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Abstract

We present the molecular landscape of pediatric acute myeloid leukemia (AML), characterizing nearly
1,000 participants in Children’s Oncology Group (COG) AML trials. The COG/NCI TARGET AML initiative
assessed cases by whole-genome, targeted DNA, mRNA, miRNA sequencing and CpG methylation
profiling. Validated DNA variants revealed diverse, infrequent mutations with fewer than 40 genes
mutated in >2% of cases. In contrast, somatic structural variants, including novel gene fusions and
focal MBNL1, ZEB2, and ELF1 deletions, were disproportionately prevalent in young as compared to
adult patients. Conversely, DNMT3A and TP53 mutations, common in adults, are conspicuously absent
from virtually all pediatric cases. Novel GATA2, FLT3, and CBL mutations, recurrent MYC-ITD, NRAS,
KRAS, and WT1 mutations are frequent in pediatric AML. Deletions, mutations, and promoter DNA
hypermethylation convergently impact Wnt signaling, Polycomb repression, innate immune cell
interactions, and a cluster of zinc finger genes associated with KMT2A rearrangements. These results
highlight the need for, and facilitate the development of age-tailored targeted therapies for the
treatment of pediatric AML.

Acute leukemia is the most common form of childhood cancer?, and its incidence is increasing. Despite
constituting only 20% of pediatric acute leukemia, acute myeloid leukemia (AML) is overtaking acute
lymphoblastic leukemia (ALL) as the leading cause of childhood leukemic mortality, in part because
current prognostic schemas classify many children who will ultimately succumb to their disease as low-
or intermediate-risk. Additionally, aside from investigational tyrosine kinase inhibitors for FLT3-activated
AML, targeted therapies are not used in pediatric AML. Both problems stem from an inadequate
understanding of the biology of childhood AML.

AML is a molecularly heterogeneous group of diseases affecting patients of all ages. Recent genome-
scale studies have revealed novel, potentially targetable mutations prevalent in adult de novo AML*”.
However, the relevance of these findings to childhood AML remains unclear, since several of the most
common adult mutations appear far less prevalent in pediatric AML®’.

To date, no comprehensive characterization of pediatric AML has been described. Here, we report the
initial results of the TARGET (Therapeutically Applicable Research to Generate Effective Treatments)
AML initiative, a collaborative COG/NCI project to comprehensively characterize the mutational,
transcriptional, and epigenetic landscapes of a large, well-annotated cohort of pediatric AML.
Comparing AML molecular profiles across age groups, we show that stark differences in mutations,d
structural variants and DNA methylation distinguish AML in infants, children, adolescents, and adults.

Results

Overview of cohort characteristics

A total of 1023 children enrolled in COG studies are included in the TARGET AML dataset.
Comprehensive clinical data, including clinical outcomes and test results for common sequence
aberrations (outlined in Table S1), are available for 993 patients. Of these, 815 subjects were profiled for
somatic mutations at presentation: 197 by whole-genome sequencing (WGS), and 800 by targeted
capture sequencing (TCS), at read depths averaging 500x, for validation of mutations identified by WGS.
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68  The WGS discovery cohort of diagnostic and remission (germline comparison) specimens were selected
69 from patients treated on recent COG studies who achieved an initial remission to induction
70 chemotherapy. These trials randomized type or timing of induction therapy (CCG-2961)% and the
71  addition of gemtuzumab ozogamicin in a single arm pilot (AAMLO3P1)’ or randomized fashion
72 (AAMLO0531)™. Specimens for TCS validation were obtained from 800 patients, including 182 from the
73  WAGS discovery cohort (153 with matched remission samples). A complete listing of cases and their
74  characterization is available in the TARGET sample matrix
75  (https://ocg.cancer.gov/programs/target/data-matrix). The age at presentation of TARGET AML
76  participants ranged from 8 days to 29 years (median 10 years, Fig. 1a). Infants (<3 years old), children
77  (age 3-14) and adolescents/young adults (AYA; age 15-39) differ broadly by cytogenetic and clinical risk-
78  group classifications (Fig. 1a, multivariate Chi-squared p<10??), consistent with observed differences in
79 clinically-evaluated structural abnormalities and mutations (summarized in Fig. 1b). Notably, among
80 these clinically detected abnormalities, only 5 mutations and 5 structural aberrations occur in more than
81 5% of patients (mutations in FLT3, NPM1, WT1, CEBPA, and KIT; fusions involving RUNX1, CBFB and
82  KMT2A; trisomy 8 and loss of the Y chromosome.)

83 We validated each class of somatic DNA sequence alteration discovered by WGS through secondary
84  assays (Figs. 1c and S1). Single nucleotide variants (SNVs) and short insertions and deletions (indels)
85 were confirmed by TCS of the coding sequences of the genes identified as recurrently altered in the
86  WAGS studies. WGS-detected copy number alterations were confirmed by GISTIC2.0 scores from SNP
87 arrays; WGS-detected structural changes (such as translocations and inversions) were confirmed by
88 RNA-seq and clinical leukemia karyotyping data. Across variant types, we find >70% concordance
89 between at least two assays. These variants are referred to as verified variants hereon. An overview of
90 the multiplatform-verified somatic DNA variants in 684 patients is presented in Fig. 2a. Roughly a
91 quarter of patients possess normal karyotype, yet nearly all revealed at least one recurrent verified
92 somatic DNA alteration, and at least 12 common cancer-associated cellular processes are recurrently
93 impacted (Fig. S2, Tables S2a, b).

94  We carried out analyses of microRNA, mRNA, and/or DNA methylation in 412 subjects. A summary of
95  the assays performed and case-assay overlap is presented in Fig. S3. We compared our verified variants
96  to those of 177 adult AML cases from The Cancer Genome Atlas (TCGA) project’, stratified by the age
97  groupings outlined in Fig. 1a. The TARGET and TCGA discovery cohorts both contained numerous AYA
98  patients (Table S3). Importantly, our conclusions regarding the molecular characteristics of this age
99  group are identical when analyzing either or both cohorts (Fig. S4).

100  Somatic gene mutations in pediatric AML

101 Like adult AML, pediatric AML has one of the lowest rates of mutation among molecularly well-
102 characterized cancers (Fig. S5), with < 1 somatic, protein-coding change per megabase in most cases.
103 However, the landscape of somatic variants in pediatric AML is markedly different from that reported in
104 adults®* (Figs. 2b, S6-S7, Table S4). RAS, KIT, and FLT3 alterations, including novel, pediatric-specific
105 FLT3 mutations (FLT3.N), are more common in children. Mutational burden increases with age, yet older
106  patients have relatively fewer recurrent cytogenetic alterations. Indeed, the number of coding SNVs,
107  within and across cohorts, is best predicted by age (Fig. 2c, p<10™) and by cytogenetic subgroup. In
108 contradistinction to the higher prevalence of small sequence variants in older patients, recurrent
109  structural alterations, fusions, and focal copy number aberrations are more common in younger patients
110  (Figs. 2d-e, p<10?, see below). Patients with CBFA2T3-GLIS2, KMT2A, or NUP98 fusions tend to have
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111  fewer mutations (p<10”), with subgroups demonstrating inferior clinical outcome (Fig. $8). Patients with
112 core binding factor rearrangements tend to have more mutations than expected for their age (p<10™),
113 yet more favorable outcomes. The mutational spectrum of coding SNVs (Fig. S5) accumulates C>T
114  transitions with age (p<107®), with additional C->A transversions in t(8;21) (p<10?) and aberrant
115 karyotype (p<107?) patients.

116  After adjustment for cytogenetics and multiple comparisons, NRAS (p<1073) and WT1 (p<10?®) are
117 mutated significantly more often in younger patients, while DNMT3A (p<10%), IDH1/2 (p<10), RUNX1
118  (p<10™), TP53 (p<10™), and NPM1 (p<0.03) are mutated significantly more frequently in older patients.
119 KRAS, CBL, GATA2, SETD2, and PTPN11 mutations appear to be more common in younger patients
120 (0.05<p<0.1, adjusted, Figs. S7 and S9). We identified a prominent hotspot of MYC alterations'* and
121 previously unreported internal tandem duplications appearing exclusively in children (Fig. S7). These
122 observations are replicated in an independent ECOG cohort (Fig. $10a) of 384 adult AML patients’. Since
123 gene fusions have characteristic cooperating mutations'?, we devised a weighted resampling scheme to
124  compare mutation frequencies in 584 TARGET and 131 TCGA AML cases while controlling for karyotypic
125 associations. The results (Fig. S10b) confirm the generality of the pediatric-adult differences identified
126  above.

127 For genes such as CBL, GATA2, WT1, MYC and FLT3, both the frequency and the sites of mutation often
128 differ between children and adults (Figs. 3a and S7), with multiple —frequently recurrent- alterations
129 distinct from those identified in adult AML. RAS-related mutations (mutant KRAS, NRAS, PTPN11, or NF1)
130 are common, particularly with KMT2A fusions (Fig. S11, Tables S4-S6). In addition to being more
131  common and varied, WT1 mutations appear more likely to be of clonal origin in younger patients (Fig.
132  3b) despite the majority of pediatric patients presenting with multiple detectable sub-clones (Fig. $12).

133  These differences are clinically significant: we have previously shown that novel FLT3 mutations are
134  functional, and yield poor responses to standard therapy®. The established adverse impact of FLT3-ITDs
135 on survival is significantly modulated by co-occurring variants, including WT1 and NPM1 mutations and
136 NUP98 translocations. As shown in Figs. 3c and S13-S14, three independent, large-scale studies
137 demonstrate that FLT3-ITD accompanied by NPM1 mutations is associated with relatively favorable
138 outcomes in pediatric patients, while FLT3-ITD with WT1 mutations and/or NUP98-NSD1 fusions yields
139  poorer outcomes than FLT3-ITD alone.

140 We found no coding mutations in DNMT3A in pediatric AML, despite its high frequency in adults.
141 Spontaneous deamination of 5-methylcytosine is strongly associated with aging, and DNMT3A contains
142 a CpG dinucleotide yielding hotspot R882 mutations by C-to-T deamination'. DNMT3A also directly
143 interacts with TP53", itself impacted far more frequently in adults. Mutations of DNMT3A or TP53 drive
144  clonal hematopoiesis in many apparently healthy adults'® but are rare in children, as are the IDH1 and
145  |DH2 mutations with which they often co-occur.

146  The spectrum of somatic structural DNA changes in pediatric AML

147 Many pediatric AML cases harbor chromosomal copy number changes distinct from those reported in
148  adults (Fig. 4a). Among the 197 cases assayed by WGS, we identified 14 novel focal deletions involving
149 MBNL1, a splicing regulator, or ZEB2, a key regulator of normal'’ and leukemic®® hematopoiesis (Fig.
150 S$15). Despite occurring on separate chromosomes, in regions devoid of other deletions, MBNL1:ZEB2
151  co-deletions occur far more often than expected (p<10™®). Half of these accompany KMT2A-MLLT3


https://doi.org/10.1101/125609
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/125609; this version posted October 10, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

152  fusions (p=0.035, Fig. S11, Tables S$5-56). Samples with MBNL1:ZEB2 co-deletions carry a larger number
153 of recurrent mutations (p=0.015), and KMT2A-fusion samples with del(MBNL1) or del(ZEB2) have a
154  larger number of additional cytogenetic abnormalities (p<0.0005). Another 15 novel, validated focal
155  deletions specifically impact ELF1, an ETS-family transcriptional regulator of MEIS1™. A statistically
156 significant difference in ELFI mRNA expression exists between ELFI-deleted and intact samples
157 (p<0.01), with 63 genes differentially expressed between the two groups (p<0.01, Fig. $16). Among
158 other novel recurrent copy losses, we note five heterozygous deletions of a region containing the IL9R
159  gene (Table S5) co-occurring with KIT mutations and t(8;21).

160 Consistent with our previous findings regarding NUP98-NSD1 fusions®’, an expansive catalog of gene
161 fusions, many observed primarily or exclusively in pediatric cases, underscores the disproportionate
162 impact of structural variants in younger patients (Figs. 4b and S17-S18). But patterns of exclusion and
163 cooperation are not limited to patients with recurrent structural alteration: mutant GATA2 is frequently
164  seen in children with normal karyotype (NK) AML, and both GATA2 (p<10®) and CSF3R (p<10®, Fig. S19)
165 mutations co-occur with mutations of CEBPA®'. GATA2 and CEBPA are key regulators of
166 hematopoiesis**??, both interacting with RUNX1 in normal hematopoiesis and leukemogenesis®*. As with
167 FLT3/NUP98-NSD1/WT1 interactions, these findings show prognostic interactions in pediatric AML
168  outcome (Fig. S19b). RUNX1 mutations and RUNX1-RUNX1T1 gene fusions are significantly exclusive of
169  GATA2 and CEBPA mutations (p=0.006, Fig. S20, Table S7). All four are significantly exclusive of KMT2A
170 rearrangements (p<10™*®), CBFB-MYH11 gene fusions (p<10™), and ETV6 aberrations (p=0.01).

171 DNA methylation subtypes in pediatric AML

172 As summarized in Fig. 4c, aberrations affecting epigenetic regulators are widespread and rarely overlap
173 in AML, but their origin (structural vs. mutational) and frequency differs between children and adults.
174  Combining DNA methylation and mRNA expression results in 456 TARGET and TCGA AML cases, we
175 identified dozens of genes with recurrent transcriptional silencing via promoter hypermethylation across
176  TARGET and TCGA AML patients (Figs. 5a and 5c, Tables S8-S9, details in Figs. $21-S22). A number of
177 samples exhibited widespread silencing of genes by aberrant promoter hypermethylation, and this
178  group is enriched for younger patients with WT1 mutations (p=0.0012, Fig. 5a, hyper-silenced group).
179  Aberrant Wnt/B-catenin signaling is required for the development of leukemic stem cells*®, and one or
180 more of the Wnt pathway regulators DKK1, SMAD1, SMADS5, SFRP4, SFRP5, AXIN2, WIF1, FZD3, HES1, or
181 TLE1 is deleted or aberrantly methylated in most AML cases®®. Repression of activating NK cell ligands
182 (particularly ULBP1/2/3) appears to be common in pediatric patients, which may represent a therapeutic
183 target”’. In KMT2A-rearranged patients, a cluster of poorly characterized zinc finger genes on
184  chromosome 19 is recurrently silenced.

185 We applied non-negative matrix factorization (NMF) to CpG methylation data from 284 TARGET and
186  TCGA AML patients with DNA methylation data. By cross-validation, we identified 31 signatures (Table
187  S10) that best captured DNA methylation differences across samples, after controlling via in silico
188 purification for differences in cellularity. Unsupervised clustering of the resulting DNA methylation
189 signatures largely separated patients by age and karyotypic subtypes (Figs. 5b and S$S23), but also
190 revealed a signature which did not associate strongly with age or established prognostic factors
191 (Signature 13, Fig. 5b). Two signatures (signatures 2 and 13) predicted significantly (p < 0.05) poorer
192 event-free survival in both pediatric and adult patients with above-median scores, after stratifying by
193  cohort and adjusting for TP53 mutation status and white blood cell count (Fig. $24). Larger sample sizes
194  are needed to evaluate the clinical significance of these findings.
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195  The pediatric AML transcriptome is shaped by diverse miRNAs

196  We performed miRNA sequencing of 152 cases to characterize miRNA expression patterns in pediatric
197  AML. Unsupervised clustering of the data revealed 4 discrete subgroups that were correlated with
198 specific genomic alterations (Figs. 6a and $25), including high miR-10a expression in samples with NPM1
199 mutations, consistent with previous reports®®. Further, Cox proportional hazards analyses identified
200 multiple miRNAs associated with clinical outcome (Figs. $26-S28, Table S11), including miR-155, which
201 we previously reported to predict poor survival®.

202 Differential expression analyses using Wilcoxon tests revealed miRNAs that are differentially expressed
203 between pediatric and adult AML (Fig. 6b). Of note, miR-330 was the most over-expressed in pediatric
204  samples, and has previously been shown to have oncogenic potential in AML®.

205 Several age-associated miRNAs harbor binding sites within, and have expression levels anti-correlated
206  with, putative target genes that may be involved in RNA and protein processing suggesting that miRNAs
207 could contribute to leukemogenesis through the dysregulation of transcripts and proteins®’. Of note,
208  let-7b, which is a potential regulator of protein synthesis via EIF253 (Fig. 6c¢), is typically less abundantly
209 expressed in pediatric AML (Fig. 6d). However, high let-7b expression in pediatric AML is associated with
210 shorter time to relapse (log-rank p<0.05, Fig. 6e).

211

212 Discussion

213 Using a large cohort of patients, this study establishes the prevalence of, and coincident relationships
214  among, recurrent somatic genetic and epigenetic abnormalities in pediatric AML. We observe several
215 features in common between pediatric and adult AML: a low overall mutation rate in comparison to
216 other cancers, a long tail of infrequently affected genes, and overlap among recurrently impacted genes.
217 However, pediatric AML exhibits distinctive and critically important characteristics. We and others have
218  previously reported on the presence and clinical impact of novel fusion genes in pediatric AML***% As
219  this study illustrates, the impact of fusion transcripts in AML is both broad and age-dependent.
220 Recognition and comprehensive testing for these alterations are key first steps in the development of
221 new and potentially novel modes of targeted therapy™.

222 Recurrent focal deletions represent a unique aspect of pediatric AML. Regional (e.g. chromosomal arm-
223  and band-level) copy loss differs substantially by age, but surprisingly, focal areas of copy loss are also
224 more common in children, specifically impacting ZEB2, MBNL1, and ELF1. MBNL1 is upregulated by the
225  KMT2A-AF9 fusion protein®, and genes involved in post-transcriptional processing (SETD2, U2AF1,
226 DICER1) harbor the sole recurrent mutation in several KMT2A-rearranged cases, suggesting a functional
227  role for altered splicing in pediatric leukemogenesis. Alterations in ZEB2 have been identified as
228  cooperating events in murine CALM-AF10 leukemia models®> while ZEB2 knockout mice develop
229 myelofibrosis®, suggesting a fundamental role for this gene in the pathogenesis of AML.

230 Many of the genes characteristically mutated in AML are altered at widely variable frequencies across
231 age groups; several (including FLT3 and WT1) are impacted by pediatric specific variants and hotspots.
232 Clinical tests for a handful of genomic alterations are widely used to risk-stratify patients and determine
233 treatment regimens. However, the current practice of considering the effect of each somatic alteration
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234  inisolation is inadequate. As we illustrate for FLT3-ITD, interactions among sequence variants can have
235 dramatic clinical consequences. Moreover, some interactions appear to be age-specific. In pediatric
236 AML, FLT3-ITD and NPM1 mutations co-occur in the absence of DNMT3A mutations in a group of
237 patients with superior outcomes (Figs. 3c, S13 and S14), in contrast to inferior outcomes reported in
238 adults where FLT3-ITD and NPM1 mutations frequently co-occur with mutations in DNMT3A?. In the
239  TCGA adult AML cohort, over half the subjects with somatic FLT3 and NPM1 mutations also possessed
240 somatic DNMT3A mutations®. Subsequent studies established the generality of this result®, and revealed
241 that DNMT3A mutations are early clonal events®’, which often co-operate with later NPM1 and FLT3
242 mutations to promote chemoresistance, mutagenesis,38 and inferior outcomes®. Similarly, the co-
243 occurrence of FLT3-ITD with WT1 mutations or NUP98-NSD1 fusions accompanies frequent induction
244 failure and dismal outcomes in children with AML (multivariate p<10™, Figs. 3¢, $13 and $14).

245 In TARGET, TCGA, and ECOG AML cases, WT1 mutations were mutually exclusive with those of ASXL1
246  and EZH2 (p < 10”). WT1 recruits EZH2 to specific targets*®, and WT1 mutations have been linked to
247 promoter DNA hypermethylation of EZH2 target genes*’. Mutant ASXL1 abolishes EZH2-mediated
248  silencing of HOX genes*. EZH2 resides on a recurrently deleted region of chromosome 7, and decreased
249  EZH2 activity is associated with treatment resistant AML". In pediatric AML, mutant WT1 and EZH2
250 appear to be of exclusively clonal or near-clonal origin, with nearly a quarter of TARGET cases harboring
251 mutations affecting one or the other. Aberrant WT1, EZH2, or ASXL1 predicted induction failure in
252 TARGET AML cases (multivariate p<0.05, adjusted for interactions with FLT3 alterations, NUP98-NSD1,
253 and KMT2A fusions) and were largely mutually exclusive with KMT2A rearrangements (p < 10°). Many of
254  these patients present without apparent chromosomal abnormalities at diagnosis, yet less than 20%
255 achieve long-term remission with standard treatment, highlighting the importance of molecular
256 stratification to achieve better outcomes. It is possible that early events such as WT1 mutations and
257  NUP98-NSD1 fusions in children may play a similar role to that observed for DNMT3A mutations™ in
258 adults, with significant implications for risk stratification in AML across age groups.

259  Our data also demonstrate that DNA-methylation and miRNA expression profiles both accompany and
260 complement DNA alterations, and can stratify pediatric AML patients in terms of both overall and
261 progression-free survival. These findings suggest a need to update pediatric AML clinical risk categories
262 beyond current classifications, with important implications for clinical practice.

263 Despite incremental improvements with increasingly intensified regimens, modern outcomes in
264 pediatric AML have plateaued, with only ~60% of patients achieving long term survival. As many as 10%
265 of children will die from direct complications of treatment. Survivors suffer unacceptably high rates of
266  long-term morbidities resulting from anthracycline exposure or sequelae of hematopoietic stem cell
267  transplantation. As illustrated herein, pediatric AML is a collection of molecularly diverse diseases with
268 similar phenotypes. No single treatment strategy is likely to be effective for all pediatric AML subtypes,
269  which may explain repeated failures of randomized clinical trials to improve outcomes in recent years. In
270 keeping with the shift towards comprehensive, molecularly based classification schemas in AML®, the
271  time has come to develop targeted therapies that address specific vulnerabilities of pediatric subtypes.
272  The TARGET AML dataset will serve as a foundation for development of pediatric-specific classification
273 schemas and the development of personalized treatment strategies.
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302  Figure Legends

303 Figure 1. An overview of the TARGET AML study. (a) The distribution of subjects by clinical risk category
304  and cytogenetic classification is shown adjacent to each age group analyzed (Infant, <3 years; Child, 3 to
305 <15 years; Adolescent/Young Adult (AYA), 15 to <40 years). (b) A summary of the clinically established
306 molecular aberrations in the cohort (n=993) is illustrated. FLT3.ITD, FLT3 internal tandem duplications,
307 FLT3.PM, FLT3 D835 point mutations. (c) Overview of the genomic variant discovery, verification, and
308 validation process. We characterized diagnostic and remission (taken as germline) samples from 197
309 patients using whole genome sequencing (WGS) and verified 153 diagnostic/remission case pairs by
310  targeted capture sequencing (TCS) of genes recurrently impacted in the WGS samples (an additional 29
311  WAGS cases were verified by TCS of diagnostic cases only, see Fig. S1). 72% of WGS SNVs, and 76% of
312 WGS indels were confirmed by TCS (red & green text in figures). For focal copy number (CN) alterations
313  spanning fewer than 7 genes, 75% of recurrent WGS deletion/loss and 85% gain/amplification calls
314 matched recurrent alterations discovered by SNP6 arrays in 96 matching samples. For chromosomal
315 junctions, we integrated WGS, clinical karyotyping and RNA-seq data by majority vote, confirming 89%
316  of WGS junction calls.

317  Figure 2. Age-related differences in mutational and structural alterations in AML. (a) Distribution of
318  variants per sample. At least one variant impacting a gene recurrently altered in pediatric AML was
319 identified by multi-platform validated variants in 684 patients. Junction, protein fusions (see methods);
320 chromCNV, chromosomal arm/band level copy variant; focalCNV, gene level copy variant; indel, small
321 insertion/deletion; SNV, single nucleotide variant. (b) Age-dependent differences in the prevalence of
322 mutations. FLT3 mutations are plotted in 3 categories: internal tandem duplication (ITD; FLT3.ITD),
323 activation loop domain (FLT3.C), and novel, childhood-specific changes (FLT3.N). (b, inset) A pattern of
324  waxing or waning mutation rates across age groups is evident in selected genes (KRAS and NPM1
325 illustrated). (c) Childhood AML, like adult AML, has a low somatic mutational burden (top and Fig. S5),
326 but is more frequently impacted by common cytogenetic alterations (lower section). For color key, see
327 legend at bottom-right. (d) The ratio of the burden of structural variation to SNVs/indels is high in
328 infancy and early childhood and declines with age. For color key, see legend at bottom-right. (e) Using a
329 sliding-window approach to account for uneven sampling by age, the incidence of common
330 translocations in AML is shown to follow age-specific patterns (multi-variate Chi-squared p < 10°), and
331  to be greatest in infants compared to all other ages (Chi-squared p < 102?). KMT2A fusions are most
332 common in infants (Chi-squared p < 10™%°), while core binding factor fusions tend to affect older children
333 (Chi-squared p < 107).

334 Figure 3. Biological and prognostic interactions between alterations of WT1, NPM1, FLT3-ITD and
335  NUP98-NSD1. (a) WT1 mutations appear more frequently and impact novel sites in childhood AML
336 (TARGET, expanded above the representation of WT1: 18.4%, 150 alterations among 815 patients;
337 TCGA, expanded beneath WT1: 7.3%, 13 alterations among 177 patients; Fisher’s exact p = 0.0002).
338 Circles indicate sites of mutation with size proportional to the number of recurrently detected
339 alterations (Colors indicate type of mutation: red, frameshifting; blue, missense; yellow, nonsense;
340 purple, splice site; grey, in-frame deletions; and brown; in-frame insertions. (b) Inference of the clonal
341  origin of selected mutations in 197 TARGET AML (Infant, Child and AYA) cases with WGS and 177 TCGA
342  AML (Adult) cases. See Clonality Estimation section in the Online Methods for more details on how the
343  analysis was performed.. (c) The clinical impact of FLT3-ITD is modulated by other sequence aberrations.
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344 963 TARGET patients had complete data for FLT3-ITD, NPM1 and WT1 mutation and NUP98-NSD1
345 fusions. Patients with FLT3-ITD plus WT1 and/or NUP98-NSD1 fusion (n=73) exhibit markedly inferior
346 event-free (multivariate p<0.001) and overall survival (see Fig. S13), while co-occurrence of NPM1
347 mutations with FLT3-ITD associates with improved survival. These findings are confirmed by two
348 separate studies from which TARGET cases were selected (AAML0O531 and CCG-2961) as well as an
349  independent cohort of patients treated on European cooperative group trials (DCOG, see online
350 methods).

351 Figure 4. Chromosomal alterations in pediatric and adult AML patients. (a) Patterns of regional and
352  chromosomal gain (outward projection) and loss (inward projection) in the TARGET (blue) and TCGA
353 (red) AML cohorts. Losses of 5q, 7, and 17 predominate in adults, while gains of 4, 6, 19, and losses of 9,
354 X, and Y are more common in younger patients. Chromosome numbers are printed on the outside and
355 inside of the circle plot, and colored where there are large pediatric-adult differences. (b) Age-specific
356  distributions of validated gene fusions. The fraction of events within an age group for each fusion pair is
357 indicated by white-red shading, while the color of the fusion labels indicates the primary cytogenetic
358  group (colors same as in Fig. 1a, see also Figs. $17-S18). The number in each box indicates the number
359 of patients carrying the indicated translocation (labels at left). (c) Structural and mutational aberrations
360 affecting epigenetic regulators in TARGET (WGS) and TCGA AML cohorts.

361 Figure 5. Aberrant DNA methylation in adult and pediatric AML. (a) Integrative analysis of genes with
362 recurrent mutations, deletions, or transcriptional silencing by promoter DNA hypermethylation (rows) in
363 TARGET and TCGA AML cases (columns). Cluster associations are labeled at the top, including a
364 prominent group enriched for younger patients with WT1 mutations (p=0.0012) that shows extensive
365 transcriptional silencing across dozens of genes (blue boxed region, Hypersilenced). The cytogenetic
366 group, IDH1/2 mutation status (gray, mutated; white, wild-type or unknown) and TARGET/TCGA cohort
367 membership for each sample is indicated below the main figure. The top marginal histogram indicates
368 the total number of genes impacted for each patient. Gene/cytogenetic associations are shown to the
369 right of the main figure, where per gene-rate of involvement by cytogenetic class is indicated by color
370 and shading (unfilled = no involvement; full shading = maximum observed involvement of any gene
371 within patients of the indicated cytogenetic grouping). Wnt regulators and activating NK cell ligands (e.g.
372 DKK1, WIF1 and ULBP1, ULBP2, ULBP3, respectively) are silenced across cytogenetic subtypes (labeled at
373 far right). Distinct groups of silenced genes are also associated with /DH1 or IDH2 mutant patients and in
374  KMT2A-rearranged patients. A subset of genes (56 of 119) altered in >3 patients and of patients (n=310;
375 168 TARGET, 142 TCGA subjects) with one or more genes silenced by promoter methylation is illustrated
376  (see Figs. $21-S22 and Tables S8-S9 for enumeration of all 119 genes in all 456 evaluable subjects.). (b) A
377  subset (16 of 31) of DNA methylation signatures derived by non-negative matrix factorization (NMF) and
378 in silico purification, with samples ordered by hierarchical clustering of signatures (labeled at right).
379  Genomic associations are indicated to the left of the main panel. Signature 13 does not correspond
380 directly to known recurrent alterations, however, along with signature 2 displays potential prognostic
381 significance (see Fig. S24). The patient-specific score matrix and display of all 31 signatures are provided
382 in Table $S10 and Fig. S23. (c) Examples of expression/promoter DNA methylation relationships for IL2RA
383 and SFRP5, 2 genes identified as recurrently silenced (panel a) which also contribute to NMF signatures
384  (panel b) are shown. Y-axis: transformed expression (asinh(TPM)), x-axis: promoter CpG methylation.
385  The vertical red line indicates the empirically established silencing threshold.
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386  Figure 6. miRNAs differentially regulate distinct molecular and age sub-groups in AML (a)
387 Unsupervised clustering of miRNA expression patterns in 152 childhood AML cases identifies four
388 patient subgroups (colored bands at top) with correlation to somatic alterations as indicated (blue bars
389 on gray background), and subgroup-specific miRNA expression (miR-10 and miR-21 are highlighted as
390 examples). (b) Age-related differences in miRNA expression are evident between adult (n=162) and
391 pediatric AML (n=152). Volcano plot indicates differentially expressed miRNAs between adult and
392 pediatric cases. Red-green point shading indicates relative under- or over-expression in TARGET,
393 respectively. (Wilcoxon test, Benjamini-Hochberg adjusted P<0.05; Threshold indicated by dashed red
394 line). (c) A predicted miRNA:mRNA target relationship involving let-7b, which is (d) less abundant in
395 most pediatric cases than in adult cases. (e) High expression of let-7b occurs in a minority of pediatric
396 AML and is associated with shorter time to relapse.
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497 Online Methods

498  Sample Selection and Preparation. All patient samples were obtained by member COG institutions
499 after written consent from the parents/guardians of minors upon enrolling in the trial. The study was
500 overseen by the Institutional Review Board at Fred Hutchinson Cancer Research Center (Protocol 1642,
501 IR File #5236). Selected clinical (e.g., age, presenting hematological indices, cytogenetic classification)
502 and molecular features (e.g., KIT, RAS, NPM, WT1, CEBPA, IDH1 mutations, and FLT3/ITD allelic ratios)
503 were clinically available prior to genomic analyses and are included in the clinical data file available at
504  the TARGET data matrix. 177 cases from the adult de novo AML TCGA dataset® were selected for
505  analysis after exclusion of those with FAB M3 morphology (n=20) or BCR-ABL1 gene fusion (n=3) since
506  these subtypes are not represented in the COG/TARGET-AML cohort. The age distributions for the
507 TARGET WGS discovery group and the TCGA cohort are outlined in Table S3.

508 DNA and RNA was extracted from ficoll-enriched, viably cryopreserved samples from the COG
509 biorepository using the AllPrep Extraction Kit (Qiagen). Nucleic acids were quantified by NanoDrop
510 (Thermo Scientific). RNA samples were tested for quality and integrity using the Agilent 2100
511 Bioanalyzer (Agilent Technologies). The integrity of DNA samples was confirmed by visualization on a
512  0.8% agarose gel.

513 Whole genome sequencing. Sequencing libraries were constructed for WGS cases from genomic DNA
514  and sequenced using combinatorial probe anchor ligation by Complete Genomics (CGI)**. Reads were
515 mapped to the GRCh37 reference human genome assembly by the CGI Cancer Sequencing service using
516 software version 2.1 of the CGI cancer analysis pipeline (http://www.completegenomics.com/customer-
517  support/documentation/).

518 Somatic coding SNVs and indels were extracted from MAF files and filtered to remove 1) germline
519  variants; 2) low-confidence variants and 3) paralogs. For step 1, germline variants used for filtering
520 include those from NLHBI Exome Sequencing Project (http://evs.gs.washington.edu/EVS/), dbSNP 132
521  (https://www.ncbi.nlm.nih.gov/projects/SNP/), St Jude/Washington University Pediatric Cancer Genome
522 Project (PCGP), and CGl WGS from the TARGET project. For step 2, a mutation is considered of low-
523 confidence if it does NOT meet one of the following criteria: a) mutant allele has >3 more read count in
524  tumor than in the normal sample; b) the mutant read count in tumor is significantly higher than that in
525 the matched normal (P<0.01 by Fisher exact test); and c) mutant allele fraction in normal is below 0.05.
526 For step 3, we ran BLAT search using a template sequence that includes the mutant allele and its 20-bp
527  flanking region to determining the uniqueness of mapping of the mutation. To avoid over-filtering, we
528 implemented a rescue pipeline which retains all “gold” variants that match known somatic mutation
529  hotspots based on our variant classification program Medal Ceremony™.

530 In addition to small variant calls (SNV, indel), the CGI cancer analysis pipeline delivered flat files of
531 potential novel DNA junctions and segmented copy number ratios derived from normalized read counts
532 from paired tumor/normal specimens. Circos summary plots of the unfiltered CGI data are available
533  through the data matrix. To reduce potentially spurious calls, final CNVs for analysis were trimmed after
534  empirical tuning to previously available Affymetrix SNP6 microarray calls in matched samples by
535 requiring a CGl average normalized coverage (avgNormCvg) in the region of >20 for putative non-
536 homozygous deletions, the SD for lesser allele fraction < 0.22, a CGI ploidyScore of <30 and trimming of
537 calls on ChrM, centromeric or telomeric regions, and merged for adjacent CNV, per called direction,
538  within 10 Kbp. With these filters, 75 and 85% (loss and gain, respectively) of filtered CNV calls matched
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539  CNVs previously called by Affymetrix SNP6 microarray and 87% of chromosome-arm level calls matched
540 reported karyotype abnormalities reported in the clinical data. Putative copy variants underwent further
541  secondary confirmation using the nanoString nCounter assay (Nanostring Technologies). Novel DNA
542  junctions discovered by WGS were included in cases where at least one additional level of support was
543 available, either from cytogenetic analysis or from RNA sequencing studies.

544  Targeted Capture Sequencing. Candidate genes identified by WGS analysis were selected for
545 independent verification in 182 samples from the WGS discovery cohort and 618 additional subjects
546  treated on COG AAML0O531. Capture baits were designed and ordered using Agilent's SureDesign
547 (https://earray.chem.agilent.com/suredesign/) for these selected genes along with target regions
548 identified in concurrent TARGET studies, targeting coding regions and UTRs with a 10 bp pad. This design
549  (TARGET AML + TARGET other) resulted in an overall target space of 2.376 Mbp with 98.7% of target
550 regions covered by a probe. Probe density was specified at 2x, with moderately stringent repeat
551 masking, and balanced boosting options selected.

552 Genomic DNA libraries from which gene regions of interest are captured were constructed according to
553 British Columbia Cancer Agency Genome Sciences Centre (BCGSC) plate-based and paired-end library
554  protocols on a Biomek FX liquid handling robot (Beckman-Coulter, USA). Briefly, 1ug of high molecular
555 weight genomic DNA was sonicated (Covaris E210) in a 60uL volume to 200-300bp. Sonicated DNA was
556  purified with magnetic beads (Agencourt, Ampure). The DNA fragments were end-repaired,
557 phosphorylated and bead purified in preparation for A-tailing. Illumina sequencing adapters were
558 ligated overnight at 20°C and adapter ligated products bead purified and enriched with 4 cycles of PCR
559 using primers containing a hexamer index that enables library pooling. 94ng from each of 19 to 24
560 different libraries were pooled prior to custom capture using Agilent SureSelect XT Custom 0.5-2.9Mb
561 probes. The pooled libraries were hybridized to the RNA probes at 65°C for 24 hours. Following
562 hybridization, streptavidin-coated magnetic beads (Dynal, MyOne) were used for custom capture. Post-
563 capture material was purified on MinElute columns (Qiagen) followed by post-capture enrichment with
564 10 cycles of PCR using primers that maintain the library-specific indices. Paired-end 100 base reads were
565 sequenced per pool in a single lane of an Illumina HiSeq2500 instrument. lllumina paired-end
566 sequencing reads were aligned to the GRCh37-lite reference using BWA version 0.5.7. This reference
567 contains chromosomes 1-22, X, Y, MT, 20 unlocalized scaffolds and 39 unplaced scaffolds. Multiple lanes
568 of sequences were merged and duplicated reads were marked with Picard Tools. Small variants (SNV
569 and indel) from TCS data were identified by parallel methods, integrated, and subsequently filtered as
570  follows. Mpileup: SNVs were analyzed with SAMtools mpileup v.0.1.17 on paired libraries*®. Each
571 chromosome was analyzed separately using the -C50-DSBuf parameters. The resulting vcf files were
572 merged and filtered to remove low quality variants by using samtools varFilter (with default parameters)
573 as well as to remove variants with a QUAL score of less than 20 (vcf column 6). Finally, variants were
574  annotated with gene annotations from ensembl v66 using snpEff*’ and the dbSNP v137 db membership
575 assigned using snpSift*. Strelka: Samples were analyzed pair wise with the default settings of Strelka*
576  v0.4.7 with primary tumor samples against the matched remission sample. Somatic variants called by
577  either Mpileup or Strelka were combined and filtered by meeting any of the following criteria: <10 reads
578 in the remission sample, <10 reads in the tumor sample, tumor alt base = 0, adjusted tumor allele
579  frequency = 0, gmaf >0.009, or >60 patients had exact SNV. For patients established to be in
580 morphological remission, additional filters included removing variants with >0.10 allele fraction in the
581 remission sample and a FET score of >0.05. For refractory patients, variants were excluded with >0.35
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582  allele fraction in the post-Diagnostic sample. These filtered variants could be “rescued” if a variant was a
583 known COSMIC mutation associated with hematological cancers. The filtering criteria for indel calls
584  were similar. Tandem duplications were identified with Pindel using default parameters™. In addition,
585 clinical molecular testing for specific genes (FLT3 ITD and FLT3 codons 835/836, CEBPA bzip and NTD
586 regions, KIT exons 8 and 17, CBL exons 8 and 9, and WT1 exon 7) were merged into the variant calls for
587 final analysis.

588 DNA variants from discovery and TCS studies were merged to construct the mutation profile for each
589  gene using the web-based program, ProteinPaint®. Genome-wide mutational burden was compared to
590 published data from, and using the method of, Lawrence et al®2.

591  CBL Transcript Variant Screening by cDNA PCR. Total RNA isolated from patient leukemic cells using the
592 Qiagen AllPrep DNA/RNA Mini Kit (Qiagen, Germany) was reverse transcribed to cDNA with oligo DT
593 primer and additional reagents following the Maxima H Minus First Strand cDNA Synthesis Kit
594 instructions (Thermo Scientific, Grand Island, NY).

595  Synthesis of the second-strand cDNA and following PCR were performed using the following primers:
596 forward primer for genemap: (5’FAM-TTCCAAGCACTGATTGATGG), forward primer for sequencing (5'-
597 TTCCAAGCACTGATTGATGG-3’), reverse primer: (5'-AACAGAATATGGCCGGTCTG). PCR was performed in
598  25ul volumes containing 12.5ul Failsafe Epicentre Buffer C (2x) (Epicentre Technologies, Madison, W),
599 0.5uL (10uM) of each primer, 0.25ulL Invitrogen Platinum Taqg Polymerase (Thermo Scientific - Invitrogen,
600 Grand Island, NY), 1uL of cDNA, and 10.25ul of Nuclease-Free Water (USB Corporation, Cleveland, OH).
601  The Thermocycling program consisted of 5 min denaturation at 95 C, followed by 35 cycles at 95 C for 30
602 sec, 60°C for 30 sec and 72 C for 45 sec min and a final extension of 7 min at 72 C in a 96 well Biometra T
603 professional Thermocycler (Biometra, Germany)

604 PCR products were diluted in nuclease free water (USB Corporation, Cleveland, OH) and mixed with
605  deionized Formamide and GENESCAN-400HD (ROX) size markers (Applied Biosystems, Foster City, CA)
606 and submitted for electrophoresis on an ABI 3730 Genetic Analyzer (Applied Biosystems). After
607 electrophoresis the fluorescence signals were analyzed using GeneMapper 5.0 software (Applied
608 Biosystems). Genemapper screening revealed products of the expected WT normal size (685bp), and
609 additional products of various sizes: corresponding to complete deletion of Exon 8 (563bp), complete
610  deletion of Exon 9 (485bp), as well as deletion involving both CBL exon 8 and exon 9 (354bp).

611 Patients exhibiting deletions by Genemapper were then sent for sequence verification. PCR products
612 were treated with Exo-SAPit enzyme (USB Corporation, Cleveland, OH). Sequencing was done by
613 Eurofins MWG Operon LLC (Huntsville, AL) in accordance with their DNA sequencing process guidelines
614  and methods.

615 Generalized linear mixed model for coding mutation counts. In order to account for both fixed and
616  random effects which might be present with age and cytogenetic subgroups, we employed a generalized
617 linear mixed model (glmm, Knudson 2016, R package version 1.1.1, https://CRAN.R-
618 project.org/package=glmm) to model the discrete counts of coding SNVs in each TARGET and TCGA WGS
619  patient with a Poisson error distribution (log link). Marginal likelihood ratio tests for age (as a continuous
620 predictor) and cytogenetic subgroup (as a categorical predictor) were uniformly and highly significant, as
621 reported in the text, while the per-cytogenetic-group random effects accounted for a small (< 0.003%)
622 fraction of the variance observed. The model converged in 208 steps; 10,000 MCMC iterations were
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623 employed to estimate the mixed effects component of the model, fitted per-cytogenetic-group
624  assuming a random slopes model.

625  Generalized Dirichlet-multinomial regression for mutational spectra. To accommodate the possibility
626 of either negative or positive correlation between the counts of each type of mutation (C>T, C>A,
627 C->G, T=>C, T=>A, T=>G) in each subject, we employed a generalized Dirichlet-multinomial model
628 (mgim®, R package version 0.0.7, https://CRAN.R-project.org/package=MGLM)  with age and
629 cytogenetic group as predictors, mutational spectrum (a matrix of counts for each type of mutation) as
630  response. At convergence, the significant predictors of mutational spectrum differences were age (most
631  significant), t(8;21) status, and aberrant karyotype (mutually exclusive with t(8;21) and other common
632 recurrent chromosomal abnormalities). C=>T transitions are known to increase with age, particularly for
633 methylated cytosines; however, an inflation of C->A transversions was particularly apparent in t(8;21)
634  and aberrant karyotype cases. (Both t(8;21) and inv(16) affect core binding factor subunits, and both are
635 associated with higher mutational burdens at a given age, but only t(8;21) cases show additional C>A
636  transversions beyond those expected from counts).

637  Weighted resampling scheme to compare TARGET and TCGA mutation frequencies. Common
638 chromosomal aberrations often co-occur with specific types of additional DNA sequence abnormalities.
639  To account for this observation when determining differences in mutation frequencies between TARGET
640 AML and TCGA AML, we first divided each cohort into the following categories: KMT2A fusions, t(8;21),
641 inv(16), del(7), +8, +21, -Y, and normal karyotype (NK). A total of 131 unique TCGA and 548 TARGET
642 samples fell into one of the above categories. We then sampled equal numbers of specimens from each
643 category and calculated the fraction of samples with mutations in a given gene. To account for sampling
644  variations, we repeated our sampling procedure 5000 times and calculated the mean and standard
645  deviation of the fraction of samples with mutations in each gene of interest.

646  Variant pairwise mutual exclusion and co-occurrence. Pairwise mutually exclusive sequence alterations
647  (Fig S20a) were identified using CoMEt™* with the “exhaustive” option
648  (http://compbio.cs.brown.edu/projects/comet/). Pairwise co-occurrence p-values (Fig S20b) were
649 calculated directly using a hypergeometric distribution (equivalent to Fisher’s exact test). Statistically
650 significant exclusion/co-occurrence patterns were visualized using Cytoscape55 (http://cytoscape.org/),
651  with edge thickness representing —log10(p-value).

652 Orthogonal evaluation of mutual exclusion and co-occurrence via penalized Ising model. A slightly
653 different approach to reconstructing a binary-valued undirected graph (a discrete Markov random field)
654  employs penalized logistic regression of all candidate nodes upon each possible target and selects the
655 most probable graph structure based on extensions of the Bayes information criterion (EBIC). This
656 approach is implemented by Epskamp (https://cran.r-project.org/package=IsingFit)® and employs a
657 hyperparameter (y) for the penalty weight which eventually determines the density of the estimated
658 network. Adjustment for multiple comparisons was applied to the marginal significance of each gene-
659  gene Fisher exact test; this value is not unbiased due to post-selection inference and is only intended as
660 a guide. The resulting network of correlated and anticorrelated binary indicators (gene- and
661 chromosomal-level aberrant/wildtype, pediatric/adult) recovers known and CoMEt-detected
662 relationships, but also identifies several novel and marginally significant (by Fisher’s exact test, see
663 above) relationships, as summarized in Supplementary Table 6.
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664  Hypothesis-testing. Except where described by the methods above, p-values are calculated by Fisher’s
665 exact test; where an exact binomial test is impractical, we approximate this with a Chi-squared p-value.

666  Regression fits for structural/sequence variant burden and age-associated recurrent abnormalities. To
667  fit the ratio of structural to sequence variant impact in each patient, we added 0.333 as a smoothing
668  factor to the counts of each clonal event of each type, using all recurrently mutated, fused, or silenced
669  genes, identified in either cohort, as candidates for “impact” by structural variants. The transparency of
670 each data point represents its observed over expected mutational burden, given the patient’s age, but
671 has no impact on the loess regression fit. The loess curve was fit by ggplot2 (http://ggplot2.org) on a
672 log10 scale. To estimate the relative contribution of each of the recurrent fusion neighborhoods across
673 ages (rather than age groups), we used the “zoo” time series package®’ to fit a rolling median with
674 expanding time steps (1, 3, 5, 8, 17) across all subjects for whom we had data on fusions. The
675 (smoothed) contribution of each family of fusions to the total number of patients in a given age window

676  (expanding with advancing age) is plotted in Figure 2d.

677

678  Clonality estimation. Several packages (including MAFtools>® (https://github.com/PoisonAlien/maftools)
679  Gaussian mixture, SciClone’s® beta mixture model, and a weighted penalized logistic mixture model)
680  were compared to validate the results obtained, in addition to manual review of all results. While

681 proportions of mutations assigned to various clones differed in some cases (especially with and without
682 read support weighting), the primary mutational clones were consistently identified by all methods, and
683 an overall tendency for childhood and AYA patients to present with greater diagnostic mutational
684  clonality, at the read depths available in the TARGET WGS and TCGA data, was confirmed by all
685 methods. Among AYA patients (where both TCGA and TARGET AML cohorts contain numerous patients),
686 no difference in estimated clonality or monoclonal/polyclonal balance was observed between cohorts
687  (p=0.7 and p=0.65 respectively by Fisher’s exact test), and although a trend towards decreased
688 mutational clonality with increasing age among AYA patients was observed, it was not statistically
689 significant (p=0.2). It is important to note that, owing to variable sequencing depths, we do not have the
690 statistical power to reliably detect clones present in less than 5% of the total sample material, though
691 inclusion of variant allele frequencies as low as 0.1% did not change our results or conclusions regarding
692 mutational clonality. Karyotypic clonality was assessed by parsing ISCN karyotypes of all TARGET and
693 TCGA AML patients and using stemline karyotype to identify the most likely ancestral aberrations for
694 patients with abnormal karyotype. Patients with normal karyotype were assigned a karyotypic clonality
695  of 1, as were patients with all metaphases bearing identical aberrations.

696  Aberrations predicting induction failure. A logistic model with terms for NUP98-NSD1 fusions, FLT3
697 mutations, interactions between the preceding, and (any one of) WT1, EZH2, or ASXL1 mutation
698  (mutually exclusive) or deletions of the latter (nearly mutually exclusive), or KMT2A rearrangements
699  (also mutually exclusive with the preceding) best fit the data for subjects where the first recorded event
700  was either induction failure (1) or any other outcome (0). All possible nested models with the same
701  terms, and all other models arrived at by penalized logistic regression (using an elastic net penalty with
702  the glmnet package®, with any observed recurrent lesion eligible for inclusion as an independent
703 predictor), yielded inferior fits both in terms of classification error and by Akaike information criterion
704  (AIC). We report the marginal p-value for WT1/ASXL1/EZH2 aberrations as predictors of induction
705  failure in the test based on this model fit.
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706  mRNA Sequencing. Total RNA quality was verified on Agilent Bioanalyzer RNA nanochip or Caliper GX HT
707 RNA LabChip, with samples passing quality control arrayed into a 96-well plate. PolyA+ RNA was purified
708  using the 96-well MultiMACS mRNA isolation kit on the MultiMACS 96 separator (Miltenyi Biotec) from
709 2ug total RNA with on-column DNasel-treatment as per the manufacturer's instructions. The eluted
710 PolyA+ RNA was ethanol precipitated and resuspended in 10uL of DEPC treated water with 1:20
711  SuperaselN (Life Technologies). First-stranded cDNA was synthesized from the purified polyA+RNA using
712 the Superscript cDNA Synthesis kit (Life Technologies) and random hexamer primers at a concentration
713  of 5uM along with a final concentration of 1ug/ul Actinomycin D, followed by Ampure XP SPRI beads on
714  a Biomek FX robot (Beckman-Coulter). The second strand cDNA was synthesized following the
715 Superscript cDNA Synthesis protocol by replacing the dTTP with dUTP in dNTP mix, allowing second
716 strand to be digested using UNG (Uracil-N-Glycosylase, Life Technologies, USA) in the post-adapter
717  ligation reaction and thus achieving strand specificity. The cDNA was quantified by PicoGreen (Life
718  Technologies) and VICTOR®V Fluorimeter (PerkinElmer). The cDNA was fragmented by Covaris E210
719  sonication for 55 seconds at a “Duty cycle” of 20% and “Intensity” of 5. The paired-end sequencing
720 library was prepared following the BC Cancer Agency Genome Sciences Centre strand-specific, plate-
721 based and paired-end library construction protocol on a Biomek FX robot (Beckman-Coulter, USA).
722 Briefly, the cDNA was purified in 96-well format using Ampure XP SPRI beads, and was subject to end-
723 repair, and phosphorylation by T4 DNA polymerase, Klenow DNA Polymerase, and T4 polynucleotide
724 kinase respectively in a single reaction, followed by cleanup using Ampure XP SPRI beads and 3’ A-tailing
725 by Klenow fragment (3’ to 5’ exo minus). After purification using Ampure XP SPRI beads, picogreen
726 guantification was performed to determine the amount of Illumina PE adapters to be used in the next
727  step of adapter ligation reaction. The adapter-ligated products were purified using Ampure XP SPRI
728  beads, and digested with UNG (1U/ul) at 370C for 30 min followed by deactivation at 950C for 15 min.
729  The digested cDNA was purified using Ampure XP SPRI beads, and then PCR-amplified with Phusion DNA
730 Polymerase (Thermo Fisher) using lllumina’s PE primer set, with cycle condition 98°C 30sec followed by
731 10-13 cycles of 98°C 10 sec, 65°C 30 sec and 72°C 30 sec, and then 72°C 5min. The PCR products were
732 purified using Ampure XP SPRI beads, and checked with Caliper LabChip GX for DNA samples using the
733 High Sensitivity Assay (PerkinElmer, Inc. USA). PCR product of the desired size range was purified using
734 8% PAGE, and the DNA quality was assessed and quantified using an Agilent DNA 1000 series Il assay
735  and Quant-iT dsDNA HS Assay Kit using Qubit fluorometer (Invitrogen), then diluted to 8nM. The final
736 library concentration was double checked and determined by Quant-iT dsDNA HS Assay again for
737 Illumina Sequencing.

738 mRNA Quantification. lllumina paired-end RNA sequencing reads were aligned to GRCh37-lite genome-
739  plus-junctions reference using BWA version 0.5.7. This reference combined genomic sequences in the
740 GRCh37-lite assembly and exon-exon junction sequences whose corresponding coordinates were
741 defined based on annotations of any transcripts in Ensembl (v69), Refseq and known genes from the
742 UCSC genome browser, which was downloaded on August 19 2010, August 8 2010, and August 19 2010,
743 respectively. Reads that mapped to junction regions were then repositioned back to the genome, and
744  were marked with 'ZJ:Z' tags. BWA is run using default parameters, except that the option (-s) is included
745  to disable Smith-Waterman alignment. Finally, reads failing the lllumina chastity filter are flagged with a
746 custom script, and duplicated reads were flagged with Picard Tools. Gene, isoform, and exon-level
747 quantification was performed as previously described®’.
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748  Fusion mRNA Transcript Detection. Transcriptomic data were de novo assembled using ABySS (v1.3.2)
749 and trans-ABySS (v1.4.6)%%. For RNA-seq assembly alternate k-mers from k50-k96 were performed using
750 positive strand and ambiguous stand reads as well as negative strand and ambiguous strand reads. The
751 positive and negative strand assemblies were extended where possible, merged and then concatenated
752 together to produce a meta-assembly contig dataset. Large scale rearrangements and gene fusions from
753 RNA-seq libraries were identified from contigs that had high confidence GMAP (v2012-12-20) alignments
754  to two distinct genomic regions. Evidence for the alighments were provided from aligning reads back to
755  the contigs and from aligning reads to genomic coordinates. Events were then filtered on read
756  thresholds. Insertions and deletions were identified by gapped alignment of contigs to the human
757 reference using GMAP. The events were then screened against dbSNP and other variation databases to
758 identify putative novel events.

759 miRNA Sequencing. Small RNAs, containing microRNA (miRNA), in the flow-through material following
760 MRNA purification on a MultiMACS separator (Miltenyi Biotec) are recovered by ethanol precipitation.
761 miRNA-seq libraries are constructed using a 96-well plate-based protocol developed at the BC Cancer
762 Agency, Genome Sciences Centre. Briefly, an adenylated single-stranded DNA 3’ adapter is selectively
763 ligated to miRNAs using a truncated T4 RNA ligase2 (New England Biolabs). An RNA 5’ adapter is then
764  added, using a T4 RNA ligase (Ambion) and ATP. Next, first strand cDNA is synthesized using Superscript
765 Il Reverse Transcriptase (Invitrogen), and serves as the template for PCR. Index sequences (6
766 nucleotides) are introduced at this PCR step to enable multiplexed pooling of miRNA libraries. PCR
767 products are pooled, then size-selected on an in-house developed 96-channel robot to enrich the miRNA
768  containing fraction and remove adapter contaminants. Each size-selected indexed pool is ethanol
769 precipitated and quality checked on an Agilent Bioanalyzer DNA 1000 chip and quantified using a Qubit
770  fluorometer (Invitrogen, cat. Q32854). Each pool is then diluted to a target concentration for cluster
771  generation and loaded into a single lane of a HiSeq 2000 flow cell for sequencing with a 31-bp main read
772 (for the insert) and a 7-bp read for the index.

773  Sequence data are separated into individual samples based on the index read sequences, and the reads
774 undergo an initial QC assessment. Adapter sequence is then trimmed off, and the trimmed reads for
775  each sample are aligned to the NCBI GRCh37-lite reference genome.

776 Routine QC assesses a subset of raw sequences from each pooled lane for the abundance of reads from
777  each indexed sample in the pool, the proportion of reads that possibly originate from adapter dimers
778  (i.e. a 5’ adapter joined to a 3’ adapter with no intervening biological sequence) and for the proportion
779 of reads that map to human miRNAs. Sequencing error is estimated by a method originally developed
780  for SAGE.

781 Libraries that pass this QC stage are preprocessed for alignment. While the size-selected miRNAs vary
782 somewhat in length, typically they are ~21 bp long, and so are shorter than the 31-bp read length. Given
783 this, each read sequence extends some distance into the 3' sequencing adapter. Because this non-
784  biological sequence can interfere with aligning the read to the reference genome, 3’ adapter sequence is
785 identified and removed (trimmed) from a read. The adapter-trimming algorithm identifies as long an
786 adapter sequence as possible, allowing a number of mismatches that depends on the adapter length
787  found. A typical sequencing run yields several million reads; using only the first (5’) 15 bases of the 3’
788 adapter in trimming makes processing efficient, while minimizing the chance that a miRNA read will
789 match the adapter sequence.
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790  After each read has been processed, a summary report is generated containing the number of reads at
791 each read length. Any trimmed read that is shorter than 15bp is discarded; remaining reads are
792 submitted for alignment to the reference genome. BWA (Li and Durbin, 2009) alignment(s) for each read
793 are checked with a series of three filters. A read with more than 3 alignments is discarded as too
794  ambiguous. Only perfect alignments with no mismatches are used. Reads that fail the Illumina
795 basecalling chastity filter are retained, while reads that have soft-clipped CIGAR strings are discarded.

796 For reads retained after filtering, each coordinate for each read alignment is annotated using a
797  reference database, and requiring a minimum 3-bp overlap between the alignment and an annotation. If
798 a read has more than one alignment location, and the annotations for these are different, we use a
799 priority list to assign a single annotation to the read, as long as only one alignment is to a miRNA. When
800 there are multiple alignments to different miRNAs, the read is flagged as cross-mapped (de Hoon et al.,
801 2010), and all of its miRNA annotations are preserved, while all of its non-miRNA annotations are
802 discarded. This ensures that all annotation information about ambiguously mapped miRNAs is retained,
803 and allows annotation ambiguity to be addressed in downstream analyses. Note that we consider
804 miRNAs to be cross-mapped only if they map to different miRNAs, not to functionally identical miRNAs
805 that are expressed from different locations in the genome. Such cases are indicated by miRNA miRBase
806 names, which can have up to 4 separate sections separated by "-", e.g. hsa-mir-26a-1. A difference in
807  the final (e.g. *-1’) section denotes functionally equivalent miRNAs expressed from different regions of
808 the genome, and we consider only the first 3 sections (e.g. ‘hsa-mir-26a’) when comparing names. As
809 long as a read maps to multiple miRNAs for which the first 3 sections of the name are identical (e.g. hsa-
810  mir-26a-1 and hsa-mir-26a-2), it is treated as if it maps to only one miRNA, and is not flagged as cross-
811 mapped.

812  The minimum depth of sequencing required to detect the miRNAs that are expressed in one sample is
813 1,000,000 reads per library mapped to miRBase (v21) annotations. Finally, for each sample, the reads
814  that correspond to particular miRNAs are summed and normalized to a million miRNA-aligned reads to
815  generate the quantification files. TARGET and TCGA miRNA quantifications were normalized with pSVA,
816 preserving known subtype-specific miRNA expression patterns, prior to comparison63.

817 Differentially expressed miRNAs and mRNA were determined by Wilcoxon tests, where significantly
818 differentially expressed miRNAs were those with Benjamini-Hochberg multiple test corrected p-values
819  <0.05. Correlation between miRNA and mRNA expression was determined using the Spearman
820 correlation.

821 DNA-methylation analysis. Bisulfite conversion of genomic DNA was performed with EZ DNA
822 methylation Kit (Zymo Research, Irvine, CA) following the manufacturer’s protocol with modifications for
823 the Infinium Methylation Assay. Briefly, one microgram of genomic DNA was mixed with 5 pl of Dilution
824  Buffer and incubated at 37°C for 15 minutes and then mixed with 100 pl of conversion reagent prepared
825 as instructed in the protocol. Mixtures were incubated in a thermocycler for 16 cycles at 95°C for 30
826  seconds and 50°C for 60 minutes. Bisulfite-converted DNA samples were loaded onto the provided 96-
827 column plates for desulphonation, washing and elution. The concentration of bisulfite-converted, eluted
828 DNA was measured by UV-absorbance using a NanoDrop-1000 (Thermo Fisher Scientific, Waltham, MA).
829 Bisulfite-converted genomic DNA was analyzed using the Infinium Human Methylation27 Beadchip Kit
830 (llumina, San Diego, CA, #WG-311-1202). DNA amplification, fragmentation, array hybridization,
831 extension and staining were performed with reagents provided in the kit according to the
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832 manufacturer’s protocol (lllumina Infinium 1l Methylation Assay, #WG-901-2701). Briefly, 4 ul of
833 bisulfite-converted genomic DNA at a minimum concentration of 20 ng/uL) was added to 0.8 ml 96-well
834  storage plate (Thermo Fisher Scientific), denatured in 0.014N sodium hydroxide, neutralized and then
835  amplified for 20-24 hours at 37°C. Samples were fragmented at 37°C for 60 minutes and precipitated in
836 isopropanol. Re-suspended samples were denatured in a 96-well plate heat block at 95°C for 20
837  minutes. 15 pl of each sample was loaded onto a 12-sample BeadChip, assembled in the hybridization
838 chamber as instructed by the manufacturer and incubated at 48°C for 16-20 hours. Following
839 hybridization, the BeadChips were washed and assembled in a fluid flow-through station for primer-
840  extension reaction and staining with reagents and buffers provided. Polymer-coated BeadChips were
841 scanned in an iScan scanner (lllumina) using Inf Methylation mode. For both HumanMethylation27 and
842 HumanMethylation450 arrays, methylated and unmethylated signal intensity and detection p-values
843 were extracted after background correction and (in the case of HumanMethylation450 arrays) dye-bias
844  equalization by normal-exponential convolution (noob®) as implemented in the minfi package®. Data
845  from HumanMethylation450 arrays were additionally normalized using functional normalization
846  (funnorm®®) as implemented in the minfi package, then summarized as beta values [M /(M+U)]. Probes
847  with an annotated SNV within the CpG or single-base extension site are masked as NA across all
848  samples. Probes with non-detection probability > 0.01 are masked as NA for individual samples.

849  Transcriptional silencing evaluation and tabulation

850  Transcription is influenced by a large number of features, among which is methylation of genomic CpG
851 dinucleotides, which often leads to methyl-binding domain proteins excluding transcriptional activators
852 when it occurs near a transcription start site. Not all gene promoters are influenced by differences in
853 DNA methylation, and not all promoters which are thusly influenced are relevant in a given cell type.
854  Thus we sought to identify bundles of transcripts (genes) whose expression appears to be influenced by
855 promoter CpG methylation and whose expression potential is perturbed in a subset of AML cases.

856 To establish a uniform criteria for “calling” such events, we evaluated over 50,000 loci from the Illumina
857 HumanMethylation450 (“450k”) microarray near the transcription start sites of over 20,000 transcripts.
858  Where any variance in transcript abundance was explained by variation in DNA methylation levels at a
859 locus, we retained the locus and gene symbol for further evaluation. With this set of several thousand
860 potential marker pairs, we iteratively sought “silencing” cutoff points, such that the maximum
861  expression of a gene in any sample with methylation above the cutoff level was less than or equal to the
862 median expression of samples below the cutoff. The relative levels of DNA methylation and expression
863 appeared to differ systematically between TCGA AML and TARGET AML patients. Therefore we retained
864  the most conservative (highest) cut-point from among the two cohorts. A large number of TARGET AML
865 patients were previously assayed on the promoter-centric Illumina HumanMethylation27 (“27k”)
866 microarray; to maximize the sample size for silencing calls, we performed the same conservative
867 procedure as described above with 27k loci. Whenever a locus could be found with a suitable cut-point
868 on both 27k and 450k arrays, we used the two loci to cross-validate transcriptional silencing behavior
869  between the two (largely disjoint) sets of samples (TCGA AML patients were assayed on both 27k and
870 450k arrays, so we used the appropriate complementary assay to cross-validate each cutoff in TCGA).
871  The resulting set of “tag CpGs” (loci with satisfactory cutoff values for a given gene) on each platform,
872  along with the results of applying these cutoffs to dichotomize patient samples into “silenced” or not,
873 are provided in Table $9. Selected loci and genes affected across multiple patients are plotted in Fig. 5a,
874  annotated within each major cytogenetic group by the fraction of patients silenced.
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875 Non-negative matrix factorization, DNA methylation signature derivation, and hierarchical clustering

876 Non-negative matrix factorization (NMF) decomposes a strictly positive data matrix X (with N rows and
877 M columns) into a lower-dimensional NxK weight matrix W and a corresponding KxM score matrix H*’.
878  The crux of the decomposition is to find coefficients for W and H which, when multiplied, most closely
879  recover the original high-dimensional data matrix X, as there is no guarantee that a global optimum
880 exists in the absence of further constraints. This can be approached as an optimization problem: given
881 an estimate of the underlying rank K for the weight matrix W, what coefficients minimize the squared
882 reconstruction error (X~WH)*? When this is formulated as a non-negative least squares fit, alternating
883 between fits for W and H at each iteration, a fast sequential coordinate descent procedure implemented
884 by Eric Xihui Lin (https://cran.r-project.org/web/packages/NNLM/vignettes/Fast-And-Versatile-
885 NMPF.html) is useful for the large matrix we use for the input X. To decrease the size of X without
886 discarding information, the HumanMethylation450 data was further collapsed by aggregating signals at
887 adjacent CpG sites (up to 50bp separated) using the cpgCollapse function in the minfi package, yielding
888 221,406 discrete clustered methylation measurements, of which approximately half (118,586) showed
889 non-negligible variation across diagnostic tumor samples and/or matched remission samples. The
890  underlying identifiable rank K of the low-dimensional weight matrix W was estimated by 5-fold cross-
891 validation, using random row x column knockouts (set to NA) in 20% of the matrix entries for each fold,
892 followed by minimization of reconstruction error and maximization of inferred rank. Based on this
893 procedure, the optimal rank K (with mean absolute error of 0.02793436) for W was estimated as 31. By
894 masking with W and H matrices derived from normal bone marrow populations (for which K was chosen
895  as 13, again based on reconstruction error as above), we subtracted “normal” hematopoietic cell signals
896 and simultaneously estimated the purity (cellularity) of each tumor sample, which allowed us to amplify
897 disease-specific signals, correcting in silico for estimated purity on a logit scale, and finally transforming
898  back to the original proportional 0-1 scale for presentation in Fig. 5b. The 31-row by 284-column patient
899 score matrix H, are provided in Table S10; selected signatures of particular interest are plotted in Fig.
900 5b. Ward’s method was employed to cluster columns (patients) in the figure panel by Manhattan
901 distance.

902 Survival analysis.

903 We tested an additional cohort of pediatric AML patients for outcome measures associated with
904 alterations of FLT3-ITD, NPM1 and WT1 mutations and NUP98-NSD1 translocations (Fig. 3C, lower right,
905 and Fig. S13, abbreviated “DCOG”). Patient data for this cohort was provided by the Dutch Childhood
906 Oncology group (DCOG), the AML ‘Berlin-Frankfurt-Muinster’ Study Group (AML-BFM-SG), the Czech
907 Pediatric Hematology (CPH) group, the St Louis Hospital in Paris, France, the Medical Research Council
908 (MRC), and the Italian Association for Pediatric Hematology and Oncology (AIEOP). Patients were
909 treated by LAME 86, DCOG/AML-BFM 87, DCOG 92-94/AML-BFM 93, AML-BFM 98, AEIOP-2002/01,
910 ELAMO2, AML-BFM 04 and MRC-12/15 protocoI568"75. These protocols consisted of 4-5 blocks of
911 intensive chemotherapy, using a standard cytarabine and anthracycline backbone. All patients in this
912  cohort were previously published by Balgobind et al.”®, and were extensively screened by RT-PCR or FISH
913 for recurrent aberrations, such as KMT2A-rearrangements, RUNX1-RUNX1T1, CBFB-MYH11, PML-RARA,
914  NUP98-rearrangements, FLT3-ITD, and mutations in NPM1, CEBPA, WT1, N/KRAS and c-KIT"®"°, and
915 included 326 patients with data available on NUP98-NSD1, NPM1, FLT3-ITD and WT1 status. Complete
916 remission was obtained in 74.8% of the patients. A total of 114 patients (35.0%) received a HSCT, of
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917  which 35 (10.7%) received an HSCT at first complete remission. The median follow up time of survivors
918  was 4.5 years (range 0.3-28 years) and the cohort-wide OS and EFS were 59.5% and 41.9%, respectively.

919 The Kaplan-Meier method was used to estimate overall survival (OS) and event free survival (EFS). OS is
920 defined as the time from study entry until death. EFS is defined as the time from study entry until death,
921 induction failure, or relapse. Patients lost to follow-up were censored at their date of last known
922 contact. Comparisons of OS and EFS were made using the log-rank test.

923  TARGET and TCGA subjects were combined in Cox proportional hazards fits for association of DNA
924 methylation signatures with survival outcome, and model parameters for well-established risk factors
925 (TP53 mutation, white blood cell count at diagnosis) were also estimated. Due to the nonlinear
926  association of age with survival in pediatric AML patients, and the difficulty of properly evaluating this
927 relationship, we instead stratified the Cox proportional hazards fits by cohort.

928 For miRNA associated survival analyses, the expression (RPM) cut point between high and low
929 expression groups for each miRNA was defined using the X-tile method®’, where all separation points
930 between patients were considered and the selected cut point was the one that provided the optimal
931 (lowest) EFS log rank p-value.

932 Life Sciences Reporting Summary

933 For additional information on experimental design, methods and reagents, please see the associated “Life
934  Sciences Reporting Summary Report” file.

935 Data Availability

936 Complete details of sample preparation protocols, clinical annotations, and all primary data are available
937  through the TARGET Data Matrix (https://ocg.cancer.gov/programs/target/data-matrix). Sequence data
938 are also accessible through the National Cancer Institute Genomic Data Commons
939  ((https://portal.gdc.cancer.gov/legacy-archive/search/f) or the National Center for Biotechnology
940 Information’s dbGaP (https://www.ncbi.nlm.nih.gov/gap) under accession number phs000218.
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