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Summary  7 
In characterizing a disease, it is common to search for dysfunctional genes by assaying the 8 
transcriptome. The resulting differentially expressed genes are typically assessed for shared features, 9 
such as functional annotation or co-expression. While useful, the reliability of these systems methods is 10 
hard to evaluate.  To better understand shared disease signals, we assess their replicability by first 11 
looking at gene-level recurrence and then pathway-level recurrence along with co-expression signals 12 
across six pedigrees of a rare homogeneous X-linked disorder, TAF1 syndrome. We find most 13 
differentially expressed genes are not recurrent between pedigrees, making functional enrichment 14 
largely distinct in each pedigree. However, we find two highly recurrent “functional outliers” (CACNA1I 15 
and IGFBP3), genes acting atypically with respect to co-expression and therefore absent from a systems-16 
level assessment. We show this occurs in re-analysis of Huntington’s disease, Parkinson’s disease and 17 
schizophrenia. Our results suggest a significant role for genes easily missed in systems approaches.   18 
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Introduction 1 
Gene dysfunction in disease is frequently studied through a systems biology framework (Kitano, 2002) in 2 
which genes are linked through their shared functional properties and pathways.  To assay the networks 3 
underpinning a phenotype it is common to look to the transcriptome as a measure of the activity of the 4 
genes in the system (Cookson et al., 2009; Dermitzakis, 2008; Jirtle and Skinner, 2007; Lamb et al., 5 
2006). Gene expression changes are detected through differential expression, and then systems-level 6 
signals are determined through gene set enrichment (Hosack et al., 2003; Subramanian et al., 2005), 7 
network connectivity assessments (Barabási et al., 2010; Greene et al., 2015; Lage et al., 2007), or gene 8 
property enrichment (Kircher et al., 2014; Lek et al., 2016). These methods all contextualize genes to 9 
known biological properties, functions and pathways. As this step aims to summarize the disease 10 
mechanism, it is typically the last step in an analysis, with little direct evaluation for efficacy (Nguyen et 11 
al., 2016; Pham et al., 2017; Yu et al., 2017). This reflects the challenge of developing a systematic 12 
framework for doing so, particularly where normal heterogeneity of phenotype and genotype may 13 
generate joint functional signals of their own. In this work, we seek to assess the replicability of disease 14 
and systems biology signals using a meta-analytic approach that exploits multiple pedigrees of a rare 15 
and homogeneous disorder, the TAF1 syndrome.  16 

Genes may share signals for either biological or technical reasons.  In gene or protein space, a “systems 17 
biology analysis” is used to define or assess these shared signals, with the assumption that the main 18 
driver behind the common features is biological (Draghici et al., 2007; Huang et al., 2008). A systems 19 
analysis can take the form of enrichment (e.g., Gene Ontology annotation overlaps) or more complex 20 
methods (e.g., k-nearest neighbors in co-expression networks), but ultimately outputs pathway-level 21 
summaries. Signals shared between genes due to technical properties such as sampling biases, 22 
confounded study designs, and batch effects can arise as false positives in a systems biology analysis and 23 
may be difficult to identify.  False positive results can also easily arise due to unknown or uncontrolled 24 
biological variation, stemming from difficulties in phenotyping and the genetic heterogeneity of complex 25 
disorders (e.g., schizophrenia and autism (Purcell et al., 2014; Sanders et al., 2017)). There, variation in 26 
either phenotype or genotype may average away real disease effects and/or generate gene expression 27 
variation unrelated to disease (Hansen et al., 2011) (Figure 1). Replication is a central test of which of 28 
the two - either disease specific or untargeted variation - has driven the appearance of a characteristic 29 
signal across genes. In this work we assess the recurrence of candidate genes and pathways across 30 
separately analyzed data-sets. We characterize the degree to which replicate transcriptional signatures 31 
occur in groups of genes (e.g., co-expression) versus outliers (genes acting alone). A particular target of 32 
our analysis is the TAF1 syndrome cohort, a rare and well-defined X-linked neurodevelopmental disorder 33 
with multiple pedigrees for assessment (see Box 1 for further details).  34 

We are able to look for replicability of disrupted gene expression signatures within the TAF1 cohort for 35 
four main reasons: multiple pedigrees, phenotypic similarity, genetic homogeneity and a plausible 36 
mechanism for an impact on expression levels. We describe four classes of signals that can be extracted 37 
from disease analyses, reflecting whether signals are shared across families (recurrent/replicable) and 38 
across functional sets of genes (joint/disjoint signals). In TAF1 syndrome, we find recurrence of gene 39 
expression change at the gene-level for two plausible candidates, CACNA1I and IGFBP3. At the systems 40 
biology level, we find little replicable enrichment, assessed via gene set enrichment of the Gene 41 
Ontology (GO) and via co-expression. Interestingly, the strongest replicable signal appears to arise from 42 
genes acting outside of the systems biology framework.  We call genes meeting this property “functional 43 
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outliers”. To see if our analysis is informative in other diseases and study designs, we also assess 1 
common heterogeneous neurodegenerative and neuropsychiatric disorders in over a thousand samples 2 
(~1.7k), including 5 Huntington’s disease studies, 15 Parkinson’s disease studies, and 10 schizophrenia 3 
studies. Once we extend the analysis to the more heterogeneous brain disorders, we are able to 4 
recapitulate known disease mechanisms, which appear as both recurrent joint signals (e.g., immune 5 
signaling pathways in schizophrenia), and recurrent functional outliers (e.g., SNCA in Parkinson’s). The 6 
results from the four disorders studied here highlight the potentially important role of functional 7 
outliers, and suggest caution in applying gene-set based methods, such as enrichment or co-expression, 8 
in summarizing disease manifestation and mechanism.   9 

 10 

 11 

 12 

Figure 1 What does a systems biology approach tell us?  A systems biology assessment summarizes the properties 13 
of genes that are captured in an experiment, but can highlight both true and false positive results. In some cases, 14 
genes with a shared function are unlikely to arise in the experiment by chance. A gene set analysis will highlight 15 
their shared function (top panel), but not their independent value in identifying the enriched function. In other 16 
cases, a set of genes are so closely related both technically and biologically that if one arises, the others are almost 17 
certain to do so.  A statistical analysis treating the genes as independent (bottom panel) will attach a misleading 18 
significance to the shared presence of the genes. These genes and gene sets will be unlikely to replicate in future 19 
studies. 20 
 21 

 22 

 23 

 24 

 25 
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Box 1 TAF1 syndrome cohort 1 

To probe in detail the functional gene signals that recur significantly due to disease, we focus a large part of our 2 
analysis on TAF1 syndrome also known as “X-linked syndromic mental retardation-33” (MRXS33 MIM# 300966  3 
(O’Rawe et al., 2015)), an X-linked recessive neurodevelopmental disorder. TAF1 syndrome is a rare, penetrant, 4 
and overall homogeneous disorder with no known disease mechanism. Genetically, it is defined by mutations in 5 
TAF1 (TATA-Box Binding Protein Associated Factor 1), a key subunit of the general transcription factor TFIID 6 
(Louder et al., 2016; Müller et al., 2010). TFIID promotes transcriptional initiation by binding to the core promoters 7 
of genes, and recruits other transcription factor subunits that act as co-activators or co-repressors, encoding 8 
regulatory specificity (Pijnappel et al., 2013). Other subunits of TFIID are candidate genes in developmental and 9 
neurodegenerative diseases (Alazami et al., 2015; Bauer et al., 2004; El-Saafin et al., 2018; Hellman-Aharony et al., 10 
2013), with reduced binding between the subunits playing a role in the pathogenesis. The characteristic 11 
phenotypic features of the TAF1 disorder include global developmental delay, facial dysmorphology, generalized 12 
hypotonia, hearing impairments, microcephaly, and a characteristic gluteal crease with a sacral caudal remnant. All 13 
documented cases of the disorder affect males, and mostly have arisen de novo. In the few known inherited cases, 14 
female carriers do not show any features of the disease. This is generally a feature of X-linked disorders, with 15 
extreme X-skewed inactivation playing a role in phenotypic variation and protection in females (Migeon, 2007). 16 

Despite being a relatively rare disorder, we have access to multiple pedigrees. In this study, six families were 17 
recruited from around the world, mainly of European descent and were between 5-21 years of age. All probands 18 
have point mutations in their TAF1 transcription factor, except for a single CNV case. In three of the pedigrees, the 19 
mothers are carriers of the same mutation.  20 

The four properties – global transcriptional impact, characteristic phenotype, genetic homogeneity, and multiple 21 
pedigrees - allow us to perform a disease replicability analysis using easily accessible blood transcriptional profiles. 22 
We can study each pedigree as a separate differential expression experiment: identifying differentially expressed 23 
genes and overrepresented pathways and then assessing these candidate genes and pathways for recurrence 24 
across pedigrees. 25 

Results 26 

Replicability design overview  27 
To understand shared disease signals, we assess replicability by testing the recurrence of candidate 28 
genes and pathways across separately analyzed differential expression experiments.  We classify 29 
whether signals are replicated across families or datasets (and call this “recurrent”) and whether the 30 
signals involve sets of genes acting together (and call this “joint”).  For the TAF1 syndrome cohort 31 
analysis, we performed a family-based differential expression analysis, then tested for gene-level and 32 
pathway-level signals through gene set enrichment and a co-expression network modularity analysis 33 
(Figure 2A). We then looked across the pedigrees to evaluate where signals arise, summarized in Figure 34 
2B. There are four possibilities we can assess. 1) We may have a joint functional signal, where many 35 
genes are part of the same set/module, and it is this module which is replicated across families (i.e., 36 
recurrent and co-functional). 2) We may have a recurrent disjoint signal: genes that replicate across 37 
families, but do not share common functions with other genes (i.e., recurrent functional outliers). 3) 38 
There is also the chance of a non-recurrent but joint signal: genes contribute to a shared signal, but 39 
uniquely within a family. 4) And finally, there is also an entirely disjoint signal, where we see one-off 40 
genes that are most likely false positives. We test all possible outcomes by measuring recurrence of 41 
genes, gene set enrichment and co-expression modularity (Figure 2C). We go through the results in the 42 
following sections.  43 

 44 
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 1 

Figure 2 Disease expression analysis schematic. (A) We calculate expression fold change between probands and 2 
parents and pick out the top 100 up- and down-regulated genes (increased and decreased expression, 3 
respectively). We test for joint functional properties through gene set enrichment and co-expression modularity. 4 
(B) Given multiple pedigrees/families of the disorder, we can piece together whether disease signals are recurrent 5 
across families or non-recurrent, and due to multiple genes (joint) or independent genes (disjoint). (C) This can be 6 
done by assessing recurrence at the gene and pathway levels. (D) The TAF1 syndrome cohort pedigrees used in this 7 
analysis. Four cases have missense mutations, one case a splice site mutation, and the last case a CNV duplication. 8 
Three of the mothers are carriers with no distinguishing characteristics.   9 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 26, 2018. ; https://doi.org/10.1101/128439doi: bioRxiv preprint 

https://doi.org/10.1101/128439
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 
 

Transcriptional replicability across the TAF1 cohort occurs at the gene level  1 
Since TAF1 is a transcription factor, we first wished to see if there was a common disease signature at 2 
the expression level. We identified differentially expressed genes (DEGs) using a family-based 3 
differential expression (DE) analysis (see STAR Methods). We saw only moderate overlaps of the 4 
differentially expressed genes between each of the pedigrees tested (Figure 3A) for both upregulated 5 
and downregulated genes. There were at most 26 (out of 100) genes in common between Family 3 and 6 
Family 5 (Figure 3B, p~1e-40). Even though few genes overlapped when assessed pairwise, there were a 7 
number of differentially expressed genes that were recurrently DE across families (significant if in at 8 
least three families FDR<0.05), with a modest number significantly recurrent. We find four genes 9 
recurrently upregulated (ISG15, RN7SK, FFAR3 and IGLV1-44), and 14 downregulated (C1QA, CFH, RPS7, 10 
SNRPG, LSM3, RPS3A, IGFBP3, RPL7, KLRB1, OLFM4, PRSS30P, KIR2DS4, S100B and CACNA1I Figure 3C, 11 
see Table S4). These results suggest that even though a large fraction of the differentially expressed 12 
genes are unique to each pedigree, a recurrent gene transcriptional disease signature is present within 13 
the data. To test the dependence of these results on the DE threshold (top 100 genes), we repeated the 14 
recurrence using different DE thresholds (Figure 3D). As the change in the number of the DEGs called 15 
had an influence on the significance of recurrence, we see peaks and troughs of gene recurrence 16 
corresponding to the change in adjusted p-values. We found similar numbers of significantly recurrent 17 
genes within these ranges, with cut-offs between 50 and 200 genes most informative. We use the top 18 
100 DEGs for the remainder of the analyses.  19 

  20 
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 1 

 2 

Figure 3 Disease expression analysis with a family-based approach. (A) The expression fold change for each gene 3 
is calculated within each family (top 100 up and down regulated genes are shown). (B) Overlaps in DE gene sets 4 
between the individual families (numbers in boxes), and the significance of this overlap (colored corresponding to -5 
log10 P-value of the hypergeometric test). Overlaps are mostly small. (C) The replicable genes are those that are 6 
recurrent across families. The recurrence distributions for both up- and downregulated genes across the 6 families 7 
are shown. Using the binomial test, we find that genes recurring 3 or more times are significant (FDR<0.05). These 8 
genes are listed, with 4 up- and 14 downregulated genes significantly recurrent. (D) Robustness assessment of the 9 
DE threshold. The plot shows the number of recurrent genes as a function of the number of differentially 10 
expressed genes and the significance of the recurrence in grey.   11 
  12 
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Gene set enrichment does not identify specific disease mechanisms  1 
While only a modest number of genes overlapped across the pedigrees, it is possible that non-recurrent 2 
genes still provide a shared disease signal, with variability in the exact genes identified due to technical 3 
limitations. To assess this possibility, we perform gene set enrichment in two ways. First, we test 4 
differentially expressed gene lists from each pedigree independently, and then measure the recurrence 5 
of the enriched pathways across the studies, as a parallel to the gene recurrence assessment.  We then 6 
check for significantly recurrent pathways. Second, we test for enrichment of the recurrent genes 7 
themselves. We performed gene set enrichment using a subset of the Gene Ontology (GO slim) and 8 
found few pathways significantly enriched on a per family basis (FDR<0.05, Figure 4A), with the 9 
exception of Family 5, which had 22 downregulated pathways. Then, to assess the disease significance 10 
of the enrichment signal, we calculated the similarity and significance of recurrence of these pathways 11 
across the families. As in the case of gene recurrence, we expect the disease signal (here the enrichment 12 
signal) to replicate across the cohort if it is disease linked. Of the significantly enriched pathways, at 13 
most three were significantly upregulated and recurrent across the families (Figure 4B and Table S5). 14 
The pathways significantly recurrent were larger than average, implying broad properties (e.g., 15 
GO:0002376 immune system process, GO:0006950 response to stress and GO:0007165 signal 16 
transduction, Figure S3A) with different genes contributing to the enrichment within each of the 17 
families (Figure 4C). While pathways were significantly recurrent across family-specific upregulated 18 
genes, the few recurrent upregulated genes do not show enrichment. In contrast, we found no 19 
downregulated pathways as significantly recurrent (Figure 4D) despite the gene recurrence and family-20 
specific enrichment. However, the recurrent downregulated genes themselves (Figure 4E) are enriched 21 
for six GO groups related to ribosomal functions, including RNA binding, translation, and protein 22 
targeting. The discrepancy between the pathways enriched with the recurrent genes and the pathways 23 
significantly recurrent suggests that the weak enrichment signals are not specific to the disorder.  24 
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 1 

Figure 4 Gene set enrichment assessment of TAF1 cohort. (A) Top GO enrichment results for each family for up-, 2 
and downregulated genes. Significant terms (FDR < 0.05) are highlighted with an *. (B) The frequency and 3 
significance of recurrence of each GO term is plotted for the upregulated genes. (C) Gene-GO membership matrix 4 
for the upregulated genes. Each column is a gene, and each row a family. The colored bars below highlight the GO 5 
terms that these genes belong to. The signal associated with the recurrent GO terms is distributed across different 6 
genes, shown by low overlap across the families. (D) There are no significantly recurrent pathways with the 7 
downregulated genes. (E) However, the recurrent genes themselves are enriched for ribosomal pathways (p-8 
adjusted<0.05), as shown in the gene-GO membership matrix. The three RP* genes seem to drive almost all the 9 
signal.  10 
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Top recurrent genes do not appear to act within a systems biology framework  1 
As we are limited by gene set annotations, the weak enrichment may be due to our lack of complete 2 
pathway knowledge (Thomas, 2017). Therefore, to test for joint signal with a different but 3 
comprehensive data modality, we looked to co-expression. Genes that are co-expressed are known to 4 
share functions, are co-regulated, or are parts of known pathways (Gaiteri et al., 2014). Unlike most 5 
curated or inferred gene annotations, co-expression can be assessed genome-wide. We used the gene 6 
pair co-expression frequency from a wide corpus of data (external to this study) as our co-functionality 7 
measure (see STAR Methods). For each family’s set of differentially expressed genes, we found gene co-8 
expression blocks comprising more than two thirds of these genes (Figure S4A). We show an example of 9 
this for the top 100 down-regulated genes from Family 1 in Figure 5A.  10 

We then asked where the recurrent genes sit in relation to the co-expression modules. Interestingly, we 11 
found the outlier or disjoint genes (those not in the large modules) were frequently among the most 12 
recurrent genes across the families (Figure 5B). Almost a third of the disease signature was not within 13 
common co-expression or functions, but rather appeared within very small modules or as outliers. For 14 
functional characterization to usefully summarize the DE list, candidate genes should be enriched within 15 
pathways.  This was not true of TAF1 disorder candidate genes.  In particular, we find that the top 16 
downregulated genes CACNA1I and IGFBP3 are not within modules. Once we perform a gene set 17 
enrichment analysis on the genes excluding those in modules, nearly all of the enrichment signal is lost, 18 
highlighting that the most recurrent candidates act outside of a common joint signal. If this is similarly 19 
true of the disease mechanism, then a systems-style analysis will fail to discover the disease signal.  20 

  21 
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  1 

 2 

Figure 5 Co-expression of differentially expressed genes generates enrichment.  (A) As an example from family 1, 3 
we show the co-expression frequency sub-network as a heatmap, where genes showing decreased expression 4 
show co-expression. Co-expression blocks define modules as determined by the clustering (see rows). The modules 5 
are enriched for particular genes, mainly ribonucleoproteins. Performing a gene set enrichment analysis on these 6 
genes (Fisher’s exact test on GO groups), genes (rows) that generate the enrichment (columns are enriched GO 7 
terms) almost exclusively overlap with the co-expression blocks. The prominent pathways are ribosome related. 8 
(B) The significantly recurrent genes can be divided into those present within co-expression modules (joint) and 9 
those not (disjoint). The genes in bold are the functional outliers and the venn diagrams summarizes the number of 10 
genes in each category. (C) If we look at the enrichment of these DE gene sets (pre-filtering dark line +/-SD 11 
shadow), we see that filtering off the modules removes all but a few significant terms (lighter line, +/-SD shadow).  12 
  13 
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Recurrence of genes and pathways in other disorders  1 

The TAF1 cohort is interesting in part for being a rare disorder with a penetrant and distinct phenotype.  2 
In order to assess the role of functional outliers more broadly, we looked to three other disorders with 3 
substantial transcriptomic data and varying degrees of genetic heterogeneity. We focused on 4 
Huntington’s disease (HD), Parkinson’s disease (PD), and schizophrenia (SCZ). All studies used are listed 5 
in Table S3.  6 

Huntington’s disease is an inherited neurodegenerative disorder, characterized by the progressive 7 
degeneration of cells in the brain (primarily the striatum) and is associated with impaired movements, 8 
decline in cognitive abilities and depression (Bates et al., 2015). Similar to TAF1 syndrome, HD is a 9 
monogenic disorder. The disease is caused by an expansion of the CAG repeats in the Huntingtin gene 10 
(HTT), which is believed to be toxic to other proteins once mutated. The exact functions of HTT are still 11 
unclear, along with the mechanisms (Bates, 2005). To test the possibility of a joint functional signal, we 12 
assessed five expression studies of HD, following the evaluative approach we took with the TAF1 cohort. 13 
Interestingly, we found both joint and disjoint signals (Figure 6A). A total of 18 upregulated genes were 14 
significantly recurrent, with ANGPT1 (Angiopoietin 1) recurrent in four of the five studies. This gene 15 
plays an important role in vascular development and angiogenesis. Along with other recurrent genes, 16 
such as ANG (angiogenin), KCNE4 and SLC14A1, there seems to be an associated cardiovascular 17 
phenotype. Heart disease is comorbid with Huntington’s, and these gene candidates suggest a link to 18 
cardiac development. Additionally, we found six genes recurrently downregulated in at least three of the 19 
five studies; these include synaptic genes (SV2C, NRGN, and HTR2C) and a calcium channel related to 20 
modulation of firing in neurons (CACNA1E). We found that all the recurrent downregulated genes were 21 
part of modules, thus showing a strong joint functional signal. And in the upregulated genes, ANG is a 22 
functional outlier, while all of the other recurrent genes were in shared functions. These results suggest 23 
a stronger joint functional signal than in the TAF1 disorder.  All recurrent genes are listed in Table S6.    24 

Parkinson’s disease is a progressive neurodegenerative disorder, characterized by the loss of 25 
dopaminergic neurons leading to decreased motor function. Unlike the TAF1 cohort, Parkinson’s has 26 
multiple genes implicated, each with different onset stages (e.g., LRRK, SNCA, PRKN, FBXO7, PARK7, and 27 
PINK1) (Poewe et al., 2017), increasing the genetic heterogeneity of the disorder and data. We collected 28 
15 differential expression gene lists and repeated our analysis. We find a subset of significantly recurrent 29 
downregulated genes but no upregulated genes as significant (Figure 6B). The most recurrently 30 
downregulated gene is SNCA (alpha-synuclein), a well-known Parkinson’s disease gene (Siddiqui et al., 31 
2016) which recurs six times (FDR < 0.05). We did not purposely select for studies with variants in this 32 
gene when selecting the studies for the meta-analysis, but could confirm it was the genetic cause in a 33 
few of the studies. Another top candidate was SYT1 (synaptotagmin 1) which recurred in five of the 15 34 
studies (FDR < 0.05). Synaptotagmins are known to be involved in neurodegeneration (Glavan et al., 35 
2009), and SYT11 (Sesar et al., 2016) has been associated with the disorder through its interactions with 36 
PARK7. Other genes that are significantly recurrent include SLC18A2 (linked to PD (Lohr and Miller, 37 
2014) ), UCHL1 (mutations may be associated with PD (Healy et al., 2006; Maraganore et al., 38 
2004)), DLK1 and SLC10A4.  A majority of the recurrent genes were present in co-expressed modules, 39 
but the joint signal was less predominate than in Huntington’s disease. All recurrent genes are listed in 40 
Table S7 and enriched pathways in Table S8.   41 

Our final use case was on schizophrenia, a neuropsychiatric disorder characterized by abnormal social 42 
behavior and psychosis, along with other cognitive impairments (Kahn et al., 2015). The disorder has 43 
strong environmental and genetic components (Gejman et al., 2010; Rees et al., 2015), with many genes 44 
increasing risk. The risk alleles are also shared amongst many other neuropsychiatric phenotypes, 45 
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making this a hard disorder to classify both genetically and phenotypically, and thus difficult to 1 
characterize molecularly. We assessed 10 disease expression studies and found both up- and 2 
downregulated transcriptional signatures (Figure 6C), but these recurred in three or four studies at 3 
most. Consistent with the genetic and phenotypic heterogeneity of the disorder, we find that recurrent 4 
genes have both joint and disjoint signals. Of the genes upregulated, we find recurrence of the FCN3 5 
gene (Ficolin 3), a recognition molecule in the lectin pathway of the complement system (Garred et al., 6 
2009; Mayilyan, 2012). This is of interest in schizophrenia as it potentially interacts with C4, a known risk 7 
allele (Sekar et al., 2016). The remaining recurrent genes were enriched for an inflammatory signature, 8 
also recapitulating known schizophrenia etiology. Among recurrent downregulated genes is the protein 9 
phosphatase inhibitor PPP1R17 which is primarily expressed in Purkinje cells in the cortex of the 10 
cerebellum, a brain region which may play a role in the disorder (Maloku et al., 2010). Interestingly, both 11 
FCN3 and PPP1R17 were functional outliers, with the other recurrent genes showing joint functional 12 
signals. All recurrent genes are listed in Table S9 and enriched pathways in Table S10. Overall, across all 13 
the disorders, the joint signals via co-expression were much stronger than in the TAF1 syndrome cohort, 14 
but there were important functional outlier candidates within each disease.   15 
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 1 
Figure 6 Differential expression meta-analysis in three other disorders. (A) Recurrence of genes in Huntington’s 2 
disease (HD), (B) Parkinson’s disease (PD) and (C) schizophrenia (SCZ), and whether they occur in groups (joint) or 3 
not (disjoint). The venn diagrams summarize the number of recurrent genes and their joint or disjoint designation. 4 
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Discussion 1 
The main contribution of this work is a rigorous analysis of replicability of functional signals implicated in 2 
disease through expression analysis. We describe four classes of signals that can be extracted from 3 
disease analyses, reflecting whether signals are shared across families or studies (recurrent) and/or 4 
across functional sets of genes (joint). These are: 1) recurrent joint signals, 2) recurrent but disjoint, 3) 5 
joint but not recurrent 4) not recurrent and disjoint. Our evaluation of the rare TAF1 syndrome and 6 
three common disorders highlighted an important feature of disease that has been overlooked in the 7 
systems paradigm: the role of functional outliers, classified as recurrent but with no joint or shared 8 
function.  9 

In the TAF1 cohort, we believe that the recurrent disjoint genes are the disease signal for reasons within 10 
and outside the present analysis. Of the candidates we found, CACNA1I and IGFBP3 had the strongest 11 
recurrent signal. CACNA1I is a calcium channel subunit, and mutations in calcium channels are known to 12 
have similar phenotypes to the cohort here, including intellectual disability, autism and dystonia (Fukai 13 
et al., 2016; Lu et al., 2012). In addition, there is a TAF1 binding site upstream of the gene (Wang et al., 14 
2012). Most convincing is that this gene has been implicated recurrently in other brain disorders; it is 15 
the only recurrent missense de novo in schizophrenia studies (Gulsuner et al., 2013), one of the few 16 
overlapping candidates between schizophrenia and autism. The other recurrent candidate was the 17 
insulin-like growth factor-binding protein 3 (IGFBP3). Downregulation of this gene has been recently 18 
implicated in a developmental disorder with a behavioral and cognitive phenotype (Perez et al., 2018). 19 
Despite these fairly convincing properties, it remains to be seen whether the candidate genes are 20 
specific to the TAF1 cohort, or rather might reflect a more general signature of developmental disorders.  21 

Consistent with the view that functional outliers and aberrantly expressed genes may play a particularly 22 
strong role in diseases with rare genotypic variation, we do not find them as the strongest signal in the 23 
other disorders.  In our meta-analysis, we focused on disorders with varying genetic architecture and 24 
those also well powered for assessment. In each case, the meta-analysis was powered to call individual 25 
genes as recurrent, identifying both known and novel candidate disease genes. This was not dramatically 26 
more than those found assessing across individual families within the TAF1 cohort, most likely due to 27 
the heterogeneity of the other disorders or their study designs. Within each disorder, we observed clear 28 
joint functional signals present through the co-expression analysis, but to varying degrees (e.g., strong 29 
immune signals in schizophrenia). Interestingly, despite the greater role of joint functional signals within 30 
these disorders, plausible functional outliers exist for each, most notably in the case of Parkinson’s 31 
disease where known disease genes, such as SNCA, appear to be acting outside of their typical behavior 32 
as evaluated from co-expression.  33 

Characterizing whether or not genes exhibit expected shared behavior bears strongly on the subject of 34 
disease mechanisms.  In the transcriptomic analysis of rare disorders, a joint disruption is almost always 35 
assumed for disease. Yet, there is potential for unbuffered and uncharacteristic expression changes in a 36 
few single genes, particularly when the assumed pathogenic variant is regulatory or the disorder is 37 
monogenic (Cummings et al., 2017; Fresard et al., 2018; Kremer et al., 2017). In this case, genes that are 38 
no longer under regulatory control, or those that have gained regulation, will act out of place (Zeng et 39 
al., 2015; Zhao et al., 2016). These genes could be far downstream in a pathway or cascade, and thus not 40 
impact other pathway members directly or immediately. In general, enrichment and other systems 41 
biology analyses will miss these single genes that serve as unique bottlenecks.  Our results suggest that 42 
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filtering based on enrichment will systematically remove interesting candidates. This does not mean that 1 
systems-style analyses should not be conducted, rather we suggest that they be treated as a tool to 2 
classify which genes are operating within a group and which are not.  With time, strong candidates in 3 
either category may be identifiable and provide valuable and distinct information about disease 4 
mechanisms. 5 
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Figure Legends  1 
Figure 1 What does a systems biology approach tell us?  A systems biology assessment summarizes the properties 2 
of genes that are captured in an experiment, but can highlight both true and false positive results. In some cases, 3 
genes with a shared function are unlikely to arise in the experiment by chance. A gene set analysis will highlight 4 
their shared function (top panel), but not their independent value in identifying the enriched function. In other 5 
cases, a set of genes are so closely related both technically and biologically that if one arises, the others are almost 6 
certain to do so.  A statistical analysis treating the genes as independent (bottom panel) will attach a misleading 7 
significance to the shared presence of the genes. These genes and gene sets will be unlikely to replicate in future 8 
studies. 9 

Figure 2 Disease expression analysis schematic. (A) We calculate expression fold change between probands and 10 
parents and pick out the top 100 up- and down-regulated genes (increased and decreased expression, 11 
respectively). We test for joint functional properties through gene set enrichment and co-expression modularity. 12 
(B) Given multiple pedigrees/families of the disorder, we can piece together whether disease signals are recurrent 13 
across families or non-recurrent, and due to multiple genes (joint) or independent genes (disjoint). (C) This can be 14 
done by assessing recurrence at the gene and pathway levels. (D) The TAF1 syndrome cohort pedigrees used in this 15 
analysis. Four cases have missense mutations, one case a splice site mutation, and the last case a CNV duplication. 16 
Three of the mothers are carriers with no distinguishing characteristics. 17 

Figure 3 Disease expression analysis with a family-based approach. (A) The expression fold change for each gene is 18 
calculated within each family (top 100 up and down regulated genes are shown). (B) Overlaps in DE gene sets 19 
between the individual families (numbers in boxes), and the significance of this overlap (colored corresponding to -20 
log10 P-value of the hypergeometric test). Overlaps are mostly small. (C) The replicable genes are those that are 21 
recurrent across families. The recurrence distributions for both up- and downregulated genes across the 6 families 22 
are shown. Using the binomial test, we find that genes recurring 3 or more times are significant (FDR<0.05). These 23 
genes are listed, with 4 up- and 14 downregulated genes significantly recurrent. (D) Robustness assessment of the 24 
DE threshold. The plot shows the number of recurrent genes as a function of the number of differentially 25 
expressed genes and the significance of the recurrence in grey. 26 

Figure 4 Gene set enrichment assessment of TAF1 cohort. (A) Top GO enrichment results for each family for up-, 27 
and downregulated genes. Significant terms (FDR < 0.05) are highlighted with an *. (B) The frequency and 28 
significance of recurrence of each GO term is plotted for the upregulated genes. (C) Gene-GO membership matrix 29 
for the upregulated genes. Each column is a gene, and each row a family. The colored bars below highlight the GO 30 
terms that these genes belong to. The signal associated with the recurrent GO terms is distributed across different 31 
genes, shown by low overlap across the families. (D) There are no significantly recurrent pathways with the 32 
downregulated genes. (E) However, the recurrent genes themselves are enriched for ribosomal pathways (p-33 
adjusted<0.05), as shown in the gene-GO membership matrix. The three RP* genes seem to drive almost all the 34 
signal. 35 

Figure 5 Co-expression of differentially expressed genes generates enrichment.  (A) As an example from family 1, 36 
we show the co-expression frequency sub-network as a heatmap, where genes showing decreased expression 37 
show co-expression. Co-expression blocks define modules as determined by the clustering (see rows). The modules 38 
are enriched for particular genes, mainly ribonucleoproteins. Performing a gene set enrichment analysis on these 39 
genes (Fisher’s exact test on GO groups), genes (rows) that generate the enrichment (columns are enriched GO 40 
terms) almost exclusively overlap with the co-expression blocks. The prominent pathways are ribosome related. 41 
(B) The significantly recurrent genes can be divided into those present within co-expression modules (joint) and 42 
those not (disjoint). The genes in bold are the functional outliers and the venn diagrams summarizes the number of 43 
genes in each category. (C) If we look at the enrichment of these DE gene sets (pre-filtering dark line +/-SD 44 
shadow), we see that filtering off the modules removes all but a few significant terms (lighter line, +/-SD shadow). 45 
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Figure 6 Differential expression meta-analysis in three other disorders. (A) Recurrence of genes in Huntington’s 1 
disease (HD), (B) Parkinson’s disease (PD) and (C) schizophrenia (SCZ), and whether they occur in groups (joint) or 2 
not (disjoint). The venn diagrams summarize the number of recurrent genes and their joint or disjoint designation. 3 
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STAR Methods 1 

CONTACT FOR REAGENT AND RESOURCE SHARING 2 
Further information and requests for resources should be directed to and will be fulfilled by the Lead 3 
Contact, Jesse Gillis (jgillis@cshl.edu).  4 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 5 
The TAF1 syndrome cohort  6 
We assessed 6 pedigrees of a genetically and phenotypically homogeneous X-linked TAF1 syndrome 7 
cohorts. The original cohort was assembled by O’Rawe et al. (O’Rawe et al., 2015), which included 11 8 
pedigrees from around the world. The probands are male, between 5-21 years of age, have intellectual 9 
disability, distinct facial dysmorphology, general hypotonia, hearing impairments, and a characteristic 10 
intergluteal crease. Of the 6 pedigrees we studied, all probands had a point mutation in their TAF1 11 
transcription factor, except for a single CNV case with a duplication of a ~0.42 Mb region at Xq13.1 that 12 
includes TAF1 and other genes.  13 

METHOD DETAILS 14 
RNA-sequencing and processing  15 
Blood was collected in PAXgene Blood RNA tubes and the RNA was isolated with the PAXgene Blood 16 
RNA kit (QIAGEN) according to the manufacturer’s recommendations. The RNA was quantified using 17 
NanoDrop. To increase downstream sensitivity, globin mRNA was depleted from the samples using the 18 
GLOBINclear Kit (Life Technologies). Briefly, RNA was precipitated with ammonium acetate, washed and 19 
resuspended in 14 µl TE (10 mM Tris-HCl pH 8, 1 mM EDTA). Subsequently, for each sample 1.1 µg RNA 20 
were hybridized with the provided streptavidin beads and purified. To control for variation in RNA 21 
expression data, 1 µl of a 1:100 dilution of ERCC RNA Spike-In control (Thermo Fisher) was added to 1 µg 22 
RNA and libraries generated according to the TruSeq Stranded mRNA Library Kit-v2 (Illumina) with the 23 
index primers as indicated in  24 

Table S1. Quality control of the generated libraries was performed on a Bioanalyzer High Sensitivity DNA 25 
chip (Agilent) and the concentration was measured using Qubit dsDNA HS Assay (Life Technologies). To 26 
eliminate primer dimers in the libraries, additional purifications were performed using the Agencourt 27 
AMPure XP system (Beckman Coulter). The libraries were pooled to 2-10 nM total concentration and 28 
sequenced on an Illumina NextSeq 500, PE100, mid output. Libraries were generated independently for 29 
each family and family-pools multiplexed and sequenced on separate lanes. ERCC spike-ins included in 30 
the preparation were not used for normalization, but rather as a measure of quality control. Families 2, 31 
3 and 4 showed the lowest variation in the ERCCs between family members, while family 5 and 6 had 32 
higher technical noise (Figure S2). Reads were filtered for QC and artifacts using the fastX toolbox, and 33 
then the reads were paired up using an adapted python script 34 
(https://github.com/enormandeau/Scripts/blob/master/fastqCombinePairedEnd.py). The reads were 35 
aligned to the genome (GRCh38, GENCODE v22 (Harrow et al., 2012)) using STAR (2.4.2a)(Dobin et al., 36 
2012).  37 

Differential expression analysis 38 
We calculated fold change between parents and probands for the differential expression analysis. We 39 
first calculated the CPM (counts per million) for each individual, and then took the average CPM for the 40 
parents and compared it the CPM of the proband. Fold change was defined as the log2 of the ratio of 41 
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these values after adding a pseudocount of 1. We exploited within-family variance to detect noisy 1 
genes, removing genes that showed strong differential expression between the parents (i.e., top 100 up-2 
regulated and top 100 down-regulated genes). After removing these highly variable genes, top up- and 3 
down-regulated genes were defined based on ranked fold change. We assessed each family in a 4 
separate batch (library preparation and sequencing run), holding technical variation constant in each 5 
family and independent across families, so that gene-level recurrence is not expected to differ from the 6 
null. By way of analogy, our experimental design resembles the analysis of de novo variants in DNA 7 
analyses, in which as many factors as possible are held constant in the control group for the proband.  8 
The use of unaffected family members as controls provides the closest possible genetic and 9 
environmental match for the probands, constraining variability of known importance for expression 10 
analysis(Raser and O'Shea, 2005). Although each family-specific analysis is confounded with age and sex, 11 
we anticipate that genes detected as differentially expressed that are due to these overlaps can be 12 
assessed and identified directly, as these are well-powered properties in many previous studies.  13 

Common co-expression frequency network  14 
Human RNA-seq expression data was downloaded from Gemma (Zoubarev et al., 2012). From the total 15 
collection of approximately 300 human experiments, we selected 75 expression experiments (3,653 16 
samples) that we could ascertain derived from tissues and not cell lines (listed in Table S2). For each 17 
experiment, we consolidated our list of genes/transcripts to the ~30K genes with Entrez gene identifiers, 18 
and did not limit either expression level or occurrence of expression. For each experiment with at least 19 
10 samples, we generated a co-expression network by calculating Spearman’s correlation coefficients 20 
between every gene pair (Ballouz et al., 2015) and calculated the frequency that a pair of genes was 21 
positively co-expressed (Spearman’s correlation coefficient rs>0). We used this tally network as a 22 
measure of the frequency of common co-expression of the gene pairs. The more observations with a 23 
positive correlation, the more commonly co-expressed the pairs are (see Figure S1).   24 

Gene set enrichment  25 
To calculate gene set enrichment of the differentially expressed genes, we used an in-house gene set 26 
enrichment R script based on the hypergeometric test. For each gene set, we calculated the significance 27 
of the overlap of the differentially expressed genes with that set, correcting for multiple tests with 28 
Benjamini-Hochberg (FDR, p.adjust in R). We used an in-house parsed version of GO (downloaded July 29 
2015). We report GO slim (filtered to 132 GO groups) results primarily in the text but also assess a 30 
subset of GO based on gene set size to remove redundancy (10-100 genes per group, 4605 GO terms). In 31 
addition, we assess enrichment using four gene set lists from MSigDB (v6, 1127 gene sets, HALLMARK, 32 
KEGG, REACTOME and BIOCARTA).  33 

Co-expression module and outlier detection 34 
In a set of differentially expressed genes, we defined co-expression modules as highly co-expressed 35 
genes, seen as blocks in a co-expression network when clustered and represented as a matrix.  Genes 36 
that did not cluster or clustered weakly were considered outliers. These genes potentially have stronger 37 
co-expression links with other genes outside of the gene set, but are not as well-linked within the 38 
subset. To identify these two classes in our list of differentially expressed genes (DEGs), we first 39 
extracted the sub-network of the differentially expressed genes from the co-expression frequency 40 
network. Then, thresholding on the median co-expression value of the co-expression network, we used 41 
this binary network as distance matrix, and performed hierarchical clustering of the genes. This 42 
clustering returned a dendrogram of genes that are closer in distance, and we used this dendrogram to 43 
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define modules within the data. We used the R dynamicTreeCut (Langfelder et al., 2008) package to 1 
select modules within the data with a cut height 0.995. We used these clusters to define our co-2 
expression modules, where clusters with more than five genes were labelled as modules and those 3 
smaller as co-expression outliers.  4 

Recurrence analysis 5 
To test for replicability of the disease signal, we measured differentially expressed gene recurrences and 6 
the significance of recurrence as the probability of observing the differentially expressed genes across all 7 
the pedigrees. We first calculated the significance of the pairwise overlap between families using 8 
Fisher’s exact test (phyper in R). We calculated the significance of recurrence of the differentially 9 
expressed genes using the binomial test (pbinom in R), and then corrected for multiple tests using 10 
Benjamini-Hochberg (FDR, p.adjust in R). After we filter on differentially expressed genes within 11 
modules, we recalculate the significance of recurrence, this time with a permutation test to obtain an 12 
FDR. Similarly, we use a permutation test to calculate significance of recurrence of the pathways from 13 
the gene set enrichment assessment.  14 

Meta-analysis datasets of neurodegenerative and neuropsychiatric disorders 15 
We sought to repeat the systems biology evaluations in other disorders. We collected the reported 16 
differentially expressed genes in Parkinson’s disease, Huntington’s disease and schizophrenia studies. 17 
The majority of the studies were collected from recent review articles (Genevie et al., 2018; Li and Teng, 18 
2015), and from a search within the Gemma (Zoubarev et al., 2012) database for “parkinson’s disease”, 19 
“huntington’s disease” and “schizophrenia”, respectively (listed in Table S3). We downloaded fold 20 
changes, p-values and adjusted p-values. We removed studies from our analysis where we either could 21 
not assess the direction of the differential expression and where no genes passed significance based on 22 
log2 fold changes (log2FC|>1) and adjusted P-values (q<0.05).  23 

QUANTIFICATION AND STATISTICAL ANALYSIS 24 
All statistical analyses were done in R. Significance was defined as an FDR of 0.05 for all statistical tests.   25 

DATA AND SOFTWARE AVAILABILITY 26 
All R code, scripts and network data is available for download from our github repository 27 
(https://github.com/sarbal/redBlocks). The RNA-seq data has been deposited in GEO/SRA under 28 
accession number GSE84891.  All other software used in this analysis is freely available and has been 29 
listed in the key resources table.   30 
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KEY RESOURCES TABLE 1 
REAGENT or RESOURCE SOURCE IDENTIFIER 
Deposited Data 
Raw and analyzed data  This paper GEO: GSE84891 
Software and Algorithms 
STAR v2.4 (Dobin et al., 2012) https://github.com/

alexdobin/STAR/ 
Combine paired end reads  Online https://github.com/

enormandeau/Script
s/blob/master/fastq
CombinePairedEnd.
py 

FASTX - Toolkit  Online http://hannonlab.cs
hl.edu/fastx_toolkit/  

R Online https://cran.r-
project.org/  

dynamicTreeCut R package   (Langfelder et al., 
2008)   

https://horvath.gen
etics.ucla.edu/html/
CoexpressionNetwor
k/Rpackages/WGCN
A/https://cran.r-
project.org/web/pac
kages/dynamicTreeC
ut/index.html  

Outlier redBlocks algorithm  This paper https://github.com/
sarbal/redblocks  

CIBERSORT (Newman et al., 2015) https://cibersort.sta
nford.edu/  

Other 
GRCh38 genome files:  
GRCh38.p2.genome.fa.noPatches.gz  

(Harrow et al., 2012) https://www.genco
degenes.org/human
/release_22.html  

GENCODE v22 annotation files: 
gencode.v22.annotation.gtf  

(Harrow et al., 2012) https://www.genco
degenes.org/human
/release_22.html  

Gemma  (Zoubarev et al., 2012) https://gemma.msl.
ubc.ca/home.html  

 2 

 3 
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Supplementary 1 

Figure S1 Meta-analytic co-expression frequency network generation. Related to Figure 2.      2 
Figure S2 ERCC spike-ins QC. Related to Figure 3.        3 
Figure S3 Pathway recurrence and GO group size. Related to Figure 4.     4 
Figure S4 Robustness assessment of DE threshold. Related to Figure 3.       5 
 6 
Table S1 Library numbers and adapter sequences used in this study. Related to Figure 3.    7 
Table S2 RNA-seq experiments used.  Related to Figures 3-6.  8 
Table S3 Studies used in the meta-analysis. Related to Figure 6.     9 
Table S4 TAF1 syndrome recurrent genes. Related to Figure 5.     10 
Table S5 TAF1 syndrome enrichment results. Related to Figure 4.       11 
Table S6 Huntington’s disease recurrent genes. Related to Figure 6.     12 
Table S7 Parkinson’s disease recurrent genes. Related to Figure 6.     13 
Table S8 Parkinson’s disease enrichment results. Related to Figure 6.     14 
Table S9 Schizophrenia recurrent genes. Related to Figure 6.     15 
Table S10 Schizophrenia enrichment results. Related to Figure 6.     16 
 17 
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