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Abstract		

	

Motivated	by	prior	data	on	local	cortical	shrinkage	and	intracortical	myelination,	we	predicted	

age-related	 changes	 in	 topological	 organisation	 of	 cortical	 structural	 networks	 during	

adolescence.	 We	 estimated	 structural	 correlation	 from	 magnetic	 resonance	 imaging	

measures	of	cortical	thickness	at	308	regions	in	a	sample	of	N=297	healthy	participants,	aged	

14-24	 years.	We	 used	 a	 novel	 sliding-window	 analysis	 to	measure	 age-related	 changes	 in	

network	attributes	globally,	locally	and	in	the	context	of	several	community	partitions	of	the	

network.	 We	 found	 that	 the	 strength	 of	 structural	 correlation	 generally	 decreased	 as	 a	

function	of	age.	Association	cortical	regions	demonstrated	a	sharp	decrease	in	nodal	degree	

(hubness)	from	14	years,	reaching	a	minimum	at	approximately	19	years,	and	then	levelling	

off	or	even	slightly	increasing	until	24	years.	Greater	and	more	prolonged	age-related	changes	

in	degree	of	cortical	regions	within	the	brain	network	were	associated	with	faster	rates	of	

adolescent	 cortical	 myelination	 and	 shrinkage.	 The	 brain	 regions	 that	 demonstrated	 the	

greatest	 age-related	 changes	were	 concentrated	within	 prefrontal	modules.	We	 conclude	

that	human	adolescence	is	associated	with	biologically	plausible	changes	in	structural	imaging	

markers	of	brain	network	organization,	consistent	with	the	concept	of	tuning	or	consolidating	

anatomical	connectivity	between	frontal	cortex	and	the	rest	of	the	connectome.	

	

Keywords:	adolescence,	connectome,	development,	graph	theory,	MRI		 	
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Human	 adolescence	 is	 known	 to	 be	 a	major	 phase	 of	 cortical	 development.	 In	 particular,	

cerebral	cortex	becomes	thinner	(Wierenga	et	al.,	2014)	and	more	densely	myelinated		(Miller	

et	 al.,	 2012)	 in	 the	 transition	 from	 puberty	 to	 young	 adulthood.	 Adolescent	 decreases	 in	

cortical	thickness	(thinning)	are	variable	between	different	areas	of	cortex	(Raznahan	et	al.,	

2011):	for	example,	thinning	is	greater	in	association	cortical	areas	than	primary	sensory	areas	

(Whitaker,	Vértes	et	al.,	2016).	

	

Motivated	 by	 these	 and	 other	 results,	 we	 predicted	 that	 human	 adolescence	 should	 be	

associated	with	changes	in	the	architecture	of	structural	brain	networks.	There	are	currently	

only	two	experimental	techniques,	both	based	on	magnetic	resonance	imaging	(MRI),	that	

are	capable	of	providing	data	 to	 test	 this	prediction:	diffusion	 tensor	 imaging	 followed	by	

tractography;	or	structural	MRI	followed	by	structural	covariance	or	correlation	analysis.	Here	

we	focused	on	the	latter,	measuring	the	thickness	of	a	set	of	predefined	cortical	regions	in	

each	individual	MRI	dataset	and	then	estimating	the	correlation	of	thickness	between	each	

possible	 pair	 of	 regions	 across	 participants.	 Similar	 methods	 have	 been	 widely	 used	 and	

validated	(Lerch	et	al.,	2006)	in	a	range	of	prior	studies	(Alexander-Bloch	et	al.,	2013;	Evans,	

2013).		

	

In	particular,	structural	correlation	(covariance)	measures	have	been	used	as	a	basis	for	graph	

theoretical	modelling	of	 the	human	connectome	 (Bullmore	&	Sporns,	2009;	Fornito	et	al.,	

2016).	Considerable	evidence	has	accumulated	 in	support	of	the	general	view	that	human	

brain	structural	correlation	networks	have	a	complex	topological	organization,	characterised	

by	non-random	features	such	as	the	existence	of	highly	connected	(high	degree)	hub	nodes	

and	a	modular	community	structure	(Alexander-Bloch	et	al.,	2013;	Evans,	2013).	Topological	

metrics	 on	 structural	 correlation	 networks	 have	 demonstrated	 changes	 associated	 with	

disease,	development	and	ageing	(Alexander-Bloch	et	al.,	2013;	Evans,	2013).	However,	only	

two	studies	have	investigated	adolescent	changes	in	structural	correlation	networks.	Zielinski	

et	 al.	 (2010)	 demonstrated	 that	 the	 anatomical	 extent	 of	 structural	 correlation	 networks,	

assessed	 using	 seed-based	 correlation	 of	 voxel-wise	 grey	 matter	 intensity,	 changes	 in	

adolescence	in	a	spatially	patterned	manner.	Specifically,	primary	visual	and	sensori-motor	

networks,	as	well	as	the	default	mode	network,	expanded	 in	early	childhood	before	being	

“pruned”	in	adolescence,	while	higher-order	cognitive	networks	showed	a	gradual	monotonic	
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gain	 in	 spatial	 extent.	 Subsequently,	 Khundrakpam	et	 al.	 (2013)	 applied	 graph-theoretical	

analyses	to	a	subset	of	the	same	data,	reporting	childhood	increases	in	topological	integration	

(global	efficiency)	and	decreases	in	topological	segregation	(local	efficiency	and	modularity),	

as	well	as	increases	in	regional	integration	in	paralimbic	and	association	regions.	While	these	

studies	 constitute	 interesting	 initial	 investigations,	 their	 ability	 to	 precisely	 describe	

developmental	changes	is	limited	by	their	segregation	of	participants	into	four	discrete	age-

defined	 strata,	 resulting	 in	 relatively	 coarse-grained	 resolution	 of	 brain	 maturational	

trajectories.	

	

Here,	we	aimed	to	obtain	a	more	precise	description	of	adolescent	maturational	trajectories	

of	 structural	 network	 architecture,	 which	 were	 hypothesised	 to	 vary	 as	 a	 smooth	 and	

potentially	 non-linear	 function	 of	 age.	 We	 used	 a	 sliding-window	 analysis	 to	 estimate	

structural	correlations	and	structural	network	properties	for	each	of	an	overlapping	series	of	

9	age-defined	windows	or	strata	of	the	sample	(N»60	participants	per	window).	We	identified	

the	cortical	regions	(nodes)	and	connections	(edges)	which	showed	the	most	significant	age-

related	changes	in	structural	correlation.	We	tested	the	related	hypotheses	that	parameters	

of	adolescent	change	in	structural	correlation	would	be	greater	and	occur	later	in	regions	of	

association	 cortex,	which	 show	 faster	 rates	 of	 local	 cortical	 shrinkage	 and	myelination.	 In	

addition,	 we	 explored	whether	 greater	 and	 later	 changes	 in	 structural	 correlation	 during	

adolescence	 would	 be	 concentrated	 within	 or	 between	 specific	 communities	 of	 regions.	

Specifically	 we	 mapped	 adolescent	 changes	 in	 structural	 correlation	 to	 three	 brain	

community	 structures:	 the	 topological	 modular	 partition	 of	 the	 age-invariant	 structural	

correlation	network;	an	atlas	of	cytoarchitectonic	classes	(von	Economo	&	Koskinas,	1925);	

and	functional	intrinsic	connectivity	or	resting	state	networks	(Yeo,	Krienen	et	al.,	2011).	 	
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Materials	and	Methods	

	

Participants	

	

A	 demographically	 balanced	 cohort	 of	 297	 healthy	 participants	 (149	 females)	 aged	 14-24	

years	was	included	in	this	study,	with	approximately	60	participants	in	each	of	5	age-defined	

strata:	 14-15	 years	 inclusive,	 16-17	 years,	 18-19	 years,	 20-21	 years,	 and	 22-24	 years.	

Participants	were	excluded	if	they	were	currently	being	treated	for	a	psychiatric	disorder	or	

for	drug	or	alcohol	dependence;	had	a	current	or	past	history	of	neurological	disorders	or	

trauma;	or	had	a	learning	disability.	Participants	provided	informed	written	consent	for	each	

aspect	of	the	study,	and	parental	consent	was	obtained	for	those	aged	14–15	years.	The	study	

was	 ethically	 approved	 by	 the	 National	 Research	 Ethics	 Service	 and	 was	 conducted	 in	

accordance	with	NHS	research	governance	standards.	

	

MRI	acquisition	and	processing	

	

Structural	 scans	 were	 acquired	 at	 three	 sites	 using	 multi-parametric	 mapping	 (MPM)	

implemented	on	three	 identical	3T	MRI	scanners	 (Siemens	Magnetom	TIM	Trio).	 Inter-site	

reliability	of	the	sequence	was	evaluated	within	a	pilot	study	of	five	healthy	participants	each	

scanned	at	each	site	(Weiskopf	et	al.,	2013).	The	MPM	sequence	includes	maps	of	R1	(1/T1)	

and	magnetization	 transfer	 (MT),	 indicative	 of	myelination.	 For	 details	 of	MRI	 acquisition	

parameters,	see	Supplementary	Information	(SI).	

	

Processing	of	individual	scans	using	FreeSurfer	v5.3.0	included	skull-stripping,	segmentation	

of	cortical	grey	and	white	matter	and	reconstruction	of	the	cortical	surface	and	grey-white	

matter	 boundary	 (Fischl	 et	 al.,	 1999).	 All	 scans	 were	 stringently	 quality	 controlled	 by	 re-

running	the	reconstruction	algorithm	after	the	addition	of	control	points	and	white	matter	

edits	(details	in	SI).	The	cerebral	cortex	of	each	participant	was	parcellated	into	308	regions	

of	 interest,	based	on	a	sub-division	of	 the	Desikan-Kiliany	anatomical	atlas	 (Desikan	et	al.,	

2006)	into	parcels	of	approximately	equal	surface	area	(~5cm2)	(Romero-Garcia	et	al.,	2012).	
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Regional	changes	in	cortical	thickness	(CT)	and	myelination	(MT)	were	characterized	using	the	

rate	of	change	over	adolescence,	evaluated	as	the	slope	of	a	linear	model	fitted	to	the	cross-

sectional	 values.	 Following	 Whitaker,	 Vértes	 et	 al.	 (2016),	 myelination	 analyses	 were	

conducted	 at	 10	 fractional	 depths	 between	 the	 pial	 surface	 and	 the	 grey/white	 matter	

boundary,	as	well	as	two	absolute	depths	into	white	matter.	Main	analyses	focused	on	MT	

estimates	at	70%	fractional	cortical	depth	from	the	pial	surface.	For	details	and	results	across	

cortical	depths,	see	the	Supplementary	Information.		

	

While	 both	 cortical	 thickness	 and	 myelination	 maps	 were	 averaged	 within	 parcels,	 for	

comparison	between	maturation	of	structural	correlation	networks	and	morphology,	only	the	

cortical	thickness	values	were	used	to	construct	structural	correlation	networks.	

	

Age-invariant	structural	network	

	

An	age-invariant	structural	correlation	network	was	constructed	using	Pearson	correlations	

in	 cortical	 thickness	 between	 pairs	 of	 regions	 across	 all	 297	 participants,	 to	 serve	 as	 a	

reference	for	developmental	changes	within	the	age-resolved	structural	networks	(described	

below;	Fig.	1A).	We	used	raw	cortical	thickness	values,	uncorrected	for	age,	gender	or	intra-

cranial	volume.	However,	 correcting	 for	 these	covariates	had	no	effect	on	 the	 results.	For	

background	reading	on	graph	theoretical	methods	and	connectomics	see	Bullmore	&	Sporns	

(2009)	and	Fornito	et	al.	(2016).	

	

The	age-invariant	structural	network	was	thresholded	using	a	bootstrap	approach,	whereby	

1000	sets	of	participants	were	resampled	with	replacement	and	used	to	construct	surrogate	

structural	networks.	For	each	pair	of	regions,	we	examined	whether	there	is	evidence	of	a	

non-zero	 correlation	 across	 bootstraps:	 edges	 that	were	 consistently	 positive	 or	 negative	

across	 bootstraps	 (at	 a	 two-tailed,	 FDR-adjusted	 level	 of	 a	 =	 0.01)	 were	 retained;	 the	

remaining	edges	were	set	to	zero.	Nodal	topological	organisation	of	the	thresholded	network	

was	assessed	using	degree,	defined	as	the	number	of	retained	correlations	for	each	node,	as	

well	as	the	weighted	degree,	or	summed	weight	of	retained	edges	for	each	node.	
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Further,	the	age-invariant	network	was	partitioned	into	communities	of	nodes	showing	higher	

structural	 correlations	 within	 than	 between	 communities	 (Sporns	 &	 Betzel,	 2016).	 The	

community	structure	of	the	age-invariant	network	was	decomposed	using	the	Louvain	multi-

resolution	algorithm	(Blondel	et	al.,	2008)	over	 the	resolution	parameter	 range	0.01	≤	g	£	

4.00.	As	g	increases,	the	community	structure	is	decomposed	to	a	progressively	larger	number	

of	 modules.	 We	 used	 the	 concept	 of	 minimizing	 versatility	 to	 identify	 those	 resolution	

parameter	 values	 which	 reduce	 the	 uncertainty	 with	 which	 any	 node	 was	 affiliated	

consistently	 to	 the	 same	module	 (Shinn	 et	 al.,	 2017).	 The	 final	 community	 partition	 was	

defined	as	a	consensus	across	1000	runs	of	the	Louvain	modularity	algorithm	(Lancichinetti	&	

Fortunato,	2012)	at	the	selected	value	of	the	resolution	parameter	g.	For	details	regarding	

module	generation,	see	SI	Fig.	S1.	

	

Development	of	age-resolved	structural	networks		

	

Sliding	window	network	construction	

	

Development	of	structural	networks	between	14	and	24	years	was	evaluated	using	a	sliding	

window	method.	 Regional	 cortical	 thickness	 values	were	 cross-correlated	within	windows	

containing	 equal	 numbers	 of	 participants,	 and	 incrementally	 slid	 across	 the	 age-range	 by	

regular	increments	(Fig.	1B).	The	two	parameters	of	the	method,	the	“window	width”	and	the	

“step	size”	(in	units	of	number	of	participants)	determine	the	number	of	windows,	each	of	

which	 generates	 a	 structural	 correlation	 network.	 Exploration	 of	 the	 sliding	 window	

parameter	 values	 suggests	 that	 results	 are	 qualitatively	 consistent	 across	 a	 range	 of	

parameter	combinations.	For	the	(in)dependence	of	results	on	sliding	window	parameters,	

and	 a	 discussion	 of	 the	 considerations	 involved	 in	 parameter	 selection,	 see	 the	

Supplementary	Information.		

	

Results	 presented	 below	 correspond	 to	 nine	 half-overlapping	windows	 of	 60	 participants	

each,	 obtained	 by	 interpolating	 the	 five	 age	 strata	 of	 the	 NSPN	 study,	 within	 which	

participants	were	recruited.	Gender	was	relatively	balanced	within	the	interpolated	bins,	with	

the	most	 imbalanced	 ratio	 being	 34:26	 =	 57%:43%	 (M:F).	We	 investigated	 the	 effects	 of	

gender	separately	(see	below).	
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Global	maturation	of	structural	networks	was	characterised	using	the	mean	of	the	correlation	

distribution.	At	the	regional	level,	an	analogous	measure	was	used	–	nodal	strength,	the	mean	

of	the	pattern	of	regional	correlations	(rows,	or	equally,	columns	of	the	correlation	matrices).		

	

Bootstrap	thresholding	of	age-resolved	structural	networks	

	

Estimating	 structural	 correlation	 networks	 from	 a	 small	 number	 of	 participants	 is	 an	

inherently	 noisy	 process;	 therefore,	 our	 principal	 analyses	 focused	 on	 networks	

probabilistically	thresholded	using	bootstrap	(Fig.	2B).	The	bootstrap	thresholding	procedure	

was	 identical	 to	 the	one	described	above	 for	age-invariant	networks,	but	 in	 this	 case	was	

applied	within	windows.	 From	 the	 set	 of	 participants	 included	 in	 each	window,	 an	 equal	

number	of	participants	was	sampled	with	replacement	and	the	correlation	structure	was	re-

estimated	1000	times.	For	each	pair	of	regions,	we	examined	whether	there	is	evidence	of	a	

non-zero	 correlation	 across	 bootstraps:	 edges	 that	 were	 consistently	 positive	 across	

bootstraps	 (at	a	 two-tailed,	FDR-adjusted	 level	of	a	 =	0.01)	were	 retained	 (there	were	no	

consistently	negative	edges);	the	remaining	edges	were	set	to	zero.	

	

The	global	topological	organisation	of	the	thresholded	graphs	was	assessed	using	the	edge	

density,	defined	as	the	percentage	of	retained	edges	(relative	to	their	possible	total),	as	well	

as	 the	 distance	 spanned	 by	 retained	 edges,	 calculated	 as	 the	 average	 Euclidean	 distance	

between	 centroids	 of	 corresponding	 nodes.	 Nodal	 topological	 organisation	 was	 assessed	

using	(analogous)	measures	of	degree,	defined	as	the	number	of	edges	connected	to	a	node,	

and	average	Euclidean	distance	spanned	by	a	node’s	 retained	edges.	We	have	 focused	on	

simple	graph-theoretical	measures,	such	as	edge	density	and	node	degree,	for	two	reasons:	

first,	our	bootstrap-thresholded	networks	display	variable	edge	density,	which	many	“higher-

order”	graph-theoretical	measures	show	a	strong	dependence	on	(van	Wijk	et	al.,	2010),	and	

(2)	even	in	correlation-based	networks	thresholded	to	fixed	edge	density,	graph	theoretical	

properties	 display	 a	 dependence	 on	more	 elementary	 statistics	 such	 as	 properties	 of	 the	

correlation	distribution	(van	den	Heuvel	et	al.,	2017).	
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Fitting	and	characterisation	of	developmental	trajectories	

	

Developmental	trajectories	were	fitted	to	both	global	and	local	measures	as	a	function	of	the	

median	age	of	participants	 in	each	window.	 In	addition	 to	 linear	models,	we	 fitted	 locally	

adaptive	 smoothing	 splines.	 The	 nonparametric	 smoothing	 spline	 was	 chosen	 to	 model	

nonlinear	trajectories	over	parametric	alternatives	as	it	was	shown	to	be	superior	to	quadratic	

fits	in	studies	of	brain	development	(Fjell	et	al.,	2010).	Still,	the	spline	fits	were	constrained	to	

be	(approximately)	at	least	as	smooth	as	a	quadratic	fit	(i.e.:	effective	degrees	of	freedom,	df	

≤	3.5),	based	on	the	hypothesis	that	adolescent	developmental	trajectories	over	a	10-year	

age	range	should	not	display	greater	complexity.	The	specific	smoothing	spline	used	was	a	

weighted	sum	of	6	cubic	b-splines	with	knots	placed	at	quantiles	of	the	data	and	smoothing	

optimised	using	restricted	maximum	likelihood	(REML)	(Reiss	et	al.,	2014).	The	relative	quality	

of	 linear	 and	 spline	 fits,	 given	 their	 parsimony,	 was	 assessed	 using	 Akaike’s	 information	

criterion	(AIC).	Classification	using	the	Bayesian	Information	Criterion	(BIC)	yielded	consistent	

results.	

	

Regional	 changes	were	 summarised	using	measures	of	maximum	change	 in	degree	Dkmax,	

quantified	 as	 the	 difference	 between	 maximum	 and	 minimum	 degree,	 and	 the	 age	 at	

minimum	degree	age(kmin).	Further,	we	classified	regional	changes	in	degree	as	linear	or	non-

linear	 (using	 the	 AIC),	 and	 as	 increasing	 or	 decreasing	 (using	 the	 direction	 of	 maximum	

change).	 As	 an	 alternative	 measure	 of	 the	 magnitude	 of	 regional	 changes	 in	 structural	

correlation,	 we	 extracted	 linear	 rates	 of	 change	 of	 degree;	 the	 results	 were	 qualitatively	

consistent	 with	 the	 measure	 of	 maximum	 change,	 which	 is	 more	 suitable	 for	 non-linear	

trajectories	(Supplementary	Information).	

	

Relationship	of	structural	network	development	to	age-invariant	network	architecture		

	

Given	our	previous	finding,	that	highly	correlated	“hub	nodes”	of	the	age-invariant	structural	

network	 (derived	 from	 all	 participants)	 are	 regions	 which	 thin	 and	 myelinate	 most	 over	

adolescence	(Whitaker,	Vértes	et	al.,	2016),	we	were	interested	in	studying	the	relationship	

of	structural	network	development	to	age-invariant	structural	network	architecture.		
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We	 evaluated	 Spearman’s	 rank	 correlations	 between	 node	 degree	 in	 the	 age-invariant	

structural	 network,	 and	 parameters	 of	 change	 in	 node	 degree	 within	 the	 age-resolved	

structural	network	–	including	the	amplitude	of	maximum	change	in	degree	Dkmax	as	well	as	

the	age	at	minimum	degree	age(kmin).	

	

Finally,	we	studied	changes	in	structural	network	organisation	relative	to	three	sets	of	node	

communities,	 including	 the	 partition	 of	 the	 age-invariant	 network	 into	modules,	 the	 von	

Economo	atlas	of	 cytoarchitectonic	 classes	 (von	Economo	&	Koskinas,	 1925),	 and	a	 set	of	

functional	 intrinsic	 connectivity	networks	 (Yeo,	Krienen	et	 al.,	 2011).	 For	each	 community	

template	and	each	age-window,	we	calculated	the	density	of	edges	D	within	each	community	

as	well	 as	 between	 each	pair	 of	 communities	 (within	 the	 same	 template),	 as	 the	 ratio	 of	

existing	edges	relative	to	the	maximum	number	of	possible	edges	in	this	within	or	between-

community	edge	 set.	We	 then	characterised	changes	 in	edge	density	within	and	between	

communities	using	measures	analogous	to	the	nodal	trajectories	–	maximum	change	in	edge	

density	DDmax	and	age	at	minimum	density	age(Dmin).	For	details	regarding	the	matching	of	

the	 community	 templates	 to	 our	 308-region	 parcellation,	 see	 the	 Supplementary	

Information.	

	

Spatial	permutation	test	

	

In	several	analyses	in	the	current	study,	measures	were	related	to	each	other	across	regions.	

While	numerous	studies	have	reported	significance	based	on	the	assumption	that	the	number	

of	samples	is	equal	to	the	number	of	regions,	this	is	technically	inaccurate,	as	the	number	of	

regions	 is	 both	 arbitrary	 (due	 to	 the	 resolution	 of	 the	 chosen	 parcellation)	 and	 non-

independent	(due	to	spatial	auto-correlation	amongst	neighbouring	parcels).	To	address	this	

issue,	spatial	permutation	tests	have	been	implemented	in	past	studies	(Alexander-Bloch	et	

al.,	 2013;	 Vandekar	 et	 al.,	 2015),	 which	 consist	 in	 comparing	 the	 empirical	 correlation	

amongst	two	spatial	maps	to	a	set	of	null	correlations,	generated	by	randomly	rotating	the	

spherical	 projection	 of	 one	of	 the	 two	 spatial	maps	 (as	 generated	 in	 FreeSurfer	 or	 Caret)	

before	projecting	it	back	on	the	brain	surface.	Importantly,	the	rotated	projection	preserved	

spatial	contiguity	of	the	empirical	maps,	as	well	as	hemispheric	symmetry.	Such	tests	were	

previously	 implemented	at	 the	vertex	 level	 (Alexander-Bloch	et	al.,	 2013;	Vandekar	et	al.,	
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2015);	here	we	implemented	an	analogous	permutation	test	at	the	regional	level.	Thus,	each	

analysis	 correlating	 values	 from	 two	 cortical	 maps	 is	 reported	 with	 both	 the	 p-value	

corresponding	to	the	Spearman	correlation	(pSpearman),	as	well	as	a	p-value	derived	from	the	

spherical	permutation	(pperm),	obtained	by	comparing	the	empirical	Spearman’s	r to	a	null	

distribution	 of	 10’000	 Spearman	 correlations,	 between	 one	 empirical	 map	 and	 randomly	

rotated	projections	of	the	other	map.	For	full	details	on	the	spherical	permutation	test,	see	

Supplementary	Information.	

	

Sensitivity	analyses	

	

To	 ascertain	 the	 robustness	 of	 obtained	 results	 to	 sliding	 window	 parameters	 and	 other	

methodological	 decisions	 and	 to	 rule	 out	 effects	 of	 potential	 artefactual	 causes,	 we	

conducted	several	ancillary	studies.		

	

We	 first	 investigated	 effects	 of	 sliding	 window	 parameters	 by	 systematically	 varying	 the	

window	width	and	step	size	over	ranges	of	{40,60,80}	and	{5,10,20}	participants	respectively.		

	

Further,	 we	 examined	 potential	 effects	 of	 gender	 by	 repeating	 sliding	 window	 analyses	

separately	for	each	gender	(149	female,	148	male	participants).	This	resulted	in	nine	windows	

of	~30	participants	each.	Following	estimation	of	global	and	nodal	sliding	window	statistics	

separately	for	each	gender	within	both	unthresholded	and	bootstrap-thresholded	networks	

(as	described	for	all	participants	above),	we	fitted	linear	and	spline	models	to	the	combined	

data,	separately	modelling	effects	of	age,	gender,	and	the	age-by-gender	interaction.	

	

Finally,	we	studied	the	effect	of	several	potential	artefacts,	including	the	presence	of	regions	

with	low	reliability	of	structural	correlations	as	well	as	irregularities	in	the	age	distribution	of	

participants.		

	

For	full	results	and	discussion	of	these	additional	studies,	see	Supplementary	Information.	
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Figure	 1:	 Construction	 of	 age-invariant	 and	 age-resolved	 structural	 correlation	
networks.	A)	An	age-invariant	structural	correlation	network	was	constructed	by	cross-
correlating	 regional	 cortical	 thickness	 across	 all	 participants.	 This	 network	 was	
probabilistically	 thresholded	 using	 a	 bootstrap-based	method.	 Network	 organisation	
was	evaluated	using	several	measures,	including	the	degree	(both	binary	and	weighted;	
respectively	the	number	and	sum	of	weights	of	retained	edges	connected	to	a	node)	and	
modular	 architecture.	 For	 details	 regarding	 module	 generation,	 see	 supplementary	
information	 (SI	 Fig.	 S1).	 B)	 Age-resolved	 structural	 correlation	 networks	 were	
constructed	 using	 a	 sliding-window	method.	 Participants	 were	 ordered	 by	 age,	 and	
structural	 networks	 were	 constructed	 by	 estimating	 correlations	 between	 regional	
cortical	thickness	values	across	participants	within	overlapping	windows	iteratively	slid	
across	the	age	range.	Correlations	were	probabilistically	thresholded	using	bootstrap,	
before	developmental	trajectories	were	fitted	to	summary	window-derived	measures	
as	a	function	of	the	median	age	of	participants	within	each	window.	
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Results	

	

Age-invariant	structural	network	

	

We	first	considered	the	structural	correlation	network	constructed	by	thresholding	the	pair-

wise	inter-regional	correlations	estimated	from	cortical	thickness	measurements	on	all	(297)	

participants,	age	range	14-24	years	(inclusive).	Since	this	analysis	combines	data	from	all	ages	

in	the	sample,	we	can	refer	to	the	result	as	an	age-invariant	structural	correlation	network	

(Fig.	1A).		

	

The	distribution	of	structural	correlation	had	a	positive	mean	value	and	was	approximately	

symmetrical.	 The	 structural	 correlation	 matrix	 was	 thresholded	 probabilistically,	 using	 a	

bootstrap-based	 resampling	 procedure	 (Methods),	 to	 control	 the	 edge-wise	 false	 positive	

rate.	Since	this	thresholding	operation	entailed	approximately	47,000	hypothesis	tests,	we	

used	the	false	discovery	rate	(FDR)	algorithm	to	adjust	for	multiple	comparisons.	The	resulting	

graph	was	densely	connected	(connection	density	»	90%)	and	exhibited	a	modular	community	

structure	 (Fig.	 1A).	 The	 community	 partition	 consisted	 of	 seven	modules,	 including	 three	

primary	cortex	modules:	somatosensory	(anterior	parietal	cortex),	motor	(posterior	frontal	

cortex)	and	visual	(occipital	cortex),	as	well	as	an	inferior-frontal/temporal	module,	a	superior	

frontal	 module,	 a	 superior	 temporal/insular	 module	 and	 a	 parieto-occipital	 module.	 For	

details	 on	 this	 community	 structure	 and	 other	 modular	 partitions	 comprising	 different	

numbers	of	modules	see	SI	Fig.	S1	and	SI	Table	S1.	

	

Age-resolved	structural	networks	

	

To	resolve	age-related	changes	in	structural	networks,	we	used	a	“sliding	window”	analysis	to	

estimate	the	structural	correlation	matrix	separately	 for	each	of	a	series	of	subsets	of	 the	

sample	defined	by	overlapping	age	ranges	or	windows	(Fig.	1B).	The	results	of	this	analysis	

are	 naturally	 somewhat	 dependent	 on	 the	 sliding	 window	 parameters:	 the	 age-range	

spanned	by	each	window	and	the	incremental	step	between	windows.	Below	we	focus	on	

results	obtained	with	9	windows	of	~60	participants	each,	ranging	from	[14.1-16.0	years]	to	
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[22.0-25.0	years]	with	an	incremental	step	of	30	participants	(~1	year).	We	also	explored	a	

range	of	alternative	sliding	window	parameters	and	demonstrated	that	our	key	results	were	

robust	to	this	methodological	variation	(Supplementary	Information.)		

	

Globally,	over	the	whole	brain,	there	was	a	non-linear	trend	of	reducing	structural	correlation	

from	the	youngest	age	window	to	the	oldest	age	window	(Fig.	2A).		Relatively	strong	positive	

correlations	at	age	14	(>0.31)	decreased	sharply	over	the	next	few	windows,	with	minimum	

mean	correlation	(~0.22)	occurring	at	19.59	years	(95%	confidence	interval	(CI)	[19.37,	19.76]	

years)	and	then	slightly	increasing	again	towards	age	24	(AICspl	<	AIClin,	r2adj	=	0.52,	p	=	0.098;	

Fig.	 2Aii).	 Both	 the	 mean	 inter-regional	 covariance,	 and	 the	 mean	 product	 of	 regional	

standard	deviations	(respectively	the	numerator	and	denominator	of	the	Pearson	correlation	

coefficient),	showed	similar	non-linear	processes	of	decline	in	younger	windows	followed	by	

levelling	off	in	older	windows	(SI	Fig.	S4).	

	

A	potential	drawback	of	the	sliding	window	analysis	is	that	it	inevitably	involves	estimating	

inter-regional	 correlations	 on	 a	 subset	 of	 the	 sample	 (N»60	 per	 window),	 with	

commensurately	 reduced	precision	of	estimation	and	therefore	noisier	graphs.	We	used	a	

probabilistic	 threshold	 to	 control	 the	 edge-wise	 FDR	 at	 1%,	 thus	 ensuring	 that	 the	 age-

resolved	graphs	only	included	edges	that	were	unlikely	to	represent	false	positive	noise	(Fig.	

2B).	

	

Focusing	on	the	most	statistically	robust	subset	of	edges	(which	passed	the	FDR	threshold	for	

significance),	 we	 found	 similar	 but	 clearer	 evidence	 for	 age-related	 global	 changes	 in	

structural	 network	 organisation.	 The	 structural	 correlation	 distributions	 of	 the	 bootstrap-

thresholded	network	became	 sparser	 over	 the	 course	of	 adolescence	 (Fig.	 2Ci).	 The	 edge	

density	demonstrated	a	non-linear	decrease	(AICspl	<	AIClin)	from	33.9%	to	a	minimum	of	8.2%	

at	19.45	years	(95%	CI	[19.32,	19.59]	years;	r2adj	=	0.81,	p	=	0.0069),	which	was	similar	in	shape	

to	the	global	trajectory	of	unthresholded	correlation	(Fig.	2Cii).		
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Figure	 2:	 Global	 trajectories	 of	 age-resolved	 structural	 correlations	 and	 network	
connection	 density.	A)	Global	 trajectories	 of	 unthresholded	 structural	 correlations.	 (i)	
Development	of	the	distribution	of	unthresholded	correlations	across	age	windows.	Thin	
lines	 represent	bootstrapped	estimates,	white	 lines	 represent	 the	bootstrap	mean.	 (ii)	
Changes	 in	the	average	correlation.	Black	markers	represent	empirical	data	(error	bars	
indicate	the	 interquartile	range	across	bootstraps),	with	corresponding	regression	 line;	
the	white	marker	indicates	the	trajectory	minimum.	Grey	lines	represent	bootstrapped	
trajectories;	 the	white	dashed	 line	 represents	 the	bootstrap	mean.	B)	Each	windowed	
matrix	was	thresholded	using	bootstrap.	Within	each	window,	1000	sets	of	participants	
were	resampled	(with	replacement)	and	used	to	construct	correlation	matrices.	For	each	
edge	(correlation)	within	each	window,	the	presence	of	a	significant	non-zero	correlation	

(across	 bootstraps)	 was	 tested	 at	 the	 FDR-adjusted	 level	 of	 aFDR	 =	 0.01.	 Consistent	
correlations	were	retained,	while	inconsistent	correlations	were	assigned	a	value	of	0.	C)	
Global	trajectories	within	thresholded	structural	correlation	networks.	(i)	Development	
of	 the	 distribution	 of	 correlations	 retained	 after	 probabilistic	 thresholding	 across	 age	
windows.	 (ii)	 The	 number	 of	 edges	 retained	 after	 probabilistic	 thresholding,	 or	 edge	
density.	The	shaded	area	represents	the	95%	confidence	interval	of	the	spline	fit.	

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted September 15, 2017. ; https://doi.org/10.1101/126920doi: bioRxiv preprint 

https://doi.org/10.1101/126920
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 16	

	

	

The	global	connection	distance	of	the	thresholded	networks	(the	mean	Euclidean	distance	

subtended	by	bootstrap-thresholded	edges)	also	demonstrated	a	non-linear	trajectory	(AIClin	

<	AICspl,	r2adj	=	0.67,	p	=	0.049)	characterised	by	a	phase	of	relatively	rapid	decrease	from	14	

years	to	reach	a	minimum	at	18.72	years	(95%	CI	[18.68,	18.77]	years),	followed	by	a	phase	

of	more	stable	connection	distance	(SI	Fig.	S7A).		

	

Regional	development	of	age-resolved	structural	networks	

	

Regional	 maturation	 of	 structural	 correlation	 networks	 was	 assessed	 by	 estimating	 the	

trajectories	of	changes	in	node	degree,	which	is	the	number	of	correlations	retained	at	each	

node	(following	bootstrap	thresholding).	Although	there	was	regional	heterogeneity	 in	the	

trajectories	of	node	degree	(Fig.	3A),	all	 regions	that	demonstrated	significant	evidence	of	

non-zero	change	(linear	or	spline	fit	pFDR	<	0.05;	82	regions)	followed	a	nonlinear	trajectory	

(AICspl	<	AIClin),	which	for	most	regions	(75/82)	could	be	summarised	by	a	younger	phase	(from	

14	 to	 19	 years	 approximately)	 of	 more-or-less	 rapid	 decrease	 in	 structural	 correlation	

followed	by	a	levelling	off	or	slight	increase	of	structural	correlation	in	an	older	phase	(from	

19	to	24	years	approximately).	This	process	could	be	summarised	by	two	parameters:	Dkmax,	

the	difference	between	maximum	and	minimum	degree;	and	age(kmin),	the	age	at	which	node	

degree	reached	its	minimum	value	(Fig.	3B).		
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Figure	3:	Regional	development	of	structural	correlation	networks.	A)	Cortical	maps	of	
node	 degree	 at	 five	 regularly	 sampled	 intervals	 of	 the	 developmental	 trajectories,	
showing	 a	 regionally	 heterogeneous	 decrease	 from	 young	 age.	 B)	 Definition	 of	 local	
measures	 of	maturation,	 illustrated	 on	 a	 nonlinearly	 decreasing	 trajectory	 (from	 the	

right	 dorso-lateral	 pre-frontal	 cortex).	 The	 maximum	 change	 in	 degree	 Dkmax	

corresponds	to	the	(absolute)	difference	(decrease	or	increase)	in	degree	between	the	
maximum	and	 the	minimum	of	 the	 trajectory.	The	age	at	minimum	degree	age(kmin)	
corresponds	to	the	timing	of	the	minimum	of	the	trajectory.	C)	Cortical	maps	of	regional	
maturation	measures	for	trajectories	showing	evidence	of	non-zero	change	(at	pFDR	<	
0.05),	predominantly	located	in	association	cortex:	(i)	maximum	change	in	degree,	and	
(ii)	age	at	minimum	degree.	D)	Regions	that	show	greater	decreases	in	degree	tend	to	
reach	 minima	 of	 their	 trajectories	 later,	 whether	 considering	 all	 regions	 (grey)	 or	
excluding	regions	where	 the	 trajectory	minimum	occurs	at	extrema	of	 the	age	range	
(black).	

	

Decreases	 in	 node	 degree	 were	 greatest	 in	 association	 cortical	 areas,	 such	 as	 bilateral	

dorsolateral	prefrontal	cortex,	medial	frontal	cortex	and	supramarginal	gyrus,	as	well	as	pre-	

and	post-central	gyri	and	several	temporal	cortical	regions.	 Increases	 in	node	degree	were	

less	spatially	clustered,	occurring	in	isolated	nodes	within	the	right	cingulate,	superior	frontal	

and	parietal	cortices	as	well	as	left	cuneus	(Fig.	3Ci).	Association	cortical	areas	also	showed	

more	 prolonged	decreases	 in	 structural	 correlation,	 reaching	 the	minimum	value	 of	 node	
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degree	later	(Fig.	3Cii).		Predictably,	it	follows	that	the	extent	of	degree	shrinkage	Dkmax	was	

negatively	 correlated	with	 the	 age	 at	which	 degree	 reached	 its	minimum	 value	 age(kmin),	

whether	 considering	 all	 regions	 (Spearman’s	 r	 =	 -0.38,	 pSpearman	 <	 10-10,	 pperm	 <	 10-5)	 or	

excluding	regions	whose	minimum	occurred	at	one	of	the	limits	of	the	age	range	(Spearman’s	

r	=	-0.45,	pSpearman	<	10-10,	pperm	=	<	10-5;	Fig.	3D).		

	

Age-related	non-linear	changes	in	nodal	connection	distance	(the	mean	Euclidean	distance	of	

all	edges	connecting	a	node	within	 the	bootstrap-thresholded	network)	were	summarised	

using	analogous	parameters	to	node	degree:	Ddmax,	the	difference	between	maximum	and	

minimum	distance;	and	age(dmin),	 the	age	at	which	nodal	 connection	distance	 reached	 its	

minimum	value.	Nodes	that	demonstrated	significantly	reduced	connection	distance	(pFDR	<	

0.05)	were	located	in	left	dorsolateral	prefrontal	cortex,	 left	supramarginal	gyrus	and	right	

superior	parietal	cortex	(SI	Fig.	S7C).	Decreases	in	node	connection	distance	were	negatively	

correlated	 with	 age	 at	 minimum	 connection	 distance,	 whether	 considering	 all	 nodes	

(Spearman’s	r	 =	 -0.38,	 pSpearman	 <	 10-10,	 pperm	 <	 10-5)	 or	 excluding	 nodes	whose	minimum	

occurs	at	one	of	the	limits	of	the	age	range	(Spearman’s	r	=	-0.25,	pSpearman	=	0.0027,	pperm	=	

0.0036)	(SI	Fig.	S7D).	Finally,	decreases	in	node	connection	distance	were	positively	correlated	

with	decreases	in	node	degree	(Spearman’s	r	=	0.32,	pSpearman	=	1.9×10-8,	pperm	=	<	10-5)	(SI	Fig.	

7E).	In	other	words,	nodes	that	had	the	greatest	reduction	in	hubness	during	adolescence	also	

tended	to	have	the	greatest	reduction	in	connection	distance.	

	

To	contextualise	changes	 in	 structural	network	architecture	with	 respect	 to	maturation	of	

cortical	morphology,	we	related	regional	measures	of	cortical	network	development	to	rates	

of	 change	 of	 cortical	 thickness	 (CT)	 and	 magnetization	 transfer	 (MT,	 a	 measure	 of	

myelination),	evaluated	as	the	slope	of	a	linear	model	fitted	to	the	cross-sectional	values.	The	

maximum	change	in	node	degree	was	(weakly)	positively	correlated	to	the	rate	of	thinning	

(DCT;	Spearman’s	r	=	0.16,	pSpearman	=	0.0050,	pperm	=	0.023;	unaffected	by	excluding	three	

outlier	regions	which	showed	DCT>0,	Spearman’s	r	=	0.15,	pSpearman	=	0.0070,	pperm	=	0.028;	

Fig.	4Ai),	 and	more	 strongly	negatively	 correlated	 to	 the	 rate	of	 intra-cortical	myelination	

(DMT;	Spearman’s	r	=	-0.32,	pSpearman	=	6.6×10-9,	pperm	=	7·10-4;	Fig.	4Aii).	Following	Whitaker,	

Vértes	et	al.	(2016),	myelination	analyses	were	conducted	at	10	fractional	depths	between	
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the	pial	 surface	and	the	grey/white	matter	boundary,	as	well	as	 two	absolute	depths	 into	

white	matter.	The	strength	of	association	between	local	adolescent	myelination	(indexed	by	

DMT)	and	adolescent	decrease	of	node	degree	(indexed	by	Dkmax)	was	greatest	when	DMT	

was	measured	at	about	70%	of	cortical	depth	from	the	pial	surface	to	the	grey/white	matter	

boundary	(Fig.	4B).	

	

	
	

Figure	 4:	 Relationship	 between	 maturation	 of	 cortical	 morphology	 and	 structural	
correlation	 networks.	 A)	 Relationship	 between	 regional	 trajectories	 of	 cortical	
morphology	and	node	degree.	Maximum	changes	in	nodal	degree	are	only	very	weakly	
related	to	regional	rates	of	i)	thinning	and	ii)	myelination	(PU	=	percentage	units).	The	
direction	of	the	relationships	 is	such	that	cortical	regions	that	myelinate	more	during	
adolescence	are	more	likely	to	decrease	in	node	degree	and	connection	distance	in	the	
same	period.	B)	Spearman	correlation	of	rate	of	change	myelination	to	maximal	change	
in	degree	as	a	function	of	cortical	depth,	 including	10	fractional	depths	from	the	pial	
surface	to	the	grey/white	matter	boundary	(GM/WM),	as	well	as	two	absolute	depths	
into	the	white	matter.		
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Age-resolved	network	changes	in	relation	to	the	age-invariant	network	and	its	communities	

	

Given	that	most	densely	connected	nodes	(hubs)	of	the	age-invariant	structural	correlation	

network	 are	 predominantly	 located	 in	 association	 cortex	 (Whitaker,	 Vértes	 et	 al.,	 2016),	

which	is	also	the	location	of	greatest	age-resolved	decreases	in	structural	correlation,	it	is	not	

surprising	that	there	is	an	inverse	relationship	between	age-invariant	(weighted)	node	degree	

and	maximum	change	in	degree	(r	=	-0.43,	pSpearman	<	10-10,	pperm	=	<	10-5;	SI	Fig.	S9Bi).	Node	

degree	of	the	age-invariant	network	and	age	at	minimum	degree	were	not	strongly	related	

(SI.	Fig.	S9Bii).		

	

We	 further	 studied	 adolescent	 changes	 in	 nodal	 topology	 in	 relation	 to	 the	 community	

structures	of	the	human	brain.	Many	community	structures	have	been	proposed	to	partition	

the	cortex	into	a	set	of	modules	or	sub-networks,	each	comprising	a	number	of	functionally	

and/or	 anatomically	 related	 cortical	 areas.	 Here	 we	 considered	 three	 complementary	

community	 structures:	 (i)	 the	 modular	 decomposition	 of	 the	 age-invariant	 structural	

correlation	network	(7	modules);	(ii)	the	classic	von	Economo	cytoarchitectonic	partition	of	

the	cortex	 into	classes	based	on	cortical	 lamination	 (we	used	a	partition	 into	7	classes	by	

Vértes	et	al.	(2016),	extended	from	the	original	partition	into	5	classes	by	von	Economo	and	

Koskinas	 (1925));	and	 (iii)	 the	prior	 identification	of	7	 resting	state	networks	derived	 from	

independent	components	analysis	of	an	independent	resting	state	fMRI	dataset	(Yeo,	Krienen	

et	 al.,	 2011).	 The	 three	 classification	 systems	 had	 similar	 but	 not	 identical	 community	

structures;	normalised	mutual	information	(NMI,	a	measure	of	correspondence	between	two	

community	structures)	ranged	from	NMI	=	0.39	for	the	relationship	between	the	structural	

network	modules	and	the	resting	state	fMRI	components	to	NMI	=	0.29	for	the	relationships	

between	both	neuroimaging	based	community	structures	and	the	von	Economo	classification	

(Fig.	5A).	
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Figure	5:	Adolescent	development	of	structural	networks	in	relation	to	human	brain	

communities.	 The	 modular	 partition	 used	 consisted	 of	 seven	 modules,	 including	 a	

parietal	 “somato-sensory”	 module	 (yellow),	 a	 frontal	 “motor”	 module	 (orange),	 an	

occipital	“visual”	module	(green),	an	inferior-frontal/temporal	module	(red),	a	superior	

frontal	 module	 (blue),	 a	 superior	 temporal/insular	 module	 (purple)	 and	 a	 parieto-

occipital	module	(pink).	A)	Comparison	of	the	modular	architecture	of	the	age-invariant	

structural	 correlation	network	 (middle)	 to	 two	prior	 community	 structures	–	 the	von	

Economo	atlas	of	cytoarchitectonic	classes	(von	Economo	&	Koskinas,	1925;	 left)	and	

seven	functional	intrinsic	connectivity	networks	derived	using	an	independent	fMRI	data	

(Yeo	&	Krienen,	2011;	right).	The	alluvial	diagrams	between	surface	plots	of	community	

architecture	 indicate	 the	 amount	 of	 overlap	 between	 individual	 communities	 across	

templates.	B)	Development	of	structural	correlations	within	and	between	corresponding	

pairs	of	communities	–	cytoarchitectonic	classes	(i-ii),	age-invariant	modules	(iii-iv)	and	

functional	intrinsic	connectivity	networks	(v-vi).	Left:	maximum	change	in	edge	density	

DDmax	within	and	between	all	pairs	of	communities.	Right:	age	at	minimum	edge	density	

age(Dmin)	within	and	between	all	pairs	of	communities.	Dot	markers	indicate	statistical	

significance	of	developmental	change;	small:	pFDR	<	0.05,	large:	pFDR	<	0.01.	
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In	the	context	of	(i)	the	age-invariant	structural	network	community	structure,	the	greatest	

decreases	in	connection	density	DDmax	were	concentrated	within	the	superior	frontal	module	

(blue)	and	within	the	superior	temporal/insular	module	(purple;	Fig.	5Biii);	or	between	the	

superior	frontal	module	and	other	modules.	The	age	at	minimum	density	age(Dmin)	tends	to	

occur	later	within	the	same	modules,	as	well	as	the	occipito-parietal	module	(pink;	Fig.	5Biv).	

In	 the	 context	 of	 (ii)	 cytoarchitectonic	 atlas	 of	 von	 Economo	&	 Koskinas	 (1925),	 greatest	

decreases	in	edge	density	were	concentrated	within	and	between	association	cortical	areas	

with	lamination	types	2	and	3	(described	as	granular	isocortex;	blue	and	green	respectively)	

and	particularly	within	class	3	(green;	Fig.	5Bi).	Association	cortical	trajectories	tended	also	to	

reach	the	age	of	minimum	edge	density	latest	(Fig.	5Bii).	In	the	context	of	(iii)	fMRI	resting	

state	networks		outlined	by	Yeo,	Krienen	et	al.,	(2011),	the	greatest	decreases	in	edge	density	

were	concentrated	within	the	fronto-parietal	control	network	(orange)	as	well	as	between	

this	network	and	the	other	networks	(Fig.	5Bv).	Minima	of	the	trajectory	are	reached	latest	

within	the	default	mode	network	(salmon	red)	and	the	ventral	attention	network	(pink),	as	

well	 as	 between	 these	 two	 functional	 networks	 (Fig.	5Bvi).	 In	 summary,	 across	 the	 three	

community	 partitions,	 the	 greatest	 (and	 latest)	 decreases	 in	 connection	 density	 occurred	

within	association	cortical	communities,	and	(to	a	lesser	extent)	between	those	association	

cortical	communities	and	the	remainder	of	the	network.	

	

Sensitivity	analyses	

	

While	we	had	no	hypotheses	about	the	shape	of	the	maturational	trajectories	or	the	direction	

of	 the	 changes,	 the	 finding	 of	 a	 nonlinear	 decrease	 in	 structural	 correlation	 (and	 derived	

measures	of	edge	density	and	degree),	globally	and	locally,	was	somewhat	surprising.	This	is	

one	 of	 the	 reasons	why	we	 conducted	 numerous	 sensitivity	 analyses,	 to	 ensure	 that	 our	

findings	are	not	caused	or	inflated	by	methodological	choices	or	artefacts.	

	

Our	 principal	 findings	 on	 bootstrap-thresholded	 networks	 were	 corroborated	 by	 similar	

results	from	analysis	of	unthresholded	structural	correlation	matrices	(SI	Fig.	S6).		
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We	evaluated	robustness	of	our	findings	to	parameters	of	the	sliding	window	method,	varying	

the	 window	 width	 and	 step	 size	 over	 ranges	 of	 {40,60,80}	 and	 {5,10,20}	 participants	

respectively.	 Results	 were	 qualitatively	 consistent	 with	 the	 above,	 showing	 a	 non-linear	

decrease	in	structural	correlation	both	globally	and	locally	(most	prominently	in	association	

cortex),	as	well	as	(weak)	relationships	of	maximum	local	change	in	correlation	to	regional	

rates	of	thinning	and	myelination	(SI	Table	S2	and	SI	Fig.	S11).	

	

Analysis	 of	 gender	 differences	 failed	 to	 identify	 effects	 of	 gender	 or	 age-by-gender	

interactions	 in	 the	 trajectories	 of	 structural	 correlation	 development	 (Supplementary	

Information).	

	

We	investigated	the	effect	of	several	potential	artefacts,	 including	the	presence	of	regions	

with	low	reliability	of	structural	correlations	(SI	Fig.	S12)	as	well	as	inhomogeneities	in	the	age	

distribution	of	participants	(SI	Fig.	S13).	We	found	no	substantial	evidence	that	the	effect	of	

such	 artefacts	 could	 inflate	 or	 account	 for	 our	 main	 finding	 of	 a	 non-linear	 age-related	

decrease	in	structural	correlations.	

	

Finally,	we	investigated	whether	subtle	non-linearities	in	trajectories	of	cortical	thinning	and	

myelination	could	be	driving	non-linearities	 in	 trajectories	of	 structural	 correlation	 (SI	Fig.	

S14-16).	 Although	 neither	 non-linear	 CT	 or	 MT	 effects	 are	 especially	 strong,	 subtle	 non-

linearities	in	trajectories	of	cortical	myelination	appear	somewhat	more	related	to	structural	

correlation	trajectories	than	subtle	non-linearities	in	trajectories	of	cortical	thinning.	 	
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Discussion	

	

In	the	current	study	we	set	out	to	examine	the	developmental	trajectories	of	human	brain	

structural	 networks.	 To	 this	 end,	 we	 used	 a	 novel	 “sliding	 window”	 method	 of	 network	

analysis	 to	 resolve	 age-related	 changes	 in	 human	 brain	 structural	 correlations	 and	

probabilistically	 thresholded	 brain	 graphs	 estimated	 from	 MRI	 data	 on	 an	 age-stratified	

sample	of	healthy	adolescents	and	young	adults	(N=297,	aged	14-24	years).	We	found	that	

global	strength	of	structural	correlation	and	the	related	topological	property	of	edge	density	

both	 decreased	 non-linearly	 as	 a	 function	 of	 age:	 an	 early	 phase	 (14-19.5	 years	

approximately)	of	rapid	decrease	in	structural	correlation	was	followed	by	a	later	phase	(20-

24	years)	of	stable	or	slightly	increasing	structural	correlation.	At	a	regional	or	nodal	level	of	

analysis,	cortical	areas	varied	in	the	magnitude	of	age-related	decrease	in	nodal	degree	Dkmax	

and	the	age	at	which	nodal	degree	reached	its	minimum	value	age(kmin).	The	75	cortical	areas	

with	 significantly	decreasing	degree	 tended	 to	mature	 later,	 i.e.,	 large	negative	Dkmax	was	

associated	with	older	age(kmin).	Further,	cortical	areas	with	the	greatest	shrinkage	of	degree	

during	adolescence	also	had	the	greatest	shrinkage	of	connection	distance,	i.e.,	large	negative	

Dkmax	was	associated	with	large	negative	Ddmax.	To	contextualise	these	results,	we	showed	

that	cortical	areas	with	the	greatest	adolescent	changes	in	brain	structural	connectivity	were	

anatomically	 concentrated	 in	 regions	 of	 association	 cortex	 that	 had	 fast	 local	 rates	 of	

increasing	 intra-cortical	 myelination;	 and	 were	 topologically	 concentrated	 on	 the	 edges	

within	frontal	communities	(von	Economo	classes	2	and	3	and	the	functional	fronto-parietal	

control	network)	and	the	edges	connecting	frontal	communities	to	the	rest	of	the	network.	

We	propose	that	these	results	are	consistent	with	the	existence	of	a	developmental	window	

for	 tuning	of	association	cortical	 connectivity	by	a	 combination	of	parsimoniously	pruning	

some	long	distance	connections	while	actively	consolidating	or	myelinating	the	connections	

which	survive.		

	

MRI	studies	of	adolescent	structural	brain	network	development	

	

Adolescent	changes	in	structural	correlation	networks	have	previously	been	investigated,	as	

pairwise	 changes	across	 four	discrete	 (non-overlapping)	 age-bins	 spanning	 the	 range	5-18	
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years	(Zielinski	et	al.,	2010;	Khundrakpam	et	al.,	2013).	Zielinski	et	al.	(2010)	reported	largely	

non-linear	 changes	 in	 the	 extent	 of	 seed-based	 structural	 correlation	 networks.	 Both	 the	

executive	control	network	(seeded	in	the	right	dorsolateral	prefrontal	cortex)	and	the	salience	

network	(seeded	in	the	right	frontal	insula),	showed	an	increase	in	spatial	extent,	quantified	

as	the	number	of	voxels	whose	grey	matter	intensity	significantly	correlated	with	the	seed.	

Conversely,	our	approach	suggests	a	decrease	in	the	structural	correlation	within	association	

areas	 and	 related	 structural,	 cytoarchitectonic	 and	 functional	 communities.	 Beyond	 the	

difference	 in	 methods	 (voxel-wise	 seed-based	 vs.	 parcel-wise	 all-to-all	 regions),	 this	

discrepancy	 could	 be	 due	 to	 the	 different	morphometric	measures	 used,	 known	 to	 show	

differences	in	both	trajectories	of	adolescent	maturation	(Wierenga	et	al.,	2014;	Ducharme	

et	al.,	2015),	and	(age-invariant)	structural	correlation	(Sanabria-Diaz	et	al.,	2010;	Yang	et	al.,	

2016).	 Further,	 Khundrakpam	 et	 al.	 (2013)	 reported	 decreases	 in	 regional	 efficiency	 of	

primary	 sensorimotor	 regions,	 alongside	 increases	 in	 regional	 efficiency	of	 paralimbic	 and	

association	regions.	These	results	align	with	our	own,	through	the	strong	dependence	of	the	

properties	of	graphs	thresholded	to	fixed	edge	densities	(as	in	Khundrakpam	et	al.	(2013))	on	

the	mean	of	the	correlation	distributions	from	which	they	were	derived.	Networks	with	lower	

correlations	lead	to	more	random	topology,	exhibiting	higher	efficiency	and	lower	clustering	

(Fornito	 et	 al.,	 2013;	 van	 den	Heuvel	 et	 al.,	 2017).	 Therefore,	 our	 finding	 of	 decreases	 in	

structural	correlation	within	association	cortical	areas	aligns	with	reports	by	Khundrakpam	et	

al.	(2013)	of	increased	regional	efficiency	in	these	regions.	Beyond	development	of	structural	

networks	resolved	using	distinct	age-groups,	several	studies	have	investigated	coordinated	

maturation	 of	 cortical	morphology	 during	 adolescence	 (Raznahan	 et	 al.,	 2011;	 Alexander-

Bloch	et	al.,	2013;	Sotiras	et	al.,	2017).	

	

Adolescent	development	of	structural	connectivity	has	also	been	investigated	using	diffusion	

imaging	and	tractography,	although	such	studies	report	heterogeneous	 findings.	Lim	et	al.	

(2013)	showed	decreases	in	structural	connectivity	from	childhood	(4	years)	to	adulthood	(40	

years),	 concentrated	 predominantly	 on	 strong	 tracts,	 located	 within	 modules	 –	 which	

qualitatively	agrees	with	our	findings.	However,	Chen	et	al.	(2013)	reported	increases	in	the	

number	of	streamlines	and	edge	density	from	childhood	(5	years)	to	adulthood	(30	years).	

Recently,	Baum	et	al.	(2017)	reported	increases	in	within-module	connectivity,	and	decreases	

in	 between-module	 connectivity	 in	 tractography-derived	 white	 matter	 networks.	 While	
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tractography-derived	structural	connectomes	show	some	overlap	with	structural	correlation	

networks	 (Gong	 et	 al.,	 2012),	 interpretation	 of	 developmental	 changes	 in	 white-matter	

connectivity	relative	to	development	of	structural	correlations	will	require	concurrent	studies	

of	both	modalities	in	the	same	datasets.	It	is	worth	noting	that	when	grey	and	white	matter	

structural	networks	were	both	constructed	using	the	same	method	(structural	correlation),	

both	showed	similar	patterns	of	correlation	and	similar	developmental	changes	from	7	to	14	

years	(Moura	et	al.,	2016).	

	

Adolescent	development	of	brain	connectivity	has	also	been	investigated	using	fMRI.	Early	

functional	 connectivity	 studies	 have	 reported	 increases	 in	 the	 strength	 of	 long-range	 and	

within-network	 functional	 connections	 (and	 decreases	 in	 the	 strength	 of	 short-range	

functional	connections)	(Fair	et	al.,	2009;	Supekar	et	al.,	2009;	Dosenbach	et	al.,	2010).	Later	

studies	have	reported	qualitatively	similar	findings,	but	with	attenuated	effect	sizes	following	

control	 for	 the	effects	of	motion	(Satterthwaite	et	al.,	2012,	2013).	While	 findings	such	as	

increasing	within-module	functional	connectivity	may	seem	to	disagree	with	our	findings	of	

decreased	within-network	structural	correlation,	these	constitute	disparate	modalities	that	

have	 not	 always	 yielded	 concomitant	 results	 (Fornito	 &	 Bullmore,	 2015).	 Beyond	 studies	

concurrently	 investigating	 adolescent	 development	 of	 structural	 and	 functional	 networks	

using	the	same	dataset(s),	the	combination	of	structural,	diffusion	and	functional	MRI	data	

using	methods	such	as	multimodal	 fusion	 (Calhoun	&	Sui,	2016),	computational	modelling	

(Breakspear,	 2017)	 or	 morphometric	 similarity	 (Seidlitz	 et	 al.,	 2017)	 might	 be	 useful	 to	

reconcile	findings	from	diverse	modalities.	

	

Relationship	to	axo-synaptic	connectivity	(and	its	adolescent	pruning)	

	

Our	results	extend	previous	studies	of	structural	network	development	(Zielinski	et	al.,	2010;	

Khundrakpam	 et	 al.,	 2013)	 by	 reporting	 smooth	 and	 non-linear	 trajectories	 of	 structural	

network	development	during	adolescence.	The	early	phase	of	major	decrease	in	structural	

correlation,	nodal	degree,	and	nodal	connection	distance	could	represent	loss	of	anatomical	

connectivity	 to	 association	 cortical	 areas.	 The	 simplest	 interpretation	 is	 that	 reduced	

structural	correlation	or	degree	represents	pruning	of	synaptic	connections	or	attenuation	of	

axonal	 projections.	 There	 is	 a	 large	 body	 of	 prior	 evidence	 in	 support	 of	 the	 concept	 of	
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synaptic	pruning	during	adolescence	(Huttenlocher	&	Dabholkar,	1997;	Petanjek	et	al.,	2011)	

and	 this	mechanism	 has	 been	 suggested	 to	 explain	 age-related	 cortical	 shrinkage	 (Tau	&	

Peterson,	 2009),	 which	 was	 correlated	 with	 age-related	 degree	 shrinkage	 in	 these	 data.	

However,	the	security	of	this	interpretation	rests	on	the	more	fundamental	assumption	that	

structural	 correlation	measured	 from	MRI	data	on	multiple	 subjects	 is	a	 reasonable	proxy	

marker	of	the	average	weight	of	axo-synaptic	connectivity	between	regions	(Alexander-Bloch	

et	al.,	2013).	Beyond	humans	(Gong	et	al.,	2012),	there	is	evidence	of	such	correspondence	

from	animal	models	(Yee	et	al.,	2017).	

	

The	identification	of	structural	correlation	networks	in	mice	(Pagani	et	al.,	2016)	suggests	that	

they	 might	 encompass	 general	 features	 of	 cortical	 architecture.	 Specifically,	 up	 to	 35%	

variance	 in	 structural	 correlation	 in	mice	was	explained	by	a	combination	of	 tract-tracing-

derived	structural	connectivity,	gene	expression	and	distance	(Yee	et	al.,	2017),	providing	a	

link	of	 the	macroscopic	structural	networks	 to	underlying	microscale	cortical	organisation.	

The	 relationship	 of	 structural	 correlation	 networks	 to	 gene	 expression	 has	 also	 been	

investigated	within	humans	using	the	present	data,	demonstrating	overlap	between	regional	

co-expression	of	genes	(Hawrylycz	et	al.,	2012),	particularly	of	a	subset	of	genes	enriched	in	

supra-granular	layers	of	cerebral	cortex,	and	structural	correlation	patterns	(Romero-Garcia	

et	al.,	2017).	Moreover,	association	cortical	hubs	of	the	(age-invariant)	structural	correlation	

network	 showed	 the	 greatest	 expression	 of	 genes	 related	 to	 synaptic	 transmission,	

oligodendroglia	as	well	as	schizophrenia,	suggesting	a	potential	pathogenic	role	in	abnormal	

consolidation	of	association	cortical	 regions	 (Whitaker,	Vértes	et	al.,	2016).	Generally,	 the	

profound	adolescent	maturational	changes	 in	cortical	architecture	are	thought	to	underlie	

the	 frequent	 emergence	 of	 psychiatric	 disease	 in	 this	 period,	 as	 a	 result	 of	 abnormal	

development	(Paus	et	al.,	2008;	Silbereis	et	al.,	2016).	

	

Adolescent	maturation	of	structural	correlation	and	regional	cortical	structure	

	

We	note	that	the	association	of	changes	in	structural	network	architecture	to	rates	of	cortical	

thinning	 is	 relatively	 weak.	 Given	 that	 (age-invariant)	 structural	 correlation	 networks	 are	

thought	to	emerge	as	a	result	of	synchronised	maturation	(thinning)	of	cortical	regions	over	

adolescence	 (Raznahan	et	al.,	2011;	Alexander-Bloch	et	al.,	2013),	perhaps	 the	changes	 in	
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structural	 correlation	might	 be	more	 closely	 related	 to	 changes	 in	 the	 rates	 of	 change	 of	

cortical	thinning,	which	in	a	longitudinal	dataset	were	shown	to	peak	in	adolescence	(Zhou	et	

al.,	 2015).	 An	 additional	 possible	 explanation	 for	 the	 adolescent	 decrease	 in	 structural	

correlation	 is	 a	 “decoherence”	 related	 to	 inter-individual	 differences	 in	 the	 timing	 of	

maturation	of	association	areas	–	although	the	verification	of	such	a	hypothesis	would	again	

require	 longitudinal	 data.	 On	 a	 related	 note,	 recent	 work	 on	 functional	 connectivity	 has	

shown	 an	 adolescent	 increase	 the	 “distinctiveness”	 of	 individual	 functional	 connectomes	

(Kaufmann	et	al.,	2017).	We	further	note	that	the	association	of	changes	in	structural	network	

architecture	to	rates	of	myelination	is	stronger	(than	to	rates	of	cortical	thinning),	and	that	

subtle	 non-linearities	 in	 trajectories	 of	 myelination	 seem	 more	 strongly	 related	 to	 non-

linearities	in	trajectories	of	structural	correlation,	suggestive	of	the	idea	that	myelination	may	

be	a	driver	of	(changes)	in	structural	covariance.	This	could	be	further	investigated	through	

concurrent	 analysis	 of	 (adolescent)	 changes	 in	 structural	 correlation	 and	 white	 matter	

architecture.	

	

Generally,	 the	weakness	of	 association	between	 rates	of	 change	of	morphology	 (DCT	 and	

DMT)	and	structural	network	architecture	(Dkmax)	suggests	that	rates	of	change	of	structural	

network	 properties	 explain	 substantial	 variation	 of	 brain	 structure	 with	 age,	 above	 and	

beyond	 the	 rates	 of	 thinning	 and	 myelination.	 As	 an	 intrinsic	 regional	 measure,	 cortical	

thickness	can	be	considered	less	complex	than	a	measure	of	relationships	between	regions	

(across	participants)	such	as	structural	correlation;	however,	the	biological	hierarchy	could	

well	 be	 the	 opposite,	whereby	 cortical	 thickness	 and	 its	 changes	might	 be	 a	 signature	 of	

underlying	 changes	 in	 axonal	 connectivity.	 This	hypothesis	 could	be	 tested,	using	 invasive	

studies	 of	 concurrent	 development	of	 axonal	 connectivity	 and	 cortical	 thickness	 in	model	

species.	 In	 humans,	 the	 differential	 variance	 contained	 within	 cortical	 morphology	 and	

structural	 network	 architecture	 could	 be	 investigated	 through	 further	 within-population	

comparisons	 of	 these	 measures,	 in	 (1)	 their	 ability	 to	 discriminate	 between	 case-control	

populations,	 (2)	 their	 association	 to	 behavioural	 and	 cognitive	 measures	 and	 (3)	 their	

heritability.	 For	 example,	 patients	 with	 childhood-onset	 schizophrenia	 have	 shown	

differences	in	adolescent	trajectories	of	both	cortical	thinning	(Alexander-Bloch	et	al.,	2014)	

and	structural	correlation	(Zalesky	et	al.,	2015)	relative	to	healthy	controls,	but	the	measures	

have	not	been	explicitly	compared.		
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Notably,	changes	in	structural	network	architecture	were	more	strongly	related	to	the	rate	of	

myelination	(at	70%	depth)	than	the	rate	of	cortical	thinning,	suggesting	that	layer-specific	

intra-cortical	myelination	might	be	a	more	sensitive	marker	or	cortico-cortical	connectivity	

than	 cortical	 thickness	 (assuming,	 as	 above,	 that	 structural	 correlation	 is	 a	 marker	 of	

connectivity).	Moreover,	 this	 finding	 echoes	 our	 earlier	 finding	 of	 the	 rate	 of	myelination	

being	fastest	at	70%	depth	between	the	pial	surface	and	the	grey/white	matter	boundary,	

and	the	relationship	between	rate	of	cortical	thinning	and	rate	of	myelination	being	strongest	

at	this	depth	(Whitaker,	Vértes	et	al.,	2016).	We	have	previously	suggested	a	 link	of	these	

changes	to	histological	evidence	of	greatest	rates	of	myelination	at	similar	cortical	depths	in	

rodents	(Mengler	et	al.,	2014;	Tomassy	et	al.,	2014;	Hammelrath	et	al.,	2016).		

	

Methodological	considerations	

	

Recently,	a	number	of	studies	have	pointed	out	effects	of	participant	motion	on	the	quality	

of	structural	MRI	scans,	including	on	estimates	of	regional	morphological	measures	such	as	

cortical	thickness	(Reuter	et	al.,	2015;	Alexander-Bloch	et	al.,	2016;	Savalia	et	al.,	2017).	While	

we	 have	 carried	 out	 stringent	 quality	 control	 of	 our	 structural	 scans	 and	 FreeSurfer	

reconstructions	 of	 cortical	 thickness	 (details	 in	 Supplementary	 Information),	 we	 cannot	

completely	 rule	 out	 potential	 artefactual	 effects	 of	 motion	 on	 our	 results.	 Thus,	 further	

analysis	of	structural	correlation	development	in	datasets	including	estimates	of	head	motion	

from	volumetric	 tracking	 (Tisdall	et	al.,	2012,	2016)	or	novel	automated	estimates	of	data	

quality	(Shehzad	et	al.,	2015;	Pizarro	et	al.,	2016;	Rosen,	Roalf	et	al.,	2017)	will	be	important	

in	the	future.	

	

The	 estimated	 changes	 in	 structural	 network	 organisation	 are	 inevitably	 dependent	 on	

parameters	of	the	sliding	window	method	used.	The	selection	of	sliding	window	parameters,	

including	window	width	and	step	size	 (in	units	of	number	of	participants)	 involves	several	

trade-offs.	On	one	hand,	selecting	a	wider	window	increases	the	robustness	of	correlations	

within	each	of	those	windows,	as	they	are	estimated	using	more	participants;	on	the	other	

hand,	the	median	ages	of	participants	within	each	window	will	cover	a	narrower	portion	of	

the	overall	age-range.	Furthermore,	while	a	smaller	step	size	will	provide	a	greater	density	of	
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windows	and	hence	 time-points	 for	 curve	 fitting	and	 trajectory	 characterisation,	 a	denser	

sampling	of	data	will	exacerbate	 issues	with	 the	 inevitably	uneven	distribution	of	subjects	

across	 the	 age-range	 studied,	 which	 in	 effect	 corresponds	 to	 an	 unevenly	 sampled	 time-

series.	Future	development	of	tools	for	the	analysis	of	unevenly	sampled	time-series	(Eckner,	

2014)	should	help	alleviate	these	issues.	

	

Furthermore,	 depending	 on	 the	 sliding	window	 parameters,	 relatively	 few	 summary	 data	

points	may	be	obtained.	The	subsequent	fitting	of	nonlinear	smoothing	splines	(with	up	to	

~3.5	degrees	of	freedom)	to	such	scarce	data	warrants	care	when	interpreting	evidence	of	

non-linearity	–	despite	evidence	from	both	the	AIC	and	BIC	that	smoothing	splines	provide	a	

better	 quality	 of	 fit	 than	 linear	 models.	 Still,	 it	 is	 reassuring	 that	 trajectories	 remain	

consistently	 nonlinear	 across	 bootstrapped	 samples	 (within	 unthresholded	 correlation	

networks)	 and	 that	 evidence	 of	 a	 nonlinear	 trajectory	 seems	 more	 pronounced	 after	

bootstrap	 thresholding.	 Changes	 in	 structural	 network	 architecture	 remain	 qualitatively	

consistent	 in	 both	 their	 spatial	 location	 and	 relationship	 to	 changes	 in	morphology	when	

simple,	linear	models	are	used.	The	scarcity	of	data	points	may	also	lead	to	uncertainties	in	

measures	 used	 to	 characterise	 the	 maturational	 trajectories,	 including	 the	 measures	 of	

maximum	 change	 and	 age	 at	 minimum	 of	 the	 trajectory.	 Finally,	 it	 remains	 ambiguous	

whether	 the	 tendency	of	 the	global	 trajectory	of	 structural	 correlation	 to	 slightly	 increase	

from	 the	 minimum	 around	 age	 19	 towards	 age	 24	 years	 is	 significant,	 or	 whether	 the	

trajectory	can	be	seen	as	 levelling-off.	 It	 seems	reasonable	 that	 the	 few	nodes	presenting	

increases	 in	 structural	 correlation	 (e.g.	within	 right	cingulate	cortex)	would	be	driving	 this	

effect.	Thus,	until	 these	 results	are	validated	 in	an	additional	dataset,	 care	 is	necessary	 in	

some	aspects	of	their	interpretation.	

	

Further,	practical	applicability	of	structural	correlation	networks	 is	 limited	by	the	 fact	 that	

they	represent	a	group	construct.	Still,	an	advantage	of	structural	correlation	networks	over	

structural	 connectomes	 derived	 from	 diffusion	 imaging	 using	 tractography	 is	 the	 relative	

simplicity	of	the	structural	MRI	acquisitions	compared	to	diffusion	imaging,	which	in	light	of	

its	longer	acquisition	is	more	prone	to	motion	artefacts	(Yendiki	et	al.,	2014),	and	within	which	

tractography	 presents	 considerable	 challenges	 (Thomas	 et	 al.,	 2014;	 Reveley	 et	 al.,	 2015;	

Maier-Hein	et	al.,	2016).	Efforts	to	derive	measures	of	 individual	contribution	to	structural	
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correlation	networks	(Saggar	et	al.,	2015)	or	fully	individual	networks	from	structural	imaging	

(Tijms	et	al.,	2012;	Kong	et	al.,	2014,	2015)	including	through	the	combination	of	multi-modal	

features	 (Seidlitz	 et	 al.,	 2017)	 should	 increase	 the	 practical	 applicability	 of	 structural	

correlation	network	research.	

	

In	 reporting	 a	 late	 maturation	 of	 association	 cortical	 regions,	 our	 results	 are	 potentially	

compatible	 with	 the	 developmental	 mismatch	 hypothesis,	 which	 proposes	 that	 late	

maturation	 of	 prefrontal	 regions	 (involved	 in	 cognitive	 control),	 compared	 to	 an	 earlier	

development	of	subcortical	regions	(implicated	 in	reward	processing)	results	 in	adolescent	

increases	in	risk-taking	and	sensation-seeking	behaviours	(Mills,	Goddings,	Clasen,	Giedd,	&	

Blakemore,	2014).	However,	the	verification	of	such	a	hypothesis	will	require	the	inclusion	of	

both	subcortical	regions	and	behavioural	data	in	future	analyses.	

	

Finally,	 structural	 network	 architecture	 is	 known	 to	mature	 across	 the	 lifespan	 (DuPre	 &	

Spreng,	2017),	including	during	both	early	childhood	(Geng	et	al.,	2016)	and	late	adulthood	

(Hafkemeijer	et	al.,	2014).	Our	focused	age-range	prohibits	us	from	conclusively	ascertaining	

the	 specificity	 of	 these	 changes	 to	 adolescence.	 For	 example,	 extending	 the	 analyses	

presented	 herein	 to	 wider	 age-ranges	 would	 help	 disambiguate	 whether	 the	 non-linear	

decreases	in	structural	correlation	level	off	or	increase	in	young	adulthood.	In	general,	the	

wide	applicability	of	the	methods	used	herein	should	enable	investigations	of	the	maturation	

of	 structural	 brain	 networks,	 as	 well	 as	 other	 networks	 constructed	 in	 a	 similar	 manner	

(including	 for	 example	 networks	 of	 relationships	 between	 psychopathological	 symptoms;	

Borsboom	&	Cramer,	2013),	across	the	life-span.	

	

Conclusion	

	

During	adolescence,	human	brain	structural	correlation	networks	demonstrate	a	non-linear	

reduction	of	connectivity	of	association	cortical	areas,	predominantly	in	frontal	cortex,	that	is	

compatible	 with	 a	 developmental	 process	 of	 pruning	 combined	 with	 consolidation	 of	

surviving	connections.		
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Availability	of	data	and	code	

	

Data	for	this	specific	paper	has	been	uploaded	to	the	Cambridge	Data	Repository	

(https://doi.org/10.17863/CAM.8856)	and	password	protected.	Our	participants	did	not	

give	informed	consent	for	their	questionnaire	measures	to	be	made	publicly	available,	and	it	

is	possible	that	they	could	be	identified	from	this	data	set.	Access	to	the	data	supporting	the	

analyses	presented	in	this	paper	will	be	made	available	to	researchers	with	a	reasonable	

request	to	NSPNdata@medschl.cam.ac.uk.	The	code	used	to	conduct	analyses	is	available	

from	FV’s	github:	https://github.com/frantisekvasa/structural_network_development	(DOI:	

10.5281/zenodo.528674).	
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