes at >10X coverage with            
the latest R9.4 chemistry (​Supplementary Figure 1 ​). 82.1% (Patient1) and 98.9% (Patient2)            
of these reads could be mapped to the human reference genomes and were useful for               
further analyses. Read lengths were highly variable for Patient1, as a result of differences in               
library prep methods, with a mean of 6.9kb for template reads, while for Patient2 we reached                
an average of 16.2kb with consistent read length distributions for each of the 13 runs               
(​Supplementary Figure 2 ​).  
 
Raw sequencing data were transformed into FASTQ format using Poretools and sequence            
reads were mapped to the human reference genome (GRCh37) using LAST ​17​. We uniquely              
aligned 99% of R7/R9 2D reads or R9.4 1D reads flagged as ‘passed’ after EPI2ME               
basecalling, while this dropped to 55% for R9-based ‘failed’ 2D reads (​Supplementary            

Figure 3 ​). We evaluated the mapping accuracy by calculating the percentages of identical             
bases between mapped reads and the reference genome (PID). We observed a mean PID              
of 90% for R7 2D and R9 2D, 85% for R9 template and 89% for R9.4 template reads based                   
on LAST mapping (​Supplementary Figure 4 ​). 
 
We obtained a mean coverage depth of 16X and 11X for Patient1 and Patient2, respectively               
(​Supplementary ​Figure 5 ​). Coverage was lower in regions with extreme GC content, yet             
this effect was significantly much less pronounced than for Illumina sequencing of the same              
genomes (​Supplementary Figure 6 ​) ​12​. This finding was confirmed by analysis of k-mer             
distributions of nanopore and Illumina data (​Supplementary Figure 7 ​). We noted that while             
the nanopore reads marked as ‘fail’ show overall systematic sequencing biases regarding            
coverage distribution, the quality of the aligned fraction is comparable to the ‘pass’ reads.              
We therefore included the ‘fail’ data of Patient1 that was successfully retrieved through             
alignment, in all subsequent analysis. 
 
Resolving de ​novo ​ genomic rearrangements using long-read data 
Both patients have complex phenotypes involving dysmorphic features and mental          
retardation, likely caused by their ​de novo ​complex chromosomal rearrangements, which           
were karyotypically defined as 46,XX,ins(2;9)(q24.3;p22.1p24.3)dn (Patient1) and       
46,XY,t(1;9;5)(complex)dn (Patient2)​ ​16​

.  
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We evaluated the performance to detect the breakpoints underlying the complex ​de novo             

karyotypes of Patient1 and Patient2 using nanopore sequencing data, at this medium            
coverage. Both patients have already been described in recent work, in which Illumina             
sequencing was used to map the rearrangement breakpoints, which is the current            
gold-standard method for routine genome-wide SV mapping in patient genomes ​16,18​. For            
Patient1, we augmented the previously described data by performing Illumina HiSeq X data             
for both parents. We performed SV calling with Delly ​19 and Manta ​20 on the Illumina data                 
from Patient1 and its parents. By integrating SV calls from Delly and Manta and removing               
calls that were also identified in one or both parents, we obtained a set of 44 putative ​de                  

novo ​SV breakpoints, 40 of which formed a complex genomic rearrangement, as described             
previously​16​. These 40 breakpoints could be verified by orthogonal breakpoint assays using            
PCR and MiSeq sequencing (​Supplementary Table 2 ​). The breakpoints cluster within           
regions of chromosomes 2, 7, 8 and 9 and are the result of a complex shattering and                 
reassembly process, known as chromothripsis ​21,22​ (​Figure 1A​). 
 
For Patient2, there were 29 SVs underlying the complex ​de novo karyotype as based on the                
previously described breakpoint-junctions, which were detected using long-insert mate-pair         
sequencing and revealed a complex chromothripsis rearrangement involving chromosomes         
1, 5 and 9 (​Figure 1A​, ​Supplementary Table 2 ​) ​16​. 
 
To enable SV detection in nanopore long-read sequencing data, we developed a new             
bioinformatic tool, NanoSV, tailored to nanopore data. NanoSV uses split-read mapping           
(obtained from LAST alignment) as a basis for SV discovery (​Methods, Supplementary            

Figure 8 ​), and supports discovery of all defined types of SVs (​Supplementary Figure 9 ​).              
We used NanoSV to detect SVs in the nanopore sequencing data generated for Patient1              
and Patient2. To benchmark NanoSV against other SV callers, we tested Lumpy ​23 and              
Sniffles ​24 for the Nanopore data and Manta and Delly for the Illumina data. All other callers                 
(i.e. except NanoSV) require BWA alignments as input.  
 
For Patient1, we reached 100% sensitivity with regard to detection of the 40 validated              
breakpoint-junctions. Conversely, we identified 33 (83%) and 31 (78%) of the 40 ​de novo              
breakpoint junction in the call sets from Lumpy and Sniffles, respectively (​Figure 1B​). For              
Patient2, NanoSV detected 24 of the 29 previously described breakpoint-junctions. We           
investigated further why five variants were missed, using Sanger sequencing of PCR            
products of the respective breakpoint-junctions. We found that two out of the five previously              
published breakpoint-junctions represent a complex combination of more than two joined           
segments (​Supplementary Figure 10 ​, ​Supplementary Table 2 ​). These short segments          
were likely missed by the long-insert jumping libraries that were used in the previous work ​16​.                
Based on validation by Sanger sequencing, we retrieved total of 32 chromothripsis            
breakpoint-junctions in Patient2 and 29 (91%) of these were detected using NanoSV (​Figure             

1B​). The three remaining junctions were missed by nanopore sequencing because of the             
low sequencing coverage, as we could observe split read mappings supporting each of             
these junctions. Sniffles and Lumpy, detected 16 (50%) and 9 (28%) of the 32              
breakpoints-junctions in the nanopore data from Patient2, respectively; Manta and Delly           
detected 19 (59%) and 22 (69%) of the 32 breakpoint-junctions respectively, in the             
short-insert Illumina data of Patient2. 
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Unraveling the long-range structure of the chromothriptic region  
In earlier work it has been suggested that germline chromothripsis originates on paternal             
chromosomes ​21​, but this has been inferred from only a few breakpoint-junction sequences             
or deleted segments. A thorough validation of the conjecture that the origin of chromothripsis              
is exclusively paternal is lacking. Furthermore, the structure of the chromothripsis           
rearrangements has been inferred from the patterns of breakpoint-junctions, under the           
assumption that the chromothripsis breakpoint-junctions occur on a single haplotype ​21,22,25​.  
 
We developed a bioinformatic pipeline to augment genome-wide genetic SNP phasing with            
nanopore read-based phasing of SVs (​Methods ​). In a first step we obtained 1.7M             
heterozygous SNPs from Patient1, that were called from Illumina sequencing data and            
trio-phased using GATK PBT ​26 and Patient1’s parents’ genotypes (alternatively, statistical           
phasing from publicly available reference panels may be used). Subsequently, each           
nanopore read was assigned phase based on a phasing score that takes into account the               
content and number of overlapping phase-informative SNPs (​Methods ​). Per chromothripsis          
breakpoint-junction, we obtained between 2 and 11 break-supporting nanopore reads and           
85% (195/228) of these overlapped on average of 9.8 phase-informative heterozygous           
SNPs. Additionally, we similarly phased the Nanopore reads that spanned but did not             
support the breakpoint junctions (reference reads). This analysis demonstrated that all 40 ​de             

novo ​chromothripsis breakpoint-junctions are unequivocally of paternal origin (​Figure 2 ​),          
whereas non-breakpoint-spanning reads at the same loci are of maternal origin. A small             
fraction of the reads points to an origin of some breakpoint-junctions on maternal             
chromosomes. These are all reads with three or less overlapping phase-informative SNVs,            
and therefore likely represent artifacts. These results support earlier hypotheses of a            
paternal origin of germline chromothripsis, pointing to a breakage and repair process specific             
for male chromosomes occurring either during spermatogenesis or early zygotic cell           
divisions ​27​. We were further able to reconstruct Patient1’s affected, derivative chromosomes            
by following the chain(s) of breakpoint-junctions by order and orientation (​Figure 3A-B​).            
Such a strategy leads to a configuration of four derivative chromosomes for Patient1, each              
containing one centromere and two telomeric chromosome ends. The such obtained           
chromosomal structure matched the observed karyotype (​Supplementary Figure 11 ​). 
 
We further wished to investigate the extent to which the derived chromosomal structure can              
be reconstructed from the nanopore sequencing data. We note that a much higher             
(Nanopore) sequencing depth is required in order to accurately reconstruct such large            
chromothriptic regions through diploid assembly. In order to evaluate the potential of            
Nanopore long-read data to facilitate future analyses, we pre-phased, as described above,            
all the reads that align within the chromothriptic region (i.e.: ~40MB of genomic sequence              
across 4 chromosomes) and use only the reads that are known to originate from the paternal                
haplotype and those that cannot be assigned phase (i.e. where the two haplotypes are              
identical).  
We built contigs first by evaluating the read overlaps from the reference alignment             
(​Methods ​) and obtained contigs that connect between two to five chromothriptic segments,            
spanning up to 2MB of contiguous DNA sequence (​Figure 3C, Supplementary Figure 12 ​).             
Finally, we used Miniasm​28 to evaluate whether such longer, local haplotype structure can be              
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retrieved in a more easily scalable fashion (​Methods ​). The whole 40MB region was             
assembled into 178 contigs that were subsequently aligned against the human reference            
genome. We identified three contigs of 241kb, 469kb and 1,217kb in size, each spanning 3               
to 5 chromothriptic segments. Segment order and orientation in each of the three contigs              
supports the predicted chromothripsis structure (​Figure 3D, Supplementary Figure 13 ​).  
 
Genome-wide structural variation discovery from nanopore reads 
Beyond very specific, targeted applications, long sequence reads present unique          
advantages for genome structural variation discovery in human genomes, as it has been             
recently shown from data generated on Pacific Biosciences platforms ​12,29​. Here, we            
assessed whether our Nanopore sequencing data could yield any novel SVs beyond those             
found in Illumina short-read sequencing of the same sample by using Patient1 as a test               
case. We used NanoSV to produce an initial call set of 33,592 SV breakpoint-junctions.              
Manual inspection of SV candidates showed that Nanopore sequencing and base-calling is            
very poor in regions containing homopolymer stretches, which typically lead to a collapse of              
the whole region into a spurious indel call. This is observed across samples, as well as in                 
nanopore-based high depth of coverage resequencing of PCR products (​Supplementary          

Figure 14 ​). Additionally, we noted that SV calling is similarly hampered in tandem repeat              
regions (​Supplementary Figure 14 ​). Based on these observations and in order to obtain a              
good quality consensus call set, we discarded calls for which both ends of the candidate               
breakpoint-junction fall within genomic homopolymer regions or short tandem repeat          
stretches, and remain with a set of 8,667 SV breakpoint-junctions for Patient1.  
 
The remaining call set of 8,667 SVs was intersected, for reference, with calls generated by               
two additional nanopore SV callers (Lumpy, Sniffles). Furthermore, we performed SV calling            
on the corresponding Illumina data of Patient1 using six tools (Pindel, Manta, Delly, FREEC,              
Mobster and GATK HaplotypeCaller) that are commonly used in human genome sequencing            
studies and which represent different methods to detect SVs from whole genome short-read             
Illumina sequencing data that collectively capture most classes of SVs ​19,20,30–32​. An SV is              
considered to be overlapping with the Illumina dataset if the Nanopore data SV call matches               
an SV call in any of the tools used on the Illumina data. We further considered as                 
overlapping Illumina data (i.e. “detectable” through short read sequencing) any NanoSV           
called variant that can be matched within the 1,000 genomes SV and indel sites respectively               
(​Supplementary Figure 15 ​) ​33​. 
 
We performed multiple rounds of orthogonal validation, on a random sample, spanning all             
SV classes and size ranges (​Methods ​). The estimated precision of our 8,667 SV calls is               
70% as based on 273 validation assays (193 true positives and 80 false positives). We               
further devised a post-calling filtering step, in order to produce a high confidence set of SV                
candidates. We manually curated an additional (random) subset of 83 SV calls and defined a               
training set of 191 true-positive and a set of 90 false-positive SV calls (​Methods ​). These               
data were subsequently used to train a random forest classifier, aiming to filter out false               
positive calls. The features that are included in the model are extracted from the aligned               
sequencing data and are designed to be sequencing read-depth and read-length           
independent, such that the model be applicable to any Nanopore sequencing setting            
(​Methods ​). Based on a model with an estimated 92% precision and 83% recall             
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(​Supplementary Figure 16 ​), we obtain a final set of 4,778 SV calls for Patient1, out of                
which 3,265 variants are found (or detectable) in short-read sequencing data as well. The              
remaining 1,513 (32%) variants are exclusively found in the Nanopore long-read sequencing            
data. Evaluation of a set of 75 SVs that were tested for validation, but not used for training                  
the random forest model, shows a precision of 84% on our final set of SVs. We applied the                  
same computational pipeline to call and filter SVs from the Nanopore data of Patient2, as               
well as intersect with SV calls from illumina short read data. After applying the random forest                
model trained on Patient1 data, we obtain a set of 4,977 high confidence SV calls for                
Patient2, out of which 3,237 are also identified in Illumina data, while 1,740 SVs are               
Nanopore specific. Aggregating the data from Patient1 and Patient2 we obtain a set of 6,502               
SVs, detectable by short read sequencing as well as long-read sequencing and a set of               
3,253 SVs that are long-read data specific. 
 
A comparison of the two sets of SV calls shows that Nanopore specific SVs are located at                 
sites with a higher GC content (i.e.: than SVs also genotyped from illumina data) on average,                
which are typically hard to sequence with short-read technologies (​Supplementary Figure           

17 ​). The most frequent class of SVs in the set of 9,755 predicted true-positive SVs are                
deletions (49%), yet the major fraction (84%) of these are also found in short-read data               
(​Figure 4A​). The largest fraction of Nanopore-specific variants is found for (tandem)            
duplications, where 60% (1,849) were not detected in corresponding Illumina data (​Figure            

4C​). Visual inspection of several genomic sites containing such short duplications, revealed            
that limited evidence for some of these can also be observed from Illumina data, yet at a                 
medium to high coverage of 40x none of 6 SV calling algorithms makes an alternative allele                
call. Similarly, we found that 34% of insertions in the size range of 51 to 200 bp are only                   
identified in the Nanopore data. Overall, most Nanopore-specific SVs are found in the             
10-200 size bin, which is a size range that is notoriously difficult for short-read data ​34​.                
Finally, we find that 45% of the large inversions (>10kb) are only identified in our               
Nanopore-specific set of SVs (​Figure 4D​). 
 
Nanopore read-based phasing of single-nucleotide variations 
Phasing genetic variation is critical for human disease studies ​35,36​. To demonstrate the             
potential of long-read sequencing data for direct read-based phasing of genetic variation, we             
employed WhatsHap, an algorithm that we recently established ​37,38​. Using WhatsHap, we            
phased a set of high-quality genome-wide SNVs from both patients (​Methods ​) and obtained             
haplo-blocks with N50=126kb for Patient1 and N50=305kb for Patient2 respectively. The           
distribution of block lengths is shown in ​Figure 5A​. We were able to establish 97.5%               
(96.5%) of all possible phase connections in Patient1 (Patient2), where a phase connection             
is defined as the relative phase between two consecutive heterozygous SNVs (​Figure 5B​).             
For Patient1, where Illumina sequencing data was available for the parents, we produced a              
ground-truth phasing by genetic haplotyping, that is, by using the SNV genotypes and the              
family relationship ​26​. Additionally, we phased both samples using ShapeIt2 and the 1000             
Genomes phase 3 reference panel ​39​. ​Figure 5C shows pairwise comparisons of the             
obtained haplotypes, with switch error rates of 1.7% and 2.3% when comparing read-based             
and population-based phasing for Patient1 and Patient2, respectively. We observed a lower            
switch error rate of 1.4% between trio-based and read-based phasing, which points to a              
significant amount of switch errors in the population-based phasing (1.0% when comparing            
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trio-based vs. population-based phasing). Therefore, a significant amount of differences          
between read-based and population-based phasing is most likely due to errors in the             
population-based phasing. Since Nanopore reads are especially prone to errors in           
homopolymer regions, we investigated the effect of excluding all SNVs in such regions from              
phasing (see ​Methods for a precise definition). This resulted in a decrease in the number of                
established phase connections from 97.5% to 91.7% for Patient1 and from 96.5% to 91.1%              
for Patient2 (​Figure 5B​) and a decrease in the switch error rate with respect to the                
pedigree-based phasing from 1.4% to 0.9% in Patient1, see ​Figure 5C​. This shows that              
switch errors are indeed often found at such homopolymer sites and that masking those              
sites significantly reduces switch error rates at the expense of only a moderate reduction of               
phased variants. 
 
Efficient phasing of genome-wide structural variations using nanopore reads 
While structural variation has recently been integrated in larger population genetic reference            
panels, which enables their imputation for genetic association studies ​18,33​, building these            
panels often requires statistical phasing approaches, which drop accuracy for low allele            
frequency SV sites. Read-based phasing of SVs using long reads will enhance our ability to               
include SVs in high-quality reference panels, where structural variation is still           
underrepresented ​18​.  
We apply the same methodology as above (i.e. used for phasing chromothriptic breakpoints)             
to evaluate genome-wide SV phasing accuracy. A total of 3.8M Nanopore reads overlapped             
one or more of the 1.7M genome-wide phase-informative SNPs. As estimated from reads             
overlapping at least 20 phase-informative SNPs, an average of 85.2% of the SNPs spanned              
by a read consistently support a particular phase assignment, which is in line with the               
reported error rate of MinION sequencing data (​Supplementary Figure 18 ​). A distinction            
between reads originating from paternal or maternal haplotypes can be readily made,            
particularly if reads overlap with multiple phase-informative SNPs (​Supplementary Figure          

19 ​). We then selected a set of 2,389 heterozygous SVs that overlap between Manta              
(Illumina) and NanoSV (Nanopore) call sets. Each SV was assigned a phase and a phasing               
quality (​Methods ​), by combining information from all phase-informative SNPs falling within           
the breakpoint-junction supporting reads and reference supporting reads respectively. ​In this           
way, ​we phased 1909 (78.7%) SVs and could assign 971 and 938 to paternal and maternal                
chromosomes, respectively. For the remainder of 480 SVs, spanning reads did not overlap             
any phase-informative SNP and therefore a phase could not be assigned to these SVs.              
Using the SV phasing produced by PBT as ground truth, our long-read based phasing of               
SVs had an accuracy of 98.5%. 
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Discussion 
 
In this work we demonstrate the feasibility of long-read sequencing of diploid human             
genomes on the MinION real-time portable nanopore sequencer. Given the long-read nature            
of the nanopore sequencing platform, we focused the analysis in this work on the detection               
of clinically relevant structural variations, a diverse category of genetic variation that is often              
causal to human genetic disease ​40​. A compelling motive for implementing long-read            
sequencing in the clinic is to diagnose patients with congenital phenotypes, such as             
intellectual disability ​41​. Hundreds to thousands of such patients are routinely screened            
annually for pathogenic SVs in clinical genetic centers, most often by copy number profiling              
or karyotyping. Although these methods are robust and relatively cost-efficient, they are not             
capable of mapping small or copy-balanced SVs, nor do they provide base-pair resolution             
accuracy, or the possibility to resolve complex SVs ​42​.  
 
Here we show that MinION sequencing provides an attractive alternative approach for            
genome-wide structural variation detection, which could be implemented as a clinical           
screening tool. We were able to extract all known ​de novo ​breakpoint junctions for Patient1               
(​Figure 1 ​), even at relatively low coverage. The long reads identified additional complexity             
for several breakpoint-junctions of Patient2. Moreover, 32% (29 vs 22) more chromothripsis            
breakpoint-junctions were detected with nanopore compared to short-insert Illumina         
sequencing. Our work also confirms previous data that revealed a substantial amount of             
novel SVs and indels discovered from PacBio long read sequencing of haploid human             
cells​29​. We observed that 33.3% of the high confidence set of SVs observed in the               
Nanopore data could not be found in matching Illumina sequencing data, despite the use of               
six different variant calling methods. Long sequencing reads thus enable a much more             
straightforward and homogeneous analysis of structural variation genome wide, while          
retaining a very high accuracy in the final set of variants. 
 
Phasing of genotyped SVs - relevant for mapping disease associations - is commonly done              
using statistical methods or by employing family-relationships among sequenced         
individuals​18​. We here devised a computational strategy that allowed accurate phasing of            
SVs directly from the long nanopore reads using flanking heterozygous SNPs. Read-based            
phasing of SVs is advantageous particularly for classes of SVs with a low population              
frequency and for ​de novo ​variations. This is exemplified by the evidence provided here for               
the paternal origin of all ​de novo ​breakpoint-junctions in Patient1, whereas previous work on              
chromothripsis has not provided robust suport for the parental origin of chromothripsis.  
 
If nanopore data quality improves at a similar pace as we observed during recent past               
(​Supplementary Figure 4 ​), SNV calling and genotyping may be directly performed based            
on the nanopore reads. Even though our data are of relatively low coverage, we were               
already able to obtain a good genotype concordance (96%) with the Illumina based pipeline,              
for existing SNV calls in Patient1 (data not shown). SNV calling combined with accurate              
phasing, as we demonstrated here, will enable nanopore-only genetic variation discovery           
and phasing. 
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The future of human genome sequencing will involve a shift towards longer sequencing             
reads that facilitate personal genome assemblies and alter the way we deal with genetic              
variation discovery and representation ​43​. Efforts to obtain full-length haplotype resolved           
chromosomal sequences are continuously advancing and the combination of multiple          
long-range sequencing and mapping approaches have recently led to diploid human           
genome assemblies with contig N50 size of well over 10Mb ​13,44​. We have not attempted a full                
human genome assembly using the nanopore reads in this work. However, we were able to               
separate reads by haplotype, which formed the basis for a reconstruction of the long-range              
structure of chromothripsis rearrangements. Such information is essential for interpretation          
of clinical phenotypes ​45​. 
 
A drawback of current short-read genome sequencing technology is the need for high capital              
investment, which often leads to sequencing infrastructure being located in dedicated           
sequencing centers. This is associated with a complex logistic workflow and relatively long             
turnaround times. Our results show that such limitations can be overcome by the use of               
portable nanopore sequencing technology. Since the start of this project in April 2016, we              
have seen a tenfold increase in throughput per MinION sequencing run (​Supplementary            

Figure 1 ​) and an increase in sequencing quality to 90% accuracy for high output 1D runs                
(450b/s). In practice this means that 10x coverage of the human genome can be reached               
using 10-15 MinION flowcells at a cost of 5,000$ to 8,000$ within one week of overall                
sequencing time. 
 
This work provides a glimpse into the potential of long-read, real-time and portable             
sequencing technology for human genomics research and clinical application. Creating          
larger catalogues of SVs, in complex repeat regions and segmental duplications, is a             
particular challenge in the coming years. We foresee that population-scale genome           
sequencing by nanopore or other long read technology will facilitate such discoveries,            
leading to further understanding of the role of SVs in the human genome in general and                
genetic disease in particular. 
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Methods 
 
Sample source 
The DNA for human genome sequencing in this study was obtained from two patients with               
congenital abnormalities and the parents. Informed consent for genome sequencing and           
publication of the results was obtained from all subjects or their legal representatives. The              
study was approved by Institutional Review Boards of San Luigi University Hospital and             
Brigham and Women's Hospital and Massachusetts General Hospital. Both patients have           
been previously described by Redin et al ​16​. 
 
DNA extraction 
DNA of Patient1 was obtained from either peripheral blood mononuclear cells (PBMCs)            
derived from blood and from renal epithelial cells obtained from urine. Renal cells were              
cultured up to 8 passages as reported previously ​46​. Cells were harvested after reaching              
confluency by trypsinization with TrypLE Select (Thermo Fisher Scientific) and centrifugation           
at 250g for 5 minutes. DNA from the parents was obtained from PBMCs. PBMCs were               
collected by a ficoll gradient. In brief, the blood was diluted 4x with phosphate buffered saline                
(PBS). Subsequently 13 mL of Histopaque®-1077 (family 1; Sigma-Aldrich 10771-500ML)          
was added per 35 mL of diluted blood. The resulting mixture was centrifuged at room               
temperature for 20 minutes at 900 x g, followed by recovery of the PBMC layer. PBMCs                
were washed twice using PBS, centrifuged at 750 x g for 5 minutes and resuspended in PBS                 
with 50% DMSO. For Patient2, DNA was obtained from a lymphoblastoid cell line, which              
has not been tested for mycoplasma contamination. The cell line was authenticated by             
whole genome sequencing. DNA extraction from cultured cells and PBMCs was performed            
using DNAeasy (Qiagen) or Genomic-tip (Qiagen) according to manufacturer’s specifications          
with exclusion of vortexing to maintain DNA integrity. 
 
Nanopore library preparation and sequencing 
Isolated DNA was sheared to ~10-20kb fragments using G-tubes (Covaris). Subsequently,           
genomic libraries were prepared using the Oxford Nanopore Sequencing kit (SQK-MAP006           
for R7 or SQK-NSK007 for R9), the Rapid library prep kit (SQK-RAD001) or the 1D ligation                
library prep kit SQK-LSK108. A 0.4x (instead of 1x) ampure cleanup was introduced after the               
FFPE DNA repair and the end-repair steps in the protocol to ensure removal of small DNA                
fragments. Genomic libraries were sequenced on R7.3, R9 and R9.4 flowcells followed by             
base-calling using either Metrichor workflows or MinKnow software. For Patient2 we           
introduced a DNA size selection step prior to library preparation using the Pippin HT system               
(Sage Science). 
 
Illumina whole genome sequencing 
Genomic DNA of the patients and the parents was sheared to 400-500bp fragments using              
the Covaris. Subsequently, genomic libraries were prepared using the nano library           
preparation kit. Genomic libraries were sequenced on an Illumina HiSeq X instrument to a              
mean coverage depth of ~30x. 
 
Nanopore data mapping 
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FASTQ files were extracted from base-called nanopore sequencing data using Poretools           
version 0.6.0 ​47​. Subsequently, fastq files were used as input for mapping by LAST (version               
744)​17​, against the GRCh37 human reference genome. Prior to mapping the full dataset, we              
used the ​last-train function to optimize alignment scoring parameters using a sample of 1200              
nanopore reads. Nanopore sequencing data were also mapped using BWA-MEM with the -x             
ont2d option. Nanopore 2D runs can produce 2D sequence reads, i.e. data where both              
forward and reverse reads of a DNA duplex are collapsed into a single sequence read,               
which produce three sequences in a fastq file, termed 1D template, 1D complement and 2D.               
Therefore, we filtered the LAST and BWA BAM files by only retaining one of these three                
“versions” for each read based on the following order of preference: 2D > 1D template > 1D                 
complement.  
 
Illumina data mapping 
Illumina HiSeq X ten data were mapped to the reference genome using BWA-0.7.5a using              
BWE-MEM -t 12 -c 100 -M -R. Reads were re-aligned using GATK IndelRealigner ​48 and               
deduplication was performed using Sambamba markdup ​49​. Short indels and SNPs were            
genotyped using GATK HaplotypeCaller, jointly for the Patient1 trio and individually for            
Patient2.  
 
NanoSV algorithm 
The NanoSV algorithm developed here (https://github.com/mroosmalen/nanosv) uses LAST        
BAM files as input. We did not use BWA-MEM alignments as NanoSV input, because the               
reads are not always split in non-overlapping segments. More precisely, we observed that             
the following two (oversimplified) CIGAR strings may be produced, for two aligned segments             
originating from the same sequencing read: 6M4S and 4S6M respectively. This observation            
was not further investigated for the purpose of this project.  
 
NanoSV uses clustering of split reads to identify SV breakpoint-junctions. In a first step, all               
mapped segments of each split read are ordered based on their positions within the              
originally sequenced read. The aligned read may contain gaps between its aligned            
segments, i.e. parts of the read that do not align anywhere on the reference genome, for                
example due to insertions (​Supplementary Figure 8 ​, ​Supplementary Figure 9 ​) or simply            
due to low quality sequencing. 
 
Let tuple x = (c,s,e,k) describe an aligned sequence segment, where the chromosome and              
genomic start and end coordinates of the segment are specified by c, s and e respectively,                
and the mapping orientation by k ∈ {+,-}. The coordinates s and e represent that start                
(lowest) and end (highest) coordinate of the mapped segment on the reference genome.             
Now, read R​i can be described in terms of the ordered list of aligned segments and                
alignment gaps X​i = [u ​1​, x​1​, u ​2​, x​2​, u ​3​, …, x​N​, u ​N+1​], where the ordering is determined based on                   
their occurrence in the read, u is the gap (i.e.: unaligned sequence preceding segment x)               
and N is the total number of aligned segments for read R. Alignment gaps are defined as                 
read segments that are either unaligned or segments that fail to reach the mapping quality               
threshold Q​1 (default: 20). The size of an unaligned segment is denoted as |u|, and can be                 
zero in case two adjacent segments align successfully.  
 

13 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 24, 2017. ; https://doi.org/10.1101/129379doi: bioRxiv preprint 

https://paperpile.com/c/vvyuGi/Soyvm
https://paperpile.com/c/vvyuGi/yWwbN
https://paperpile.com/c/vvyuGi/h1Dm8
https://paperpile.com/c/vvyuGi/qiXdb
https://doi.org/10.1101/129379
http://creativecommons.org/licenses/by-nc/4.0/


Any two consecutive aligned segments [x​n​, u ​n​, x​n+1​] in a read define a candidate              
breakpoint-junction. We further aggregate evidence from different reads supporting the same           
candidate breakpoint-junction. This is achieved by clustering all candidate         
breakpoint-junctions that have the same orientation and have start and end coordinates that             
are in close genomic proximity. In order to facilitate clustering of reads that cover the same                
breakpoint-junction but that map to opposite strands of the reference human genome, order             
and orientation of the aligned segments is reverse complemented if for the genomic             
coordinates {p,q} mapping to the two closest bases of segments x​n and x​n+1​, respectively,              
within a given sequence read R​x​, at least one of the following conditions is met: 
 

1. p and q are on the same chromosome and p-q>0  
2. p and q are on different chromosomes and p has a higher chromosome number 

 
The clustering is initialized by assigning each pair of consecutive aligned segments [x​n​, u ​n​,              
x​n+1​] to a separate cluster. The resulting clusters are then recursively merged. Any two              
clusters (C​x and C​y​) are merged if and only if, there exists a candidate breakpoint-junction               
tuple (x​n​, x​n+1​) ∈ cluster C​x and a candidate breakpoint-junction tuple (y​m​, y​m+1​) ∈ cluster C​y​,                
such that the following conditions are met: 
 
x​n​(c) = y​m​(c) (segments n,m map to same chromosome) 
x​n+1​(c) = y​m+1​(c) (segments n+1,m+1 map to same chromosome) 
x​n​(k) = y​m​(k) (segments n,m have same orientation) 
x​n+1​(k) = y​m+1​(k) (segments n+1,m+1 have same orientation) 
min ​x,y​(|x​n​(e)-y​m​(e)|) ≤ d if x​n​(k)=+ (n,m segment-ends are in close proximity) 
min ​x,y​(|x​n​(s)-y​m​(s)|) ≤ d if x​n​(k)=- (n,m segment-starts are in close proximity) 
min ​x,y​(|x​n+1​(s)-y​m+1​(s)|) ≤ d if x​n+1​(k)=+ (n+1,m+1 segment-starts are in close proximity) 
min ​x,y​(|x​n+1​(e)-y​m+1​(e)|) ≤ d if x​n+1​(k)=- (n+1,m+1 segment-ends are in close proximity) 
 
Where d is the threshold that we set for the maximum distance between the alignment               
coordinates of two segments if they are to be considered as supporting the same              
breakpoint-junction (default: 10 base-pairs). Recursive clustering continues until no more          
clusters can be merged. Each final cluster represents one candidate SV, which is described              
by tuple b = (c​1​,c​2​,p ​1​,p ​2​,k​1​,k​2​,g), with p ​1​, p ​2 the medians of the start and end coordinates of all                  
candidate breakpoint junctions contained in the cluster, c​1​, c​2 ​the chromosomes associated            
to these coordinates and k​1​, k​2 the orientation of the breakpoint-junction. Finally, the gap size               
g denotes the median size of the unaligned segments u ​n​, between the two consecutive              
aligned segments x​n​ and x​n+1​  of all the tuples within the respective cluster.  
 
A true SV is called when a candidate SV is supported by more than T reads (default: 2).                  
Moreover, SVs with median mapping quality of the supporting reads not exceeding Q​2 ​are              
still reported, but flagged as “MapQual” in the VCF FILTER field. SV-types can be              
determined from tuple b. Breakpoint-junctions where c​1 and c​2 point to different            
chromosomes are considered interchromosomal SVs (e.g. chromosomal translocations),        
which can have one of four possible orientations (3’to3’, 3’to5’, 5’to5’, 5’to3’). Similarly,             
breakpoint-junctions where c​1 and c​2 point to the same chromosome are intrachromosomal            
SVs, which can have one of four possible orientations (inversion type=3’to3’ or 5’to5’,             
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deletion/insertion type=3’to5’, tandem duplication type=5’to3’). Insertions and deletions are         
discerned based on the relation between the gap size, g, and the reference-length l=|p ​1​-p ​2​|,              
where an insertion is called if g>l and a deletion is called when g=<l (​Supplementary Figure                

9 ​). 
 
We only consider two possible alleles for each SV candidate (present = ALT/absent = REF).               
The reads supporting the alternative allele contain the segments constituting the           
breakpoint-junction cluster. We consider as supportive of the reference allele all reads for             
which there is an aligned segment crossing one of the ends of the breakpoint junction (or                
both). More formally, a read is defined as crossing a breakpoint if it contains at least one                 
aligned segment x​n for which holds: (p ​1 - x​n​(s) > 100 ⋀ x​n​(e)-p ​1 > 100) ⋁ (p ​2 - x​n​(s) > 100 ⋀                      
x​n​(e) - p ​2 > 100). Reads not supporting the reference allele according to this definition are                
ignored. SV genotypes (homozygous alternative, heterozygous, homozygous reference,        
not-called) are assigned based on a Bayesian likelihood similar to the one used (and              
formally defined) by the SVTyper ​23​. SV calls are reported in VCF format following the VCF                
standards as maintained by samtools specifications ​50​. To facilitate reporting of complex SV             
types, such as inversions or reciprocal translocations, individual breakpoint-junctions that          
bridge the same chromosomal regions, but are opposite in orientation (e.g. 3’to3’ and 5’to5’              
for inversions), are linked using an identifier. 
 
Nanopore data SV calling 
We run NanoSV on the Nanopore data of each patient using the default parameters : “-t 8 -s                  
10 -p 0.70 -m 20 -d 10 -c 2 -f 100 -u 20 -r 300 -w 1000 -n 2 -q 80 -i 0.80 -g 100 -y 20”. We                            
discarded all sites where the alternative allele count was 0 in the resulting genotype (i.e.:               
HOM_REF) and further filter the resulting call sets for SVs tagged as “Cluster”. The “Cluster”               
VCF INFO-field tag is added to all SV calls which lie inside a 500 base-pair region containing                 
three SVs or more. These clusters of SVs are most likely either sequencing errors or located                
in highly repetitive and/or decoy regions of the human reference. We used Lumpy​23 and              
Sniffles​24 (specifically designed for Oxford Nanopore and Pacific Biosciences data) to call            
SVs in both samples using BWA-MEM alignments (instead of LAST alignment, as per             
requirement of the respective callers) of the same data and settings that match our own               
(liberal) NanoSV settings as closely as possible, as follows. For Lumpy: “-mw 2 -tt 0 -e”,                
requiring that at least one read supports each candidate breakpoint and clustering            
breakpoints within 10 base-pairs (back_distance=10). For Sniffles: “-s 1 --max_num_splits          
10 -c 0 -d 10” ​24​. At the time of our analysis SVTyper was not supporting Nanopore reads                  
(i.e. it required paired end reads), therefore we considered the Lumpy, ungenotyped, SV             
candidate sites as final calls for all subsequent analyses/comparisons.  
 
Random Forest variant filtering model 
We trained a random forest (RF) model that we subsequently used to filter out false positive                
SV calls from our Nanopore data, such that we obtained a high precision set of variants for                 
downstream analysis. The training data for our model consists of 191 true positive (TPs) SVs               
and 90 false positives (FPs). These 281 training data SVs are the highest confidence              
variants (TPs or FPs) resulting from the manual curation of 700 variants from the initial               
dataset, selected to span the whole SV size range and all SV classes. The manual curation                
was performed by two experts independently and only the sites where both experts made              
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the same call were used. Out of the 191 TP SVs, 107 variants were also tested in one of the                    
3 initial validation rounds (see below) and in 89% of cases the validation call matches our                
manual curation; Similarly, 42 out of the 90 FP variants were also tested through validation               
and 69% of these labels are concordant.  
The features supplied to the RF model are (where side1 and side2 refer to the lowest and                 
highest genomic coordinates of a breakpoint-junction, respectively): 

- Mapq1: average mapping quality over all reads supporting side1 of the breakpoint            
junction 

- Mapq2: average mapping quality over all reads supporting side2 of the breakpoint            
junction 

- Pid1 : average percent identity (i.e.: to the reference) over all reads supporting side1              
of the breakpoint junction 

- Pid2 : average percent identity (i.e.: to the reference) over all reads supporting side2              
of the breakpoint junction 

- Cipos1 : genomic distance from the median start position of the SV to the lower               
bound of its associated confidence interval 

- Cipos2 : genomic distance from the median start position of the SV to the upper               
bound of its associated confidence interval ​(i.e.: confidence interval width = cipos1 +             
cipos2) 

- Plength1: average proportion of the aligned segment (i.e.: relative to the entire read             
length), across all segments supporting side1 of the breakpoint junction 

- Plength2: average proportion of the aligned segment (i.e.: relative to the entire read             
length), across all segments supporting side2 of the breakpoint junction 

- Ciend1: genomic distance from the (median) end position of the SV to the lower              
bound of its associated confidence interval 

- Ciend2: genomic distance from the (median) end position of the SV to the upper              
bound of its associated confidence interval ​(i.e.: confidence interval width = ciend1 +             
ciend2) 

- totalCovNorm: depth coverage summed across both ends of the breakpoint junction,           
divided by the average depth of coverage across the sample 

- Vaf: percentage of the reads spanning either end of the breakpoint junction that             
support the variant allele (i.e.: the presence of a breakpoint junction) 

The precision-recall curve of the model, and its 95% confidence interval, displayed in             
Supplementary Figure 16 is derived from 100 bootstrapping runs where the whole training             
data was split into 80%-20% train-test subsets. The optimal operating point was chosen at              
92% precision and 83% recall. 
The model trained on the whole training data was then applied to the whole set of 8,667 SVs                  
to produce a high confidence set of 4,587 SV calls, for Patient1. 
 
Illumina data SV calling 
SV calling for Illumina data was done using Manta ​20​, Delly​19​, FREEC​31​, Mobster​30 and             
Pindel ​32​. For Manta we used version 0.29.5 with standard settings, for Delly we used version               
0.7.2 with “-q 1 -s 9 -m 13 -u 5”, for FREEC we used version 7.2 with window=1000, for                   
Mobster we used version 0.1.6 with standard settings (Mobster properties template), for            
Pindel we used version v0.2.5b8 with standard settings and excluding regions represented            
by the UCSC GRCh37 gap table (​https://genome.ucsc.edu ​) using the -c option.           
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Homozygous reference calls (genotype = 0/0) were omitted from the call sets for each of               
these tools. 
 
PCR, primer design and SV validations 
Primers for breakpoint-junction validation were designed using Primer3 software ​51​.         
Breakpoint-junction coordinates and orientations were used as input for primer design.           
Amplicon sizes varied between 500-1000bp. PCR reactions were performed using AmpliTaq           
gold (Thermo Scientific) under standard cycling conditions. PCR products were sequenced           
using MiSeq (TruSeq library preparation, Illumina), Sanger sequencing (Macrogen) or          
MinION Nanopore sequencing (2D library preparation and sequencing). 
We perform extensive and heterogeneous validation on the SV calls of Patient1, in order to               
obtain a thorough and reliable characterization of our dataset and an informative comparison             
to standard approaches. We first randomly selected 384 NanoSV candidate calls (uniformly            
distributed across the observed size-range of SVs) from the call set of Patient1 and              
performed validation with Illumina MiSeq. We further selected 400 candidate calls (uniformly            
distributed across the observed size-range of SVs) exclusively from the Nanopore specific            
SV calls and validated them. Deep coverage Nanopore sequencing was used for this second              
round of validation, under the assumption that a long-read accessible only set of variants              
would be less likely to validate using the short read Illumina sequencing. A third round of                
validation was performed, also by Nanopore deep coverage sequencing, on a set of 192              
non-random variants; namely, 96 variants were expected to be true positive SV calls and 96               
false positive SV calls, as of an initial attempt to build a discriminative model. Upon               
inspection of these validation results, SVs falling within homopolymer stretches (see above)            
and/or short tandem repeats (UCSC tandem repeat table) were considered unreliably           
genotyped (i.e. even in the validation data) and were subsequently discarded from the             
dataset altogether (see main text - ​Results ​).  
All of the above three rounds of validation are thus restricted to the sites that fall outside                 
homopolymers and/or short tandem repeats and SVs for which we did not obtain a specific               
PCR product are discarded. This is the subset that is referred to as validation data               
throughout the text, when evaluating precision and it consists of 273 SVs (193 true positives               
and 80 false positives). The dataset used to train the Random Forest for the post-calling               
filtering step (191 true positives and 90 false positives) is a subset of the validation data                
assays, augmented with 83 more SVs, randomly selected from the initial calls and manually              
evaluated for validation status. The 75 SVs used as test data for the Random Forest model                
are all a subset of the deep sequencing validation assays.  
A structural variant was considered validated as a true positive if there exists an SV call, in                 
the validation SV call set, that overlaps (in the meaning described below) the original SV               
validation candidate. The validation SV call set is produced similarly to the initial analysis,              
where Manta is used for genotyping SVs in the MiSeq validation data and NanoSV is used                
for the Nanopore data respectively, with the note that deep coverage (i.e.: ~1,000 for MiSeq               
and Nanopore runs) enables accurate genotyping.  
 
Calculating overlap between SV datasets 
To calculate the intersection between SV call sets, we considered each SV call as a set of                 
breakpoint-junction start and end coordinates s and e, and orientation k. For any SV call i,                
each breakpoint-junction coordinate (s​i and e ​i ​) is the median of an associated confidence             
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interval, (s​i,l ​,s​i,h​) and (e ​i,l ​,e ​i,h​) respectively, as derived from the evidence cluster C​i ​. SV calls i               
and j are overlapping if the confidence intervals of their start and end coordinates are closer                
together than 101 bp. For SVs smaller than 1000bp (excluding insertions), we additionally             
required that SVs overlap each other with a reciprocal overlap of at least 70%, otherwise,               
considering the 100 base-pair margin that we use when comparing breakpoint junction            
borders, different SVs that happen to be in genomic close proximity may, incorrectly, be              
considered the same event .  
 
GC bias 
The GC content (i.e. percentage of guanine or cytosine bases within a certain DNA              
sequence) was computed for 100,000 5kb intervals of the reference genome (build            
GRCH37). These intervals were chosen such that they do not overlap sequencing gaps in              
the reference, as defined in the UCSC table browser         
(​https://genome.ucsc.edu/cgi-bin/hgTables​), including telomers, centromeres and other      
gaps. The average depth of coverage across each interval was then computed from the              
HiSeq alignment data and the Nanopore alignment data respectively (stratified by sequence            
reads tagged as “passed” and “failed” by the Metrichor basecalling for Patient1). The GC              
content was binned into 30 uniformly spread bins, between the minimum and the maximum              
GC content derived from the data. Six GC-content bins were discarded - i.e. those where               
GC-content < 0.26 or GC-content > 0.66 - as too few sampled intervals fall within these bins                 
and a coverage distribution cannot be robustly estimated (i.e.: 1 - 18 intervals per bin,               
Supplementary Figure 6 ​). 
A linear regression model with average coverage as the dependent variable and GC-content             
as the independent variable was trained, in order to quantify the GC bias of the two                
sequencing technologies, respectively. The average coverage values were normalized (0          
mean, 1 variance) for Illumina and Nanopore data respectively, because of the different             
sequencing average depth of coverage, such that the regression coefficients for the two             
technologies be comparable (i.e. the resulting regression coefficients express the number of            
standard deviations that the coverage varies, per GC content percentage). 
 
Genetic phasing of SNPs, indels and SVs from Illumina sequencing data 
We used the Illumina whole genome sequencing data of Patient1 and both its parents to               
obtain a high confidence set of phased genotypes (including SNPs, short indels and SVs),              
against which we subsequently evaluated the Nanopore data analysis. We used GATK            
PhaseByTransmission (PBT) ​26 to correct genotypes based on trio information and to obtain             
deterministic phasing for most loci. PBT settings were: “-prior 0.000001 -useAF GT -af_cap             
0.0001”. The PBT-phased SNPs were used to evaluate the genome-wide read-backed           
phasing from Nanopore data as well as for phasing the Nanopore reads and the              
PBT-phased SVs were used to evaluate the Nanopore read-backed phasing of the SVs (i.e.:              
evaluation was limited to the SVs detected in both Nanopore and Illumina data). PBT was               
run with a de novo mutation prior of 10e-6 and supplied with the population allele               
frequencies of 1000 genomes Phase 3 European population.  
 
Nanopore read-based phasing of SNVs using Whatshap 
For both patients, all bi-allelic heterozygous SNVs were phased from the aligned Nanopore             
reads using WhatsHap (version 0.13+21.g45bd7f8, ​37,38​) with realignment mode enabled.          
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That is, reads were realigned against reference and alternative alleles at variant sites, which              
is critical for phasing performance of noisy long reads ​38​. For comparison purposes, we used               
SNV genotypes to obtain a population-based phasing with respect to the 1000 Genomes             
phase 3 ​39 reference panel by running ShapeIt with default parameters. We excluded from              
the comparison all variants that fell within homopolymer runs longer or equal to 5 base-pairs,               
due to both genotyping accuracy, but mostly because of Nanopore’s known drop in             
sequencing accuracy for longer homopolymer sequences. The homopolymer bed-track used          
was computed genome-wide, incorporating a one base-pair border around the          
homopolymer, such that relatively frequent sequences of the form “XXXXXYZZZZZ” be           
merged into one homopolymer region for the final result. 
 
Phasing of nanopore reads and SVs 
Individual nanopore reads from Patient1 were phased using a set of 1.7M heterozygous             
SNPs that were genetically phased by GATK PBT​26​. Individual nanopore reads were phased             
using the genetically phased SNPs by determining the basecall and corresponding           
basequality at each SNP position within each read. Let b(i) and q(i) be the basecall and                
associated quality value for some SNP ​i in some read under evaluation. Further let BM(i)               
and BP(i) be the maternal and paternal alleles respectively (i.e.: as phased by PBT), for SNP                
i ​. The information from all SNPs spanned by a read is then aggregated and the likelihood                
that read r originates from the paternal or the maternal haplotype respectively is computed: 
 

p(r) ( b(i) | BP (i) )L =  ∏
n

i = 1
P  

 m(r) ( b(i) | BM (i) ) L = ∏
n

i = 1
P  

Where ​n ​ is the total number of SNPs that read ​r​ overlaps and  
 

(b(i) | base) 1 10  , if  b(i) aseP =  −  − 10
q(i)

 = b  

(b(i) | base) 10  , if  b(i) ≠baseP =  − 10
q(i)

  
 
Is the probability that a read supports a specific phased allele at a SNP. The likelihoods that                 
the SV resides on the paternal or the maternal haplotype respectively are then computed: 

p(SV ) p(r) L = ∏
Rsv

r= 1
L  

m(SV ) m(r) L = ∏
Rsv

r= 1
L  

Where ​Rsv ​denotes the set of all reads supporting the breakpoint junction. The two              
likelihood scores are then transformed to probabilities (i.e.: normalized to sum up to 1) and               
phase for the set of breakpoint-junction supporting reads is assigned as indicated by the              
highest likelihood score. Phase is assigned identically to the set of reference-supporting            
reads spanning the breakpoint junction. 
An SV is then considered phased if the two phases, for the set of breakpoint supporting                
reads and reference supporting reads respectively, correspond to different parental          
haplotypes and the (phred scaled) phasing posterior quality is defined as: 
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P  − 0 log ( max(Lp(SV ), m(SV )) max(Lp(REF ), Lm(REF )) ) P = 1 *  10 L *    
 
 
 
Construction of chromothripsis structure using reference-based nanopore read        
overlap 
To obtain evidence for the long-range structure of the chromothripsis breakpoint-junctions in            
Patient1, we first extracted the set of (aligned) Nanopore reads that span the chromothripsis              
regions on chromosomes 1, 7, 8 and 9. Separation of reads by phase was done as                
described above. Each mapped segment was ordered by left genomic mapping coordinate            
of each segment to produce an ordered list of segments L={s(1), s(2), …, s(n)}. Nodes were                
constructed from the ordered segments by requiring overlap between consecutive segment.           
Let i and j represent the start (left) and end (right) coordinate of segment s(1) and s(2). In                  
order for s(1) and s(2) to be assigned to the same node, we required (s(1)​j ​-s(2)​i ​) >= 20bp. A                  
segment s(n) is also assigned to the same node as the previous segment if the overlap with                 
the previous segment in the ordered list L is <20bp, but only if s(n) overlaps 20bp with at                  
least two earlier segments in L. 
 
In a subsequent step individual nodes are connected based on overlapping read names.             
Consider the following reads (r), segments (s) and nodes (m): 

● r(1)-s(1)-> m(1) 
● r(2)-s(1)-> m(2) 
● r(1)-s(2)-> m(2) 
● r(2)-s(2)-> m(3) 

The path through the nodes is considered as m(1)-m(2)-m(3). The number of individual read              
names that connect nodes is required to be at least 2.  
Using the above algorithm, individual breakpoint junctions were connected together,          
providing support for the order of the joined segments in the chromothripsis chromosomes of              
Patient1. 
 
Assembly of Nanopore sequencing data 
Nanopore reads of Patient1 were separated into three bins by phase, as described above.              
The reads that were assigned a paternal phase and the unphased reads were used as input                
for ​de novo assembly using Miniasm​28​, with settings: minimap -S -w 5 -L 100 -r 500 -m 0 and                   
miniasm -c 1 -m 100 -h 20000 -s 100 -r 1,0 -F 1. The contigs outputted by Miniasm were                   
aligned to the human reference genome (GRCh37) using LAST, with settings: -s 2 -T 0 -Q 0                 
-p [​last_parameters​]. The ​last_parameters were obtained as described above. LAST          
aligments (SAM format) were processed by custom scripts to evaluate the presence of             
chromothripsis segments from Patient1 based on chromosomal coordinate overlap. 
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Figure Legends 
 
Figure 1. De novo breakpoint junctions involved in complex chromosomal          

rearrangements of Patient1 and Patient2. 
(A) Circos plots for Patient1 and Patient2 respectively. For Patient1, we took the set of 40                
validated ​de novo breakpoint junctions obtained by Illumina whole-genome sequencing of           
the patient and its parents. For Patient2, we depicted the breakpoint-junctions as published             
recently ​52​. The outer ring of the circos plot shows the chromosome ideogram and the inner                
ring shows the copy number changes as revealed by FREEC ​53 analysis of Illumina whole               
genome sequencing data for both patients. Colored lines indicated breakpoint-junctions.          
Blue: tail-to-head, green: head-to-tail, red: head-to-head, yellow:tail-to-tail. (B) SV         
genotyping comparison across the chromothriptic breakpoint junctions, between Illumina         
Hiseq data and Nanopore data, using various tools tested. The x-axis represents different             
breakpoint-junctions and the y-axis shows different SV calling methods and datasets. The            
individual breakpoint-junctions are indicated by colors specifying the type of breakpoint           
junction.  
 
Figure 2. Phasing of chromothripsis breakpoint-junctions. 
Bardiagram displaying phasing of nanopore reads overlapping 40 chromothripsis         
breakpoint-junctions in Patient1. The x-axis displays each of 40 chromothripsis          
breakpoint-junctions identified in Patient1, stratified by allele (alternative and reference). On           
the left side only reads supporting the alternative allele are depicted and on the right side                
reads supporting the reference allele are shown. The y-axis indicates the number of reads              
supporting each allele, for each of the 40 breakpoint-junctions. Legend colors indicate            
whether the assigned read phase was paternal, maternal or unknown. 
 
Figure 3. Unraveling long-range chromothripsis structure from the read data. 
(A) Schematic diagram showing the patterns of breakpoint-junctions in Patient1. The human            
reference genomic regions that are involved in the chromothriptic event are depicted            
horizontally for each affected chromosome. The slanted lines connecting various reference           
segments represent breakpoint-junctions. The orientations of breakpoint-junctions are        
indicated by arrows as shown in the legend. Black (instead of open) arrows indicate the               
boundaries of a chromosomal deletion resulting from the chromothripsis, whereas open           
arrows indicate double-stranded DNA breaks. (B) Structure of chromothriptic derivative          
chromosomes in Patient1 as inferred from the orientations and order of breakpoint-junctions            
shown in panel A. (C) Reconstruction of a chromothriptic subregion of chromosome 7,             
involving 5 chromosomal segments. Overlapping aligned reads originating from Patient1’s          
paternal haplotype were used. Nanopore reads that are instrumental for segment           
connectivity are indicated by black bars. The coverage track has been generated from all              
paternal reads mapping to the respective chromosomal segments. The underlying derived           
chromosome’s structure is illustrated on the bottom. (D) Haploid assembly of the            
chromothriptic region of Patient1. A 469 kb contiguous assembled sequence (utg000062l)           
spans, through 54 segments that align back to the reference genome, the same             
chromothripsis subregion illustrated in panel C. The fragmentation of the assembly into            
many (54) aligned segments is expected given that Miniasm does not compute a consensus              
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sequence. 
 
Figure 4. Detection of novel SVs using nanopore sequencing data. 
Barplots indicating the total amount of high confidence NanoSV SV calls for Patient1 and              
Patient2 jointly, across different SV size bins and stratified by SV type as follows: deletions               
(A), insertions (B), duplications (C) and inversions (D). The NanoSV calls were intersected             
with SV calls from other data sources (Illumina data of Patient1 and Patient2 and 1000               
Genomes phase 3 sites). For panel A and B, the x-axis was trimmed to 1000bp and a small                  
number of variants beyond this size are not displayed in the figure. Similarly, for panel C the                 
x-axis was limited to 200bp. 
 
Figure 5. Performance of SNV phasing. 
(A) Distribution of phased block lengths resulting from read-based phasing by WhatsHap.            
Patient1 and Patient2 are shown in brown and blue, respectively. (B) Fraction of phase              
connections (i.e. pairs of consecutive SNVs phased with respect to each other) established             
in the two patients and with/without masking repeats (light/dark colors). (C) For Patient1,             
switch error rates of all pairs of trio-based (PBT), population-based (ShapeIt), and            
read-based (WhatsHap) phasing are shown. For Patient2, where no family data is available,             
read-based phasing is compared to population-based phasing. 
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