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Abstract

Genome-wide association studies have identified hundreds of risk loci for autoimmune disease, yet only
a minority (~25%) share genetic effects with changes to gene expression (eQTLs) in immune cells.
RNA-Seq based quantification at whole-gene resolution, where abundance is estimated by culminating
expression of all transcripts or exons of the same gene, is likely to account for this observed lack of
colocalisation as subtle isoform switches and expression variation in independent exons can be
concealed. We performed integrative cis-eQTL analysis using association statistics from twenty
autoimmune diseases (560 independent loci) and RNA-Seq data from 373 individuals of the Geuvadis
cohort profiled at gene-, isoform-, exon-, junction-, and intron-level resolution in lymphoblastoid cell
lines. After stringently testing for a shared causal variant using both the Joint Likelihood Mapping and
Regulatory Trait Concordance frameworks, we found that gene-level quantification significantly
underestimated the number of causal cis-eQTLs. Only 5.0-5.3% of loci were found to share a causal
cis-eQTL at gene-level compared to 12.9-18.4% at exon-level and 9.6-10.5% at junction-level. More
than a fifth of autoimmune loci shared an underlying causal variant in a single cell type by combining
all five quantification types; a marked increase over current estimates of steady-state causal cis-eQTLs.
As an example, we dissected in detail the genetic associations of systemic lupus erythematosus and
functionally annotated the candidate genes. Many of the known and novel genes were concealed at
gene-level (e.g. BANKI, UBE2L3, IKZF2, TYK2, LYST). By leveraging RNA-Seq, we were able to
isolate the specific transcripts, exons, junctions, and introns modulated by the cis-eQTL - which
supports the targeted design of follow-up functional studies involving alternative splicing. Causal cis-
eQTLs detected at different quantification types were also found to localise to discrete epigenetic

annotations. We provide our findings from all twenty autoimmune diseases as a web resource.
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Author Summary

It is well acknowledged that non-coding genetic variants contribute to disease susceptibility through
alteration of gene expression levels (known as eQTLs). Identifying the variants that are causal to both
disease risk and changes to expression levels has not been easy and we believe this is in part due to how
expression is quantified using RNA-Sequencing (RNA-Seq). Whole-gene expression, where abundance
is estimated by culminating expression of all transcripts or exons of the same gene, is conventionally
used in eQTL analysis. This low resolution may conceal subtle isoform switches and expression
variation in independent exons. Using isoform-, exon-, and junction-level quantification can not only
point to the candidate genes involved, but also the specific transcripts implicated. We make use of
existing RNA-Seq expression data profiled at gene-, isoform-, exon-, junction-, and intron-level, and
perform eQTL analysis using association data from twenty autoimmune diseases. We find exon-, and
junction-level thoroughly outperform gene-level analysis, and by leveraging all five quantification
types, we find >20% of autoimmune loci share a single genetic effect with gene expression. We
highlight that existing and new eQTL cohorts using RNA-Seq should profile expression at multiple

resolutions to maximise the ability to detect causal eQTLs and candidate genes.
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Introduction

The autoimmune diseases are a family of heritable, often debilitating, complex disorders in which
immune dysfunction leads to loss of tolerance to self-antigens and chronic inflammation [1]. Genome-
wide association studies (GWAS) have now detected hundreds of susceptibility loci contributing to risk
of autoimmunity [2] yet their biological interpretation still remains challenging [3]. Mapping single
nucleotide polymorphisms (SNPs) that influence gene expression (eQTLs) can provide meaningful
insight into the potential candidate genes and etiological pathways connected to discrete disease
phenotypes [4]. For example, such analyses have implicated dysregulation of autophagy in Crohn’s
disease [5], the pathogenic role of CD4" effector memory T-cells in rheumatoid arthritis [6], and an

overrepresentation of transcription factors in systemic lupus erythematosus [7].

Expression profiling in appropriate cell types and physiological conditions is necessary to capture the
pathologically relevant regulatory changes driving disease risk [8]. Lack of such expression data is
thought to explain the observed disparity of shared genetic architecture between disease association and
gene expression at certain autoimmune loci [9]. A much overlooked cause of this disconnect however,
is not only the use of microarrays to profile gene expression, but also the resolution to which expression
is quantified using RNA-Sequencing (RNA-Seq) [10]. Expression estimates of whole-genes, individual
isoforms and exons, splice-junctions, and introns are obtainable with RNA-Seq [11-18]. The SNPs that
affect these discrete units of expression vary strikingly in their proximity to the target gene, localisation
to specific epigenetic marks, and effect on translated isoforms [18]. For example, in over 57% of genes
with both an eQTL influencing overall gene expression and a transcript ratio QTL (trQTL) affecting
the ratio of each transcript to the gene total, the causal variants for each effect are independent and

reside in distinct regulatory elements of the genome [18].

RNA-Seq based eQTL investigations that solely rely on whole-gene expression estimates are likely to
mask the allelic effects on independent exons and alternatively-spliced isoforms [16—19]. This is in part

due to subtle isoform switches and expression variation in exons that cannot be captured at gene-level
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81 [20]. A large proportion of trait associated variants are thought to act via direct effects on pre-mRNA
82  splicing that do not change total mRNA levels [21]. Recent evidence also suggests that exon-level based
83  strategies are more sensitive than conventional gene-level approaches, and allow for detection of
84  moderate but systematic changes in gene expression that are not necessarily derived from alternative-
85 splicing events [15,22]. Furthermore, gene-level summary counts can be biased in the direction of
86  extreme exon outliers [22]. Use of isoform-, exon-, and junction-level quantification in eQTL analysis
87  also support the potential to not only point to the candidate genes involved, but also the specific
88  transcripts or functional domains affected [10,18]. This of course facilitates the design of targeted
89  functional studies and better illuminates the causative relationship between regulatory genetic variation
90  and disease. Lastly, though intron-level quantification is not often used in conventional eQTL analysis,
91 it can still provide valuable insight into the role of unannotated exons in reference gene annotations,
92  retained introns, and even intronic enhancers [23,24].
93
94  Low-resolution expression profiling with RNA-Seq will impede the subsequent identification of causal
95 eQTLs when applying genetic and epigenetic fine-mapping approaches [25]. In this investigation, we
96  aim to increase our knowledge of the regulatory mechanisms and candidate genes of human
97  autoimmune disease through integration of GWAS and RNA-Seq expression data profiled at gene-,
98  isoform-, exon-, junction-, and intron-level in lymphoblastoid cell lines (LCLs). This is firstly
99  performed in detail using association data from a GWAS in systemic lupus erythematosus, and is then
100 scaled up to a total of twenty autoimmune diseases. Our findings are provided as a web resource to
101  interrogate the functional effects of autoimmune associated SNPs (www.insidegen.com), and will serve

102 as the basis for targeted follow-up investigations.
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104 Results

105

106  Gene-level expression quantification underestimates the number of causal cis-eQTLs
107  Using densely imputed genetic association data from a large-scale GWAS in systemic lupus
108  erythematosus (SLE) in persons of European descent [7], we performed integrative cis-eQTL analysis
109  with RNA-Seq expression data profiled at five resolutions: gene-, transcript-, exon-, junction-, and
110  intron-level. The expression data are derived from the 373 healthy European donors of the Geuvadis
111 project (all individuals are included as part of the 1000 Genomes Project) profiled in lymphoblastoid
112 cell lines (LCLs) [18]. See S1 Figure and methods for a summary of how expression at the five
113 resolutions was quantified using RNA-Seq. A total of 38 genome-wide significant SLE loci (S1 Table)
114 were put forward for analysis following removal of: associated SNPs with minor allele frequency < 5%,
115  secondary associations upon conditional analysis on lead variant, and major histocompatibility complex
116  loci - owing to the known complex linkage disequilibrium (LD) patterns. To test for evidence of a single
117  shared causal variant between disease and gene expression at each of the remaining 38 SLE associated
118  loci, we employed the rigorous Joint Likelihood Mapping (JLIM) framework [9] using summary-level
119  statistics for the SLE association (primary trait) and full genotype-level data for gene expression
120 (secondary trait). Using JLIM, cis-eQTLs were defined if a nominal association (P<0.01) with at least
121 one SNP existed within 100kb of the SNP most associated with disease and the transcription start site
122 of the gene located within +/-500kb of that SNP (as defined by the authors of the JLIM package). JLIM
123 P-values were corrected for multiple testing as per the JLIM standards by using a false discovery rate
124 (FDR) of 5% per RNA-Seq quantification type (i.e. at exon-level, JLIM P-values were FDR adjusted
125 for total number of exons tested in cis to the 38 SNPs). Causal associations of the integrative cis-eQTL
126 SLE GWAS analysis using the JLIM package across the five RNA-Seq quantification types are
127  available in S2 Table and the full output (including non-causal associations) are available in S3 Table.
128  See S2 Figure for the distribution of JLIM P-values across the five RNA-Seq quantification types.

129
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130 We found the number of cis-eQTLs driven by the same causal variant as the SLE disease association
131  was markedly underrepresented when considering conventional gene-level quantification (Table 1).
132 Only two of the 38 SLE susceptibility loci (5.3%) were deemed to be causal cis-eQTLs at gene-level
133 for three candidate genes. Interestingly, this is a similar proportion to that observed by the authors of
134 the JLIM method (Chun et al [9]). They found that 16 of the 272 (5.9%) autoimmune susceptibility loci
135  tested were cis-eQTLs driven by a shared causal variant in the Geuvadis RNA-Seq dataset using gene-
136  level quantification (based upon the seven autoimmune diseases interrogated - not including SLE).
137

138  Of note, transcript-level quantification did not increase the number of causal cis-eQTLs (Table 1).
139 Transcript-level analysis did, however, yield a greater number of candidate genes (seven individual
140  transcripts derived from a total of four genes). Both junction- and intron-level quantification increased
141  the number of causal cis-eQTLs to four (10.5% of the 38 total SLE loci). Using exon-level
142 quantification, we were able to define seven of the 38 SLE susceptibility loci (18.4%) as being
143 significant cis-eQTLs driven by a single shared causal variant. Exon-level analysis also produced the
144 greatest number of candidate gene targets: nine unique genes derived from 24 individual SNP-exon
145  pairs (Table 1). Therefore, even with multiple testing burden to correct for all SNP-exon cis-eQTL
146 pairs; we firstly conclude that exon-level analysis detects more causal cis-eQTLs than gene-level.

147

148 A fifth of associated SNPs possess shared genetic effects with cis-eQTLs using RNA-Seq in LCLs
149 By combining all five types of RNA-Seq quantification (gene, transcript, exon, junction, and intron) we
150  could define nine of the 38 SLE susceptibility loci (23.7%) as being driven by the same causal variant
151 as the cis-eQTL in LCLs (Table 1). Interestingly, this value, derived from interrogating only a single
152 cell type, is almost equal to the total number of causal autoimmune cis-eQTLs detected by Chun et al
153 [9] (~25%) when looking across the three different cell types analysed using JLIM (CD4" T-cells —
154  measured by microarray, CD14" monocytes — microarray, and LCLs — RNA-Seq gene-level).

155

156  We found that when considering the specificity of cis-eQTLs and target genes identified by JLIM

157  mapping across the five RNA-Seq quantification types, both gene- and transcript-level quantification
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158  were redundant with respect to exon-level data; i.e. there were no causal cis-eQTLs or target genes
159  detected at gene- or transcript-level that were not captured by exon-level analysis (S3 Figure). Both
160  junction- and intron-level quantification captured a single causal cis-eQTL each that was not captured
161 by exon-level. We conclude that profiling at all resolutions of RNA-Seq is required to capture the full
162 set of potentially causal cis-eQTLs.

163

164  Associated SNPs are most likely to colocalize with exon- and junction-level cis-eQTLs
165  We compared the detection of cis-eQTLs using a standard linear-regression approach with the JLIM
166  method. To fully explore relationships within our results, a pairwise comparison was made across the
167  five RNA-Seq quantification types for matched SNP-gene cis-eQTL pairs (Figure 1). We only
168  considered matched SNP-gene cis-eQTL association pairs that had a nominal cis-eQTL association P-
169  value < 0.01 in both quantification types, and to be conservative, when multiple transcripts, exons,
170 junctions, and introns were annotated with the same gene symbol, we selected the associations that
171  minimized the difference in JLIM P-value between matched SNP-gene cis-eQTLs across RNA-Seq
172 quantification types. There were over 250 matched SNP-gene cis-eQTL pairs per comparison. We
173 firstly observed that the correlation of both cis-eQTL association P-values from regression and JLIM
174  P-values across RNA-Seq quantification types reflected the methods in which expression quantification
175  was obtained (Figure 1A). Both cis-eQTL and JLIM P-values between matched SNP-gene pairs at gene-
176  and transcript-level were highly correlated as gene-level estimates are obtained from the sum of all
177  transcript-level estimates for the same gene (see methods and S1 Figure). Exon-level and junction-level
178  associations were also highly correlated due to split-reads being incorporated into the exon-level
179  estimate. As expected, intron-level cis-eQTL and JLIM P-values for matched SNP-gene pairs were only
180  weakly correlated against other quantification types - as reads mapping to introns are not included in
181  the other quantification models. Interestingly, although cis-eQTL association P-values for matched
182  SNP-gene pairs between transcript-level and junction-level were found to be relatively high (+*=0.70),
183  we found the JLIM P-values for the matched pairs to be comparatively low (+’=0.29); suggesting that
184  whilst the strength of the cis-eQTL maybe similar between these quantification types, the underlying

185  causal variants driving the disease and cis-eQTL association are likely to be independent.
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186 By plotting the JLIM P-values for matched SNP-gene pairs between different quantification types, we
187  found many instances of P-values distributed along the axes rather than on the diagonal (Figure 1B).
188  Our findings therefore suggest that often, one quantification type is more likely to explain the observed
189  disease association than the other. When we compared conventional gene-level cis-eQTL analysis
190  against exon-level results (Figure 1C), we found that of the 296 matched SNP-gene cis-eQTL
191  associations (P<0.01), eleven (4%) were deemed to share the same causal variant at both gene- and
192 exon-level using a nominal JLIM P-value threshold < 0.01. Only three of the 296 matched SNP-gene
193 cis-eQTL associations (1%) were captured by gene-level only - in contrast to the 26 (9% of total
194  associations) captured uniquely at exon-level. As expected, the overwhelming majority of cis-eQTL
195  associations (86%) did not possess a single shared causal variant at either gene- or exon-level. We
196  performed this analysis for all possible combinations of quantification types (Table 2). In each instance,
197  gene-level analysis detected only the minority of nominally causal associations for matched SNP-gene
198  association pairs (JLIM P<0.01). Exon-level and junction-level analysis consistently detected more
199  causal cis-eQTL associations than gene-, transcript-, and intron-level. In fact, when combined, exon-
200  and junction-level analysis explained the most nominally causal associations for all significant SNP-
201  gene cis-eQTL association pairs (23.8%).

202

203  Leveraging RNA-Seq aids GWAS interpretation and reveals novel candidate genes

204  We functionally dissected the 12 candidate genes taken from the nine SLE associated loci that showed
205  strong evidence of a shared causal variant with a cis-eQTL in LCLs. The nine, causal cis-eQTLs and
206  corresponding 12 candidate genes per RNA-Seq quantification type are listed in Table 3 along with
207  their cis-eQTL association P-values and related JLIM P-values. We systematically annotated all 12
208 genes using a combination of cell/tissue expression patterns, mouse models, known molecular
209  phenotypes, molecular interactions, and associations with other autoimmune diseases (S4 Table). We
210  found the majority of novel SLE candidate genes detected by RNA-Seq were predominately expressed
211 in immune-related tissues such as whole blood, the spleen and thymus, and the small intestine. Based
212 on our gene annotation and what is already documented at certain loci, we were sceptical on the

213 pathogenic involvement of three candidate genes (PHTF1, ARHGAP30, and RABEPI). Although the
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214 cis-eQTL effect for these genes is evidently driven by the shared causal variant as the disease
215  association (defined by JLIM), it is possible that these effects of expression modulation are merely
216  passengers that are carried on the same functional haplotype as the true causal gene(s) and do not
217  contribute themselves to the breakdown of self-tolerance (detailed in S4 Table). We show the regional
218  association plots and the candidate genes detected from cis-eQTL analysis in S4 Figure.

219

220  The causal cis-eQTL rs2736340 for genes BLK and FAM167A4 was detected at all RNA-Seq profiling
221  types. It is well established that the risk allele of this SNP reduces proximal promoter activity of BLK;
222 amember of the Src family kinases that functions in intracellular signalling and the regulation of B-cell
223 proliferation, differentiation, and tolerance [26]. The allelic consequence of FAMI67A4 expression
224 modulation is unknown. We found multiple instances of known SLE susceptibility genes that were
225  concealed when using gene-level quantification. For example, we defined rs7444 as a causal cis-eQTL
226  for UBE2L3 at transcript- and exon-level - but not at gene-level (Table 3). The risk allele of rs7444 has
227  been associated with increased expression of UBE3L3 (Ubiquitin conjugating enzyme E2 L3) in ex vivo
228  B-cells and monocytes and correlates with NF-kB activation along with increased circulating
229  plasmablast and plasma cell numbers [27]. Similarly, the rs10028805 SNP is a known splicing cis-
230  eQTL for BANKI (B-cell scaffold protein with ankyrin repeats 1). We replicated at exon-, and junction-
231 level this splicing effect which has been proposed to alter the B-cell activation threshold [28]. Again,
232 this mechanism was not detected using gene-level quantification.

233

234 IKZF?2 (detected at the exon-level only) is a transcription factor thought to play a key role in T-reg
235  stabilisation in the presence of inflammatory responses [29]. IKZF?2 deficient mice acquire an auto-
236  inflammatory phenotype in later life similar to rheumatoid arthritis, with increased numbers of activated
237  CD4" and CD8" T-cells, T-follicular helper cells, and germinal centre B-cells, which culminates in
238  autoantibody production [30]. Of note, other members of this gene family, IKZF'1 and IKZF3, are also
239  associated with SLE and can hetero-dimerize (S4 Table) [7]. We also believe LYST, ATG4D, and TYK?2
240  to also be intriguing candidate genes. LYST encodes a lysosomal trafficking regulator [31] whilst

241  ATG4D is a cysteine peptidase involved in autophagy and this locus is associated with multiple

10
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242 sclerosis, psoriasis, and rheumatoid arthritis [32]. TYK?2 is discussed in greater detail in the following
243 section.

244

245  RNA-Seq can resolve the potential causal regulatory mechanism(s)

246  Interestingly, for the three causal SNP-gene pairs detected at gene-level (rs2736340 — BLK, rs2736340
247  — FAM167A4, and rs7444 — CCDC116), we found that at exon-level, all expressed exons of the stated
248  genes were deemed to possess causal associations. For example, rs2736340 is a causal cis-eQTL for all
249  thirteen exons of BLK and for all three exons of FAM1674 (S5 Table). These data suggest that gene-
250  level analysis is capturing associations where all - or the majority of exons - are modulated by the cis-
251  eQTL in a causal manner.

252

253  We found that within the SLE associated loci that showed evidence of a shared causal variant with a
254 cis-eQTL (Table 3), there were many instances in which the proposed causal cis-eQTL modulated
255  expression of only a single expression element. This enabled us to resolve the potential regulatory effect
256 of the causal cis-eQTL to a particular transcript, exon, junction, or intron (S5 Table). We were able to
257  resolve to a single expression element in nine of the twelve candidate SNP-gene pairs. For example,
258  1s9782955 is a causal cis-eQTL for LYST at junction-level for only a single junction (chr1:235915471-
259 235916344; cis-eQTL P=1.3x10""; JLIM P=2.0x10™""). We provide depicted examples of this isolation
260  analysis for candidate genes IKZF2 (S5 Figure), UBE2L3 (S6 Figure), and LYST (S7 Figure). Clearly
261  when only the minority of exons are effected — which we found occurred in nine of twelve association
262  pairs - gene-level analysis conceals the cis-eQTL association.

263

264  We provide a worked example of resolving the causal mechanism(s) using RNA-Seq for the novel
265  association rs2304256 with TYK?2 (Figure 2). The top panel of Figure 2A shows the genetic association
266  to SLE at the 19p13.2 susceptibility locus tagged by lead SNP rs2304256 (P=1.54x10"%). Multiple
267  tightly correlated SNPs span the gene body and the 3’ region of TYK2 — which encodes Tyrosine Kinase

268 2 -thought to be involved in the initiation of type I IFN signalling [33]. In the panel below, we plot the

11
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269  gene-level association of all SNPs in cis to TYK2 and show no significant association of rs3204256 with
270  TYK2 expression (P=0.18). At exon-, and intron-level, we were able to classify rs2304256 as a causal
271  c¢is-eQTL for a single exon (chr19: 10475527-10475724; cis-eQTL P=2.58x10"; JLIM P<10™) and
272 single intron (chr19: 10473333-10475290; P=2.20x10™; JLIM P=2x10""*) of TYK2 respectively as
273  shown in the bottom two panels of Figure 2A. We show the exon and intron labelling of 7YK?2 in further
274  detail in S8 Fig. We found strong correlation of association P-values of the SLE GWAS and the P-
275  values of TYK?2 cis-eQTLs against at exon-level and intron-level, but not at gene-level; strengthening
276  our observation that rs2304256 is a causal cis-eQTL for TYK? at these resolutions (Figure 2B). The risk
277  allele rs2304256 [C] was found to be associated with decreased expression of the TYK2 exon and
278  increased expression of the TYK?2 intron (Figure 2C). By plotting the cis-eQTL P-values alongside the
279  JLIM P-values for all exons and introns of TYK?2 against rs2304256 (Figure 2D), we clearly show that
280  only a single exon and a single intron of TYK?2 colocalize with the SLE association signal — marked by
281 an asterisk (note that rs2304256 is a strong cis-eQTL for many introns of 7YK2 but only shares a causal
282  wvariant with one intron). We show the genomic location of the affected exon and intron of TYK2 in
283  Figure 2E (exon 8 and the intron between exons 9 and 10 — N.B that exons and introns are numbered
284  based on their inclusion in the cis-eQTL analysis and some maybe omitted from analysis due to no
285  expression). Intron 9-10 of TYK2 is clearly ‘expressed’ in LCLs according to transcription levels
286  assayed by RNA-Seq on LCLs (GM12878) from ENCODE (Figure 2E).

287

288  Interestingly, rs2304256 (marked by an asterisk in Figure 2E) is a missense variant (V362F) within the
289  affected exon 8 of TYK2. The PolyPhen prediction of this substitution is predicted to be benign and, to
290  the best of our knowledge, no investigation has isolated the functional effect of this particular amino
291  acid change. We do not believe the cis-eQTL at exon 8 to be a result of variation at rs3204256 and
292 mapping biases, as the alignability of 75mers by GEM from ENCODE is predicted to be robust around
293 exon 8 (Figure 2E). In fact, rs3204256 [C] is the reference allele yet is associated with decreased
294 expression of exon 8.

295

12
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296  In conclusion, we have found an interesting and novel mechanism that would have been concealed by
297  gene-level analysis that involves the risk allele of a missense SNP associated with decreased expression
298  of a single exon of TYK?2 but increased expression of the neighbouring intron. Whether the cis-eQTL
299  effect and missense variation act in a combinatorial manner and whether the intron is truly retained or

300 ifitis derived from an unannotated transcript of 7YK2 is an interesting line of investigation.

301

302  Detection of cis-eQTLs and candidate-genes of autoimmune disease using RNA-Seq

303  We re-performed our integrative cis-eQTL analysis with the same Geuvadis RNA-Seq dataset in LCLs
304  using association data from twenty autoimmune diseases. This was to firstly reiterate the importance of
305  leveraging RNA-Seq in GWAS interpretation and to secondly demonstrate that our findings in SLE
306  persisted across other immunological traits. As the raw genetic association data were not available for
307  all twenty diseases, we were unable to implement the JLIM pipeline which requires densely typed or
308  imputed GWAS summary-level statistics. We therefore opted to use the Regulatory Trait Concordance
309  (RTC) method, which requires full genotype-level data for the expression trait, but only the marker
310  identifier for the lead SNP of the disease association trait (see methods for a description of the RTC
311  method). We stringently controlled our integrative cis-eQTL analysis for multiple testing to limit
312  potential false positive findings of overlapping association signals. To do this, we applied a Bonferroni
313 correction to nominal cis-eQTL P-values separately per disease and per RNA-Seq quantification type
314  (i.e. at exon-level, cis-eQTL P-values were corrected for the total number of exons tested in cis the
315  associated SNPs of the single disease in hand). A similar strategy was adopted by the authors of the
316  JLIM package who corrected separately for specific disease and cell type combinations [9]. We
317  rigorously defined causal cis-eQTLs, as associations with Pgr < 0.05 and RTC > 0.95. An overview of
318  the analysis pipeline is depicted in S9 Figure and S10 Figure. Using an 7 cut-off of 0.8 and a 100kb
319  limit, we pruned the 752 associated SNPs from the twenty human autoimmune diseases from the
320  Immunobase resource (S6 Table) to obtain 560 independent susceptibility loci. Again, we only
321  considered common (MAF >5%), autosomal loci outside of the MHC.

322
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323 Our findings confirmed our previous results from the SLE investigation and again support the gene-
324 level study using the JLIM package from Chun et al [9]. As before, we found that only 5% (28 of the
325 560 loci) of autoimmune susceptibility loci were deemed to share causal variants with cis-eQTLs using
326  ecither gene- or transcript-level analysis (Figure 3A). Exon-level analysis more than doubled the yield
327  to 13% (72 of the 560 loci) with junction-, and intron-level analysis also outperforming gene-level (10%
328  and 8% respectively). When combining all RNA-Seq quantification types, we could define 20% of
329  autoimmune associated loci (110 of the 560 loci) as being candidate causal cis-eQTLs - which
330  corroborates our previous estimate in SLE using the JLIM package (23.7%).

331

332 By separating causal cis-eQTL associations out by quantification type, we found over half (65%) were
333 detected at exon-level, and considerable overlap of cis-eQTL associations existed between both types
334  (Figure 3B). Unlike in our SLE analysis, gene- and isoform-level analysis did capture a small fraction
335  ofcausal cis-eQTLs that were not captured at exon-level. Our data therefore suggest that although exon-
336  and junction-level, and to a lesser extent intron-level analysis, capture most candidate-causal cis-
337  eQTLs. It is necessary to prolife gene-expression at all quantification types to avoid misinterpretation
338  of the functional impact of disease associated SNPs.

339

340  We mapped the causal cis-eQTLs detected by all RNA-Seq quantification types back to the diseases to
341  which they are associated (Figure 3C). Interestingly, we observed the diseases that fell below the 20%
342 average comprised autoimmune disorders related to the gut: celiac disease (7%), inflammatory bowel
343 disease (14%), Crohn’s disease (16%), and ulcerative colitis (18%). These observations are likely to be
344  aresult of the cellular expression specificity of associated genes in colonic tissue and in T-cells [34].
345  Correspondingly, we observed an above-average frequency of causal cis-eQTLs detected in SLE (22%)
346  and primary biliary cirrhosis (37%); diseases in which the pathogenic role of B-lymphocytes and
347  autoantibody production is well documented [34]. Note that there are 60 SLE GWAS associations in
348  this analysis as these originate from three independent GW A studies (S6 Table). We further broke down
349  our results per disease by RNA-Seq quantification type (Figure 3D) and in all cases, the greatest

350  frequency of causal cis-eQTLs and candidate genes were captured by exon- and junction-level analyses.

14


https://doi.org/10.1101/128728
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/128728; this version posted August 17, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

351

352  Web resource for functional interpretation of association studies of autoimmune disease
353  We provide our analysis as a web resource (found at www.insidegen.com) for researchers to lookup
354  causal cis-eQTLs and candidate genes from the twenty autoimmune diseases detected across the five
355  RNA-Seq quantification types. The data are sub-settable and exportable by SNP ID, gene, RNA-Seq
356  resolution, genomic position, and association to specific autoimmune diseases.

357

358  Causal cis-eQTLs localise to discrete chromatin regulatory elements

359  The causal variants underling cis-eQTL associations at the five RNA-Seq quantification types were
360  often independent (Figure 1) and a previous investigation has suggested that causal variants of gene-
361 level and transcript-level cis-eQTLs reside in discrete functional elements of the genome [18]. We
362  therefore investigated whether this notion held true across the five RNA-Seq quantification types tested
363  in this study. To accomplish this, we selected the causal cis-eQTLs from the twenty autoimmune
364  diseases interrogated, and per quantification type, tested for enrichment of these SNPs across various
365  chromatin regulatory elements taken from the Roadmap Epigenomics Project in LCLs (using both the
366 Roadmap chromatin state model and the positions of histone modifications). We implemented the
367  permutation-based GoShifter algorithm to test for enrichment of causal cis-eQTLs and tightly correlated
368  variants (+*>>0.8) in genomic functional annotations in LCLs (see methods) [25]. Results of this analysis
369  are depicted in Figure 4. We found the 28 gene-level cis-eQTLs were enriched in two chromatin marks:
370  strong enhancers (P=0.036) and H3K27ac occupancy sites — a marker of active enhancers (P=0.002).
371  Transcript-level cis-eQTLs were also enriched in H3K27ac occupancy sites (P=0.039) but were not
372  enriched in any other marks. The 72 exon-level cis-eQTLs were additionally enriched in active
373  promoters (P=0.017). Interestingly, the 54 causal cis-eQTLs detected at junction-level were found to
374  be enriched in weak enhancers only (P=0.002); whilst the 43 intron-level cis-eQTLs were enriched in
375  chromatin states predicted to be involved in transcriptional elongation (P=0.001; 83% of intron-level
376  cis-eQTLs). Disease relevant cis-eQTLs detected at different expression phenotypes using RNA-Seq

377  clearly localise to largely discrete functional elements of the genome.
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378

379  We quantified the number of causal cis-eQTLs and tightly correlated variants (+*>0.8) per quantification
380  type that were predicted to be alter splice site consensus sequences of the target genes (assessed by
381  Sequence Ontology for the hg19 GENCODE v12 reference annotation). We found only two of the 28
382  (7%) gene-level cis-eQTLs disrupted consensus splice-sites for their target genes compared to the 14%
383  and 13% detected at exon- and junction-level respectively (Figure 4C). Our data suggest that although
384  exon- and junction- level analysis leads to the greatest frequency of causal cis-eQTLs, the majority at
385  this resolution cannot be explained directly by variation in annotated splice site consensus sequences

386  (splice region/donor/acceptor/ variants).

387
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388 Discussion

389  Elucidation of the functional consequences of non-coding genetic variation in human disease is a major
390  objective of medical genomics [35]. Integrative studies that map disease-associated eQTLs in relevant
391 cell types and physiological conditions are proving essential in progression towards this goal through
392  identification of causal SNPs, candidate-genes, and illumination of molecular mechanisms [36]. In
393  autoimmune disease, where there is considerable overlap of immunopathology, integrative eQTL
394  investigations have been able to connect discrete aetiological pathways, cell types, and epigenetic
395  modifications, to particular clinical manifestations [2,34,36,37]. Emerging evidence however has
396  suggested that only a minority (~25%) of autoimmune associated SNPs share casual variants with basal-
397  level cis-eQTLs in primary immune cell-types [9].

398

399  Genetic variation can influence expression at every stage of the gene regulatory cascade - from
400  chromatin dynamics, to RNA folding, stability, and splicing, and protein translation [21]. It is now well
401  documented that SNPs affecting these units of expression vary strikingly in their genomic positions and
402  localisation to specific epigenetic marks [18]. The eQTLs that affect pre-transcriptional regulation -
403  affecting all isoforms of a gene - differ in the proximity to the target gene and effect on translated
404  isoforms than their co-transcriptional trQTL (transcript ratio QTL) counterparts. Where the effect size
405  of eQTLs generally increases in relation to transcription start site proximity, trQTLs are distributed
406  across the transcript body and generally localise to intronic binding sites of splicing factors [18,21]. In
407  over 57% of genes with both an eQTL influencing overall gene expression and an trQTL affecting the
408  ratio of each transcript to the gene total, the causal variants for each effect are independent and reside
409  in distinct regulatory elements of the genome [18]. In fact, three primary molecular mechanisms are
410  thought to link common genetic variants to complex traits. A large proportion of trait associated SNPs
411 act via direct effects on pre-mRNA splicing that do not change total mRNA levels [21]. Common
412 variants also act via alteration of pre-mRNA splicing indirectly through effects on chromatin dynamics
413  and accessibility. Such chromatin accessibility QTLs are however more likely to alter total mRNA

414  levels than splicing ratios. Lastly, it is thought that only a minority of trait associated variants have

17


https://doi.org/10.1101/128728
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/128728; this version posted August 17, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

415  direct effects on total gene expression that cannot be explained by changes in chromatin. As RNA-Seq
416  becomes the convention for genome-wide transcriptomics, it is essential to maximise its ability to
417  resolve and quantify discrete transcriptomic features so to expose the genetic variants that contribute to
418  changes in expression and isoform usage. The reasoning for our investigation therefore was to delineate
419  the limits of microarray and RNA-Seq based eQTL cohorts in the functional annotation of autoimmune
420  disease association signals.

421

422 To map autoimmune disease associated cis-eQTLs, we interrogated RNA-Seq expression data profiled
423 at gene-, isoform, exon-, junction-, and intron-level, and tested for a shared genetic effect at each
424  significant association. As we had densely imputed summary statistics from our SLE GWAS, we opted
425  to use the Joint Likelihood Mapping (JLIM) framework [9] to test for a shared causal variant between
426  the disease and cis-eQTL signals. This framework has been rigorously benchmarked against other
427  colocalisation procedures. Summary statistics were not available for the remaining autoimmune
428  diseases and therefore we implemented the Regulatory Trait Concordance (RTC) method for these
429  diseases and set a stringent multiple testing threshold to define causal cis-eQTLs. We found the
430  estimates of causal cis-eQTLs were near identical between the two methods used (Table 1 and Figure
431  3A). Exon- and junction-level quantification led to the greatest frequency of causal cis-eQTLs and
432  candidate genes (exon-level: 13-18%, junction-level: JLIM: 10-11%). We conclusively found that
433 associated variants were in fact more likely to colocalize with exon- and junction-level cis-eQTLs when
434 applying a nominal JLIM P-value threshold of <0.01 (Figure 1B and Table 2). Gene-level analysis was
435  thoroughly outperformed in all cases (5%). Our findings that gene-level analysis explain only 5% of
436  causal cis-eQTLs corroborate the findings from Chun et al [9] who composed and used the JLIM
437 framework to annotate variants associated with seven autoimmune diseases (multiple sclerosis, IBD,
438  Crohn’s disease, ulcerative colitis, T1D, rheumatoid arthritis, and celiac disease). They found that only
439 16 of the 272 autoimmune associated loci (6%) shared causal variants with cis-eQTLs using gene-level
440  RNA-Seq (with the same Geuvadis European cohort in LCLs as used herein). In our investigation, we
441 argue that it is necessary to profile expression at all possible resolutions to diminish the likelihood of

442 overlooking potentially causal cis-eQTLs. In fact, by combining our results across all resolutions, we
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443 found that 20-24% of autoimmune loci were candidate-causal cis-eQTLs for at least one target gene.
444 Our study therefore increases the number of autoimmune loci with shared genetic effects with cis-
445  eQTLs in a single cell type by over four-fold. Interestingly, using microarray data from CD4" T-cells
446  Chun et al classified 37 of the 272 autoimmune loci (14%) as causal cis-eQTLs [9] - strengthening the
447  hypothesis that autoimmune loci (especially those associated with inflammatory diseases of the gut) are
448  enriched in CD4" T-cell subsets and the cells themselves are pathogenic [25,34]. Microarray data are
449  known to underestimate the number of true causal cis-eQTLs [10]. If we assume that by leveraging
450  RNA-Seq we can increase the number of causal cis-eQTLs four-fold, we hypothesise that as many as
451  ~54% of autoimmune loci may share causal cis-eQTLs with gene expression at multiple resolutions in
452  CD4" T-cell populations. A large RNA-Seq based eQTL cohort profiled across many CD4" T-cell
453  subsets will therefore be of great use when annotating autoimmune-related traits. We reason that
454  although using relevant cell types and context-specific conditions will undoubtedly increase our
455  understanding of how associated variants alter cell physiology and ultimately contribute to disease risk;
456  itis clearly shown herein that we are only picking the low hanging fruit in current eQTL analyses. We
457  argue it necessary to reanalyse existing RNA-Seq based eQTL cohorts at multiple resolutions and
458  ensure new datasets are similarly dissected. Despite the severe multiple testing burden, we also argue
459  that expression profiling at multiple resolutions using RNA-Seq may be advantageous even when
460  looking for trans-eQTL effects. As trans-eQTLs are generally more cell-type specific and have a
461  weaker effect size, we decided not to perform such analyses using the Geuvadis LCL data. Large RNA-
462  Seq based eQTL cohorts in whole-blood will be more suitable for such analysis [19].

463

464  As well as biological reasons for using multiple expression phenotypes for integrative eQTL analysis,
465  there are also technical factors to consider. Gene-level expression estimates can generally be obtained
466  in two ways — union-exon based approaches [14,17] and transcript-based approaches [11,12]. In the
467  former, all overlapping exons of the same gene are merged into union exons, and intersecting exon and
468  junction reads (including split-reads) are counted to these pseudo-gene boundaries. Using this counting-
469  based approach, it is also possible to quantify meta-exons and junctions easily and with high confidence

470 by preparing the reference annotation appropriately [13,15,38]. Introns can be quantified in a similar
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471  manner by inverting the reference annotation between exons and introns [18]. Of note, we found intron-
472 level quantification generated more candidate-causal cis-eQTLs than gene-level (Figure 3A). As the
473 library was synthesised from poly-A selection, these associations are unlikely due to differences in pre-
474  mRNA abundance. Rather, they are likely derived from either true retained introns in the mature RNA
475  or from coding exons that are not documented in the reference annotation used. Transcript-based
476  approaches make use of statistical models and expectation maximization algorithms to distribute reads
477  among gene isoforms - resulting in isoform expression estimates [11,12]. These estimates can then be
478  summed to obtain the entire expression estimate of the gene. Greater biological insight is gained from
479  isoform-level analysis; however, disambiguation of specific transcripts is not trivial due to substantial
480  sequence commonality of exons and junctions. In fact, we found only 5% of autoimmune loci shared a
481  causal variant at transcript-level.

482

483  The different approaches used to estimate expression can also lead to significant differences in the
484  reported counts. Union-based approaches, whilst computationally less expensive, can underestimate
485  expression levels relative to transcript-based, and this difference becomes more pronounced when the
486  number of isoforms of a gene increases, and when expression is primarily derived from shorter isoforms
487  [20]. The Geuvadis study implemented a transcript-based approach to obtain whole-gene expression
488  estimates. Clearly therefore, a gold standard of reference annotation and eQTL mapping using RNA-
489  Seq is essential for comparative analysis across datasets. Our findings support recent evidence that
490  suggests exon-level based strategies are more sensitive and specific than conventional gene-level
491 approaches [22]. Subtle isoform variation and expression of less abundant isoforms are likely to be
492  masked by gene-level analysis. Exon-level allows for detection of moderate but systematic changes in
493  gene expression that are not captured at gene-level, and also, gene-level summary counts can be shifted
494 in the direction of extreme exon outliers [22]. It is therefore important to note that a positive exon-level
495  eQTL association does not necessarily mean a differential exon-usage or splicing mechanism is
496  involved; rather a systematic expression effect across the whole gene may exist that is only captured by
497  the increased sensitivity. Additionally, by combining exon-level with other RNA-Seq quantification

498  types, inferences can be made on the particular isoforms and functional domains affected by the eQTL
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499  which can later aid biological interpretation and targeted follow-up investigations [10]. We clearly show
500  this from our analysis of SLE candidate genes IKZF?2 (S5 Figure), UBE2L3 (S6 Figure), LYST (S7
501 Figure) and TYK?2 (Figure 2). For TYK2 we reveal a novel mechanism whereby the associated variant
502  rs2304256 [C] leads to decreased expression of a single exon and increased expression of a
503  neighbouring intron (Figure 2). By isolating particular exons, junctions, and introns, one can design
504  more refined follow-up investigations to study the functional impact of non-coding disease associated
505  variants. We show how our findings can be leveraged to comprehensively examine GWAS results of
506  autoimmune diseases. We found nine of the 38 SLE susceptibility loci were causal cis-eQTLs (Table
507  3) for 12 candidate genes which we later functionally annotated in detail (S4 Table).

508

509  Taken together, we have provided a deeper mechanistic understanding of the genetic regulation of gene
510  expression in autoimmune disease by profiling the transcriptome at multiple resolutions using RNA-
511 Seq. Similar analyses leveraging RNA-Seq in new and existing datasets using relevant cell types and
512 context-specific conditions (such as response eQTLs as shown in [39]) will undoubtedly increase our

513  understanding of how associated variants alter cell physiology and ultimately contribute to disease risk.

514
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515 Materials and Methods
516

517 RNA-Sequencing expression data in lymphoblastoid cell lines

518  RNA-Sequencing (RNA-Seq) expression data from 373 lymphoblastoid cell lines (LCLs) derived from
519  four European sub-populations (Utah Residents with Northern and Western European Ancestry, British
520  in England and Scotland, Finnish in Finland, and Toscani in Italia) of the Geuvadis project [18] were
521  obtained from the EBI ArrayExpress website under accession: E-GEUV-1. The 89 individuals of the
522 Geuvadis project from the Yoruba in Ibadan, Nigeria were excluded from this analysis. All individuals
523 were included as part of the 1000Genomes Project. Expression was profiled using RNA-Seq at five
524  quantification types: gene-, transcript-, exon-, junction-, and intron-level (the files downloaded and used
525  in this analysis have the suffix: ‘QuantCount.45N.50FN.samplename.resk10.txt.gz”). Full methods of
526  expression quantification can be found in the original publication and on the Geuvadis wiki page:

527 http://geuvadiswiki.crg.es/). We have also provided a breakdown of the quantification methods in S1

528  Figure. Expression data downloaded represent quantifications that are corrected for sequencing depth
529  and gene/exon etc length (RPKM). Only expression elements quantified in >50 % of individuals were
530  kept and Probabilistic Estimation of Expression Residuals (PEER) had been used to remove technical
531 variation [40]. We transformed all expression data to a standard normal distribution.

532 In summary, transcripts, splice-junctions, and introns were quantified using Flux Capacitor against the
533  GENCODE v12 basic reference annotation [16]. Reads belonging to single transcripts were predicted
534 by deconvolution per observations of paired-reads mapping across all exonic segments of a locus. Gene-
535  level expression was calculated as the sum of all transcripts per gene. Annotated splice junctions were
536  quantified using split read information, counting the number of reads supporting a given junction.
537  Intronic regions that are not retained in any mature annotated transcript, and reported mapped reads in
538  different bins across the intron to distinguish reads stemming from retained introns from those produced
539 by not yet annotated exons. Meta-exons were quantified by merging all overlapping exonic portions of
540  a gene into non-redundant units and counting reads within these bins. Reads were excluded when the

541  read pairs map to two different genes.
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542

543  SLE associated SNPs

544  SNPs genetically associated to systemic lupus erythematosus (SLE) were taken from the Bentham and
545  Morris et al 2015 GWAS in persons of European descent [7]. The study comprised a primary GWAS,
546  with validation through meta-analysis and replication study in an external cohort (7,219 cases, 15,991
547  controls in total). Independently associated susceptibility loci taken forward for this investigation were
548  those that passed either genome-wide significance (P<5x10%) in the primary GWAS or meta-analysis
549  and/or those that reached significance in the replication study (q<0.01). We defined the lead SNP at
550  each locus as either being the SNP with the lowest P-value post meta-analysis or the SNP with the
551  greatest evidence of a missense effect as defined by a Bayes Factor (see original publication). We
552 omitted non-autosomal associations and those within the Major Histocompatibility Complex (MHC),
553 and SNPs with a minor allele frequency (MAF) < 0.05. In total, 38 independently associated SLE
554  associated GWAS SNPs were taken forward for investigation (S1 Table). Each susceptibility locus had
555  previously been imputed to the level of 1000 Genomes Phase3 using a combination of pre-phasing by
556  the SHAPEIT algorithm and imputation by IMPUTE (see original publication for full details) [7].

557

558  Cis-eQTL analysis and Joint Likelihood Mapping (JLIM) of SLE associated SNPs

559

560  Primary trait summary statistics file

561 A JLIM index file for each of the 38 SLE associated SNPs was firstly generated by taking the position
562  of each SNP (hgl9) and a creating a 100kb interval in both directions. Summary-level association
563  statistics were obtained form the Bentham and Morris et al 2015 European SLE GWAS (imputed to
564 1000Genomes Phase 3). We downloaded summary-level association data (chromosome, position, SNP,
565  P-value) for all directly typed or imputed SNPs with an IMPUTE info score >0.7 within each of the 38
566 intervals. The two-sided P-value was transformed into a Z-statistic as described by JLIM.

567

568  Reference LD file
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569  Genotype files in VCF format for all 373 European individuals of the Geuvadis RNA-Seq project were
570  obtained from the EBI ArrayExpress under accession: E-GEUV-1. The 41 individuals genotyped on
571  the Omni 2.5M SNP array had been previously imputed to the Phase 1 v3 release as described [18]; the
572  remaining had been sequenced as part of the 1000 Genomes Phasel v3 release (low-coverage whole
573  genome and high-coverage exome sequencing data). Using VCFtools, we created PLINK binary
574  ped/map files for each of the 38 intervals and kept only biallelic SNPs with a MAF >0.05, imputation
575  call-rates > 0.7, Hardy—Weinberg equilibrium P-value >1x10"** and SNPs with no missing genotypes,
576  we also only included SNPs that we had primary trait association summary statistics for. These are
577  referred to as the secondary trait genotype files. We then used the JLIM Perl script fetch.refld0. EUR.pl
578  to generate the 38 reference LD files from the 373 individuals (the script had been edited to include the
579  extra 95 Finnish individuals).

580

581  Cis-eQTL analysis

582  We created a separate PLINK phenotype file (sample ID, normalized expression residual) for each
583  individual gene, transcript, exon, junction, and intron in cis (within +/-500kb) to the 38 lead SLE GWAS
584  SNPs. We only included protein-coding, lincRNA, and antisense genes in our analysis as classified by
585  Ensembl BioMart. Using the chromosome 20 genotype VCF file of the 373 European individuals (E-
586  GEUV-1), we conducted principle component analysis (PCA) and generated an identity-by-state matrix
587  using the Bioconductor package SNPRelate (S9 Figure) [41]. Based on these results, we decided to
588  include the first three principle components and the binary imputation status (as 41 individuals had been
589  genotyped on the Omni 2.5M SNP array were imputed to the Phase 1 v3 release) of the European
590  individuals (derived from Phasel and Phase2 1000Genomes releases) in the cis-eQTL analysis so to
591  minimize biases derived from population structure and imputation status.

592 We used PLINK to perform cis-eQTL analysis using the ‘--linear’ function, including the above
593 covariates, for each expression unit (phenotype file) in cis to the 38 loci (secondary trait genotype files).
594  We performed 10,000 permutations per regression and saved the output of each permutation procedure.
595  Incis to the 38 SLE SNPs were: 439 genes, 1,448 transcripts (originating from 456 genes), 3,045 exons

596 (400 genes), 2,886 junctions (332 genes), and 1,855 introns (443 genes).
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597

598  Joint likelihood mapping (JLIM) and multiple testing correction

599  Per RNA-Seq quantification type, a JLIM configuration file was created using the jlim gencfg.sh script
600  and JLIM then run using run_jlim.sh — setting the 7 resolution limit to 0.8. We merged the configuration
601 files and output files to create the final results table which included the primary and secondary trait
602  association P-value, the JLIM statistic, and the JLIM P-value by permutation. Multiple testing was
603  corrected for on the JLIM P-values per RNA-Seq quantification type using a false discovery rate (FDR)
604  asapplied by the authors of JLIM. A JLIM P-value <10™ means that the JLIM statistic is more extreme
605  than the permutation (10,000). We classified causal cis-eQTLs as SLE associated variants that share a
606  single causal variant with a cis-eQTL based on the following: if there existed a nominal cis-eQTL
607  (P<0.01) with at least one SNP within 100kb of the SNP most associated with disease, the transcription
608  start site of the expression target was located within +/-500kb of that SNP, and the FDR adjusted JLIM
609  P-value of the association passed the 5% threshold. Candidate genes modulated by the causal cis-eQTL.
610

611  Functional annotation of SLE associated genes from cis-eQTL analysis

612  Using publically available resources, we systematically annotated the twelve SLE associated genes that
613  were classified as being modulated by causal cis-eQTLs. The expression profiles at RNA-level across
614  multiple cell and tissue types were interrogated in GTEx [42] and the Human Protein Atlas [43] - with
615  the top three cell/tissue types documented per gene. We noted using Online Mendelian Inheritance in
616  Man [44] any gene-phenotype relationships by caused by allelic variants and any immune-related
617  phenotypes of animal models. Protein-protein interactions of candidate genes were taken from the
618  BioPlex v2.0 interaction network (conducted in HEK293T cells) [45]. Using the ImmunoBase resource
619  (https://www.immunobase.org/), we looked up each gene and noted if the gene had been prioritized as
620  the ‘candidate gene’ within the susceptibility locus per publication. Finally, we counted the number
621  publications from PubMed found using the keywords ‘gene name AND SLE’.

622

623  Associated SNPs from twenty autoimmune diseases
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624  Autoimmune associated SNPs were taken from the ImmunoBase resource (Www.immunobase.org).
625  This resource comprises summary case-control association statistics from twenty diseases: twelve
626  originally targeted by the ImmunoChip consortium (ankylosing spondylitis, autoimmune thyroid
627  disease, celiac disease, Crohn's disease, juvenile idiopathic arthritis, multiple sclerosis, primary biliary
628  cirrhosis, psoriasis, rheumatoid arthritis, systemic lupus erythematosus, type 1 diabetes, ulcerative
629  colitis), and eight others (alopecia areata, inflammatory bowel disease, IgE and allergic sensitization,
630  narcolepsy, primary sclerosing cholangitis, Sjogren syndrome, systemic scleroderma, vitiligo).

631  The curated studies and their corresponding references used in this analysis are presented in S6 Table.
632  For each disease, we took the lead SNPs which were defined as a genome-wide significant SNP with
633  the lowest reported P-value in a locus. Associations on the X-chromosome and within the MHC and
634  SNPs with minor allele frequency < 5% were omitted from analysis, leaving 752 associated SNPs. We
635  pruned these loci using the ‘--indep-pairwise’ function of PLINK 1.9 with a window size of 100kb and
636  an / threshold of 0.8, to create an independent subset of 560 loci.

637

638  Integrative cis-eQTL analysis of twenty autoimmune diseases with RNA-Seq

639  An overview of the integration pipeline using the twenty autoimmune diseases against the Geuvadis
640  RNA-Seq cohort in 373 European LCLs is depicted in S10 Figure. Genotype data of the 373 individuals
641  were transformed and quality controlled as previously described in the above methods sections (biallelic
642  SNPs kept with a MAF >0.05, imputation call-rates > 0.7, Hardy—Weinberg equilibrium P-value
643 >1x10"".

644  We opted to use the Regulatory Trait Concordance (RTC) method to assess the likelihood of a shared
645 causal variant between the disease association and the cis-eQTL signal [46]. This method requires full
646  genotype-level data for the expression trait but only the marker identifier for the lead SNP of the disease
647  association trait. SNPs within the 560 associated loci for the expression trait were firstly classified
648  according to their position in relation to recombination hotspots (based on genome-wide estimates of
649  hotspot intervals) [47]. Normalized gene expression residuals (PEER factor normalized RPKM) for

650  each quantification type were transformed to standard normal and the first three principle components

26


https://doi.org/10.1101/128728
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/128728; this version posted August 17, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

651  wused as covariates in the cis-eQTL model as well as the binary imputation status (as previously
652  described above). All cis-eQTL association testing was performed using a liner regression model in R.
653 Cis-eQTL mapping was performed for the lead SNP and all SNPs within the hotspot recombination
654  interval against protein-coding, lincRNA, and antisense expression elements (genes, transcripts, exons
655 etc.) within +/-500kb of the lead SNP. In cis to the 560 loci were: 7,633 genes, 27,257 transcripts
656  (originating from 7,310 genes), 52,651 exons (5,435 genes), 48,627 junctions (4,237 genes), 34,946
657  introns (6,233 genes).

658  For each cis-eQTL association, the residuals from the linear-regression of the best cis-asQTL (lowest
659  association P-value within the hotspot interval) were extracted. Linear regression was then performed
660  using all SNPs within the defined hotspot interval against these residuals. The RTC score was then
661 calculated as (Nsyps - Rankgwassve / Nsyps). Where Nyp; is the total number of SNPs in the recombination
662  hotspot interval, and Rankgs svpis the rank of the GWAS SNP association P-value against all other
663  SNPs in the interval from the liner association against the residuals of the best cis-eQTL.

664  We rigorously adjusted for multiple testing of cis-eQTL P-values using a Bonferroni correction per
665  quantification type (corrected for number of genes, isoforms, exons, junctions, and introns tested) and
666  per disease — as we wanted to keep our analysis as close to the authors of JLIM who themselves also
667  adjusted per cell type and per disease. We stringently defined causal cis-eQTLs as associations with
668  expression Ppr < 0.05 and an RTC score > 0.95. Candidate genes are modulated by the cis-eQTL.

669

670  Functional enrichment of causal cis-eQTLs in chromatin regulatory elements

671  To test for enrichment of causal cis-eQTL associations in chromatin regulatory elements we
672  implemented the Genomic Annotation Shifter (GoShifter) package [25]. Chromatin regulatory elements
673  were divided into two categories: chromatin state segmentation and histone marks. The genomic
674  coordinates of the fifteen predicted chromatin state segmentations (active promoter, strong enhancer,
675  insulator etc.) for LCLs (in the GM12878 cell-line) were downloaded from the UCSC Table browser
676  (track name: wgEncodeBroadHmmGm12878HMM). Histone marks and DNase hypersensitivity sites

677  were obtained from the NIH Roadmap Epigenomics Project for LCLs (GM12878) in NarrowPeak
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678  format. Sites were filtered for genome-wide significance using an FDR threshold of 0.01 and peak

679  widths harmonised to 200bp in length centred on the peak summit (as used in the GoShifter publication).

680  We obtained all SNPs in strong LD (+* > 0.8) with the causal cis-eQTLs by using the getLD.sh script
681 from GoShifter (interrogating the 1000Genomes Project for Phase3 Europeans). Per quantification type,
682  we then calculated the proportion of loci in which at least one SNP in LD overlapped a chromatin
683  regulatory element (conducted one at a time per chromatin mark). The coordinates of the chromatin
684  marks were then randomly shifted, whilst retaining the positions of the SNPs, and frequency of overlap
685  re-calculated. This was carried out over 1,000 permutations to draw the null distribution. The P-value
686  was calculated as the proportion of iterations for which the number of overlapping loci was equal to or

687  greater than that for the tested SNPs (P < 0.05 used as significance threshold).

688

689  Data visualisation and online resource

690 R version 3.3.1 and ggplot2 was used to create heatmaps, box-plots, and correlation plots. Genes were
691  plotted in UCSC Genome Browser [48] and regional association plots in LocusZoom [49]. To access
692  the online results table, visit www.insidegen.com and follow the link ‘Lupus’ then ‘data for scientists’.

693  The table is under title: Expression data associated with different autoimmune diseases.

694
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840  Figure captions

841

842  Figure 1. Pairwise comparison of cis-eQTL and JLIM P-values for matched SNP-gene pairs

843  This figure is complementary to the data in Table 2 and is derived from cis-eQTL analysis of the 38
844  SLE associated SNPs using RNA-Seq and implementation of the JLIM method to assess evidence of a
845  shared causal variant. (A) We measured the Pearson’s correlation separately of all cis-eQTL and JLIM
846  P-values between matched SNP-gene cis-eQTL pairs across the five RNA-Seq quantification types. We
847  only considered matched SNP-gene cis-eQTL association pairs that had a nominal cis-eQTL association
848  P-value < 0.01 in both quantification types, and to be conservative, when multiple transcripts, exons,
849  junctions, and introns were annotated with the same gene symbol, we selected the associations that
850  minimized the difference in JLIM P-value between matched SNP-gene cis-eQTLs across RNA-Seq
851 quantification types. Note the weak JLIM P-value correlation of matched transcript-level and junction-
852  level cis-eQTLs suggesting they stem from independent causal variants. (B) Correlation plots of
853  matches SNP-gene cis-eQTL pairs as described above (red: cis-eQTL P-value; blue: JLIM P-value).
854  Note that JLIM P-values often aggregate on the axis rather than on the diagonal suggesting independent
855  causal variants across different quantification types. (C) An example of the sensitivity of exon-level
856  analysis relative to gene-level. The majority of nominally significant JLIM P-values (<0.01) for
857  matched SNP-gene pairs are captured by exon-level analysis and concealed at gene-level (green box:
858  9%).

859

860  Figure 2. Isolation of potential causal molecular mechanism in 7YK2 by SLE cis-eQTL rs2304256
861  (A) SLE GWAS association plot and cis-eQTL association plot around the 19p13.2 susceptibility locus
862  tagged by rs2304256. The top panel shows the association plot with SLE that spans the gene body and
863 3’ region of TYK2 (Tyrosine Kinase 2). The haplotype block composed of highly correlated SNPs is
864  highlighted in the red block. The second panel shows the cis-eQTL association plot at gene-level of all
865  proximal SNPs to TYK2 (no significant association with rs2304256 is detected). The third panel shows

866  the same regional association but at exon-level for the most associated exon of TYK2 with rs2304256 —
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867  the bottom panel is at intron-level for TYK?2 (both are highly associated). (B) Correlation of SLE GWAS
868  P-value and cis-eQTL association P-value for all SNPs in cis to TYK2. We show at gene-level the most
869  associated SLE SNPs are not cis-eQTLs (top panel). The middle and bottom panels show the same
870  correlation at exon-level and intron-level and reveal the most associated SNPs to SLE are also the most
871  associated cis-eQTLs to TYK2. (C) The direction of effect of cis-eQTL rs2304256 with TYK?2 at gene-
872  level (top), exon-level (middle), and intron-level (bottom panel). The risk allele is rs2304256 [C]. (D)
873  The top panel shows cis-eQTL association and JLIM P-values for all exons of TYK2 against rs2304256.
874  Exon 8 (marked by an asterisk) is defined as having a causal association with rs2304256. The bottom
875  panel shows the intron-level cis-eQTL of TYK2 against rs2304256. Note many introns are cis-eQTLs
876  but are not causal with rs2304256. Exons and introns are numbered consecutively from start to end of
877  gene if they are expressed (note some are not and therefore not included). (E) The genomic location of
878  the single exon and single intron of 7YK?2 that are modulated by rs2304256 are highlighted (rs2304256
879  is marked by an asterisk in red). The bottom two panels show the transcription levels assayed by RNA-
880  Seq on LCLs assayed by ENCODE. Note intron 9-10 of TYK? is clearly expressed. The alignability of
881  75-mers by GEM is also shown to show the mapability of reads around rs2304256.

882

883  Figure 3. Breakdown of autoimmune associated causal cis-eQTLs using RNA-Seq

884  (A) Percentage and number of causal cis-eQTL associations detected per RNA-Seq quantification type,
885  following LD pruning of associated SNPs from twenty autoimmune diseases to 560 independent
886  susceptibly loci. The top chart shows the number of causal cis-eQTLs when combining all RNA-Seq
887  profiling types together (20%). (B) Sharing of causal cis-eQTL associations per quantification type (110
888  detected in total). Percentage of causal cis-eQTLs captured are shown as a percentage of the 110 total.
889  (C) Total causal cis-eQTLs per disease across all five levels of RNA-Seq quantification, using the 20
890  diseases of the ImmunoBase resource. In orange are disease-associated SNPs that show no shared
891 association with expression across any quantification type. In blue are the disease-associated SNPs that
892  are also causal cis-eQTLs. (D) Causal cis-eQTLs and candidate genes per disease broken down by

893  quantification type.

894
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895  Figure 4. Functional annotation of causal autoimmune cis-eQTLs

896  (A) We took the causal autoimmune cis-eQTLs detected for each RNA-Seq quantification type and
897  performed enrichment testing for chromatin state segmentation and histone marks in LCLs taken from
898  the NIH Roadmap Epigenomics Project. We used the GoShifter algorithm to do this (see methods);
899  which takes all SNPs in strong LD (+*>0.8) with the causal cis-eQTLs and calculates the proportion of
900  SNPs overlapping chromatin marks, the positions of the marks are then shuffled whilst retaining the
901 SNP positions, and the fraction of overlap recalculated over 1,000 permutations. A permutation P-value
902  is then generated — which is annotated in each box (P<0.05 deemed significant). The heat colour is
903  representative of the permutation P-value. Significant enrichment tests are highlighted in bold. The total
904  number of causal cis-eQTLs per quantification type are annotated at the bottom of the heatmap. (B) The
905  percentage of causal cis-eQTLs in chromatin regulatory marks per quantification type. An asterisk
906  shows that this level of enrichment is deemed to be significant as shown in panel A. (C) The percentage
907  of causal cis-eQTLs in chromatin regulatory marks per quantification type that are or are highly
908  correlated (+*>0.8) with SNPs that alter splice site consensus sequences of the target genes (assessed by
909  Sequence Ontology for the hg19 GENCODE v12 reference annotation).

910
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911  Supporting information

912

913  S1 Table. SLE GWAS in persons of European Descent (38 loci taken forward for cis-eQTL analysis).
914

915  S2 Table. SLE associated cis-eQTL associations deemed to be causal as defined by the JLIM pipeline
916  (this is the output from JLIM).

917

918  S3 Table. All SLE associated cis-eQTL associations by the JLIM pipeline — causal and non-causal
919  associations (provided as a separate XLSX).

920

921 S4 Table. Functional annotation of SLE candidate genes detected by cis-eQTL analysis using RNA-
922  Seq.

923

924 S5 Table. Number of expression elements that are deemed to have a causal association with the SLE
925  risk SNP.

926

927  S6 Table. Curated studies of the InmunoBase Resource.

928

929  S1 Fig. Overview of the five quantification types used to estimate gene expression using RNA-Seq.
930

931  S2 Fig. Distribution of joint likelihood P-values across RNA-Seq quantification types with 38 SLE
932  GWAS loci.

933

934  S3 Fig. Specificity of cis-eQTLs and candidate genes identified by joint likelihood mapping using SLE
935  GWAS across the five RNA-Seq quantification types.

936
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937  S4 Fig. Regional association plots (+/-250kb) of SLE GWAS in Europeans — showing the nine loci that
938  are causal cis-eQTLs and candidate genes from JLIM analysis. The full results of this analysis are in
939  Table 3 of the manuscript and the summary results from the GWAS as provided in S1 Table. Candidate
940  genes are highlighted in red.

941

942 S5 Fig. SLE associated SNP rs3768792 is a causal cis-eQTL for IKZF?2 for a single exon and a single
943 intron.

944

945  S6 Fig. SLE associated SNP rs7444 is a causal cis-eQTL for UBE2L3 for a single transcript and a single
946  exon.

947

948  S7 Fig. SLE associated SNP rs9872955 is a causal cis-eQTL for LYST for a single junction.

949

950 S8 Fig. Exon and intron numbers for TYK?2 (corresponding to Figure 2). The transcription start site is
951  on the right of the diagram.

952

953 89 Fig. Processing of genotype data and principle component analysis. Genotype data in VCF format
954  of 1000Genomes individuals were downloaded from E-GEUV1 (ArrayExpress). Insertion-deletion
955  sites were removed, and bi-allelic SNPs kept only. SNPs with HWE < 0.0001 were removed and the
956  VCF converted to 0,1,2 format using PLINK. Principle component analysis was performed on genotype
957  data using the R package SNPRelate on chromosome 20. The first 3 components were included in the
958  eQTL regression model as well as the binary imputation status (see methods).

959

960  S10 Fig: Overview of integrative cis-eQTL analysis pipeline using 20 autoimmune diseases

961
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Tables

Table 1. Number of cis-eQTLs driven by the same causal variant as the SLE disease association (total number of SLE loci: 38)

Gene Transcript Exon Junction Intron Total
Causal cis-eQTLs" 2 2 7 4 4 9
% of 38 SLE GWAS loci 53 53 18.4 10.5 10.5 23.7
% of total causal eQTLs 22.2 22.2 77.8 44.4 44.4 100
Candidate genes 3 4 9 5 5 12
Expression targets” 2 7 24 18 13 64

The lead SNPs from the Bentham and Morris et al 2015 GWAS in persons of European descent were functionally annotated by cis-eQTL analysis in the Geuvadis RNA-Seq cohort in
lymphoblastoid cell lines using RNA-Seq quantification profiled at five resolutions (gene, transcript, exon, junction, and intron). Only SNPs reaching genome-wide significance, not
conditional peaks, outside of the major histocompatibility complex loci, and with minor allele frequency > 5% were included leaving 38 SLE lead SNPs in total. All SLE loci were
densely imputed to the 1000 Genomes Phase 3 Imputation Panel as described in methods.

All 38 loci (+/-100kb of each lead SNP) comprised a nominally significant cis-eQTL (P<0.01) for at least one gene within +/-500kb of the lead SNP at each resolution of RNA-Seq.
Evidence of a single shared causal variant at each locus was assessed using the Joint Likelihood Mapping (JLIM) algorithm as described in methods.

“Number of loci where the disease association is consistent with a single shared effect for at least one cis-eQTL (P<0.01 and JLIM FDR adjusted P<0.05). *The total number of unique
causal cis-eQTLs across all RNA-Seq quantification types. “Expression targets corresponds to the quantification type in hand (i.e. number of exons at exon-level).

40


https://doi.org/10.1101/128728
http://creativecommons.org/licenses/by/4.0/

965

Table 2. Pairwise comparison of the number of cis-eQTLs with a nominal JLIM P-value < 0.01
Quantification Quantification Total matched cis-eQTLs % Shared causal variant in % Shared causal variant in % Shared causal variant in % No shared causal variant in Correlation of JLIM P

type X type Y (SNP ~ gene pairs P <0.01) Xand Y (JLIM P <0.01) X only (JLIM P <0.01) Y only (JLIM P <0.01) X and Y JLIM P <0.01) X~Y)
Gene Transcript 267 3.00 1.87 5.62 89.51 0.63
Gene Exon 296 3.72 1.01 8.78 86.49 0.57
Gene Junction 229 3.49 1.75 11.79 82.97 0.46
Gene Intron 252 1.59 3.57 5.56 89.29 0.35
Transcript Exon 325 3.08 5.54 9.54 81.85 0.38
Transcript Junction 261 3.07 5.75 12.64 78.54 0.29
Transcript Intron 279 2.15 6.45 5.73 85.66 0.24
Exon Junction 294 6.12 7.82 9.86 76.19 0.44
Exon Intron 314 2.87 10.83 4.78 81.53 0.34
Junction Intron 275 3.27 13.45 5.09 78.18 0.20

This table is complementary to the data in Figure 1. We only considered matched SNP-gene cis-eQTL association pairs that had a nominal cis-eQTL association P-value < 0.01 in both quantification types, and to be conservative, when multiple transcripts, exons, junctions, and
introns were annotated with the same gene symbol, we selected the associations that minimized the difference in JLIM P-value between matched SNP-gene cis-eQTLs across RNA-Seq quantification types. The first row for example is a pairwise comparison of matched SNP-
gene pairs between gene-level and transcript-level quantification (of which there are 267 matched pairs). 3% of these are deemed nominally causal (JLIM P < 0.01) at both gene-level and transcript, 1.87% at gene-level only and 5.62% at transcript-level only. 89.51% of
matched SNP-gene pairs between gene- and transcript-level do not possess a nominally causal cis-eQTL. Pearson’s correlation was performed for matched SNP-gene JLIM P-value pairs. These data show that exon- and junction-level analysis consistently capture the majority
of potentially causal cis-eQTL associations. JLIM: joint likelihood mapping.

966
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967
968

969

Table 3. Nine SLE loci contain cis-eQTLs driven by the same variant as the disease association

Gene Transcript Exon Junction Intron
Lead SNP Gene ¢QTL P* JLIM P eQTL P JLIM P eQTL P JLIM P eQTL P JLIM P eQTL P JLIM P
152476601 PHTFI - - 22x10° 6.2x 10" 5.0x 10" 1 8.4x 107 1 1.4x 10" 1.0x 10*
rs1801274 ARHGAP30 24x10° 8.1x 10" - - 1.1x 10" 2.0x10* 9.4x10° 7.4x 107 1.2x10° 48x 10"
1s9782955 LYST 5.4x10° 3.90 x 10 8.0x10° 9.8x 10" 1.6x10° 4.6x10° 1.3x10° 2.0x 10" 1.0x10° 5.0x 10"
1s3768792 IKZF?2 - - 1.5x10° 7.7 x 10" 1.9x 10" 3.0x10" 1.0x 107 9.0x 10" 1.1x10° 2.0x10*
rs10028805 BANK1 1.8x 107 3.1x 107 49x10° 3.2x 107 1.8x10° 4.0x 10" 25x10° 2.0x 10" 1.8x 10" 9.7x 10"
2736340 BLK 3.2x107% <10* 1.0x10° <10* 1.4x10™ <10* 7.6x107% <10* 3.1x107% <10*
s FAMI167A 23x10% <10* 4.4x10% <10* 5.1x10* <10* 1.5x 102 <10* 7.4x 10" <10*
152286672 RABEPI 14x10° 5.1x 107 1.3x 10" 9.4x10" 7.4x10° 4.0x 10" 45x10" 7.0x10* 1.3x 10" 8.5x 10
2304256 TYK? 12x10° 7.6x 10" 99x10° 9.9x 10" 25x10° <10* 13x10* 3.0x 107 22x10° 2.0x10"
ATG4D - - 3.8x 107 7.2x 107 6.4x10° 3.8x10° 3.8x10" 2.0x 10" 6.6x10° 9.7x 10"
17444 UBE2L3 5.7x 107 2.0x 10" 59x10™" <10* 9.9x10° <10* 5.1x10° 9.5x 10" 1.2x10° 9.0x 10"
CCDCI116 2.5x10° 50x10* 1.4x10° 3.0x 10" 4.9x10" 4.0x 10" - - - -

Nine of the 38 SLE loci (24%) were found to be driven by the same causal variant as the disease association across all five RNA-Seq quantification types in LCLs (cis-eQTL P<0.01 and joint likelihood of shared association FDR<0.05). Bold
type indicates associations that show evidence of a shared causal variant for cis-eQTL and disease. “Minimum cis-eQTL P-value for any SNP within 100 kb of the lead SNP. Dashes (-) indicate genes that were either not detected or had
minimum cis-eQTL P>0.01 in the RNA-Seq quantification type in hand. JLIM P-values <10 indicates the JLIM statistic is more extreme than permutation. JLIM: joint likelihood mapping. If multiple SNP-unit associations are deemed to
be causal (i.e. one SNP shows a causal association to two exons of the same gene, the association with the smallest JLIM P-value is reported).
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i Candidate-causal cis-eQTLs per independent loci (560 total)
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