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Abstract

Reticulate species evolution, such as hybridization or introgression, is rela-
tively common in nature. In the presence of reticulation, species relation-
ships can be captured by a rooted phylogenetic network, and orthologous
gene evolution can be modeled as bifurcating gene trees embedded in the
species network. We present a Bayesian approach to jointly infer species
networks and gene trees from multilocus sequence data. A novel birth-
hybridization process is used as the prior for the species network, and we
assume a multispecies network coalescent (MSNC) prior for the embedded
gene trees. We verify the ability of our method to correctly sample from the
posterior distribution, and thus to infer a species network, through simula-
tions. To quantify the power of our method, we reanalyze two large datasets
of genes from spruces and yeasts. For the three closely related spruces, we
verify the previously suggested homoploid hybridization event in this clade;
for the yeast data, we find extensive hybridization events. Our method is
available within the BEAST 2 add-on SpeciesNetwork, and thus provides
an extensible framework for Bayesian inference of reticulate evolution.

Keywords: reticulate evolution, hybridization, multispecies coalescent, in-
complete lineage sorting

1 Introduction

Hybridization during speciation is relatively common in animals and plants
(Mallet, 2005, 2007). However, when reconstructing the evolutionary his-
tory of species, typically non-reticulating species trees are inferred (Guindon
et al., 2010; Stamatakis, 2014; Drummond and Bouckaert, 2015; Ronquist
et al., 2012), and the potential for hybridization events is ignored.

To account for the distribution of evolutionary histories of genes inher-
ited from multiple ancestral species, the multispecies coalescent model (Ran-
nala and Yang, 2003; Liu et al., 2009) was extended to allow reticulations
among species, named multispecies network coalescent (MSNC) model (Yu
et al., 2014). Orthologous genes are modeled as gene trees embedded in the
species network. The MSNC model accounts for gene tree discordance due
to incomplete lineage sorting and reticulate species evolution events, such
as hybridization or introgression. There have been computational methods
developed based on the MSNC to infer species networks using maximum
likelihood (Yu et al., 2014; Yu and Nakhleh, 2015; Soĺıs-Lemus and Ané,
2016) and Bayesian inference (Wen et al., 2016). These methods use gene
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trees inferred from other resources as input. Due to the model complexity,
applying the MSNC model in a full Bayesian framework, i.e., to infer the
posterior distribution of species network and gene trees directly from the
multilocus sequence data, is challenging. Recently Wen and Nakhleh (2017)
have developed a Bayesian method that can co-estimate species networks
and gene trees from multilocus sequence data, but a process-based prior for
the species network is still lacking. Their method also integrates over all
possible gene tree embeddings at each MCMC step, which means that the
estimated histories of individual gene trees within the species network are
not available for subsequent analysis, and the method does not co-estimate
base frequencies or substitution (transition and transversion) rates.

In this paper, we present a Bayesian method to infer ultrametric species
networks jointly with gene trees and their embeddings from multilocus se-
quence data. Our method assumes a birth-hybridization model for the
species network, the MSNC model for the embedded gene trees with ana-
lytical integration of population sizes, and employs novel MCMC operators
to sample the species network and gene trees along with associated param-
eters. It is able to use the full range of substitution models implemented
in BEAST 2 (Bouckaert et al., 2014), including models with gamma rate
variation across sites (Yang, 1994).

2 New Approaches

In this section, we specify our approach to sample from the posterior dis-
tribution of species networks and gene trees, given a multilocus sequence
alignment. First we derive the unnormalized posterior distribution. Then
we introduce operators to move through the space of species networks, the
space of gene trees, and finally to update the gene tree embeddings within
species networks.

2.1 The posterior distribution of species networks and gene

trees

2.1.1 The probability density of a species network

The birth-hybridization process provides a prior probability for a given
species network  (Fig. 1). The process starts from t0 (time of origin)
in the past with a single species. A species gives birth to a new species with
a constant rate � (speciation rate), and two species merge into one with a
constant rate ⌫ (hybridization rate). That is, at the moment of k species,
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the speciation rate is k�, the hybridization rate is
�
k
2

�
⌫, and the waiting time

to the next event is an exponential distribution. The process ends at time
0 (the present).
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Figure 1: a) A species network with 3 tips, 3 bifurcations, and 1 reticulation.
The inheritance probability at branch S1H1 is �, and that at S2H1 is 1� �.
b) Another network with 4 tips and 2 reticulations, with �1 and �2 associated
with S1H1 and S3H2, respectively.

The probability density of a species network  with n extant species
descending from n � 1 + m speciation events and m hybridization events,
and these events happening at time t1 > t2 > . . . > tn+2m�1, conditioned
on t0, � and ⌫, is,

f( | �, ⌫, t0) = �n+m�1⌫m
n+2m�1Y

i=0

e�(�ki+⌫(ki2 ))(ti�t
i+1), (1)

where ki is the number of lineages within time interval (ti, ti+1) and tn+2m =
0 is the present time. For the network shown in Figure 1a, the probability
density of the species network is

f( | �, ⌫, t0) =�e��(t0�t1)

�e�(2�+⌫)(t1�t2)

�e�(3�+3⌫)(t2�t3)

⌫e�(4�+6⌫)(t3�t4)

e�(3�+3⌫)t4 .
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In our Bayesian analysis, the parameters �, ⌫, and t0 can be assigned hy-
perpriors.

2.1.2 The probability of the sequence data given the gene trees

Assuming complete linkage within each locus, the probability of the data
D = {D1, D2, . . . , Dl} given gene trees G = {G1, G2, . . . , Gl} is the product
of phylogenetic likelihoods (Felsenstein, 1981) at individual loci:

Pr(D | G,µµµ,''') =
lY

i=1

Pr(Di | Gi, µi,'i), (2)

where Gi is the gene tree with coalescent times, µi is the substitution rate
per site per time unit, and 'i represents the parameters in the substitution
model (e.g., the transition-transversion rate ratio  in the HKY85 model
(Hasegawa et al., 1985)), at locus i (i = 1, . . . , l).

There are two sources of evolutionary rate variation: across gene tree lin-
eages at the same locus and across di↵erent gene loci. In the strict molecular
clock model (Zuckerkandl and Pauling, 1965), µ is the global clock rate, i.e.,
no rate variation across gene lineages at each locus. To extend to a relaxed
molecular clock model (e.g., Thorne and Kishino, 2002; Drummond et al.,
2006; Lepage et al., 2007; Rannala and Yang, 2007), the molecular clock
rate is variable across gene lineages following certain distributions with µ as
the mean. To account for rate variation across genes, gene-rate multipliers
{m1,m2, . . . ,ml} are constrained to average to 1.0 (

Pl
i=1mixi = 1, where

xi is the proportion of sites in locus i to the total number of sites). Then
the substitution rate at locus i is µi = µmi. Thus, when multiplying the
gene tree lineages in Gi by µi, all the branch lengths are then measured by
genetic distance (substitutions per site).

The gene-rate multipliers are assigned a flat Dirichlet prior. The average
substitution rate (clock rate) µ can be either fixed to 1.0 such that branch
lengths are measured by genetic distance, or assigned an informative prior
to infer branch lengths measured in absolute time.

2.1.3 The probability density of the gene trees given a species

network

The gene trees G = {G1, G2, . . . , Gl} are embedded in the species network
 under the multispecies network coalescent (MSNC) model (Yu et al.,
2014) (Fig. 2). Hybridizations or horizontal gene transfers are modelled
by reticulations in the species network. The e↵ective population sizes N =
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Figure 2: Two gene trees embedded in the species network of Fig. 1a.
There are 2 samples from species A, 3 samples from B, and either 1 or 2
samples from C. For each gene tree lineage traversing the reticulation node
H1 backward in time, it goes to the left population with probability �, and
to the right with probability 1� �.

{N1, N2, . . . , Nb} are assumed to be identically and independently distributed
(i.i.d.) for each of the b branches in  , while each locus has the same ef-
fective population size Ni at branch i (i = 1, . . . ,b). For each locus j, the
number of coalescences of gene tree Gj within branch b of  is denoted by
kjb, and the number of lineages at the tipward end of b is denoted by njb,
thus the number of lineages at the rootward end of b is njb�kjb. The kjb+1
coalescent time intervals between the tipward and rootward of branch b are
denoted by cjbi (0  i  kjb). pj is the gene ploidy of locus j (e.g., 2 for
autosomal nuclear genes and 0.5 for mitochondrial genes in diploid species).
��� = {�1, . . . , �h} are the inheritance probabilities, one per reticulation node
in  . For each lineage of Gj traversing the reticulation node Hh backward in
time, with probability �h it goes to the parent branch associated with that
inheritance probability, and to the alternate parent branch with probability
1��h. The corresponding number of traversing lineages are denoted by ujh
and vjh respectively.

The coalescent probability of the gene trees G in species network  with
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time being measured in calendar units is thus:

f(G |  ,���, N)

=
lY

j=1

2

4
bY

b=1

(pjNb)
�k

jb exp

0

@�(pjNb)
�1

k
jbX

i=0

cjbi

✓
njb � i

2

◆1

A
hY

h=1

�
u
jh

h (1� �h)
v
jh

3

5

= ⇤
bY

b=1

rbNb
�q

b exp(��bN
�1
b ), (3)

where qb =
P

j kjb, rb =
Q

j p
�k

jb

j , �b =
P

j p
�1
j

Pk
jb

i=0 cjbi
�n

jb

�i
2

�
, and ⇤ =Q

j

Q
h �

u
jh

h (1� �h)vjh . When there is no reticulation in the species network
(i.e., it is a species tree), then ⇤ = 1 and Equation 3 is equivalent to Equation
2 in Jones (2017).

Note here, when time is measured by genetic distance, we use ✓b = Nbµ
as the population size parameter of branch b, and ⌧i = tiµ as the height of
node i. The prior for ��� can be any distribution on [0, 1], we use throughout
f(�h) ⇠ U(0, 1). In the next section, we discuss how to integrate out the
population sizes, which will improve computational speed.

2.1.4 Integrating out the population sizes analytically

Equation 3 has the form of unnormalized inverse gamma densities. The
population sizes N can be integrated out through the use of i.i.d. inverse-
gamma(↵,�) conjugate prior distributions (Jones, 2017; Hey and Nielsen,
2007), that is,

f(G |  ,���) =
Z

f(G |  ,���, N)f(N | ↵,�)dN

= �
bY

b=1

Z 1

0
rbNb

�q
b exp(��bN

�1
b )

�↵

�(↵)
N�↵�1

b exp(��N�1
b )dNb

= �
bY

b=1

rb�
↵

(� + �b)↵+q
b

�(↵+ qb)

�(↵)
. (4)

The symbolic notations follow Equation 3.
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2.1.5 The joint posterior distribution

The joint posterior distribution of the parameters is

f( , G,⇥ | D) / Pr(D | G,µµµ,''')f(G |  ,���)f( | �, ⌫, t0)
f(µµµ)f(''')f(���)f(�, ⌫)f(t0). (5)

Here ⇥ represents (µµµ,''',���,�, ⌫, t0).

2.2 MCMC operators for the species network

A B C A B C A B C

a) b) c)
R R R

S2

H1 H1H1

S2 S2

S1 S1S1

Figure 3: Three cases when the node-slider operator is applied: a) a bifurca-
tion node S2 is selected; b) the reticulation node H1 is selected; c) the origin
is selected. The dashed lines are the lower and upper bounds for changing
its height (only the lower bound is applicable in c)). For the node-uniform
operator, a) and b) apply but c) does not.

2.2.1 Node slider

The node-slider operator only changes the node heights of the species net-
work, not the topology. It selects an internal node or the origin randomly,
then proposes a new height centered at the current height according to a
normal distribution: t0 | t ⇠ N(t,�2), where � is a tuning parameter control-
ling the step size. The lower bound is the oldest child-node height, the upper
bound is the youngest parent-node height (except for the origin, Fig. 3). If
the proposed value is outside this range, the excess is reflected back into the
interval. Note that for the origin, if the proposed height is outside the range
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of its prior, this move is aborted. A variation of this operator can use a uni-
form proposal instead of the normal proposal: t0 | t ⇠ U(t� w/2, t+ w/2),
where w is the window size. The proposal ratio is 1.0 in both cases.

2.2.2 Node uniform

The node-uniform operator also changes the internal-node heights of the
species network while keeping the topology. It selects an internal node ran-
domly, then proposes a new height uniformly between the lower and upper
bounds (Fig. 3ab). The lower bound is the oldest child-node height, the
upper bound is the youngest parent-node height. The proposal ratio is 1.0.
Unlike node slider, this operator does not change the time of origin. A sep-
arate operator for the origin, such as multiplier or scaler, can be coupled to
update all the node heights.

2.2.3 Relocate Branch

The relocate-branch operator can change the topology, but keeps the number
of reticulations in the species network constant. It first selects an internal
node at random. If the selected node is a bifurcation node, the rootward
end of either its child branches is selected (Fig. 4a); if the selected node is
a reticulation node, the tipward end of either its parent branches is selected
(Fig. 4b). Then the selected branch is detached at the side of the selected
node, and a destination branch to be attached is chosen randomly from all
possible candidate branches (including the original position). A new height
of the selected node is proposed uniformly between the heights of the two
ends of the destination branch (v0 and u0 in Fig. 4). When the relocated
branch has a bifurcation node at one end and a reticulation node at the
other end, the candidate branches include all the remaining branches, and
the reticulation direction can be changed depending on the proposed new
height (Fig. 4b). When the relocated branch has the same type of nodes
at both ends and the resulted network is invalid, the move is aborted. For
example, moving the rootward end lower than the tipward end if the two
ends are both bifurcation nodes, or moving the tipward end higher than the
rootward end if the two ends are both reticulation nodes, will result in an
invalid network. We denote with v and u the lower and upper bounds of the
backward move. The proposal ratio is (u0 � v0)/(u� v).
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Figure 4: Two cases when the relocate-branch operator is applied. a) A
bifurcation node S1 is selected, and branch S1H1 is relocated to attach to
RS2. b) A reticulation nodeH1 is selected, and branch S1H1 is still attaching
to S2B with flipped reticulation direction. The lower and upper bounds of
proposing the new attaching point are v0 and u0, and the corresponding
bounds of the backward move are v and u.

2.2.4 Add- and delete-reticulation

The add-reticulation and delete-reticulation operators are reversible-jump
MCMC (rjMCMC) proposals that can add and delete a reticulation event
respectively.

In the add-reticulation operator, a new branch is added by connecting
two randomly selected branches with length l1 and l2 (Fig. 5). The same
branch can be selected twice so that l1 = l2 (Fig. 5b). Then three values
!1,!2 and !3 are drawn from U(0, 1). One attaching point cuts the branch
length l1 to l11 = l1!1 (and thus l12 = l1(1�!1)); the other attaching point
cuts the branch length l2 to l21 = l2!2 (and thus l22 = l2(1 � !2)). Analo-
gously, if we select the same branch twice, the attachment times of the new
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Figure 5: Three cases when the add-reticulation operator is applied. The
number of branches in the current network (i.e., the network without the
red branch) is k = 8. The probability of selecting the illustrated branches
(in blue) is 1/k2. The number of reticulation branches in the proposed
network is m = 4. In the reverse move, delete-reticulation, the probability
of selecting the added branch (in red) is 1/m. a) Branches S1H1 and RS2

are selected and a new branch S3H2 is added together with �2. The length
of S1H1 is l1 = lS1H1 , and that of RS2 is l2 = lRS2 . In the delete-reticulation
move, if H1H2 is selected, the operator is aborted. b) The same branch S2C
is selected twice. l1 = l2 = lS2C , l11 = lS2S3 , l21 = lS2H2 . c) The root branch
and S2C are selected. S3 becomes the new root.

branch are l1!1 and l1!2. An inheritance probability � = !3 is associated
to the new branch. We will operate on the inheritance probability � of
this added branch, while the inheritance probability of the second reticula-
tion branch (i.e., 1 � �) changes accordingly. We denote k as the number
of branches in the current network, and m as the number of reticulation
branches (parent branches of the reticulation nodes) in the proposed net-
work. The Hastings ratio is then (1/m)/[(1/k)(1/k)⇥1⇥1⇥1] = k2/m. The

Jacobian is | @(l11,l21,�)@(!1,!2,!3)
| = l1l2. Thus the proposal ratio of add-reticulation

is l1l2k2/m.
In the delete-reticulation operator, a random reticulation branch to-

gether with the inheritance probability � is deleted (Fig. 5). Joining the sin-
gleton branches at each end of the deleted branch, resulting in two branches
with length l1 and l2 completes the operator (l1 = l2 when forming a single
branch, Fig. 5b). If there is no reticulation, or the selected branch is con-
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necting two reticulation nodes, the move is aborted. For example in Figure
5a, deleting reticulation branch H1H2 will result in an invalid network. We
denote k as the number of branches in the proposed network, and m as the
number of reticulation branches in the current network. The proposal ratio
of delete-reticulation is m/(k2l1l2).

2.2.5 Inheritance-probability uniform

The inheritance-probability uniform operator selects a reticulation node ran-
domly, and proposes a new value of the inheritance probability �0 ⇠ U(0, 1).
The proposal ratio is 1.0.

2.2.6 Inheritance-probability random-walk

The inheritance-probability random-walk operator selects a reticulation node
randomly, and applies a uniform sliding window to the logit of the inheri-
tance probability �, that is y0 | y ⇠ U(y�w/2, y+w/2), where y = logit(�) =
log(�)� log(1� �). Since the proposal ratio for the transformed variable y
is 1.0, and d�

dy = d
dy [e

y/(1 + ey)] = ey/(1 + ey)2, the proposal ratio for the

original variable � is d�0

dy0 /
d�
dy = e(y0�y)(1 + ey)2/(1 + ey

0
)2.

2.3 MCMC operators for gene trees

The standard tree operators in BEAST 2 (Bouckaert et al., 2014) are applied
to update the gene trees, including the scale, uniform, subtree-slide, narrow-
and wide-exchange, and Wilson-Balding (Wilson and Balding, 1998). The
scale and uniform operators only update the node heights without chang-
ing the tree topology, while the other operators can change the topology
(Drummond and Bouckaert, 2015). The species network is kept unchanged
when operating on the gene trees, and vice versa.

2.4 MCMC operator for the gene tree embedding

The gene trees must be compatibly embedded in the species network (Fig.
2). When a new gene tree is proposed using one of the tree operators, the
rebuild-embedding operator proposes a new embedding for that gene tree.
When a new species network is proposed, the rebuild-embedding operator
proposes a new embedding for each gene tree in the species network. If there
is no valid embedding for any gene tree, the gene tree or species network
proposal is rejected.
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The rebuild-embedding operator proposes a new embedding proportional
to the product of traversal probabilities across all traversed reticulation
nodes. Specifically, we define the (unnormalized) likelihood of a compat-
ible embedding x as wx =

Qh
h=1 �

u
xh

h (1 � �h)vxh , where h is the number
of reticulation nodes in the species network, uxh is the number of lineages
traversing node Hh to the branch associated with �h, and vxh is the num-
ber of lineages traversing node Hh to the alternative branch associated with
1� �h. If there is no reticulation in the species network (i.e., it is a species
tree), wx = 1. For example in Figure 2, there are two possible embeddings
for one gene tree (orange) while the likelihoods are �2 (current) and (1��)2

respectively, and four possible embeddings for the other gene tree (blue)
while the likelihoods are �2, �(1 � �), (1 � �)�, and (1 � �)2 (current),
respectively.

The proposal ratio of moving from embedding x to x0 is

wxPe
i=1wi

. wx0
Pe0

j=1wj

,

where e and e0 are the number of possible embeddings in the current and
new states respectively. If e0 = 0 (no valid embedding), the move is aborted.
This proposal distribution is chosen to have a superior acceptance ratio than
if a new embedding is proposed randomly from all possible embeddings.

2.5 Summarizing posterior distribution of species networks

Reducing many hundreds of posterior or bootstrap samples to a summary re-
sult is essential in order to describe the underlying distribution. For phyloge-
netic trees, many summary methods have been developed such as “majority
rule consensus” and “maximum clade credibility” trees (Heled and Bouck-
aert, 2013). By comparison, methods to summarize samples of phylogenetic
networks are underdeveloped. As part of the SpeciesNetwork package, we
have implemented a basic method for summarizing networks, where unique
network topologies are reported in descending order of their posterior prob-
abilities. For each unique topology, each subnetwork is annotated with its
posterior probability and node age credible interval.

To facilitate the calculation of posterior probabilities and credible inter-
vals, we have developed an algorithm to enumerate each unique subnetwork,
and label all occurrences of a unique subnetwork in a sample of phylogenetic
networks. After running this algorithm, the label of a network’s root node
uniquely identifies its topology, and the generation of a sorted summary
of posterior topologies becomes trivial. Details of the algorithm are given
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in the Appendix. The default setting of our summary tool eliminates all
parallel branches (e.g., S3H2 in Fig. 5b) from all samples in the posterior
before summarizing, which simplifies the posterior distribution of networks
and reduces the number of unique topologies.

Alternatively, users may generate a summary network using the “ma-
jor displayed tree” method as implemented in the PhyloNetworks package
(Soĺıs-Lemus et al., 2017).

3 Simulations

The components from the last section, i.e., the unnormalized posterior den-
sity and the operators, allow us to implement a Markov chain Monte Carlo
(MCMC) procedure to sample species networks and gene trees from the
posterior distribution, given a multilocus sequence alignment. The imple-
mentation is available within BEAST 2 (Bouckaert et al., 2014) as an add-on
SpeciesNetwork. A convenient format for the species networks, and a link
to our source code, is presented in the Appendix.

We investigate the performance of the implementation using simulations
in this section. Time is measured by genetic distance (substitutions per
site) throughout the simulations, so that ✓ = Nµ is used for all population
sizes and ⌧i = tiµ for the time of node i. The substitution rate µ is fixed
to 1.0 across all gene lineages (strict molecular clock) and all loci (no rate
variation).

3.1 Simulation and MCMC sampling without sequence data

To verify the implementation of our Bayesian MCMC method, we compared
stochastic simulation to MCMC sampling of species networks and gene trees.
We first generated networks under the birth-hybridization process. The
simulator starts from the time of origin (t0) with one species. A species
splits into two (speciation) with rate �, and two species merge into one
(hybridization) with rate ⌫. At the moment of k branches, the total rate of
change is rtot = k� +

�
k
2

�
⌫. We generate a waiting time ⇠ exp(rtot) and a

random variable u ⇠ U(0, 1). If u < k�/rtot, we randomly select a branch
to split; otherwise, we randomly select two branches to join, and generate
an inheritance probability � ⇠ U(0, 1). The simulator stops at time 0 (cf.
Fig. 1). In this simulation, ⌧0 = 0.1, � = 20, ⌫ = 10, and we kept 200,000
networks with exactly three tips. All the population sizes were fixed to
✓ = 0.01. Given each simulated species network, we then simulated a gene
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Figure 6: Beanplot of network summary statistics comparing 3-tips networks
simulated under the birth-hybridization process (left, light gray) with those
sampled using the MCMC operators (right, dark gray). The horizontal bar
is the mean.

tree with two samples from each species (2, 2, 2) under the backward-in-time
MSNC, resulting in 200,000 gene trees.

In the MCMC, we used all the operators for the species network (with
3 tips), gene tree (with 2 samples per species), and embedding (see above).
The parameters ⌧0,�, ⌫ and ✓ were fixed to the truth. The likelihood of data
was set to be constant (no data). The chain was run 500 million steps and
sampled every 2000 steps. The last 200,000 sampled species networks and
gene trees were kept (i.e., the burn-in was 20%).

Theoretically, we expect the distributions of species network and gene
trees to be identical from both simulation and MCMC sampling. Indeed, the
networks obtained from the simulator and MCMC match when comparing
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Figure 7: Beanplot of three tree summary statistics comparing gene trees
simulated under MSNC (left, light gray) with those sampled using the
MCMC operators (right, dark gray). The sample configuration was (2, 2,
2).

the network length, root height, number of hybridizations, and time of the
youngest hybridization (Fig. 6). The tree sets from MSNC and MCMC also
give rise to the same distributions of tree length, the gamma-statistic (Pybus
and Harvey, 2000), and Colless’ index (Blum et al., 2006) as expected (Fig.
7).

3.2 Inference of species networks from sequences

We simulated sequence alignments of multiple loci to reveal the ability of our
method to recover the true species network from multilocus sequence data.
The true network is shown in Figure 1a, with ⌧1 = 0.05, ⌧2 = 0.03, ⌧3 =
0.02, ⌧4 = 0.01, � = 0.3, and population sizes ✓ = 0.01. A random gene
tree was generated for each locus under the MSNC. Then DNA sequences
of length 200 bp were simulated under JC69 model (Jukes and Cantor,
1969) along each tree. The sample configurations were (2, 4, 2) (meaning
species A has 2, B has 4, and C has 2 sampled sequences) and (5, 10,
5), and the number of loci was 2, 5, 10, 20, 40, respectively. Under each
setting, the simulation was repeated 100 times. In the inference, the priors
were ⌧0 ⇠ exp(10) with mean 0.1, d = � � ⌫ ⇠ exp(0.1) with mean 10,
r = ⌫/� ⇠ U(0, 1), and � ⇠ U(0, 1). The population sizes were integrated
out analytically using inverse-gamma(5, 0.05) (Eq. 4). The substitution
model was set to JC69 (the true model). We fixed µ = 1.0 for all genes as
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Figure 8: Posterior estimates of a) probability of the true network (black)
and species trees (gray), b) network height, c) � in the true network topology,
and d)H1 height in the true network topology, when the data were simulated
under the network in Figure 1a with sample configuration (2, 4, 2) or (5,
10, 5), and 2, 5, 10, 20, or 40 loci, respectively. For each setting in a),
the dot/circle with error bars are the median and the 1st and 3rd quartiles
of the percentages of 100 replicates. For each setting in b), c) and d), the
black dot with error bars are the median and the 1st and 3rd quartiles of the
posterior medians of 100 replicates, the gray circles with error bars are the
same summaries for the 95% HPD intervals. The dashed lines indicate the
true values.
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Figure 9: Posterior estimates of a) probability of the true network (black),
networks with 1 or 2 hybridizations (light gray), and networks with the
BCDH2 subnetwork (dark gray), b) network height, c) �2 in the BCDH2

subnetwork, and d) H2 height in the BCDH2 subnetwork, when the data
were simulated under the network in Figure 1b with sample configuration
(2, 2, 2, 2) or (5, 5, 5, 5), and 2, 5, 10, 20, or 40 loci, respectively. For
each setting in a), the dot/circle with error bars are the median and the 1st

and 3rd quartiles of the percentages of 100 replicates. For each setting in
b), c) and d), the black dot with error bars are the median and the 1st and
3rd quartiles of the posterior medians of 100 replicates, the gray circles with
error bars are the same summaries for the 95% HPD intervals. The dashed
lines indicate the true values.
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in the simulation (strict molecular clock and no rate variation). The MCMC
chain was run 50 million steps and sampled every 2000 steps. The first 35%
samples were discarded as burn-in. The results are shown in Figure 8.

With only 2 loci, the species trees are inferred with the highest posterior
probability, the distribution of species network topologies is sensitive to the
prior (Fig. 8a). The HPD intervals of the network height are also very
wide (Fig. 8b). As sample size increases, the posterior estimates become
increasingly accurate. Conditional on the true species network topology
inferred (i.e., Fig. 1a), the estimates of inheritance probability � and time
of hybridization become increasingly accurate as the number of loci increases
(Fig. 8cd). We also observe that adding more loci increases the accuracy of
inference more than adding more individuals. For example, by comparing
(5, 10, 5) 5 loci with (2, 4, 2) 10 loci, the latter has higher probability of
recovering the true species network (Fig. 8a).

To reveal the power of our method to detect both ancient and recent
hybridization events, we simulated gene trees and sequences subsequently
under the true species network shown in Figure 1b, with ⌧R = 0.05, ⌧H1 =
0.03, �1 = 0.6, ⌧H2 = 0.01, �2 = 0.7, ⌧S1 = 0.035, ⌧S2 = 0.04, ⌧S3 = 0.012, ⌧S4 =
0.015, and population sizes ✓ = 0.01. The sample configurations were (2, 2,
2, 2) and (5, 5, 5, 5) respectively. The other settings were kept the same as
in the previous simulation. The results are shown in Figure 9.

We find that an ancient hybridization close to the root is much harder
to detect than a recent hybridization. With up to 8 samples and 20 loci,
the posterior probabilities of the true network topology are all close to zero.
The estimates start to increase with 20 samples and 20 loci or more (Fig.
9a). The di�culty is mainly due to the fact that there are few gene-tree
lineages close to the root of the network, making it hard to distinguish the
true hybridization event with incomplete lineage sorting in the ancestral
populations. However, the recent hybridization event is inferred with high
probability using 10 to 40 loci (Fig. 9a). More specifically, we looked at the
posterior probability of networks having the BCDH2 subnetwork structure
(cf. Fig. 1b). Conditional on having this subnetwork inferred, the estimates
of inheritance probability �2 become increasingly accurate as the number of
loci increases (Fig. 9c), although the time of hybridization H2 is generally
underestimated (Fig. 9d). It is not feasible to perform larger scale simu-
lations, e.g., using 100 loci or more, to investigate the power of recovering
the ancient hybridization (thus the true species network). Further studies
need to be carried out after the e�ciency of the operators is improved (see
Discussion).
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4 Analysis of biological data

4.1 Three closely related spruce species

We analyzed a dataset of three spruce species (Picea purpurea, P. likian-
gensis and P. wilsonii) in the Qinghai-Tibet Plateau (Sun et al., 2014). P.
purpurea was inferred to be a homoploid hybrid of P. likiangensis and P.
wilsonii (Sun et al., 2014). The original data has 166 diploid individuals
and 11 nuclear loci (50 from P. wilsonii, 56 from P. purpurea, 60 from P.
likiangensis, and two phased haplotype sequences per individual per locus).

To achieve proper mixing and convergence in a reasonable time, the data
was truncated into two non-overlapping datasets by randomly selecting indi-
viduals, resulting in 20 individuals from P. purpurea, 15 from P. likiangensis,
and 15 from P. wilsonii (100 sequences per locus) for each. The priors for
the species network were ⌧0 ⇠ exp(500) with mean 0.002, d = � � ⌫ ⇠
exp(0.01) with mean 100, r = ⌫/� ⇠ U(0, 1), and � ⇠ U(0, 1). The popula-
tion sizes were integrated out analytically (Eq. 4) using inverse-gamma(3,
0.003) with mean 0.0015 and mode 0.00075. The substitution model was
HKY85 (Hasegawa et al., 1985), with independent  (transition-transversion
rate ratio) and state frequencies at each locus. The clock rate was fixed to
1.0 (strict molecular clock across branches) and gene-rate multipliers were
used to account for rate variation across loci. The MCMC chain was run
for 1 billion steps and sampled every 20,000 steps. The first 35% of samples
were discarded as burn-in. For each dataset we obtained two independent
runs, and the two runs were checked for e↵ective sample sizes (ESS) and the
consistency of trace plots of inferred parameters. The MCMC samples from
the two runs were combined.

The species network shown in Figure 10 has the highest posterior proba-
bilities for the two datasets, both are > 0.95. This confirms that P. purpurea
is a hybrid species of P. likiangensis and P. wilsonii. The estimates of � are
0.33 (0.18, 0.52) and 0.37 (0.17, 0.57) respectively (median and 95% HPD
interval). To investigate the impact of prior on population sizes, we fixed the
species network topology to the one in Figure 10, and used three priors for
the population size parameter: inverse-gamma(3, 0.0003) with mean 0.00015
(small), inverse-gamma(3, 0.003) with mean 0.0015 (medium), and inverse-
gamma(3, 0.03) with mean and 0.015 (large), respectively. The population
sizes were either inferred using MCMC or integrated out analytically. The
other priors and MCMC settings were unchanged.

The posterior estimates of �, node heights, and population sizes are
summarized in Supplemental Table S1 and S2. The estimates are similar
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for both datasets regardless of whether the population sizes were inferred
or integrated out under the same prior, but some estimates vary slightly
across di↵erent priors. Below we summarize the results from the inverse-
gamma(3, 0.003) prior (medium mean) for population sizes (Fig. 10, and
middle column of Table S1 & S2). Around 31–37% of the nuclear genome
of P. purpurea was derived from P. wilsonii (thus 63–69% from P. likian-
gensis). This estimate is close to the original estimate of 31% made using
approximate Bayesian computation (ABC) (Sun et al., 2014). Assuming an
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Figure 10: The species network with highest posterior probability (> 95%)
inferred from the spruce data. The medians and 95% HPD intervals of node
heights (black dots with error bars) are in unit of million years. From left
to right, they are for dataset 1 with population sizes inferred and integrated
out, and dataset 2 with population sizes inferred and integrated out, under
the inverse-gamma(3, 0.003) prior. The numbers beside the branches are the
medians of e↵ective population sizes inferred from dataset 1 (above) and 2
(below). See also Table S1 and S2.
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average substitution rate µ = 2⇥ 10�4 per site per million years (Sun et al.,
2014), and dividing the node heights (⌧ ’s in Table S1 & S2) by µ, we get
the times measured by million years (Fig. 10). The time of hybridization
is inferred to be around 1 Ma. The estimate was 1.3 (0.73, 2.2) Ma in
the original analysis assuming the same height for nodes D, E, and H.
Moreover, we get an older and narrower estimate for the root age (Fig. 10),
compared to 2.7 (1.4, 6.5) Ma in the original analysis. Similarly, dividing
estimates of ✓’s (Table S1 & S2) by µ = 1 ⇥ 10�8 per site per generation,
we get the e↵ective population sizes (Fig. 10). The inferred population
sizes of P. purpurea, P. wilsonii, and P. likiangensis are smaller than those
estimated using ABC (cf. Table 4 in Sun et al., 2014).

4.2 Seven yeast species (Saccharomyces)

We re-analyzed another dataset of seven yeast species, including S. cerevisiae
(Scer), S. paradoxus (Spar), S. mikatae (Smik), S. kudriavzevii (Skud), S.
bayanus (Sbay), S. castellii (Scas), and S. kluyveri (Sklu). There are in to-
tal 106 orthologous gene loci and one sequence per species per locus (Rokas
et al., 2003). This data analyzed using concatenation under maximum like-
lihood yielded a single tree (Fig. 11a) with 100% bootstrap values at every
branch (Rokas et al., 2003). The analysis using BEST (Liu, 2008) showed
two main species trees in the posterior (Fig. 11ab)(Edwards et al., 2007).
Both studies discovered extensive incongruent phylogenies from individual
genes, with phylogenetic conflict often involving Scas and Sklu. Recently,
the full dataset was also analyzed using a Bayesian method co-estimating
species networks and gene trees. Extensive hybridization events were found,
usually involving Scas and Sklu as the donor or recipient (Wen and Nakhleh,
2017).

For the inference using our method, the priors for the species network
were ⌧0 ⇠ exp(10) with mean 0.1, d = � � ⌫ ⇠ exp(0.2) with mean 5,
r = ⌫/� ⇠ U(0, 1), and � ⇠ U(0, 1). The population sizes were integrated
out analytically using inverse-gamma(3, 2✓), while the mean population sizes
✓ was assigned a gamma(2, 100) prior with mean 0.02. We still used the
HKY85 substitution model (Hasegawa et al., 1985), gene-rate multipliers
for rate variation across loci, and the same MCMC chain settings as in the
spruce data analysis.
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Figure 11: The species networks inferred from the yeast data. a) The species
tree estimated using concatenation under maximum likelihood (Rokas et al.,
2003). a) and b) are the two main species trees in the posterior analyzed
using BEST (Edwards et al., 2007). c) The representative species network
inferred using our method on all 7 species and 106 loci. The dashed lines
indicate possible hybridization events. d) and e) are two species networks
in the 95% posterior credible set using 5 species and 106 loci (excluding
Scas and Sklu). f) The species network inferred using 7 species and 28
loci with strong phylogenetic signal. The posterior probabilities are labelled
at the root. The larger inheritance probabilities are labelled beside the
corresponding branches.
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Similarly, we observed extensive hybridizations among Scas, Sklu, and
the rest five species (Fig. 11c) in the posterior estimates from independent
runs. The incongruence among gene tree phylogenies are well captured
and explained by the hybridization events. These patterns are similar to
the results in Wen and Nakhleh (2017). The backbone tree (by removing
the reticulation branches with smaller inheritance probabilities from the
networks) is consistent with the species tree in Figure 11b. However, the
complexity of hybridizations caused di�culty and poor mixing of MCMC
using the full data. The species network topology may stay unchanged for
fairly long steps during the MCMC and independent runs give di↵erent
number and direction of hybridizations, although the hybridization pattern
and the backbone tree are the same across runs.

Using only five species by excluding Scas and Sklu produced consistent
results across runs, and the posterior samples from the three runs are com-
bined. About half of the samples in the 95% posterior credible set are specie
trees (Fig. 11d) and another half are species networks with one hybridiza-
tion leading to Skud (Fig. 11e). The result of Wen and Nakhleh (2017,
Fig. 22e) showed only one species network in the 95% posterior credible
set with opposite hybridization direction (from Skud to Sbay) and smaller
� then ours (0.75 vs. 0.94). But both analyses have the same backbone tree
as in Figure 11d. The di↵erence is probably due to the di↵erent priors and
evolutionary models we used (see Discussion). The root heights are both
0.094 (0.092, 0.096) (median and 95% HPD interval) in Figure 11de. The
branch lengths are measured by genetic distance (mean substitutions per
site). The posterior estimate of mean population sizes ✓ is 0.00086 (0.00015,
0.0018). The rate multipliers range from 0.55 to 1.5 for the 106 loci.

We further investigated the 28 loci with strong phylogenetic signal, as
done in Wen and Nakhleh (2017). The gene trees inferred from these loci
under maximum likelihood have at least four internal branches with boot-
strap support > 70%. The priors and MCMC settings are the same as for
the 106 loci. Using all the seven species, the species network with highest
posterior probability (0.895) is shown in Figure 11f. Three hybridization
events are recovered, all involving Scas and Sklu. The recent two hybridiza-
tions were also found in Wen and Nakhleh (2017, Supplemental material)
and the inheritance probabilities were similar to ours. In addition, we found
an extra hybridization event after the early divergence of Scas and Sklu,
older than the other two. When using only five species by excluding Scas
and Sklu in a separate run, the species tree with the same topology as the
subtree in Figure 11f was inferred with highest posterior probability (0.98).
This is di↵erent from the backbone tree using all 106 loci (cf. Fig. 11d),
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indicating conflicting phylogenetic signal among loci.

5 Discussion

Methods to build a species network (e.g., Wu, 2010; Park et al., 2010; Al-
brecht et al., 2012) traditionally use inferred gene trees from each locus
without accounting for their uncertainties, and employ nonparametric crite-
ria such as parsimony. For population level data, the sequences are similar
and the signal for gene tree topologies is typically low, so using fixed gene
trees is assigning too much certainty to the data. These methods typically
assume that gene tree discordance is solely due to reticulation, thus may
su↵er in the presence of incomplete lineage sorting (Yu et al., 2011). The
MSNC model (Yu et al., 2014) provides a statistical framework to account
for both incomplete lineage sorting and reticulate evolution. But properly
analyzing genetic data to infer species networks under the MSNC model is a
challenging task. There have been methods using only the gene tree topolo-
gies from multiple loci under MSNC (Yu et al., 2012, 2014; Wen et al., 2016).
However, gene trees with branch lengths are more informative for inferring
species tree or network topology than gene tree topologies alone. Accounting
for branch lengths can improve distinguishability of species networks (Pardi
and Scornavacca, 2015; Zhu and Degnan, 2017). Although methods using
estimated gene trees (with branch lengths) from bootstrapping or posterior
sample as input take account gene tree uncertainty (Yu et al., 2014; Wen
et al., 2016), directly using sequence data to co-estimate species networks
and gene trees in a Bayesian framework showed improved accuracy (Wen
and Nakhleh, 2017). Pseudo-likelihood approaches (Yu and Nakhleh, 2015;
Soĺıs-Lemus and Ané, 2016) compute faster than full likelihood or Bayesian
approaches, but have severe distinguishability issues and require more data
to achieve good accuracy.

At the time of writing, another Bayesian method inferring species net-
works and gene trees simultaneously from multilocus sequence data was
released (Wen and Nakhleh, 2017). The general framework here is similar,
but we highlight four major di↵erences. We use a birth-hybridization prior
for the species network which naturally models the process of speciation
and hybridization. The prior is extendable to account for extinction, in-
complete sampling, and rate variation over time, as we outline below. Wen
and Nakhleh (2017) used a descriptive prior combining a Poisson distributed
number of reticulations with exponential distributed branch lengths. Sec-
ondly, we allow parallel branches in the network. This is biologically possi-
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ble. Even if the true species history has no parallel branches, the observed
species network can still have such features due to incomplete sampling.
Note though that a very large number of individuals and loci are required
to detect such parallel branches. To prevent the species network from grow-
ing arbitrarily big, such that it becomes indistinguishable by the gene trees
(Pardi and Scornavacca, 2015; Zhu and Degnan, 2017), we typically assign
an informative prior to ensure the hybridization rate is lower than the birth
rate. A similar strategy was used in Wen et al. (2016); Wen and Nakhleh
(2017) by restricting the rate of the Poisson distribution. Third, we account
for the uncertainty in the embedding of a gene tree within a species network
by estimating the MSNC probability conditional on a proposed embedding
at each MCMC step. This provides a posterior distribution of gene trees
and their embeddings within a species network, enabling analysis of which
alleles are derived from which ancestral species. The cost instead is ad-
ditional MCMC operations compared to integrating over all embeddings at
each step (Wen et al., 2016; Wen and Nakhleh, 2017). Last but not least, we
applied analytically integration for population sizes in the species network
(Eq. 4). This reduces the number of parameters for the rjMCMC operators
to deal with, and should improve convergence and mixing. Finally, our im-
plementation in SpeciesNetwork is an extension to BEAST 2 (Bouckaert
et al., 2014), to take advantage of many standard phylogenetic models, such
as di↵erent substitution models, relaxed molecular clock models, and the
BEAUTi graphical interface.

In our approach, we employ a simple prior for the species network based
on a birth-hybridization model. Analogous to priors for species trees (e.g.,
Stadler, 2010; Heath et al., 2014), the prior for species network could be ex-
tended to account for speciation, extinction, hybridization, and incomplete
sampling, each with a di↵erent rate, leading networks with present-day sam-
ples and potential past samples corresponding to fossils. The rates could also
be allowed to vary over time, to model the diversification patterns during
speciation (the skyline model for trees, Stadler et al., 2013). When consid-
ering networks instead of trees, techniques to derive the probability density
of trees cannot be directly applied as the hybridization rate depends on
pairs of lineages rather than individual lineages. This non-linearity necessi-
tates solving di↵erential equations to derive the species network probability
densities, a task which we defer to a later study.

Our approach is limited in computational speed. The empirical anal-
ysis was done, e.g., on only three species with 50 individuals and 11 loci,
or up to seven species and 106 loci but one individual per species. The
main bottleneck is the MCMC operators. Due to hard constraints between
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the species network and embedded gene trees (Fig. 2), MCMC operators
changing them separately limit the ability to analyze genomic scale data
from many individuals. More specifically, updating the species network will
likely violate a gene tree embedding, resulting in very low acceptance rate
of the operator. Thus it will be essential to design more e�cient MCMC
operators. There have been coordinated operators that can change species
tree and gene trees simultaneously (Rannala and Yang, 2003, 2017; Jones,
2017). Such operators are possible to be extended to species networks, and
will potentially improve e�ciency of the MCMC algorithm. Proposing new
embeddings of gene trees in species network is also costing. Thus it might
be worthwhile to integrate over the embeddings (Wen et al., 2016; Wen
and Nakhleh, 2017) if they are not of interest. Moreover, there are meth-
ods to integrate out the gene trees under the multispecies coalescent model
when analyzing biallelic genetic markers (RoyChoudhury et al., 2008; Bryant
et al., 2012; Zhu et al., 2017). However, it is not yet feasible to apply this
strategy to multilocus sequence alignment. Computationally, implementing
Metropolis-coupled MCMC (MC3, Geyer, 1991) will help to overcome mul-
tiple local peaks in the posterior, and further parallelizing the cold and hot
chains will gain speed.

In summary, we developed a Bayesian method for inferring species net-
works together with gene trees and evolutionary parameters from multilocus
sequence data. The method is implemented within a general Bayesian frame-
work, with potential future extensions to the theoretical model and to the
practical implementation.
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6 Appendix

6.1 Numbering and labeling subnetworks across a sample

We describe an algorithm by pseudocode to enumerate all unique subnetwork
topologies within a sample of phylogenetic networks. Apart from subnet-
work topologies consisting of a single node (i.e. leaf nodes), each topology
label has a corresponding set of child subnetwork topology numbers. The
algorithm works by recursively constructing the mapping of parent to child
subnetwork topology numbers, beginning at the root or origin node of each
phylogenetic network.

Initialize the counter i to 0

Initialize the (node label set to node label) map m

For each taxon t:
Assign i as the label of t
Increment i

For each phylogenetic network s:
Begin Recursion from the oldest node of s

Recursion:

Input: A network node n
Output: A label l to identify the subnetwork topology of n

If n is a leaf node:

Get the label l of the taxon t of n
Else:

Initialize the node label set d
For each child node nc of n:

Get lc by continuing Recursion from nc

Add lc to d

If d is in m:

Get the label l of d
Else:

Set l to the value of i
Link d to l in m
Increment i
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Return l

6.2 Proposing embeddings proportional to their likelihoods

We describe an algorithm by pseudocode to propose compatible gene tree
embeddings, given a species network and a set of gene trees, in proportion
to their embedding likelihoods. The algorithm works by stochastically con-
structing an embedding during a depth-first search of a gene tree. When a
gene tree lineage traverses a bifurcation node, there is a set of compatible
embedding histories (for the subtree defined by the gene tree branch) where
the lineage descends through the left child branch of the bifurcation node,
and another set for the right child branch. A left or right embedding is
chosen at random weighted by the sum total of embedding likelihoods for
each child branch of the bifurcation node, to ensure that embeddings are
proposed in proportion to their likelihoods.

The likelihood for the proposed embedding is also computed during the
depth-first search; when a gene tree lineage traverses a reticulation node,
its likelihood is multiplied by the �h or the (alternative) 1� �h probability.
When a coalescent event occurs, the likelihoods of the left and right subtrees
are multiplied. Because embeddings are proposed in proportion to their
likelihoods, the MCMC proposal probability is the embedding likelihood
normalized by the sum total of compatible embedding likelihoods.

Given the species network s:
For each gene tree g:

Get the root gene tree node gtnr from g
Get the root species network branch snbr from s
Try to get e, l, and t by Recursion from gtnr and snbr

If there is no compatible embedding:

Reject the proposal

Else:

Propose e as the new embedding

Multiply the proposal probability by (l ÷ t)

Recursion:

Input 1: A gene tree node gtn
Input 2: A species network branch snb
Output 1: An embedding e
Output 2: Its likelihood l
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Output 3: The total likelihood t

If gtn traverses through the tipward node of snb:
For each child branch snbc of snb:

If there is any compatible embedding of gtn through snbc:
Get ec, lc, and tc by Recursion from gtn and snbc
Add the traversal of gtn through snbc to ec
If the tipward node of snb is a reticulation:

Multiply lc by �h or 1� �h
Multiply tc by �h or 1� �h

Pick one snbc at random weighted by tc
Set the embedding e to the value of ec for the chosen snbc
Set the likelihood l to the value of lc for the chosen snbc
Calculate the total likelihood t as the sum of all tc

Else:

If gtn is a leaf:

Initialize an embedding e
Initialize the likelihood l to 1

Initialize the total likelihood t to 1

Else:

For each child node gtnc of gtn:
Get ec, lc, and tc by Recursion from gtnc and snb

Construct the embedding e by merging both ec
Calculate the likelihood l as the product of both lc
Calculate the total likelihood t as the product of both tc

Return e, l, and t

6.3 Representation of phylogenetic networks

The species network can be represented using extended Newick format (Car-
dona et al., 2008), which was also used in the software PhyloNet (Than et al.,
2008).

For example, the species network in Figure 1a is written as

((A:0.02,(B:0.01)#H1[&gamma=0.3]:0.01)S1:0.03,

(#H1:0.02,C:0.03)S2:0.02)R:0.03;

where the hash sign indicates a reticulation node, and the inheritance prob-
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ability is in the brackets as metadata. Such extended Newick string can be
read into IcyTree (icytree.org; Vaughan, 2017) and be displayed nicely.

6.4 Software availability

The method is implemented in the add-on SpeciesNetwork for BEAST 2
(Bouckaert et al., 2014), including the inference, simulation, and summary
tools, and is hosted publicly on GitHub (https://github.com/zhangchicool/
speciesnetwork).
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