
 
 

Histopathological image QTL discovery of immune infiltration variants 
 

Authors: Joseph D. Barry1,2*#, Maud Fagny1,2, Joseph N. Paulson1,2, Hugo J. W. L. Aerts3, John 
Platig1,2, and John Quackenbush1,2 

Affiliations: 
1 Center for Cancer Computational Biology and Department of Biostatistics and Computational 
Biology, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA 02215 
2 Department of Biostatistics, Harvard T.H. Chan School of Public Health, 667 Huntington Ave., 
Boston, MA 02115 
3 Department of Radiology, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA 
02215 

* Correspondence to: josephbarry.mail@gmail.com 
# Current address: Alnylam Pharmaceuticals, 300 Third St #3, Cambridge, MA 02142 

 
 

 
Abstract: Genotype-to-phenotype association studies typically use macroscopic physiological 
measurements or molecular readouts as quantitative traits. There are comparatively few suitable 
quantitative traits available between cell and tissue length scales, a limitation that hinders our 
ability to identify variants affecting phenotype at many clinically informative levels. Here we 
show that quantitative image features, automatically extracted from histopathological imaging 
data, can be used for image Quantitative Trait Loci (iQTL) mapping and variant discovery. 
Using thyroid pathology images, clinical metadata, and genomics data from the Genotype and 
Tissue Expression (GTEx) project, we establish and validate a quantitative imaging biomarker 
for immune cell infiltration. A total of 100,215 variants were selected for iQTL profiling, and 
tested for genotype-phenotype associations with our quantitative imaging biomarker. Significant 
associations were found in HDAC9 and TXNDC5. We validated the TXNDC5 association using 
GTEx cis-expression QTL data, and an independent hypothyroidism dataset from the Electronic 
Medical Records and Genomics network. 

One Sentence Summary: We use a histopathological image QTL analysis to identify genomic 
variants associated with immune cell infiltration. 
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Introduction 
Genomics has had tremendous success in relating genetic variants to a variety of molecular 
phenotypes. Variants associated with gene expression, so-called expression Quantitative Trait 
Loci (eQTLs), are enriched for regions of active chromatin, influence gene regulation, and are 
involved in processes that contribute to disease [1, 2]. At the macroscopic level, genome-wide 
association studies (GWAS) that use physiological measurements of organ health have also 
provided insight into the genetic component of human disease. However, given the immense gap 
between SNP-level variation and tissue and body function, GWAS results concerning human 
traits can be challenging to interpret, in part due to the high correlations observed between 
studies of different traits [3]. This is especially true for autoimmune diseases, which have many 
shared genetic risk factors [4]. One way to increase GWAS variant interpretability and to 
discover new disease variants will be to place more focus on quantitative traits that lie at 
intermediate cellular and sub-tissue scales.  
Histopathology has for decades remained the standard for the diagnosis and grading of many 
complex diseases. Advances in digital slide imaging have allowed for unprecedented resolution 
at tissue, cellular, and sub-cellular scales. As such, histopathology could provide the genomics 
community with a vast resource of quantitative traits for evaluating disease phenotype across a 
range of mesoscopic scales. Previous histopathological GWA studies have used discrete 
pathology grading schemes as quantitative traits. While such schemes are highly effective for 
guiding clinical decisions on the level of individual patients, and can in principle identify disease 
variants in GWAS [5], they do not scale well to the hundreds or thousands of samples needed 
due to inter- and intra-observation bias [6-8]. Unbiased, automatically extracted, continuous 
features have been shown to improve the predictive power of survival analyses with pathology 
data in comparison to discrete grades [9, 10]. GWA studies using quantitative image features 
extracted from radiological imaging data have successfully identified COPD-relevant variants 
using Computed Tomography [11], and variants related to Alzheimer’s Disease and Mild 
Cognitive Impairment using Magnetic Resonance Imaging [12]. Thus, genome association 
studies that leverage automated imaging analysis methodologies can be highly effective. With 
quantitative image analysis now routinely applied to digital pathology datasets [9, 10, 13-15], it 
is clear that unbiased, continuous image features can readily be extracted for histopathological 
GWAS variant discovery. 
Nevertheless, little attention has been paid to the use of cellular imaging to obtain quantitative 
traits for understanding the connection between genotype and cellular phenotypes. Part of the 
reason for this may be that there are few available datasets for which both genomic profiling and 
standardized histopathology data are available for any appreciable number of samples. The 
Genotype-Tissue Expression (GTEx) resource [16, 17] has collected germline genotype data 
from over 450 autopsy research subjects, as well as standardized histological imaging and RNA-
Seq gene expression from approximately 50 different body sites. 

One of the tissues for which there is substantial histological imaging data is the thyroid. The 
thyroid plays a central role in the endocrine system, producing thyroid hormones that influence 
protein synthesis and metabolism. Hashimoto Thyroiditis (HT) is an autoimmune disease 
affecting approximately 5% of the population, in which the thyroid is slowly destroyed, 
frequently leading to hypothyroidism, particularly in women [18]. Among the GTEx population 
there are 341 individuals for whom paired thyroid imaging and gene expression data was 
available; of these 31 had morphological evidence of HT according to GTEx pathology notes. 
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Leukocyte infiltration is a morphological hallmark of HT, and necessary for disease progression. 
We saw this dataset as an ideal place to test the hypothesis that cellular imaging features could 
be used to discover immune cell infiltration variants in an image Quantitative Trait Locus (iQTL) 
analysis. 

 
Quantitative image analysis 

Image data was downloaded from the GTEx histological image archive, and convolved with a 
Gaussian filter to smooth out pixel-level variation on a length scale smaller than observed 
regions of leukocyte invasion in HT samples. Color deconvolution to estimate the Hematoxylin 
and Eosin channels directly was not performed to avoid the risk of introducing any biases from 
the deconvolution process that might negatively affect downstream QTL fits. Individual tissue 
pieces were segmented using adaptive thresholding (Figure 1A), and 117 Haralick image 
features were extracted for each tissue piece using the Bioconductor image processing package 
EBImage [19] (Transparent Methods). To capture patterns across multiple length scales, we 
incorporated three Haralick scales that sampled every 1, 10, or 100 pixels. Haralick features are 
widely used for the quantification of image texture, and take into account correlations between 
neighboring pixels in an image [20]. Given that lymphocyte invasion has a profound effect on 
histological image texture, we reasoned that Haralick features could be ideal candidates for 
capturing HT cellular phenotype. After removing overly small tissue pieces, averaged image 
feature values were calculated across pieces to give a single value for each sample and feature. In 
preparation for downstream model fitting, features were log2 transformed, and centered and 
rescaled using a Z-score to ensure feature comparability across samples (Figure 1B). The mean 
and standard deviation values used for the Z-score were saved for use in later analyses. A fully 
worked through image analysis example with the applied segmentation parameters is supplied as 
part of a supplemental R data package. 
To reduce the number of candidate features and to identify the primary directions of variability 
in our image feature matrix, we performed Principal Component Analysis (PCA), and found that 
the first two imaging Principal Components (PCs) were sufficient to explain 73% of the 
variance. By inspection of the images, low values of PC1 were found to be associated with 
interior holes in the thyroid pieces (Figure S1A), an effect we adjudged to be primarily technical 
in origin. High values of image PC2 were visually strongly associated with the presence of 
invading leukocytes (Figure S1B). 

For validation of image PC2 using clinical metadata, we identified all samples for which a HT 
phenotype was indicated in the comments of the original GTEx pathologists (Figure 1C blue 
points). We note that the morphological phenotype of HT is not definitive evidence of clinical 
HT, which requires assessment of thyroid hormone levels, ultrasonographic scanning, and 
additional clinical findings [21]. A ROC analysis showed that image PC2 was a highly 
performant biomarker for HT phenotype, with an AUC of 0.84 (Figure 1D). Using logistic 
regression, we found that HT phenotype was significantly associated with image PC2 (OR=1.3, 
P=1.4x10-9) after correcting for sex and age (Transparent Methods). A higher association with 
HT phenotype for women was also observed after correcting for age (OR=4.2, P=4x10-4), a 
known clinical characteristic of the disease [18]. That image PC2 is a performant biomarker for 
HT phenotype likely does not have direct clinical application since a pathologist can easily 
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identify HT morphology by inspection of pathology images; we considered its utility to be for 
downstream integration with genomic data. 

Since the fibrous variant of clinical HT accounts for up to 10% of cases [22] we investigated co-
occurrence of HT and fibrotic phenotypes in GTEx pathology notes. We found that 9/31 samples 
with HT phenotypes also had fibrotic phenotypes, which was significantly enriched compared to 
the background set of non-HT samples (Fisher Test; P=0.002, OR=4.2). However, samples with 
both HT and fibrotic phenotypes did not show any clear classification pattern in the image PC1 
vs PC2 plot (Figure S2A) that would suggest segregation by disease subtype. 

Next we inspected PC2 feature loadings from the image PCA (Table 1). These represented the 
weighted contribution of each Haralick feature to image PC2. We found that no single feature 
had a notably higher magnitude of loading than any other, showing that signals from many 
different Haralick features were required (Figure S2B). To assess the relative contribution of 
each RGB color channel we summed the absolute value of PC2 principal component loadings for 
all features extracted from each channel. Proportionately, we found that the red channel features 
contributed 47%, the green channel 28%, and the blue channel 26%, to the image PC2 signal. 
This was suggestive of Eosin contributing the most to the observed signal. 

To verify that image PC2 signal was originating from regions of immune infiltrate, we mapped 
image PC2 signal to tiles of size 250x250 pixels using the following procedure. Haralick features 
were extracted within each tile, log2 transformed, and centered and rescaled using a Z-score. 
Crucially, the mean and standard deviation values used for the Z-score were those calculated 
previously when estimating feature variability across samples. The resulting feature values were 
then multiplied by their corresponding image PC2 component loading (Figure S2B), and 
summed together to give the final estimate for local image PC2. Figure 1E shows local image 
PC2 signal for the five samples with highest image PC2 signal in Figure 1C. Bright regions 
indicate where local image PC2 signal is highest (Figure 1E bottom row), and can be seen to 
correspond directly to dark regions of dense immune infiltrate in the original images (Figure 1E 
top row). 
 

Integrated RNA-Seq and image analysis: imaging biomarker validation 
Next we analyzed GTEx gene expression data associated with the 341 thyroid images. After the 
removal of lowly expressed genes, counts were log2 transformed and underwent quantile 
normalization to ensure comparability of samples (Transparent Methods). To test for associations 
between gene expression and image PCs, linear models were used to fit each image PC against 
normalized gene readouts while correcting for age, sex, sample collection site, tissue autolysis 
score, and RNA extraction type. To remove bias caused by unknown confounders (Figure S3A) 
we fitted 20 PEER (Probabilistic Estimation of Expression Residuals) factors [23] to the gene 
expression data while including the known confounders in the PEER fit; a similar approach was 
used by the GTEx consortium [16, 24]. The first PEER factor was not included as a covariate in 
the linear model fits due to the strength of its correlation with our image PC2 biomarker (Pearson 
r=0.53, P<2.2x10-16), which indicated that it likely contained valuable biological information. 
While other PEER factors may capture both biological signal and systematic noise, their 
inclusion as covariates successfully removed the technical bias observed in Figure S2A. The 
results from fits correcting for the known confounders as well as the 19 remaining PEER factors 
revealed that image PC2 was systematically and highly associated with gene expression (Figure 
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2A), suggesting that leukocyte infiltration is at least a major, if not the primary source of 
expression variability in GTEx thyroid tissue. In contrast, image PC1 had comparatively few 
significant associations with thyroid gene expression (Figure 2A). 
To identify which biological pathways may drive the significant image PC2 associations with 
gene expression we performed gene-set enrichment analysis, choosing as a test set 2,913 genes 
with –log10(PG) >10 in the gene expression analysis and all other 21,080 genes as a background 
set (Transparent Methods). Significant enrichment was observed for a number of gene ontology 
terms related to immune function, and the activation and signaling activity of invading T and B 
lymphocytes (Table 2).  
To confirm the association between image PC2 and the presence of invading immune cells on 
the level of individual samples, we ran our gene expression data through CIBERSORT, an 
algorithm designed to deconvolve complex cell mixtures [25]. The LM22 leukocyte gene 
signature matrix supplied by the CIBERSORT team was used to perform the deconvolution as it 
could in principle detect and distinguish between a number of T and B cell types. As expected, 
CIBERSORT failed to detect immune cells in the majority of healthy thyroid samples. However, 
in samples where immune cells were detected (CIBERSORT PC<0.5), the significance of 
detection correlated significantly with image PC2 (Figure 2B; Spearman ρ=0.67, P=3x10-7). 
Figure 2C shows the cell type signature for samples with PC<0.1 and cell types with an average 
CIBERSORT frequency of more than 5% across samples. This analysis confirmed the presence 
of T-cell CD4 memory resting, T-cell CD8, naïve and memory B cells, as well as other immune 
cell types, on the level of individual samples. 
The CIBERSORT algorithm also detected infiltrating immune cells in several samples for which 
image PC2 was high but HT phenotype was not indicated by GTEx pathologists (Figure 2B grey 
points), suggesting that our imaging biomarker may be able to detect a broader spectrum of 
thyroid autoimmune processes. By inspection, we confirmed that many of these images did show 
infiltrative phenotypes but did not exhibit the classical HT visual phenotype (for example 
GTEX-OXRO, GTEX-144FL). One possible clinical application of our imaging approach would 
therefore be to automatically flag such samples for rechecking by pathologists.  

To demonstrate the advantage of using PCA for the identification of a candidate imaging 
biomarker, as opposed to directly using the individual Haralick image features, we correlated 
each of the 117 image features with CIBERSORT significance of detection for immune cells, in 
the same manner as above. Image PC2 had a higher Spearman correlation coefficient than all 
image features, with the closest having a coefficient of ρ=0.60 (Figure S2B). Thus, image PC2 
combined information from multiple image features to attain a higher overall performance. 

 
iQTL identification of variants associated with immune infiltration 

Based on our analysis of image features and gene expression, we decided to use image PC2 as a 
quantitative trait capturing the cellular features of immune cell infiltration in an image QTL 
analysis. Since we did not have sufficient sample size to achieve high power in a genome-wide 
iQTL analysis that would include millions of variants, and other suitably large datasets were not 
available, we decided to reduce the search space by asking a more targeted question of the data.  
Since leukocyte invasion was associated with a higher prevalence of differentially upregulated 
genes (Figure 3A) we hypothesized that the genotype of upregulated genes in GTEx samples 
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with a HT phenotype could in part determine the extent of leukocyte infiltration. Therefore, the 
analysis was further restricted to 100,215 candidate SNPs residing in 1,380 genes that were 
significantly (-log10(Padj) >7, Figure S4A) and positively (log2(Fold-Change) >0.5) differentially 
expressed in 31 HT cases versus 310 controls (Figure 3A blue points) using DESeq2 [26]. We 
note that HT phenotype, as indicated by GTEx pathologists, was not included in the feature set 
used to build our imaging biomarker. Therefore, the SNP selection procedure was independent of 
the biomarker subsequently used as the quantitative trait in the iQTL analysis. 
We then limited our analysis to the 292 samples that had both thyroid imaging and genotype 
information. The genotype data had already undergone rigorous quality control and filtering by 
the GTEx consortium, including but not limited to Hardy-Weinberg equilibrium and imputation 
quality criteria. Due to sample size considerations, minor allele frequencies (MAFs) of less than 
10% were removed, as well as SNPs with a missingness frequency of more than 10%.  

Image QTL linear model fits were implemented using the R package MatrixEQTL [27] by 
treating image PC2 as a pseudo trans gene. Fits were corrected for age, sex, race, ancestry, 
processing center, and tissue autolysis score (Transparent Methods). A QQ plot comparing the 
distribution of observed p-values to the expected uniform distribution showed that the data was 
well behaved under the null hypothesis (Figure 3B), with a departure from the dashed line for a 
group of SNPs with low p-values. Independent Hypothesis Weighting (IHW) [28] using MAF as 
the independent covariate was used to correct for multiple testing. In a data-driven way, this 
method assigned different weights to variants based on their MAF (Figure S4B) to maximize the 
number of null hypothesis rejections while controlling for Type I error. A total of 21 SNPs 
across 3 haplotype blocks were identified as being significant (PIHW<0.05; Table S1). As 
expected, IHW attained higher power as compared to standard, unweighted Benjamini and 
Hochberg FDR (Table S1). 

Strikingly, 20 of the 21 significant SNPs resided in Histone Deacetylase 9 (HDAC9), an enzyme 
linked to epigenetic control of gene transcription, and previously proposed to be an epigenetic 
switch for T-cell mediated autoimmunity [29]. Histone deacetylase inhibitors have been effective 
in the treatment of hypothyroidism in mice [30], and autoimmune diseases in general [31]. A plot 
of SNP significance along HDAC9 revealed a sharp peak at 18,301 kb on chromosome 7 (Figure 
3C). To our knowledge this is the first reported association between HDAC9 variants and thyroid 
immune cell infiltration. A search of GWAS Central (www.gwascentral.org [32]) identified 
modest associations between Ulcerative Colitis (UC) and two of our significant image QTL 
variants (-log10(P)=2.3 for rs215122, -log10(P)=2.7 for rs2529749) [33]. While further work will 
be required to investigate the biological effects of HDAC9 genotype in both UC and HT, a 
common genetic basis would be consistent with evidence that these conditions present 
concurrently at higher rates than would be expected in the general population [34]. 

One variant in the Thioredoxin Domain Containing 5 gene (TXNDC5), rs11962800, was found 
to be significant at the level of PIHW<0.05 (Table S1). TXNDC5 expression is induced by 
hypoxia [35], and variants in this gene have been associated with a number of autoimmune 
diseases including rheumatoid arthritis [36] and vitiligo [37]. As for HDAC9, variants in 
TXNDC5 have not previously been associated with immune cell infiltration, again suggesting 
that iQTLs can uncover clinically relevant associations. It should be noted that rs11962800 was 
reported as a cis-expression QTL in thyroid tissue by the GTEx consortium (P=7.7x10-21; 
www.gtexportal.org [24]). Since our analysis shows that TXNDC5 expression is associated with 
leukocyte invasion in thyroid tissue, it is possible that any expression-based result could be 
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biased by cell-type mixing, as has been highlighted in GTEx lung tissue [38]. However, 
rs11962800 was also a reported eQTL in 16 other GTEx tissues [24], with thyroid ranked 3/17 in 
terms of highest significance. Next we relaxed the IHW adjusted p-value cutoff for iQTLs to 0.4, 
and found that the top five iQTLs in TXNDC5 were also eQTLs (Table S2). Additionally, 12/31 
of the GTEx TXNDC5 eQTLs overlapping with our set of tested variants were iQTLs or in 
linkage disequilibrium with iQTLs (Figure S5 red points). Together, these results offer the 
mechanistic hypothesis that genetic variation in TXNDC5 affects HT imaging phenotype directly 
through cis-regulation of RNA expression levels. 

Next we asked how the performance of our imaging biomarker might compare with expression-
based biomarkers for immune infiltration variant discovery. We chose the first expression PEER 
factor (PEER1) as a comparative candidate biomarker based on the earlier observation that it was 
significantly correlated with image PC2. After verifying that PEER1 was performant for 
predicting HT phenotype (AUC 0.88, Figure S6A), we ran another QTL analysis using the same 
100,215 variants as for the iQTL analysis, but with PEER1 as the response variable. A QQ plot 
revealed that PEER1 performed poorly (Figure S6B), with no significant QTL hits. Therefore, 
image PC2 was in this case a superior choice of biomarker for variant discovery. 

 
Validation of iQTL results using an independent dataset 

To attempt validation of the observed associations between HDAC9 and TXNDC5 genotype, 
and thyroid immune cell infiltration in an independent dataset, we obtained genotype and 
phenotype data, and clinical metadata from the Electronic Medical Records and Genomics 
(eMERGE) network [39] (Transparent Methods). This dataset has been used previously for 
hypothyroidism variant discovery [40]. Criteria for defining HT cases included the assessment of 
TSH and FT4 levels (Transparent Methods). While levels of biochemical markers are not 
necessarily correlated with morphological grading of HT, immune cell infiltration is 
pathognomonic of the disease [21]. An increased prevalence of immune cell infiltration is 
therefore likely to be present in a large set of HT cases vs controls. 
We selected 1,261 chronic autoimmune hypothyroidism (presumptive HT) cases and 4,457 non-
hypothyroidism controls (Transparent Methods). As over 96% of the hypothyroidism cases were 
from the Caucasian cohort, and 250/292 of the GTEx samples used for the image QTL analysis 
were of European American descent, to simplify the analysis all non-Caucasian cohorts were 
removed, leaving 1,213 cases and 3,789 controls. For consistency with the image QTL analysis, 
SNPs with a minor allele frequency of less than 10% and a missingness frequency of more than 
10% were removed. One SNP in HDAC9 was removed due to deviation from Hardy-Weinberg 
equilibrium (Transparent Methods).  
We used logistic regression to test for associations between hypothyroidism status, and HDAC9 
and TXNDC5 genotype while correcting for patient age (decade of birth), sex, collection site, 
and ancestry (Transparent Methods). For both genes, the location of the most significant GTEx 
image QTL peaks, as determined by their IHW-adjusted p-values, coincided closely with the 
highest eMERGE peaks (Figure 3C,D vertical lines). While a colocalisation analysis did not 
identify a single causative SNP common to both datasets, we noted a high degree of similarity 
between the association profiles. To quantitatively assess the concordance of the association 
signatures between the GTEx and eMERGE data, we first selected the SNPs common to both 
datasets, and grouped neighboring SNPs into bins of size 20 SNPs based on their genomic 
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coordinates. The lowest p-value in each bin was then selected for both datasets. A correlation test 
revealed that the association signatures between eMERGE and GTEx data were significantly 
concordant across both HDAC9 (Figure S7A1; Spearman ρ=0.59, P<2.9x10-6) and TXNDC5 
(Figure S7A2; Spearman ρ=0.73, P=9x10-4).  

Next we checked if linkage disequilibrium (LD) could be artificially driving the observed 
concordance. SNPs were pruned for LD using PLINK (Transparent Methods), and the binning 
and correlation analysis was repeated. To account for the reduction in the number of SNPs 
(HDAC9, 1071 to 330; TXNDC5, 347 to 88), smaller bin sizes of 6 and 5 SNPs were used for 
HDAC9 and TXNDC5 respectively. A correlation test revealed a more modest but still 
significant correlation for HDAC9 (Spearman ρ=0.30, P=0.026), and a significant correlation for 
TXNDC5 (Spearman ρ=0.72, P=0.001). Thus, HDAC9 concordance was partially biased by LD, 
while TXNDC5 concordance was unaffected. 

To verify that it was hypothyroidism status driving the concordance, we performed 1,000 
permutations of the hypothyroidism case/control labels in the eMERGE dataset and repeated the 
logistic regression, binning, and correlation analyses between the LD-pruned GTEx and 
eMERGE data. The resulting permutation p-value did not reach significance for HDAC9 
(P=0.127), likely due to the lower nominal p-values remaining after the LD-pruning. However 
the TXNDC5 permutation value was significant (P=0.006), demonstrated that it was unlikely to 
obtain the observed TXNDC5 concordance between eMERGE and GTEx profiles by chance 
(Figure S7B1,2). 

While we validated our TXNDC5 association using eMERGE hypothyroidism status, there are 
limitations to the validation approach. First, the analysis identified common regions of 
association, rather than individual causative SNPs. The colocalisation analysis was likely 
hindered by the modest GTEx sample size, and future iQTL studies may require higher numbers 
of samples to identify causative SNPs. Second, the severity of the HT morphological phenotype 
and clinical hypothyroidism status are not necessarily correlated [21], although immune cell 
infiltration is a prerequisite for clinical HT. This may in part explain why higher nominal p-
values were observed in the GTEx data. Another explanation might be that quantitative 
histological image analysis captures subclinical, as well as clinical disease phenotype as a 
smooth function, while binary categorizations of disease status do not take into account 
informative subclinical disease cases, or the morphological severity of the disease phenotype. 
 

Outlook 
Our intuition, along with over a decade of progress in GWAS, tells us that genotype and 
phenotype are associated in ways that can be quantitatively assessed. The growth of integrated 
data resources such as GTEx, and the advancement of digital slide imaging technologies, 
provides the opportunity to explore that association at the cellular level. This study demonstrates 
the potential of histopathological image-based QTL profiling for de novo discovery of disease 
variants, especially when unbiased, continuous, automatically extracted image features are used 
as quantitative traits. Our results indicate that iQTLs can identify different variants to cases vs 
controls GWAS, offering a complementary approach that leverages cell-level phenotypes for 
target discovery. While we applied iQTLs to a thyroid dataset, the method is completely 
generalizable to other tissues and disease contexts. With larger sample sizes and study designs 
tailored for specific diseases, iQTL scans can be extended to millions of variants. Ultimately, 
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digital pathology image analysis approaches could revolutionize genome-wide association 
studies by providing a wealth of unbiased quantitative traits at the cellular level that have high 
levels of biological interpretability.  
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Figure 1. Thyroid image processing and establishment of a quantitative imaging biomarker for 
immune cell infiltration. (A) Digital pathology slide for thyroid sample GTEX-11NV4. Raw: pre 
image processing. Blurred: post Gaussian convolution. Segmented: tissue piece masks after 
adaptive thresholding. (B) Heatmap of 117 log2 transformed and standardized Haralick image 
features against 341 thyroid samples. (C) PC1 versus PC2 from a PCA of the image feature 
matrix. Blue points indicate patients with Hashimoto Thyroiditis, as identified from pathology 
notes. Circles indicate females, and triangles males. (D) ROC showing biomarker performance 
of PC2 for predicting HT. (E) Top row, five thyroid samples with highest values of image PC2. 
Bottom row, local image PC2 signal. Bright regions correspond to high local image PC2. Image 
brightness has been rescaled to aid visualization. 
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Figure 2. Integration of imaging data with gene expression analyses verifies that image PC2 is 
highly associated with immune cell infiltration. (A) A QQ plot of p-values (PG) from the 
regression analysis of image PC1 and PC2 against thyroid gene expression for 23,993 genes. (B) 
Correlation of image PC2 with –log10(PC) from the CIBERSORT analysis for samples with 
PC<0.5. Blue points are samples for which Hashimito Thyroiditis was indicated in GTEx 
pathology notes. (C) Frequencies of immune cell types reported from CIBERSORT for samples 
with PC<0.1. Cell types with an average frequency of 5% or more are shown. 
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Figure 3. An image QTL analysis finds associations between genomic variants and our image 
PC2 biomarker for thyroid autoimmune disease. (A) Selection of 1,380 candidate genes (blue 
points) based on their positive fold-change (log2(FC)>0.5) and significant differential expression 
(-log10(Padj)>7) in GTEx samples with Hashimoto Thyroiditis (HT) phenotypes. (B) A QQ plot 
showing expected vs observed p-values from image QTL fits of 100,215 candidate SNPs 
residing in the selected genes highlighted blue in panel A. (C-D) –log10(P) vs genomic 
coordinates for GTEx iQTLs (top panels) and eMERGE variant association with HT (bottom 
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panels) for all tested SNPs in HDAC9 (C) and TXNDC5 (D). Blue vertical lines indicate the 
locations of the most significant SNP for each gene after multiple testing correction using the 
IHW method described in the main text. Plot ranges are mapped to the start and end positions of 
the genes, as defined by GTEx-consortium transcript data. Horizontal green bars are of length 
50kb. 
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Table 1. Principal component loadings for image PC2 are supplied in the supplementary data 
table pc2loading.tsv. Labeling follows the nomenclature [channel].h.[feature].s[scale] where 
channel indicates the RGB color channel, feature is one of Haralick’s 13 textural features, and 
scale gives the length scale over which features are assessed (1, 10, or 100 pixels; Transparent 
Methods).  

 

Table 2. Significant gene ontology terms for genes highly associated with image PC2 (-
log10(PG)>10, see Figure 2A) in the gene expression regression analysis. All terms with an odds 
ratio of greater than 5 and an adjusted p-value of less than 0.01 are shown. BP: Biological 
Process, CC: Cellular Component. 
GO id Type Description Odds P Padj N 
GO:0050776 BP regulation of immune response 6.10 1.3E-14 5.8E-11 43 
GO:0031295 BP T cell costimulation 5.83 6.0E-11 2.1E-07 32 
GO:0042110 BP T cell activation 5.57 2.6E-08 3.6E-05 24 
GO:0042113 BP B cell activation 8.67 7.0E-08 8.6E-05 17 
GO:0045060 BP negative thymic T cell selection 25.51 6.7E-07 5.4E-04 10 
GO:0050690 BP regulation of defense response to virus 

by virus 
6.96 2.1E-06 1.5E-03 15 

GO:0042101 CC T cell receptor complex 17.00 2.5E-06 1.6E-03 10 
GO:0050853 BP B cell receptor signaling pathway 5.89 7.2E-06 3.8E-03 15 
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Figure S1. Examples of phenotypes associated with image PC1 and PC2. (A) Images with the 10 
lowest values of PC1. Interior holes were observed, many of which were likely associated with 
tissue damage incurred during sample preparation. (B) Images with the 10 highest values of PC2. 
Lymphocyte invasion phenotypes were apparent. 
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Figure S2. (A) PC1 versus PC2 from a PCA of the image feature matrix. Blue points indicate 
patients with both Hashimoto Thyroiditis and fibrotic phenotypes, as identified from pathology 
notes. Circles indicate females, and triangles males. (B) Haralick feature loadings from the 
second principal component of the image PCA, ranked by increasing value. Colors indicate RGB 
channels. 

 

 

Figure S3. (A) QQ plot showing deviation from the dashed line (of slope 1) when fitting image 
PCs against gene expression while only correcting for the known confounders listed in the main 
text. Additionally including PEER factors as covariates removed the observed bias (Figure 2A). 
(B) Histogram of the absolute value of Spearman correlation coefficients between all 117 
Haralick image features, and CIBERSORT significance of detection for immune cells. Dashed 
line indicates the Spearman correlation coefficient for image PC2 (ρ=0.67). 
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Figure S4. (A) Gene expression vs fold-change (FC) between GTEx Hashimoto Thyroiditis 
cases and controls. Genes with an adjusted p-value of less than 10-7 are colored red. (B) 
Independent Hypothesis Weighting (IHW) weights as a function of minor allele frequency bin. 
Each bin corresponds to a change of 0.01 in minor allele frequency between 0.1 and 0.5. Similar 
profiles for each fold demonstrate the robustness of the IHW fitting procedure. 

 

Figure S5. Significance of GTEx consortium v6p cis-expression QTLs for TXNDC5. Vertical 
blue line indicates the position of the top iQTL variant, rs11962800. Red points are eQTLs that 
are also iQTLs, or in linkage disequilibrium with iQTLs, as defined by a significance level of 
PIHW<0.4 (see Table S2). All significant eQTLs that were also tested in our iQTL analysis are 
shown. Genomic range is the same as in Figure 3D for comparison.  
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Figure S6. (A) ROC showing biomarker performance of the first expression PEER factor 
(PEER1) for predicting Hashimoto Thyroiditis. (B) A QQ plot showing expected vs observed p-
values from PEER1 QTL fits of 100,215 candidate SNPs residing in the selected genes 
highlighted blue in Figure 3A. 
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Figure S7. (A1-2) Concordance of the association signature between the GTEx and eMERGE 
data for HDAC9 (A1) and TXNDC5 (A2) for LD-pruned data. Each point represents the 
minimum p-value in each bin of size 15 SNPs for each dataset. (B1-2) Histograms of GTEx vs 
eMERGE correlation coefficients after 1,000 logistic regression analyses with permutations of 
the eMERGE hypothyroidism case/control labels. Dashed lines indicate Spearman correlation 
coefficients for the non-permuted data displayed in panels A1-2. Permutation p-values are 0.127 
for HDAC9, and 0.006 for TXNDC5. 

 

 

 

 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 31, 2018. ; https://doi.org/10.1101/126730doi: bioRxiv preprint 

https://doi.org/10.1101/126730
http://creativecommons.org/licenses/by-nd/4.0/


Table S1. Image QTLs with significant associations (PIHW<0.05) with our quantitative imaging 
biomarker for thyroid autoimmune disease.  
rsid GRCh37/hg19 

Coordinates 
Gene PIHW FDR P β MAF Haplotype 

rs17346782(C>T) Chr7:18301455 HDAC9 0.049 0.100 5.8E-06 2.50 0.17 hap1 
rs12154277(G>T) Chr7:18313167 HDAC9 0.049 0.100 6.3E-06 1.91 0.43 hap2 
rs12672535(G>A) Chr7:18308913 HDAC9 0.049 0.100 6.6E-06 1.90 0.44 hap1 
rs6972958(G>T) Chr7:18313358 HDAC9 0.049 0.100 7.3E-06 1.90 0.44 hap2 
rs6973137(G>A) Chr7:18313517 HDAC9 0.049 0.100 7.3E-06 1.90 0.44 hap2 
rs4416737(C>T) Chr7:18305489 HDAC9 0.049 0.100 8.1E-06 1.91 0.43 hap1 
rs73066383(C>A) Chr7:18303874 HDAC9 0.049 0.100 9.3E-06 1.90 0.43 hap1 
rs12154412(G>A) Chr7:18304326 HDAC9 0.049 0.100 9.3E-06 1.90 0.43 hap1 
rs4361680(T>A) Chr7:18306817 HDAC9 0.049 0.100 9.3E-06 1.90 0.43 hap1 
rs7459237(C>A) Chr7:18307448 HDAC9 0.049 0.100 1.1E-05 1.89 0.43 hap1 
rs302193(G>A) Chr7:18298184 HDAC9 0.049 0.100 1.1E-05 1.82 0.45 hap1 
rs1107693(G>A) Chr7:18307906 HDAC9 0.049 0.100 1.2E-05 1.89 0.43 hap1 
rs17138868(A>T) Chr7:18294050 HDAC9 0.049 0.113 1.5E-05 1.83 0.43 hap1 
rs302178(G>A) Chr7:18310791 HDAC9 0.049 0.113 1.7E-05 1.80 0.44 hap1 
rs73066378(G>A) Chr7:18302581 HDAC9 0.049 0.113 1.8E-05 1.89 0.42 hap1 
rs7794278(G>A) Chr7:18316661 HDAC9 0.049 0.113 1.9E-05 1.82 0.43 hap2 
rs17138874(T>C) Chr7:18297439 HDAC9 0.049 0.140 2.5E-05 1.79 0.46 hap1 
rs6953847(C>T) Chr7:18300086 HDAC9 0.049 0.140 2.7E-05 1.80 0.44 hap1 
rs11962800(A>G) Chr6:7886905 TXNDC5 0.049 0.166 4.5E-05 -2.48 0.15 hap3 
rs7779273(T>C) Chr7:18301410 HDAC9 0.049 0.210 7.4E-05 1.69 0.46 hap1 
rs4721704(G>T) Chr7:18301777 HDAC9 0.049 0.262 1.1E-04 1.67 0.45 hap1 

 

Table S2. All iQTLs with PIHW<0.4 in TXNDC5 are also thyroid eQTLs in GTEx consortium 
data. 
rsid GRCh37/hg19 

Coordinates 
PIHW 
iQTL 

FDR 
iQTL 

P iQTL β 
iQTL 

MAF P eQTL β eQTL 

rs11962800(A>G) Chr6:7886905 0.049 0.166 4.5E-05 -2.48 0.15 7.7E-21 -0.71 
rs2757559(A>C) Chr6:7910352 0.061 0.286 1.3E-04 1.81 0.48 5.5E-07 -0.30 
rs12194931(G>A) Chr6:7913683 0.136 0.140 3.6E-05 -2.25 0.21 1.8E-07 -0.38 
rs3812162(T>G) Chr6:7911702 0.139 0.573 3.1E-04 1.63 0.48 1.2E-06 0.28 
rs7764128(G>A) Chr6:7882205 0.385 0.537 2.7E-04 -2.12 0.17 3.3E-22 -0.70 
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Transparent Methods: 
Image Processing: 341 publicly available GTEx histopathological thyroid images were 
downloaded from the Biospecimen Research Database (http://brd.nci.nih.gov/image-
search/searchhome). For the purpose of segmenting individual tissue pieces only, the average 
intensity across color channels was calculated, and adaptive thresholding was performed to 
distinguish tissue from background. Interior holes in the tissue piece masks were filled using the 
fillHull function from the Bioconductor package EBImage [19]. In preparation for feature 
extraction, Gaussian blurring was used on each color channel to smooth out pixel-level variation 
on a length scale smaller than the observed lymphocyte invasion phenotypes. 117 textural 
Haralick features were then extracted using EBImage by calculating 13 base Haralick features 
for each of the three RGB color channels, and across three Haralick scales by sampling every 1, 
10, or 100 pixels. Image metadata was extracted to verify identical pixel dimensions and 
scanning instrumentation across the dataset. 
Image Data Analysis: 702 thyroid pieces were identified from the image segmentation. 49 
pieces with overly small areas were removed. Averaged Haralick feature values were then 
calculated across tissue pieces for each sample. In preparation for downstream model fitting, 
each distribution was log2 transformed and rescaled using a Z-score. Five NA feature values were 
set to zero to avoid technical issues with the PCA fit. 

Gene Expression Analysis: GTEx v6 RNA-Seq data was downloaded from dbGaP 
(phs000424.v6.p1, 2015-10-05 release) under approved protocol #9112. Lowly expressed genes 
were defined as those which had a read count of less than 1 CPM in more than half of the 
samples, and were removed. Counts were log2 transformed after adding 1 to the counts to avoid 
the problem of taking the logarithm of zero. Quantile normalization was performed using the R 
package limma. Prior to running the gene expression data through CIBERSORT, RNA extraction 
batch was corrected for using limma. CIBERSORT analysis was performed at 
cibersort.stanford.edu after uploading gene expression data for the 341 GTEx thyroid samples. 
CIBERSORT default settings were used with 1,000 permutations and quantile normalization 
turned off since this step had been performed upstream. LM22 was chosen as the gene signature 
matrix. PEER factors were calculated using the R package peer (github: PMBio/peer). The 
fitting of image PCs against gene expression was performed using linear models in R with the 
formula 𝑃𝐶 = 𝛼 + 𝛽𝑔𝑒𝑛𝑒 + Σ+𝛾+𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒+ + 𝜖 where covariates included the known 
confounders and PEER factors, as discussed in the main text. For each gene, p-values were 
extracted from t-statistics associated with the gene expression coefficient β. Differential 
expression analysis using DESeq2 [26] was performed using the raw count data, with RNA 
extraction batch included as a technical covariate. As biological replicates were not available 
across samples, DESeq2 estimated dispersion by pooling all samples. 

Genotype Analysis: GTEx genotype data was downloaded from dbGaP (phs000424.v6.p1, 
2015-10-05 release) under approved protocol #9112. A total of 292 genotyped samples 
overlapped with the thyroid imaging samples. Minor allele frequency and missingness frequency 
filtering was performed using PLINK. QTL fits were performed using MatrixEQTL, which used 
the following model: 𝑃𝐶2 = 𝛼 + 𝛽𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 + Σ+𝛾+𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒+ + 𝜖. Genotype could take on 
the values 0/1/2/NA, and covariates were as described in the main text. QTL significance was 
extracted from the t-statistics associated with the genotype coefficient β. The correction for 
ancestry was performed by including as covariates the first 3 PCs of a PCA on the genotype 
matrix computed from the full set of 450 GTEx patients. Haplotypes were identified using 
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PLINK, with a maximum block size of 5,000 kb. The haplotype identification utilized the full set 
of 450 GTEx samples. LD-pruning was performed using PLINK with a window size of 50 SNPs 
and an r2 threshold of 0.8. Reported genomic coordinates are for human genome build 
GRCh37/hg19. 

eMERGE data was obtained from the study “eMERGE Network Imputed GWAS for 41 
Phenotypes” (dbGaP study accession phs000888.v1.p1) under approved protocol #13896 for the 
consent cohorts Health/Medical/Biomedical (N=18,621) and Health/Medical/Biomedical-
Genetic Studies Only-No Insurance Companies (N=15,911). Chromosome 6 and 7 genotype data 
from both cohorts was merged and 5,718 samples were selected based on their status as Chronic 
Autoimmune Hypothyroidism (accession phd004989.1) cases or controls. Inclusion criteria for 
hypothyroidism cases (C99269) included, but were not limited to, abnormal TSH/FT4 levels and 
the use of thyroid replacement medication. Exclusion criteria for hypothyroidism cases included 
secondary causes of hypothyroidism, hypothyroidism induced by surgery or radiation treatment, 
evidence of other thyroid diseases, or the use of thyroid-altering medication. Inclusion criteria 
for hypothyroidism controls (C99270) included no billing codes for hypothyroidism, no use of 
thyroid replacement medication, and normal TSH/FT4 levels. Exclusion criteria for controls 
included any evidence of hypo- or hyper-thyroidism, as well as other thyroid diseases, or the use 
of thyroid-altering medication. The Caucasian cohort was selected for further analysis, as 
described in the main text. Tests for Hardy-Weinberg Equilibrium (HWE) were performed using 
PLINK on the Caucasian cohort. One SNP in HDAC9 (rs2058074) had a HWE p-value less than 
10-6 and was removed. Logistic regression models were fitted with the glm function in R using 
the following model: 𝑙𝑜𝑔𝑖𝑡(𝑌) = 𝛼 + 𝛽𝑔𝑒𝑛𝑜𝑡𝑦𝑝𝑒 + Σ+𝛾+𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒+. Y indicated the binary 
case/control disease status, genotype could take on the values 0/1/2/NA, and covariates were as 
described in the main text. The correction for ancestry was performed by including as covariates 
the first 3 PCs of a PCA on the genotype matrix computed from Chromosome 6 (for TXNDC9) 
and 7 (for HDAC9). Significance was extracted from the z-statistics associated with the genotype 
coefficient β. Colocalisation analysis was performed using the coloc.abf function from the R 
package coloc. Reported genomic coordinates are for human genome build GRCh37/hg19. 

Statistical Analysis: To test for associations between HT status and image PC2, we used the 
following logistic regression model: 𝑙𝑜𝑔𝑖𝑡(𝑌) = 𝛼 + 𝛽<𝑃𝐶2 + 𝛽=𝑠𝑒𝑥 + 𝛽@𝑎𝑔𝑒 where Y 
indicated samples with HT phenotype according to GTEx pathology notes. The significance of 
association was extracted from the z-statistics associated with the beta coefficients. Due to co-
linearity between sex and image PC2, associations between HT phenotype and sex were assessed 
using a reduced model without the image PC2 term. Enrichment of fibrotic phenotypes within 
the set of samples with HT phenotypes was assessed using Fisher’s Exact Test. Gene-set 
enrichment tests were performed using a Fisher’s Exact Test for each of the 13,776 tested Gene 
Ontology terms. Multiple-testing correction across terms was performed using the method of 
Benjamini and Hochberg. Independent Weighting Hypothesis p-value correction on the image 
QTL results was performed using the Bioconductor software IHW [28]. The permutation p-
values reported for the eMERGE validations were estimated using the formula (𝑀 + 1)/(𝑁 + 1) 
where M is the number of permutations with a correlation coefficient exceeding that of the non-
permuted data, and N is the total number of permutations. 
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