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Abstract

Motivated by prior data on local cortical shrinkage and intracortical myelination, we predicted
age-related changes in topological organisation of cortical structural networks during
adolescence. We estimated structural correlation from magnetic resonance imaging
measures of cortical thickness at 308 regions in a sample of N=297 healthy participants, aged
14-24 years. We used a novel sliding-window analysis to measure age-related changes in
network attributes globally, locally and in the context of several community partitions of the
network. We found that the strength of structural correlation generally decreased as a
function of age. Association cortical regions demonstrated a sharp decrease in nodal degree
(hubness) from 14 years, reaching a minimum at approximately 19 years, and then levelling
off or even slightly increasing until 24 years. Greater and more prolonged age-related changes
in degree of cortical regions within the brain network were associated with faster rates of
adolescent cortical myelination and shrinkage. The brain regions that demonstrated the
greatest age-related changes were concentrated within prefrontal modules. We conclude
that human adolescence is associated with biologically plausible changes in structural imaging
markers of brain network organization, consistent with the concept of tuning or consolidating

anatomical connectivity between frontal cortex and the rest of the connectome.
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Human adolescence is known to be a major phase of cortical development. In particular,
cerebral cortex becomes thinner (Wierenga et al., 2014) and more densely myelinated (Miller
et al., 2012) in the transition from puberty to young adulthood. Adolescent decreases in
cortical thickness (thinning) are variable between different areas of cortex (Raznahan et al.,
2011): for example, thinning is greater in association cortical areas than primary sensory areas

(Whitaker, Vértes et al., 2016).

Motivated by these and other results, we predicted that human adolescence should be
associated with changes in the architecture of structural brain networks. There are currently
only two experimental techniques, both based on magnetic resonance imaging (MRI), that
are capable of providing data to test this prediction: diffusion tensor imaging followed by
tractography; or structural MRI followed by structural covariance or correlation analysis. Here
we focused on the latter, measuring the thickness of a set of predefined cortical regions in
each individual MRI dataset and then estimating the correlation of thickness between each
possible pair of regions across participants. Similar methods have been widely used and
validated (Lerch et al., 2006) in a range of prior studies (Alexander-Bloch et al., 2013; Evans,
2013).

In particular, structural correlation (covariance) measures have been used as a basis for graph
theoretical modelling of the human connectome (Bullmore & Sporns, 2009; Fornito et al.,
2016). Considerable evidence has accumulated in support of the general view that human
brain structural correlation networks have a complex topological organization, characterised
by non-random features such as the existence of highly connected (high degree) hub nodes
and a modular community structure (Alexander-Bloch et al., 2013; Evans, 2013). Topological
metrics on structural correlation networks have demonstrated changes associated with
disease, development and ageing (Alexander-Bloch et al., 2013; Evans, 2013). However, only
two studies have investigated adolescent changes in structural correlation networks. Zielinski
et al. (2010) demonstrated that the anatomical extent of structural correlation networks,
assessed using seed-based correlation of voxel-wise grey matter intensity, changes in
adolescence in a spatially patterned manner. Specifically, primary visual and sensori-motor
networks, as well as the default mode network, expanded in early childhood before being

“pruned” in adolescence, while higher-order cognitive networks showed a gradual monotonic
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gain in spatial extent. Subsequently, Khundrakpam et al. (2013) applied graph-theoretical
analyses to a subset of the same data, reporting childhood increases in topological integration
(global efficiency) and decreases in topological segregation (local efficiency and modularity),
as well as increases in regional integration in paralimbic and association regions. While these
studies constitute interesting initial investigations, their ability to precisely describe
developmental changes is limited by their segregation of participants into four discrete age-
defined strata, resulting in relatively coarse-grained resolution of brain maturational

trajectories.

Here, we aimed to obtain a more precise description of adolescent maturational trajectories
of structural network architecture, which were hypothesised to vary as a smooth and
potentially non-linear function of age. We used a sliding-window analysis to estimate
structural correlations and structural network properties for each of an overlapping series of
9 age-defined windows or strata of the sample (N~60 participants per window). We identified
the cortical regions (nodes) and connections (edges) which showed the most significant age-
related changes in structural correlation. We tested the related hypotheses that parameters
of adolescent change in structural correlation would be greater and occur later in regions of
association cortex, which show faster rates of local cortical shrinkage and myelination. In
addition, we explored whether greater and later changes in structural correlation during
adolescence would be concentrated within or between specific communities of regions.
Specifically we mapped adolescent changes in structural correlation to three brain
community structures: the topological modular partition of the age-invariant structural
correlation network; an atlas of cytoarchitectonic classes (von Economo & Koskinas, 1925);

and functional intrinsic connectivity or resting state networks (Yeo, Krienen et al., 2011).
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Materials and Methods

Participants

A demographically balanced cohort of 297 healthy participants (149 females) aged 14-24
years was included in this study, with approximately 60 participants in each of 5 age-defined
strata: 14-15 years inclusive, 16-17 years, 18-19 years, 20-21 years, and 22-24 vyears.
Participants were excluded if they were currently being treated for a psychiatric disorder or
for drug or alcohol dependence; had a current or past history of neurological disorders or
trauma; or had a learning disability. Participants provided informed written consent for each
aspect of the study, and parental consent was obtained for those aged 14-15 years. The study
was ethically approved by the National Research Ethics Service and was conducted in

accordance with NHS research governance standards.

MRI acquisition and processing

Structural scans were acquired at three sites using multi-parametric mapping (MPM)
implemented on three identical 3T MRI scanners (Siemens Magnetom TIM Trio). Inter-site
reliability of the sequence was evaluated within a pilot study of five healthy participants each
scanned at each site (Weiskopf et al., 2013). The MPM sequence includes maps of Ry (1/T1)
and magnetization transfer (MT), indicative of myelination. For details of MRI acquisition

parameters, see Supplementary Information (SI).

Processing of individual scans using FreeSurfer v5.3.0 included skull-stripping, segmentation
of cortical grey and white matter and reconstruction of the cortical surface and grey-white
matter boundary (Fischl et al., 1999). All scans were stringently quality controlled by re-
running the reconstruction algorithm after the addition of control points and white matter
edits (details in Sl). The cerebral cortex of each participant was parcellated into 308 regions
of interest, based on a sub-division of the Desikan-Kiliany anatomical atlas (Desikan et al.,

2006) into parcels of approximately equal surface area (~5cm?) (Romero-Garcia et al., 2012).
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Regional changes in cortical thickness (CT) and myelination (MT) were characterized using the
rate of change over adolescence, evaluated as the slope of a linear model fitted to the cross-
sectional values. Following Whitaker, Vértes et al. (2016), myelination analyses were
conducted at 10 fractional depths between the pial surface and the grey/white matter
boundary, as well as two absolute depths into white matter. Main analyses focused on MT
estimates at 70% fractional cortical depth from the pial surface. For details and results across

cortical depths, see the Supplementary Information.

While both cortical thickness and myelination maps were averaged within parcels, for
comparison between maturation of structural correlation networks and morphology, only the

cortical thickness values were used to construct structural correlation networks.

Age-invariant structural network

An age-invariant structural correlation network was constructed using Pearson correlations
in cortical thickness between pairs of regions across all 297 participants, to serve as a
reference for developmental changes within the age-resolved structural networks (described
below; Fig. 1A). We used raw cortical thickness values, uncorrected for age, gender or intra-
cranial volume. However, correcting for these covariates had no effect on the results. For
background reading on graph theoretical methods and connectomics see Bullmore & Sporns

(2009) and Fornito et al. (2016).

The age-invariant structural network was thresholded using a bootstrap approach, whereby
1000 sets of participants were resampled with replacement and used to construct surrogate
structural networks. For each pair of regions, we examined whether there is evidence of a
non-zero correlation across bootstraps: edges that were consistently positive or negative
across bootstraps (at a two-tailed, FDR-adjusted level of a = 0.01) were retained; the
remaining edges were set to zero. Nodal topological organisation of the thresholded network
was assessed using degree, defined as the number of retained correlations for each node, as

well as the weighted degree, or summed weight of retained edges for each node.
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Further, the age-invariant network was partitioned into communities of nodes showing higher
structural correlations within than between communities (Sporns & Betzel, 2016). The
community structure of the age-invariant network was decomposed using the Louvain multi-
resolution algorithm (Blondel et al., 2008) over the resolution parameter range 0.01 <y <
4.00. As y increases, the community structure is decomposed to a progressively larger number
of modules. We used the concept of minimizing versatility to identify those resolution
parameter values which reduce the uncertainty with which any node was affiliated
consistently to the same module (Shinn et al., 2017). The final community partition was
defined as a consensus across 1000 runs of the Louvain modularity algorithm (Lancichinetti &
Fortunato, 2012) at the selected value of the resolution parameter y. For details regarding

module generation, see SI Fig. S1.

Development of age-resolved structural networks

Sliding window network construction

Development of structural networks between 14 and 24 years was evaluated using a sliding
window method. Regional cortical thickness values were cross-correlated within windows
containing equal numbers of participants, and incrementally slid across the age-range by
regular increments (Fig. 1B). The two parameters of the method, the “window width” and the
“step size” (in units of number of participants) determine the number of windows, each of
which generates a structural correlation network. Exploration of the sliding window
parameter values suggests that results are qualitatively consistent across a range of
parameter combinations. For the (in)dependence of results on sliding window parameters,
and a discussion of the considerations involved in parameter selection, see the

Supplementary Information.

Results presented below correspond to nine half-overlapping windows of 60 participants
each, obtained by interpolating the five age strata of the NSPN study, within which
participants were recruited. Gender was relatively balanced within the interpolated bins, with
the most imbalanced ratio being 34:26 = 57%:43% (M:F). We investigated the effects of

gender separately (see below).
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Global maturation of structural networks was characterised using the mean of the correlation
distribution. At the regional level, an analogous measure was used — nodal strength, the mean

of the pattern of regional correlations (rows, or equally, columns of the correlation matrices).

Bootstrap thresholding of age-resolved structural networks

Estimating structural correlation networks from a small number of participants is an
inherently noisy process; therefore, our principal analyses focused on networks
probabilistically thresholded using bootstrap (Fig. 2B). The bootstrap thresholding procedure
was identical to the one described above for age-invariant networks, but in this case was
applied within windows. From the set of participants included in each window, an equal
number of participants was sampled with replacement and the correlation structure was re-
estimated 1000 times. For each pair of regions, we examined whether there is evidence of a
non-zero correlation across bootstraps: edges that were consistently positive across
bootstraps (at a two-tailed, FDR-adjusted level of a. = 0.01) were retained (there were no

consistently negative edges); the remaining edges were set to zero.

The global topological organisation of the thresholded graphs was assessed using the edge
density, defined as the percentage of retained edges (relative to their possible total), as well
as the distance spanned by retained edges, calculated as the average Euclidean distance
between centroids of corresponding nodes. Nodal topological organisation was assessed
using (analogous) measures of degree, defined as the number of edges connected to a node,
and average Euclidean distance spanned by a node’s retained edges. We have focused on
simple graph-theoretical measures, such as edge density and node degree, for two reasons:
first, our bootstrap-thresholded networks display variable edge density, which many “higher-
order” graph-theoretical measures show a strong dependence on (van Wijk et al., 2010), and
(2) even in correlation-based networks thresholded to fixed edge density, graph theoretical
properties display a dependence on more elementary statistics such as properties of the

correlation distribution (van den Heuvel et al., 2017).
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Fitting and characterisation of developmental trajectories

Developmental trajectories were fitted to both global and local measures as a function of the
median age of participants in each window. In addition to linear models, we fitted locally
adaptive smoothing splines. The nonparametric smoothing spline was chosen to model
nonlinear trajectories over parametric alternatives as it was shown to be superior to quadratic
fits in studies of brain development (Fjell et al., 2010). Still, the spline fits were constrained to
be (approximately) at least as smooth as a quadratic fit (i.e.: effective degrees of freedom, df
< 3.5), based on the hypothesis that adolescent developmental trajectories over a 10-year
age range should not display greater complexity. The specific smoothing spline used was a
weighted sum of 6 cubic b-splines with knots placed at quantiles of the data and smoothing
optimised using restricted maximum likelihood (REML) (Reiss et al., 2014). The relative quality
of linear and spline fits, given their parsimony, was assessed using Akaike’s information
criterion (AIC). Classification using the Bayesian Information Criterion (BIC) yielded consistent

results.

Regional changes were summarised using measures of maximum change in degree Akmayx,
qguantified as the difference between maximum and minimum degree, and the age at
minimum degree age(kmin). Further, we classified regional changes in degree as linear or non-
linear (using the AIC), and as increasing or decreasing (using the direction of maximum
change). As an alternative measure of the magnitude of regional changes in structural
correlation, we extracted linear rates of change of degree; the results were qualitatively
consistent with the measure of maximum change, which is more suitable for non-linear

trajectories (Supplementary Information).

Relationship of structural network development to age-invariant network architecture

Given our previous finding, that highly correlated “hub nodes” of the age-invariant structural
network (derived from all participants) are regions which thin and myelinate most over
adolescence (Whitaker, Vértes et al., 2016), we were interested in studying the relationship

of structural network development to age-invariant structural network architecture.
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We evaluated Spearman’s rank correlations between node degree in the age-invariant
structural network, and parameters of change in node degree within the age-resolved
structural network — including the amplitude of maximum change in degree Aknmax as well as

the age at minimum degree age(kmin).

Finally, we studied changes in structural network organisation relative to three sets of node
communities, including the partition of the age-invariant network into modules, the von
Economo atlas of cytoarchitectonic classes (von Economo & Koskinas, 1925), and a set of
functional intrinsic connectivity networks (Yeo, Krienen et al., 2011). For each community
template and each age-window, we calculated the density of edges D within each community
as well as between each pair of communities (within the same template), as the ratio of
existing edges relative to the maximum number of possible edges in this within or between-
community edge set. We then characterised changes in edge density within and between
communities using measures analogous to the nodal trajectories — maximum change in edge
density ADmax and age at minimum density age(Dmin). For details regarding the matching of
the community templates to our 308-region parcellation, see the Supplementary

Information.

Spatial permutation test

In several analyses in the current study, measures were related to each other across regions.
While numerous studies have reported significance based on the assumption that the number
of samples is equal to the number of regions, this is technically inaccurate, as the number of
regions is both arbitrary (due to the resolution of the chosen parcellation) and non-
independent (due to spatial auto-correlation amongst neighbouring parcels). To address this
issue, spatial permutation tests have been implemented in past studies (Alexander-Bloch et
al., 2013; Vandekar et al.,, 2015), which consist in comparing the empirical correlation
amongst two spatial maps to a set of null correlations, generated by randomly rotating the
spherical projection of one of the two spatial maps (as generated in FreeSurfer or Caret)
before projecting it back on the brain surface. Importantly, the rotated projection preserved
spatial contiguity of the empirical maps, as well as hemispheric symmetry. Such tests were

previously implemented at the vertex level (Alexander-Bloch et al., 2013; Vandekar et al.,
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2015); here we implemented an analogous permutation test at the regional level. Thus, each
analysis correlating values from two cortical maps is reported with both the p-value
corresponding to the Spearman correlation (pspearman), @s well as a p-value derived from the
spherical permutation (pperm), Obtained by comparing the empirical Spearman’s p to a null
distribution of 10’000 Spearman correlations, between one empirical map and randomly
rotated projections of the other map. For full details on the spherical permutation test, see

Supplementary Information.

Sensitivity analyses

To ascertain the robustness of obtained results to sliding window parameters and other
methodological decisions and to rule out effects of potential artefactual causes, we

conducted several ancillary studies.

We first investigated effects of sliding window parameters by systematically varying the

window width and step size over ranges of {40,60,80} and {5,10,20} participants respectively.

Further, we examined potential effects of gender by repeating sliding window analyses
separately for each gender (149 female, 148 male participants). This resulted in nine windows
of ~30 participants each. Following estimation of global and nodal sliding window statistics
separately for each gender within both unthresholded and bootstrap-thresholded networks
(as described for all participants above), we fitted linear and spline models to the combined

data, separately modelling effects of age, gender, and the age-by-gender interaction.
Finally, we studied the effect of several potential artefacts, including the presence of regions
with low reliability of structural correlations as well as irregularities in the age distribution of

participants.

For full results and discussion of these additional studies, see Supplementary Information.
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Figure 1: Construction of age-invariant and age-resolved structural correlation
networks. A) An age-invariant structural correlation network was constructed by cross-
correlating regional cortical thickness across all participants. This network was
probabilistically thresholded using a bootstrap-based method. Network organisation
was evaluated using several measures, including the degree (both binary and weighted;
respectively the number and sum of weights of retained edges connected to a node) and
modular architecture. For details regarding module generation, see supplementary
information (SI Fig. S1). B) Age-resolved structural correlation networks were
constructed using a sliding-window method. Participants were ordered by age, and
structural networks were constructed by estimating correlations between regional
cortical thickness values across participants within overlapping windows iteratively slid
across the age range. Correlations were probabilistically thresholded using bootstrap,
before developmental trajectories were fitted to summary window-derived measures

as a function of the median age of participants within each window.
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Results

Age-invariant structural network

We first considered the structural correlation network constructed by thresholding the pair-
wise inter-regional correlations estimated from cortical thickness measurements on all (297)
participants, age range 14-24 years (inclusive). Since this analysis combines data from all ages
in the sample, we can refer to the result as an age-invariant structural correlation network

(Fig. 1A).

The distribution of structural correlation had a positive mean value and was approximately
symmetrical. The structural correlation matrix was thresholded probabilistically, using a
bootstrap-based resampling procedure (Methods), to control the edge-wise false positive
rate. Since this thresholding operation entailed approximately 47,000 hypothesis tests, we
used the false discovery rate (FDR) algorithm to adjust for multiple comparisons. The resulting
graph was densely connected (connection density ~ 90%) and exhibited a modular community
structure (Fig. 1A). The community partition consisted of seven modules, including three
primary cortex modules: somatosensory (anterior parietal cortex), motor (posterior frontal
cortex) and visual (occipital cortex), as well as an inferior-frontal/temporal module, a superior
frontal module, a superior temporal/insular module and a parieto-occipital module. For
details on this community structure and other modular partitions comprising different

numbers of modules see SI Fig. S1 and SI Table S1.

Age-resolved structural networks

To resolve age-related changes in structural networks, we used a “sliding window” analysis to
estimate the structural correlation matrix separately for each of a series of subsets of the
sample defined by overlapping age ranges or windows (Fig. 1B). The results of this analysis
are naturally somewhat dependent on the sliding window parameters: the age-range
spanned by each window and the incremental step between windows. Below we focus on

results obtained with 9 windows of ~60 participants each, ranging from [14.1-16.0 years] to
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[22.0-25.0 years] with an incremental step of 30 participants (~1 year). We also explored a
range of alternative sliding window parameters and demonstrated that our key results were

robust to this methodological variation (Supplementary Information.)

Globally, over the whole brain, there was a non-linear trend of reducing structural correlation
from the youngest age window to the oldest age window (Fig. 2A). Relatively strong positive
correlations at age 14 (>0.31) decreased sharply over the next few windows, with minimum
mean correlation (~0.22) occurring at 19.59 years (95% confidence interval (Cl) [19.37, 19.76]
years) and then slightly increasing again towards age 24 (AlCsp < AlCjin, rzadj =0.52, p=0.098;
Fig. 2Aii). Both the mean inter-regional covariance, and the mean product of regional
standard deviations (respectively the numerator and denominator of the Pearson correlation
coefficient), showed similar non-linear processes of decline in younger windows followed by

levelling off in older windows (SI Fig. S4).

A potential drawback of the sliding window analysis is that it inevitably involves estimating
inter-regional correlations on a subset of the sample (N=60 per window), with
commensurately reduced precision of estimation and therefore noisier graphs. We used a
probabilistic threshold to control the edge-wise FDR at 1%, thus ensuring that the age-
resolved graphs only included edges that were unlikely to represent false positive noise (Fig.

2B).

Focusing on the most statistically robust subset of edges (which passed the FDR threshold for
significance), we found similar but clearer evidence for age-related global changes in
structural network organisation. The structural correlation distributions of the bootstrap-
thresholded network became sparser over the course of adolescence (Fig. 2Ci). The edge
density demonstrated a non-linear decrease (AlCsp < AlCjin) from 33.9% to a minimum of 8.2%
at 19.45 years (95% CI [19.32, 19.59] years; rzadj =0.81, p=0.0069), which was similar in shape

to the global trajectory of unthresholded correlation (Fig. 2Cii).
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Figure 2: Global trajectories of age-resolved structural correlations and network
connection density. A) Global trajectories of unthresholded structural correlations. (i)
Development of the distribution of unthresholded correlations across age windows. Thin
lines represent bootstrapped estimates, white lines represent the bootstrap mean. (ii)
Changes in the average correlation. Black markers represent empirical data (error bars
indicate the interquartile range across bootstraps), with corresponding regression line;
the white marker indicates the trajectory minimum. Grey lines represent bootstrapped
trajectories; the white dashed line represents the bootstrap mean. B) Each windowed
matrix was thresholded using bootstrap. Within each window, 1000 sets of participants
were resampled (with replacement) and used to construct correlation matrices. For each
edge (correlation) within each window, the presence of a significant non-zero correlation
(across bootstraps) was tested at the FDR-adjusted level of arpr = 0.01. Consistent
correlations were retained, while inconsistent correlations were assigned a value of 0. C)
Global trajectories within thresholded structural correlation networks. (i) Development
of the distribution of correlations retained after probabilistic thresholding across age
windows. (ii) The number of edges retained after probabilistic thresholding, or edge

density. The shaded area represents the 95% confidence interval of the spline fit.
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The global connection distance of the thresholded networks (the mean Euclidean distance
subtended by bootstrap-thresholded edges) also demonstrated a non-linear trajectory (AlCji,
< AlCqp, rzadj = 0.67, p = 0.049) characterised by a phase of relatively rapid decrease from 14
years to reach a minimum at 18.72 years (95% Cl [18.68, 18.77] years), followed by a phase

of more stable connection distance (SI Fig. S7A).

Regional development of age-resolved structural networks

Regional maturation of structural correlation networks was assessed by estimating the
trajectories of changes in node degree, which is the number of correlations retained at each
node (following bootstrap thresholding). Although there was regional heterogeneity in the
trajectories of node degree (Fig. 3A), all regions that demonstrated significant evidence of
non-zero change (linear or spline fit prpr < 0.05; 82 regions) followed a nonlinear trajectory
(AlCsp < AICjin), which for most regions (75/82) could be summarised by a younger phase (from
14 to 19 years approximately) of more-or-less rapid decrease in structural correlation
followed by a levelling off or slight increase of structural correlation in an older phase (from
19 to 24 years approximately). This process could be summarised by two parameters: Akmayx,
the difference between maximum and minimum degree; and age(kmin), the age at which node

degree reached its minimum value (Fig. 3B).
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Figure 3: Regional development of structural correlation networks. A) Cortical maps of
node degree at five regularly sampled intervals of the developmental trajectories,
showing a regionally heterogeneous decrease from young age. B) Definition of local
measures of maturation, illustrated on a nonlinearly decreasing trajectory (from the
right dorso-lateral pre-frontal cortex). The maximum change in degree Akmax
corresponds to the (absolute) difference (decrease or increase) in degree between the
maximum and the minimum of the trajectory. The age at minimum degree age(kmin)
corresponds to the timing of the minimum of the trajectory. C) Cortical maps of regional
maturation measures for trajectories showing evidence of non-zero change (at pror <
0.05), predominantly located in association cortex: (i) maximum change in degree, and
(ii) age at minimum degree. D) Regions that show greater decreases in degree tend to
reach minima of their trajectories later, whether considering all regions (grey) or

excluding regions where the trajectory minimum occurs at extrema of the age range
(black).

Decreases in node degree were greatest in association cortical areas, such as bilateral
dorsolateral prefrontal cortex, medial frontal cortex and supramarginal gyrus, as well as pre-
and post-central gyri and several temporal cortical regions. Increases in node degree were
less spatially clustered, occurring in isolated nodes within the right cingulate, superior frontal
and parietal cortices as well as left cuneus (Fig. 3Ci). Association cortical areas also showed

more prolonged decreases in structural correlation, reaching the minimum value of node
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degree later (Fig. 3Cii). Predictably, it follows that the extent of degree shrinkage Akmax Was
negatively correlated with the age at which degree reached its minimum value age(kmin),
whether considering all regions (Spearman’s p = -0.38, pspearman < 10'10, Pperm < 10'5) or
excluding regions whose minimum occurred at one of the limits of the age range (Spearman’s

P= -0.45, Pspearman < 10-10: Pperm =< 10-5; Fig. 3D)

Age-related non-linear changes in nodal connection distance (the mean Euclidean distance of
all edges connecting a node within the bootstrap-thresholded network) were summarised
using analogous parameters to node degree: Admax, the difference between maximum and
minimum distance; and age(dmin), the age at which nodal connection distance reached its
minimum value. Nodes that demonstrated significantly reduced connection distance (prpr <
0.05) were located in left dorsolateral prefrontal cortex, left supramarginal gyrus and right
superior parietal cortex (SI Fig. S7C). Decreases in node connection distance were negatively
correlated with age at minimum connection distance, whether considering all nodes
(Spearman’s p = -0.38, pspearman < 10'10, Pperm < 10'5) or excluding nodes whose minimum
occurs at one of the limits of the age range (Spearman’s p = -0.25, pspearman = 0.0027, pperm =
0.0036) (SI Fig. S7D). Finally, decreases in node connection distance were positively correlated
with decreases in node degree (Spearman’s p = 0.32, pspearman = 1.9-10'8, Pperm = < 10'5) (SI Fig.
7E). In other words, nodes that had the greatest reduction in hubness during adolescence also

tended to have the greatest reduction in connection distance.

To contextualise changes in structural network architecture with respect to maturation of
cortical morphology, we related regional measures of cortical network development to rates
of change of cortical thickness (CT) and magnetization transfer (MT, a measure of
myelination), evaluated as the slope of a linear model fitted to the cross-sectional values. The
maximum change in node degree was (weakly) positively correlated to the rate of thinning
(ACT; Spearman’s p = 0.16, pspearman = 0.0050, pperm = 0.023; unaffected by excluding three
outlier regions which showed ACT>0, Spearman’s p = 0.15, pspearman = 0.0070, pperm = 0.028;
Fig. 4Ai), and more strongly negatively correlated to the rate of intra-cortical myelination
(AMT; Spearman’s p = -0.32, pspearman = 6.6-10'9, Pperm = 7-10™%; Fig. 4Aii). Following Whitaker,

Vértes et al. (2016), myelination analyses were conducted at 10 fractional depths between
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the pial surface and the grey/white matter boundary, as well as two absolute depths into
white matter. The strength of association between local adolescent myelination (indexed by
AMT) and adolescent decrease of node degree (indexed by Aknax) Was greatest when AMT
was measured at about 70% of cortical depth from the pial surface to the grey/white matter

boundary (Fig. 4B).
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Figure 4: Relationship between maturation of cortical morphology and structural
correlation networks. A) Relationship between regional trajectories of cortical
morphology and node degree. Maximum changes in nodal degree are only very weakly
related to regional rates of i) thinning and ii) myelination (PU = percentage units). The
direction of the relationships is such that cortical regions that myelinate more during
adolescence are more likely to decrease in node degree and connection distance in the
same period. B) Spearman correlation of rate of change myelination to maximal change
in degree as a function of cortical depth, including 10 fractional depths from the pial
surface to the grey/white matter boundary (GM/WM), as well as two absolute depths

into the white matter.
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Age-resolved network changes in relation to the age-invariant network and its communities

Given that most densely connected nodes (hubs) of the age-invariant structural correlation
network are predominantly located in association cortex (Whitaker, Vértes et al., 2016),
which is also the location of greatest age-resolved decreases in structural correlation, it is not
surprising that there is an inverse relationship between age-invariant (weighted) node degree
and maximum change in degree (p = -0.43, pspearman < 10'10, Pperm = < 10; SI Fig. S9Bi). Node
degree of the age-invariant network and age at minimum degree were not strongly related

(SI. Fig. S9Bii).

We further studied adolescent changes in nodal topology in relation to the community
structures of the human brain. Many community structures have been proposed to partition
the cortex into a set of modules or sub-networks, each comprising a number of functionally
and/or anatomically related cortical areas. Here we considered three complementary
community structures: (i) the modular decomposition of the age-invariant structural
correlation network (7 modules); (ii) the classic von Economo cytoarchitectonic partition of
the cortex into classes based on cortical lamination (we used a partition into 7 classes by
Vértes et al. (2016), extended from the original partition into 5 classes by von Economo and
Koskinas (1925)); and (iii) the prior identification of 7 resting state networks derived from
independent components analysis of an independent resting state fMRI dataset (Yeo, Krienen
et al.,, 2011). The three classification systems had similar but not identical community
structures; normalised mutual information (NMI, a measure of correspondence between two
community structures) ranged from NMI = 0.39 for the relationship between the structural
network modules and the resting state fMRI components to NMI = 0.29 for the relationships
between both neuroimaging based community structures and the von Economo classification

(Fig. 5A).
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Figure 5: Adolescent development of structural networks in relation to human brain

communities. The modular partition used consisted of seven modules, including a

Ill Ill

parietal “somato-sensory” module (yellow), a frontal “motor” module (orange), an

I " III

occipital “visual” module (green), an inferior-frontal/temporal module (red), a superior
frontal module (blue), a superior temporal/insular module (purple) and a parieto-
occipital module (pink). A) Comparison of the modular architecture of the age-invariant
structural correlation network (middle) to two prior community structures — the von
Economo atlas of cytoarchitectonic classes (von Economo & Koskinas, 1925; left) and
seven functional intrinsic connectivity networks derived using an independent fMRI data
(Yeo & Krienen, 2011; right). The alluvial diagrams between surface plots of community
architecture indicate the amount of overlap between individual communities across
templates. B) Development of structural correlations within and between corresponding
pairs of communities — cytoarchitectonic classes (i-ii), age-invariant modules (iii-iv) and
functional intrinsic connectivity networks (v-vi). Left: maximum change in edge density
ADnax Within and between all pairs of communities. Right: age at minimum edge density
age(Dmin) within and between all pairs of communities. Dot markers indicate statistical

significance of developmental change; small: prpr < 0.05, large: ppor < 0.01.
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In the context of (i) the age-invariant structural network community structure, the greatest
decreases in connection density ADax Were concentrated within the superior frontal module
(blue) and within the superior temporal/insular module (purple; Fig. 5Biii); or between the
superior frontal module and other modules. The age at minimum density age(Dmin) tends to
occur later within the same modules, as well as the occipito-parietal module (pink; Fig. 5Biv).
In the context of (ii) cytoarchitectonic atlas of von Economo & Koskinas (1925), greatest
decreases in edge density were concentrated within and between association cortical areas
with lamination types 2 and 3 (described as granular isocortex; blue and green respectively)
and particularly within class 3 (green; Fig. 5Bi). Association cortical trajectories tended also to
reach the age of minimum edge density latest (Fig. 5Bii). In the context of (iii) fMRI resting
state networks outlined by Yeo, Krienen et al., (2011), the greatest decreases in edge density
were concentrated within the fronto-parietal control network (orange) as well as between
this network and the other networks (Fig. 5Bv). Minima of the trajectory are reached latest
within the default mode network (salmon red) and the ventral attention network (pink), as
well as between these two functional networks (Fig. 5Bvi). In summary, across the three
community partitions, the greatest (and latest) decreases in connection density occurred
within association cortical communities, and (to a lesser extent) between those association

cortical communities and the remainder of the network.

Sensitivity analyses

While we had no hypotheses about the shape of the maturational trajectories or the direction
of the changes, the finding of a nonlinear decrease in structural correlation (and derived
measures of edge density and degree), globally and locally, was somewhat surprising. This is
one of the reasons why we conducted numerous sensitivity analyses, to ensure that our

findings are not caused or inflated by methodological choices or artefacts.

Our principal findings on bootstrap-thresholded networks were corroborated by similar

results from analysis of unthresholded structural correlation matrices (SI Fig. S6).
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We evaluated robustness of our findings to parameters of the sliding window method, varying
the window width and step size over ranges of {40,60,80} and {5,10,20} participants
respectively. Results were qualitatively consistent with the above, showing a non-linear
decrease in structural correlation both globally and locally (most prominently in association
cortex), as well as (weak) relationships of maximum local change in correlation to regional

rates of thinning and myelination (SI Table S2 and SI Fig. S11).

Analysis of gender differences failed to identify effects of gender or age-by-gender
interactions in the trajectories of structural correlation development (Supplementary

Information).

We investigated the effect of several potential artefacts, including the presence of regions
with low reliability of structural correlations (SI Fig. $12) as well as inhomogeneities in the age
distribution of participants (SI Fig. $13). We found no substantial evidence that the effect of
such artefacts could inflate or account for our main finding of a non-linear age-related

decrease in structural correlations.

Finally, we investigated whether subtle non-linearities in trajectories of cortical thinning and
myelination could be driving non-linearities in trajectories of structural correlation (SI Fig.
$14-16). Although neither non-linear CT or MT effects are especially strong, subtle non-
linearities in trajectories of cortical myelination appear somewhat more related to structural

correlation trajectories than subtle non-linearities in trajectories of cortical thinning.
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Discussion

In the current study we set out to examine the developmental trajectories of human brain
structural networks. To this end, we used a novel “sliding window” method of network
analysis to resolve age-related changes in human brain structural correlations and
probabilistically thresholded brain graphs estimated from MRI data on an age-stratified
sample of healthy adolescents and young adults (N=297, aged 14-24 years). We found that
global strength of structural correlation and the related topological property of edge density
both decreased non-linearly as a function of age: an early phase (14-19.5 years
approximately) of rapid decrease in structural correlation was followed by a later phase (20-
24 years) of stable or slightly increasing structural correlation. At a regional or nodal level of
analysis, cortical areas varied in the magnitude of age-related decrease in nodal degree Akmax
and the age at which nodal degree reached its minimum value age(kmin). The 75 cortical areas
with significantly decreasing degree tended to mature later, i.e., large negative Akmnax Was
associated with older age(kmin). Further, cortical areas with the greatest shrinkage of degree
during adolescence also had the greatest shrinkage of connection distance, i.e., large negative
Akmax Was associated with large negative Admax. TO contextualise these results, we showed
that cortical areas with the greatest adolescent changes in brain structural connectivity were
anatomically concentrated in regions of association cortex that had fast local rates of
increasing intra-cortical myelination; and were topologically concentrated on the edges
within frontal communities (von Economo classes 2 and 3 and the functional fronto-parietal
control network) and the edges connecting frontal communities to the rest of the network.
We propose that these results are consistent with the existence of a developmental window
for tuning of association cortical connectivity by a combination of parsimoniously pruning
some long distance connections while actively consolidating or myelinating the connections

which survive.

MRI studies of adolescent structural brain network development

Adolescent changes in structural correlation networks have previously been investigated, as

pairwise changes across four discrete (non-overlapping) age-bins spanning the range 5-18
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years (Zielinski et al., 2010; Khundrakpam et al., 2013). Zielinski et al. (2010) reported largely
non-linear changes in the extent of seed-based structural correlation networks. Both the
executive control network (seeded in the right dorsolateral prefrontal cortex) and the salience
network (seeded in the right frontal insula), showed an increase in spatial extent, quantified
as the number of voxels whose grey matter intensity significantly correlated with the seed.
Conversely, our approach suggests a decrease in the structural correlation within association
areas and related structural, cytoarchitectonic and functional communities. Beyond the
difference in methods (voxel-wise seed-based vs. parcel-wise all-to-all regions), this
discrepancy could be due to the different morphometric measures used, known to show
differences in both trajectories of adolescent maturation (Wierenga et al., 2014; Ducharme
et al., 2015), and (age-invariant) structural correlation (Sanabria-Diaz et al., 2010; Yang et al.,
2016). Further, Khundrakpam et al. (2013) reported decreases in regional efficiency of
primary sensorimotor regions, alongside increases in regional efficiency of paralimbic and
association regions. These results align with our own, through the strong dependence of the
properties of graphs thresholded to fixed edge densities (as in Khundrakpam et al. (2013)) on
the mean of the correlation distributions from which they were derived. Networks with lower
correlations lead to more random topology, exhibiting higher efficiency and lower clustering
(Fornito et al., 2013; van den Heuvel et al., 2017). Therefore, our finding of decreases in
structural correlation within association cortical areas aligns with reports by Khundrakpam et
al. (2013) of increased regional efficiency in these regions. Beyond development of structural
networks resolved using distinct age-groups, several studies have investigated coordinated
maturation of cortical morphology during adolescence (Raznahan et al., 2011; Alexander-

Bloch et al., 2013; Sotiras et al., 2017).

Adolescent development of structural connectivity has also been investigated using diffusion
imaging and tractography, although such studies report heterogeneous findings. Lim et al.
(2013) showed decreases in structural connectivity from childhood (4 years) to adulthood (40
years), concentrated predominantly on strong tracts, located within modules — which
qualitatively agrees with our findings. However, Chen et al. (2013) reported increases in the
number of streamlines and edge density from childhood (5 years) to adulthood (30 years).
Recently, Baum et al. (2017) reported increases in within-module connectivity, and decreases

in between-module connectivity in tractography-derived white matter networks. While
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tractography-derived structural connectomes show some overlap with structural correlation
networks (Gong et al., 2012), interpretation of developmental changes in white-matter
connectivity relative to development of structural correlations will require concurrent studies
of both modalities in the same datasets. It is worth noting that when grey and white matter
structural networks were both constructed using the same method (structural correlation),
both showed similar patterns of correlation and similar developmental changes from 7 to 14

years (Moura et al., 2016).

Adolescent development of brain connectivity has also been investigated using fMRI. Early
functional connectivity studies have reported increases in the strength of long-range and
within-network functional connections (and decreases in the strength of short-range
functional connections) (Fair et al., 2009; Supekar et al., 2009; Dosenbach et al., 2010). Later
studies have reported qualitatively similar findings, but with attenuated effect sizes following
control for the effects of motion (Satterthwaite et al., 2012, 2013). While findings such as
increasing within-module functional connectivity may seem to disagree with our findings of
decreased within-network structural correlation, these constitute disparate modalities that
have not always yielded concomitant results (Fornito & Bullmore, 2015). Beyond studies
concurrently investigating adolescent development of structural and functional networks
using the same dataset(s), the combination of structural, diffusion and functional MRI data
using methods such as multimodal fusion (Calhoun & Sui, 2016), computational modelling
(Breakspear, 2017) or morphometric similarity (Seidlitz et al., 2017) might be useful to

reconcile findings from diverse modalities.

Relationship to axo-synaptic connectivity (and its adolescent pruning)

Our results extend previous studies of structural network development (Zielinski et al., 2010;
Khundrakpam et al., 2013) by reporting smooth and non-linear trajectories of structural
network development during adolescence. The early phase of major decrease in structural
correlation, nodal degree, and nodal connection distance could represent loss of anatomical
connectivity to association cortical areas. The simplest interpretation is that reduced
structural correlation or degree represents pruning of synaptic connections or attenuation of

axonal projections. There is a large body of prior evidence in support of the concept of
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synaptic pruning during adolescence (Huttenlocher & Dabholkar, 1997; Petanjek et al., 2011)
and this mechanism has been suggested to explain age-related cortical shrinkage (Tau &
Peterson, 2009), which was correlated with age-related degree shrinkage in these data.
However, the security of this interpretation rests on the more fundamental assumption that
structural correlation measured from MRI data on multiple subjects is a reasonable proxy
marker of the average weight of axo-synaptic connectivity between regions (Alexander-Bloch
et al., 2013). Beyond humans (Gong et al., 2012), there is evidence of such correspondence

from animal models (Yee et al., 2017).

The identification of structural correlation networks in mice (Pagani et al., 2016) suggests that
they might encompass general features of cortical architecture. Specifically, up to 35%
variance in structural correlation in mice was explained by a combination of tract-tracing-
derived structural connectivity, gene expression and distance (Yee et al., 2017), providing a
link of the macroscopic structural networks to underlying microscale cortical organisation.
The relationship of structural correlation networks to gene expression has also been
investigated within humans using the present data, demonstrating overlap between regional
co-expression of genes (Hawrylycz et al., 2012), particularly of a subset of genes enriched in
supra-granular layers of cerebral cortex, and structural correlation patterns (Romero-Garcia
et al., 2017). Moreover, association cortical hubs of the (age-invariant) structural correlation
network showed the greatest expression of genes related to synaptic transmission,
oligodendroglia as well as schizophrenia, suggesting a potential pathogenic role in abnormal
consolidation of association cortical regions (Whitaker, Vértes et al., 2016). Generally, the
profound adolescent maturational changes in cortical architecture are thought to underlie
the frequent emergence of psychiatric disease in this period, as a result of abnormal

development (Paus et al., 2008; Silbereis et al., 2016).

Adolescent maturation of structural correlation and regional cortical structure

We note that the association of changes in structural network architecture to rates of cortical
thinning is relatively weak. Given that (age-invariant) structural correlation networks are
thought to emerge as a result of synchronised maturation (thinning) of cortical regions over

adolescence (Raznahan et al., 2011; Alexander-Bloch et al., 2013), perhaps the changes in
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structural correlation might be more closely related to changes in the rates of change of
cortical thinning, which in a longitudinal dataset were shown to peak in adolescence (Zhou et
al., 2015). An additional possible explanation for the adolescent decrease in structural
correlation is a “decoherence” related to inter-individual differences in the timing of
maturation of association areas — although the verification of such a hypothesis would again
require longitudinal data. On a related note, recent work on functional connectivity has
shown an adolescent increase the “distinctiveness” of individual functional connectomes
(Kaufmann et al., 2017). We further note that the association of changes in structural network
architecture to rates of myelination is stronger (than to rates of cortical thinning), and that
subtle non-linearities in trajectories of myelination seem more strongly related to non-
linearities in trajectories of structural correlation, suggestive of the idea that myelination may
be a driver of (changes) in structural covariance. This could be further investigated through
concurrent analysis of (adolescent) changes in structural correlation and white matter

architecture.

Generally, the weakness of association between rates of change of morphology (ACT and
AMT) and structural network architecture (Akmax) suggests that rates of change of structural
network properties explain substantial variation of brain structure with age, above and
beyond the rates of thinning and myelination. As an intrinsic regional measure, cortical
thickness can be considered less complex than a measure of relationships between regions
(across participants) such as structural correlation; however, the biological hierarchy could
well be the opposite, whereby cortical thickness and its changes might be a signature of
underlying changes in axonal connectivity. This hypothesis could be tested, using invasive
studies of concurrent development of axonal connectivity and cortical thickness in model
species. In humans, the differential variance contained within cortical morphology and
structural network architecture could be investigated through further within-population
comparisons of these measures, in (1) their ability to discriminate between case-control
populations, (2) their association to behavioural and cognitive measures and (3) their
heritability. For example, patients with childhood-onset schizophrenia have shown
differences in adolescent trajectories of both cortical thinning (Alexander-Bloch et al., 2014)
and structural correlation (Zalesky et al., 2015) relative to healthy controls, but the measures

have not been explicitly compared.
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Notably, changes in structural network architecture were more strongly related to the rate of
myelination (at 70% depth) than the rate of cortical thinning, suggesting that layer-specific
intra-cortical myelination might be a more sensitive marker or cortico-cortical connectivity
than cortical thickness (assuming, as above, that structural correlation is a marker of
connectivity). Moreover, this finding echoes our earlier finding of the rate of myelination
being fastest at 70% depth between the pial surface and the grey/white matter boundary,
and the relationship between rate of cortical thinning and rate of myelination being strongest
at this depth (Whitaker, Vértes et al., 2016). We have previously suggested a link of these
changes to histological evidence of greatest rates of myelination at similar cortical depths in

rodents (Mengler et al., 2014; Tomassy et al., 2014; Hammelrath et al., 2016).

Methodological considerations

Recently, a number of studies have pointed out effects of participant motion on the quality
of structural MRI scans, including on estimates of regional morphological measures such as
cortical thickness (Reuter et al., 2015; Alexander-Bloch et al., 2016; Savalia et al., 2017). While
we have carried out stringent quality control of our structural scans and FreeSurfer
reconstructions of cortical thickness (details in Supplementary Information), we cannot
completely rule out potential artefactual effects of motion on our results. Thus, further
analysis of structural correlation development in datasets including estimates of head motion
from volumetric tracking (Tisdall et al., 2012, 2016) or novel automated estimates of data
quality (Shehzad et al., 2015; Pizarro et al., 2016; Rosen, Roalf et al., 2017) will be important

in the future.

The estimated changes in structural network organisation are inevitably dependent on
parameters of the sliding window method used. The selection of sliding window parameters,
including window width and step size (in units of number of participants) involves several
trade-offs. On one hand, selecting a wider window increases the robustness of correlations
within each of those windows, as they are estimated using more participants; on the other
hand, the median ages of participants within each window will cover a narrower portion of

the overall age-range. Furthermore, while a smaller step size will provide a greater density of
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windows and hence time-points for curve fitting and trajectory characterisation, a denser
sampling of data will exacerbate issues with the inevitably uneven distribution of subjects
across the age-range studied, which in effect corresponds to an unevenly sampled time-
series. Future development of tools for the analysis of unevenly sampled time-series (Eckner,

2014) should help alleviate these issues.

Furthermore, depending on the sliding window parameters, relatively few summary data
points may be obtained. The subsequent fitting of nonlinear smoothing splines (with up to
~3.5 degrees of freedom) to such scarce data warrants care when interpreting evidence of
non-linearity — despite evidence from both the AIC and BIC that smoothing splines provide a
better quality of fit than linear models. Still, it is reassuring that trajectories remain
consistently nonlinear across bootstrapped samples (within unthresholded correlation
networks) and that evidence of a nonlinear trajectory seems more pronounced after
bootstrap thresholding. Changes in structural network architecture remain qualitatively
consistent in both their spatial location and relationship to changes in morphology when
simple, linear models are used. The scarcity of data points may also lead to uncertainties in
measures used to characterise the maturational trajectories, including the measures of
maximum change and age at minimum of the trajectory. Finally, it remains ambiguous
whether the tendency of the global trajectory of structural correlation to slightly increase
from the minimum around age 19 towards age 24 vyears is significant, or whether the
trajectory can be seen as levelling-off. It seems reasonable that the few nodes presenting
increases in structural correlation (e.g. within right cingulate cortex) would be driving this
effect. Thus, until these results are validated in an additional dataset, care is necessary in

some aspects of their interpretation.

Further, practical applicability of structural correlation networks is limited by the fact that
they represent a group construct. Still, an advantage of structural correlation networks over
structural connectomes derived from diffusion imaging using tractography is the relative
simplicity of the structural MRI acquisitions compared to diffusion imaging, which in light of
its longer acquisition is more prone to motion artefacts (Yendiki et al., 2014), and within which
tractography presents considerable challenges (Thomas et al.,, 2014; Reveley et al., 2015;

Maier-Hein et al., 2016). Efforts to derive measures of individual contribution to structural
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correlation networks (Saggar et al., 2015) or fully individual networks from structural imaging
(Tijms et al., 2012; Kong et al., 2014, 2015) including through the combination of multi-modal
features (Seidlitz et al., 2017) should increase the practical applicability of structural

correlation network research.

In reporting a late maturation of association cortical regions, our results are potentially
compatible with the developmental mismatch hypothesis, which proposes that late
maturation of prefrontal regions (involved in cognitive control), compared to an earlier
development of subcortical regions (implicated in reward processing) results in adolescent
increases in risk-taking and sensation-seeking behaviours (Mills, Goddings, Clasen, Giedd, &
Blakemore, 2014). However, the verification of such a hypothesis will require the inclusion of

both subcortical regions and behavioural data in future analyses.

Finally, structural network architecture is known to mature across the lifespan (DuPre &
Spreng, 2017), including during both early childhood (Geng et al., 2016) and late adulthood
(Hafkemeijer et al., 2014). Our focused age-range prohibits us from conclusively ascertaining
the specificity of these changes to adolescence. For example, extending the analyses
presented herein to wider age-ranges would help disambiguate whether the non-linear
decreases in structural correlation level off or increase in young adulthood. In general, the
wide applicability of the methods used herein should enable investigations of the maturation
of structural brain networks, as well as other networks constructed in a similar manner
(including for example networks of relationships between psychopathological symptoms;

Borsboom & Cramer, 2013), across the life-span.

Conclusion

During adolescence, human brain structural correlation networks demonstrate a non-linear

reduction of connectivity of association cortical areas, predominantly in frontal cortex, that is

compatible with a developmental process of pruning combined with consolidation of

surviving connections.
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Availability of data and code

Data for this specific paper has been uploaded to the Cambridge Data Repository
(https://doi.org/10.17863/CAM.8856) and password protected. Our participants did not

give informed consent for their questionnaire measures to be made publicly available, and it
is possible that they could be identified from this data set. Access to the data supporting the
analyses presented in this paper will be made available to researchers with a reasonable

request to NSPNdata@medschl.cam.ac.uk. The code used to conduct analyses is available

from FV’s github: https://github.com/frantisekvasa/structural network development (DOI:

10.5281/zenodo.528674).
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