

1 **Polygenic prediction of the phenotype, across ancestry, in emerging adulthood**

2

3 Anna R. Docherty, Ph.D.*^{1,2}, Arden Moscati, Ph.D.*^{3,4}, Danielle Dick, Ph.D.⁵⁻⁷, Jeanne E. Savage, Ph.D.^{3,8}, Jessica
4 E. Salvatore, Ph.D.^{3,5}, Megan Cooke, Ph.D.³, Fazil Aliev, Ph.D.^{5,9}, Ashlee A. Moore, M.A.³, Alexis C. Edwards,
5 Ph.D.³, Brien P. Riley, Ph.D.³, Daniel E. Adkins, Ph.D.^{1,2}, Roseann Peterson, Ph.D.³, Bradley T. Webb, Ph.D.³,
6 Silviu A. Bacanu, Ph.D.³, Kenneth S. Kendler, M.D.³

7

8 RUNNING HEAD: Genome-Phenome Prediction in Emerging Adulthood

9

10 1. Departments of Psychiatry & Human Genetics, University of Utah School of Medicine, Salt Lake City, UT,
11 USA
12 2. Consortium for Families and Health Research, University of Utah, Salt Lake City, UT, USA
13 3. Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of
14 Medicine, Richmond, VA, USA
15 4. Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York,
16 New York, USA.
17 5. Department of Psychology, Virginia Commonwealth University, Richmond, VA, USA
18 6. Department of Human & Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
19 7. College Behavioral and Emotional Health Institute, Virginia Commonwealth University, Richmond, VA, USA
20 8. Department of Health Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
21 9. Department of Business, Karabuk University, Turkey

22

23 *Both authors contributed equally to the manuscript.

24 [†]Corresponding author: Departments of Psychiatry and Human Genetics, University of Utah School of Medicine,
25 501 Chipeta Way, Salt Lake City, Utah, USA. Tel. +1 763 516 7367, fax. +1 804 828 1471, email:
26 anna.docherty@utah.edu

27 Article word count: 3,540 (excluding title page, abstract, references, figure captions, tables, author contributions,
28 and financial disclosures)

29

Abstract

30 **Background:** Identifying genetic relationships between complex traits in emerging adulthood can provide useful
31 etiological insights into risk for psychopathology. College-age individuals are under-represented in genomic
32 analyses thus far, and the majority of work has focused on clinical disorder or cognitive abilities rather than normal-
33 range behavioral outcomes.

34 **Methods:** This study examined a sample of emerging adults 18-22 years of age (N = 5,947) to construct an atlas of
35 polygenic risk for 33 traits predicting relevant phenotypic outcomes. Twenty-eight hypotheses were tested based on
36 the previous literature on samples of European ancestry, and the availability of rich assessment data allowed for
37 polygenic predictions across 55 psychological and medical phenotypes.

38 **Results:** Polygenic risk for schizophrenia in emerging adults predicted anxiety, depression, nicotine use, trauma,
39 and family history of psychological disorders. Polygenic risk for neuroticism predicted anxiety, depression, phobia,
40 panic, neuroticism, and was correlated with polygenic risk for cardiovascular disease.

41 **Conclusions:** These results demonstrate the extensive impact of genetic risk for schizophrenia, neuroticism, and
42 major depression on a range of health outcomes in early adulthood. Minimal cross-ancestry replication of these
43 phenomic patterns of polygenic influence underscores the need for more genome-wide association studies of non-
44 European populations.

45

46 Keywords: phenome; genetic; polygenic; schizophrenia; neuroticism; cardiovascular

47

Introduction

48 Broad phenotyping can greatly enhance our understanding of the underlying structure of genetic
49 vulnerability to psychiatric disorders. Thus, genome-wide polygenic risk research is increasingly considering
50 batteries of clinical phenotypes in “phenome-wide” studies (Bulik-Sullivan *et al.* 2015; Krapohl *et al.* 2015;
51 Hagenaars *et al.* 2016). One promising approach emerging from the phenome-wide genomic literature uses
52 published summary statistics from large genome-wide association studies to calculate genome-wide polygenic
53 scores (GPS) for an array of major disorders and clinically relevant traits. These scores are then used to predict a
54 number of potentially informative psychiatric, psychological and physical health phenotypes. Along with cross-
55 disorder genomic research examining the co-heritability of major psychiatric disorders (e.g., LD regression) (Cross-
56 Disorder Group of the Psychiatric Genomics Consortium, 2013), polygenic phenomic approaches are among the
57 most promising methods for elucidating the complex overlapping genetic architecture of psychiatric disorders and
58 discovering unexpected genotype-phenotype associations (Docherty *et al.* 2016). However, previous research has
59 suffered from a restricted range of phenotypes, and has not included, for instance, GPS of anxiety, eating, and
60 inflammatory disorders, personality, lipid levels and puberty traits in the prediction of outcome phenotypes (which
61 have generally focused on cognitive abilities) and has not examined samples between the ages of 17 and 35, the
62 developmentally critical stage encompassing emerging and young adulthood.

63 This study applied such an approach to GPS (33 total) in a phenotypically extensive genetic study of
64 emerging adulthood outcomes. Emerging adulthood, a period starting at the age of 18 when adolescents begin to
65 develop the roles and independence of adulthood, reflects a high-risk age range for the onset of many psychiatric
66 and substance use disorders, including schizophrenia, affective disorders, anxiety disorders and alcohol and drug use
67 disorders. Data from the National Comorbidity Survey Replication sample indicate that three quarters of all lifetime
68 cases of DSM-IV diagnoses start by age 24 (Kessler *et al.* 2005), and WHO's World Mental Health data indicates
69 that approximately three quarters of lifetime psychiatric disorders begin by the mid-20's (Kessler *et al.* 2007).

70 The University Student Survey (called “Spit for Science”, or S4S) was developed to identify risk factors for
71 onset of mental health disorders with large-scale assessment of genetic, environmental, and developmental
72 influences. Discovery summary statistics from 33 genome-wide association studies (GWAS) were used to derive
73 GPSs in this large sample of young adults (N = 5,947) across a range of psychiatric, psychological, and physical
74 health traits (Table S1 in online supplementary materials). Expanding on previous research, twenty-eight hypotheses

75 of genetic prediction were tested based on selected studies in past literature. Further, the availability of rich clinical
76 assessment data allowed for the calculation of polygenic predictions across a greater number of outcomes than has
77 ever been studied previously, many of which were completely novel in phenomic studies. These included 55
78 psychiatric, psychological and medical phenotypes (listed in Table S2 in the online supplementary material).

79 Moreover, the GPS metrics were powerful enough to examine relationships across subsamples of different
80 ancestries. While GWAS approaches require tens of thousands of individuals to locate “hits,” continuous polygenic
81 scores require far smaller samples for adequate power. This sample was suitably diverse in ancestry to map the GPS-
82 phenotype in young adults of European ancestry (EUR, N=3,016) and then to replicate these findings across non-
83 European ancestry groups including of African origin (AFR, N=1,339), native American origin (AMR, N=581), and
84 East Asian (EAS, N=557), and South Asian origin (SAS, N=454). Separate association matrices were created for the
85 empirically categorized AFR, AMR, EAS, and SAS samples and are provided here and in the supplemental figures
86 available online.

87 We can learn much from the study of emerging adults over and above adolescent samples, as early
88 behavioral patterns that may precede adult psychopathology can be studied, and new hypotheses about critical
89 exposures and environmental risk factors can emerge. The results presented here reflect a polygenic modeling
90 framework in a large young adult sample, and provides evidence that the integration of phenotypic and genotypic
91 data will be useful in the prediction of negative health outcomes in emerging adults.

92

93 **Methods**

94 **Sample Ascertainment and Phenotyping**

95 Phenome-wide behavioral data (N=7,592) were drawn from young adults from the first three cohorts in
96 S4S, samples drawn from a large urban university in the Mid-Atlantic United States, which included 5,947 unrelated
97 individuals with genome-wide genotypes (Dick *et al.* 2014). The S4S sample does not overlap with any of the
98 discovery GWAS samples used in these analyses. Details of participant ascertainment have been published
99 elsewhere (Dick *et al.* 2014) but briefly, emerging adults ages 18-22 were recruited across multiple cohorts, for a
100 campus-wide study of genetic and environmental factors contributing to alcohol and substance use. The protocol
101 was approved by the university Institutional Review Board, and carried out in accordance with the provisions of the
102 World Medical Association Declaration of Helsinki. Participants were 61.1% female with a mean age of 18.59 at

103 first assessment. Representativeness of this sample is strong and has been reported elsewhere (Dick *et al.* 2014).
104 Assignment to ancestry group was empirically based on greatest similarity to 1000 Genomes Phase 3 super-
105 populations. The present analyses included 55 traits from the domains of psychopathology, personality, health
106 factors, and educational achievement (Table S2 in the online supplementary materials). All analyses included age,
107 sex, and 10 ancestry principal components as covariates. Variables assessed at multiple occasions or in multiple
108 cohorts were adjusted for number of assessments and cohort group. Sample sizes for each of the phenotypic
109 measures are also provided in Table S2.

110 **Genetic Risk Scoring**

111 DNA collection, calling, and imputation is detailed elsewhere (Dick *et al.* 2014). We processed genotypes
112 using standard quality control procedures followed by imputation of SNPs using the 1000 Genomes Project
113 reference panel. After imputation and quality control, we included approximately 2.3 million variants into the
114 polygenic scoring analyses. A GPS for each discovery phenotype was calculated using the summary statistics we
115 obtained from 33 GWAS (Table S1 in the online supplementary materials). Python-based LDpred (Vilhjálmsson *et*
116 *al.* 2015) was used for these analyses because of its ability to account for linkage disequilibrium (LD) structure
117 (Krapohl *et al.* 2015) using our own large EUR test sample, and its use of all genetic variants (instead of specified p-
118 value threshold for inclusion of the genetic variants in the GPS). LDpred allows for the modeling of LD based on
119 LD in the discovery sample to weight the relative contributions of syntenic variants to the outcome phenotype.
120 LDpred uses postulated proportions of causal variants in the genome as Bayesian prior probabilities for GPS
121 calculations, and we tested a range of different priors (proportions of 0.3, 0.1, 0.03, 0.01, 0.003, and 0.001), as well
122 as the model of infinite variants of infinitesimally small effect (Fisher, 1919) to construct scores.

123 **Phenotype Prediction**

124 A flowchart depicting the GPS-phenome cross-ancestry prediction and GPS-GPS correlation procedure is presented
125 in Figure 1. Regressions were run using R to compare full (GPS, ten ancestry principal components, age, sex,
126 cohort, and number of measurements when applicable) and restricted models where GPS was removed. Prior to the
127 global analyses, a set of *a priori* hypotheses, gathered from previous research, were tested (Table 1). We elected to
128 generate several hypotheses prior to analysis, because some literature was available to support previous evidence of
129 relationships between GPS and outcome. We elected to forgo experimental binning (into quantiles, for example) in
130 order to minimize the number of exploratory analyses beyond regressions of GPS on the phenotypes. Multiple

131 testing was corrected for using a False Discovery Rate (FDR) of 5% (Benjamini & Hochberg, 1995) within each
132 ancestry group using the *p.adjust* function in R; the FDR is appropriate for an analysis designed to evaluate the
133 pattern of relationships between many constructs because it treats each combination of discovery phenotype,
134 outcome, and LDpred prior level as an independent test, despite the presence of positive dependency between many
135 of these tests. It should be noted that this multiple testing correction did not account for previously established
136 associations or for the correlations observed in our sample, between multiple prior levels tested in the same
137 discovery phenotypes. This was an added attempt to filter out potentially spurious results.

138 **Cross-Disorder GPS Partial Correlations and GPS-GPS Replication Hypotheses Across Ancestry**

139 In addition to testing the GPSs prediction of the phenotypes, GPSs were also examined for correlations
140 with each other in all ethnicities. These provide different results than genetic correlation estimates, but are intended
141 to demonstrate that GPS scores are not independent, and that variance attributable to a particular discovery
142 phenotype may be partially shared with another. This sharing may be due to common genetic factors between
143 phenotypes, possible sample overlap, and error variance. GPS correlations have been previously reported in EUR,
144 but this analysis added phenotypes such as cardiovascular and triglyceride factors. Correlation coefficients, *p*-values,
145 and *q*-values (after correcting the *p*-values for the FDR of 5%) were derived for GPS partial correlations using R and
146 adjusting for the ancestry principal components. We chose to use partial correlations in order to standardize the
147 weights across phenotype and provide more direct comparisons of statistics for plotting purposes. Based on the
148 cross-disorder psychiatric genomics findings to date (Bulik-Sullivan *et al.* 2015), we expected significant GPS
149 associations between schizophrenia (SZ) and bipolar disorder (BP), SZ and autism (AUT), SZ and major depressive
150 disorder (MDD), BP and MDD, and AUT and attention deficit hyperactivity disorder (ADHD) across each of the
151 ancestry groups (see Table 2).

152

153 **Results**

154 **Genetic Profile Score-Phenotype Prediction**

155 ***A Priori* Replication Analyses**

156 We evaluated previous cross-phenotype predictions based on recent work—for example, that age at
157 menarche had an inverse association with obesity/body mass index (Bulik-Sullivan *et al.* 2015). We tested several
158 hypotheses in the European group, in order to maximize sample size without introducing potential population

159 stratification. The multiple testing correction procedure we chose (FDR) was suitable for these analyses, given the
160 positive dependency between many of the tests, allowing us to correct uniformly for the total number of tests while
161 still keeping type I error rate relatively controlled. Of the 28 predictions tested, 22 showed effects in the expected
162 direction ($p=0.002$, one-tailed sign test), and 7 were significant after stringent multiple-testing correction. Two
163 previous notable null associations, MDD GPS predicting Grade Point Average (GPA), and Type 2 Diabetes GPS
164 predicting GPA, were also null in our sample. Full results are presented in Table 1, including additional associations
165 with the listed GPS phenotypes.

166 Phenome-Wide Prediction

167 We also performed hypothesis-free analyses across all 33 GPS and 55 S4S phenotypes to explore
168 potentially novel associations. Multiple prior proportions of causal variants in the genome were tested, as detailed in
169 Methods. Figure 2 presents notable results for GPS prediction of phenotypes in the European group for the prior
170 proportion of 0.3 (that is, an initial assumption that 30% of the genome is associated with the GPS phenotype). The
171 0.3 prior level showed stronger prediction in past work (Krapohl *et al.* 2015), and corresponds to a plausible
172 assumption about the genetic architecture of many complex traits, due to instances of increasing sample size of
173 GWAS proportionally increasing numbers of associated loci. In this group and prior proportion level, out of 1,815
174 associations 35 were between $q < 0.16$ and $q > 0.05$ (0.16 being the P-value threshold corresponding to Akaike
175 Information Criterion (Akaike, 1974)), 11 between $q < 0.05$ and $q > 0.01$, and 26 $q < 0.01$. An additional 53
176 associations showed at least suggestive significance at other prior levels. A heatmap of analyses at can be found in
177 Figure 2 (EUR; and for replications in all ancestries, Figures S1-S4 available in the online supplementary materials).
178 Each plot presents significant associations as well as the direction of effect. Because of the uniform correction for
179 multiple testing, we included of interest $q < 0.16$ associations, which would be significant with more traditional
180 correction methods accounting for previously established associations.

181 Notable results included SZ GPS significantly predicting nicotine use, depression and anxiety symptoms,
182 and family history of depression, anxiety, alcohol use disorder, and drug use. In addition, GPS for neuroticism (N)
183 predicted a number of relevant psychiatric phenotypes, including neuroticism, depression and anxiety symptoms.

184 **Genetic Profile Score Prediction of the Phenome Across Non-European Ancestries**

185 As noted earlier, most discovery GWAS have used European samples, and while there is good evidence for
186 cross-ancestral replication for some traits, the generalizability of many of these relationships across ancestry is not

187 known. The diverse ancestry groups within S4S allowed cross-ancestral replication, and the use of continuous GPS
188 metrics made the sample sizes available powerful enough to examine these hypotheses. A small proportion of the
189 strongest predictors observed in the EUR were replicated across the other ancestries, with a broadly similar pattern
190 of results across all ancestry groups only for “basic” traits such as height and BMI. While some outcome phenotypes
191 were strongly predicted by GPS, a few outcome phenotypes, including physical activity, lifetime history of panic
192 attack, age at first sexual intercourse, and bulimia nervosa were not predicted by any GPS in any ancestry group. In
193 addition, some expected associations (e.g., PRS for nicotine use predicting smoking behaviors) while in the expected
194 direction, were not significant in this sample.

195 Most associations of SZ GPS with outcome traits observed in EUR did not reach significance in other
196 ancestry samples. In addition, some novel associations were observed in other ancestries. For example, lifetime
197 smoking GPS was positively associated with number of alcoholic drinks per day in AMR. Neuroticism GPS was
198 positively associated with stressful life events, trauma (interpersonal and general), and PTSD in SAS. These patterns
199 of effects are based on EUR GWAS summary statistics, and must be replicated using AMR and SAS GWAS
200 summary statistics in the future. However, they suggest potential pleiotropic effects relevant to outcomes in these
201 populations.

202 **GPS-GPS Correlations**

203 A Priori Hypothesis Testing and Global Cross-Disorder Genetic Profile Analyses

204 *A priori* hypotheses (described in the Methods and listed in Table 2) of relationships between GPS scores
205 were tested at a prior proportion level of 0.3. Figure 3 presents the results for GPS-GPS partial correlations at a GPS
206 $p = 0.3$, and these results are presented because some phenotypes studied here (e.g., Neuroticism) were not included
207 in previous analyses. Notable unexpected correlations were observed, including significant positive correlations of
208 neuroticism GPS with GPSs for triglycerides and coronary artery disease. These associations also serve as evidence
209 of non-independence across traits in this sample. Finally, Figures S5-S8 (available in the online supplementary
210 materials) present these same correlations across the four non-EUR ancestry groups. There is some overlap between
211 the discovery samples for neuroticism and triglycerides, but no overlapping studies were included in the neuroticism
212 and the coronary artery disease discovery samples. Therefore, the correlation of neuroticism and coronary artery
213 disease is especially likely to reflect underlying genetic correlation between neuroticism and artery disease. Despite

214 overlap in the discovery samples for the neuroticism and triglycerides polygenic scores, validation using LD score
215 regression supported the existence of a genetic relationship between them ($r_G = 0.53$; $SE = 0.04$; $p = 1.5 \times 10^{-36}$).

216

217 **Discussion**

218 The findings here present a wide-ranging and nuanced picture of major dimensions of vulnerability to
219 psychopathology at a genetic level. This study includes substantial sample sizes of emerging adults, uses outcome
220 measures (with novel phenotypes in phenomic analyses; see Table S2 in the online supplement for details of
221 assessment scales), includes a wide range of discovery GWAS, and is powerful enough to draw preliminary
222 conclusions about several ancestries. Because this study does not look for “hits” in the traditional GWAS sense and
223 instead uses continuous GPS metrics, sample sizes provide adequate power across all separate ancestries in this
224 study.

225 Importantly, results reflect EUR relationships between anxiety, depressive, and schizophrenia-spectrum
226 disorders that are largely consistent with current conceptualizations of diagnostic classification, and confirm the
227 important involvement of a network of medical and risk phenotypes in genetic predisposition to these disorders.
228 Informative genetic associations between medical and clinical phenotypes exist despite the relative dearth of
229 individual loci of genome-wide significance.

230 We can learn a lot from the study of emerging adults relative to younger, adolescent samples, as more
231 targeted theories about critical exposures and environmental risk factors can emerge. For example, GPS for SZ
232 predicted anxiety, depression, nicotine use, experiences of interpersonal trauma, and family history of mental health
233 problems. Importantly, these results expand on recent evidence that genetic risk for SZ can successfully predict
234 diverse risk phenotypes such as anxiety and negative symptoms (Kendler *et al.* 1996; Fanous *et al.* 2001; Docherty
235 & Sponheim, 2008; Docherty & Sponheim, 2014; Docherty *et al.* 2015; Jones *et al.* 2016; Kendler, 2016), and
236 demonstrate important links between SZ genetic risk and health factors in early adulthood. Significant association of
237 GPS with easily measured, specific risk factors (e.g., nicotine use, family history, trauma) indicates that GPS could
238 be useful in predicting psychopathology, particularly in conjunction with environmental moderators.

239 The incorporation of personality traits such as neuroticism was also quite informative. For example,
240 neuroticism GPS significantly predicted a broad network of general anxiety, phobia, panic, neuroticism, and
241 depression phenotypes in EUR, as well as multiple health-related GPSs. This is consistent with previous biometrical

242 and genomic research reporting significant relationships of neuroticism with MDD (Kendler & Myers, 2010;
243 Genetics of Personality Consortium *et al.* 2015; Docherty *et al.* 2016), and preliminary findings from the
244 UKBiobank suggesting a genetic overlap of neuroticism with cardiovascular health (Gale *et al.* 2016). Conversely,
245 GPS for extraversion predicted fewer depressive symptoms, fewer anxiety symptoms, and less family history of
246 mental health problems, though these associations did not remain significant after multiple testing correction.
247 Associations pertaining to GPS for well-being in this sample are forthcoming from our research group.

248 Notable unexpected GPS-GPS results included positive correlations of neuroticism GPS with GPSs for
249 coronary artery disease, which is likely to reflect underlying genetic correlation, as well as with triglycerides. This is
250 the first study we know of to document significant positive genetic associations between neuroticism and cardiac
251 health, despite the high public health cost of neuroticism being well-documented (Cuijpers *et al.* 2010;
252 cardiovascular risk and association with psychiatric phenotypes like neuroticism may be of special interest to public
253 health efforts). Most of the GPS-GPS *a priori* relationships chosen for replication testing were represented in the
254 same direction across all ancestry groups, corroborating previous efforts to map relationships between genetic risk
255 profiles.

256 The abundance of significant relationships between intuitive combinations of GPSs and related outcomes is
257 reassuring considering the many factors that could attenuate the statistical link between them. Association between a
258 GPS and an outcome not only reflects correlation between the phenotype in the original ('discovery') GWAS that
259 produced the statistics used to compute the GPS and the outcome phenotype, but is also related to a number of other
260 factors. The link is limited by how accurately the GWAS measured the initial phenotype, how similar the discovery
261 and test samples are (in age, ancestry composition, proportions of each sex, etc.), how well the test phenotype is
262 measured by the data collection instrument, and how well it can incorporate indirect pathways from the genetic
263 architectures to either phenotype.

264 For example, physical activity increases HDL levels (Kokkinos & Fernhall, 1999), so those who had higher
265 HDL levels in the discovery GWAS (Teslovich *et al.* 2010) were likely a mix of those with innately high levels,
266 those who engaged in higher levels of physical activity, and those with both traits. Therefore, HDL GPS perhaps
267 indexes some propensity to engage in HDL-promoting behaviors, in addition to HDL metabolic variation such as a
268 slower rate of HDL catabolism, which is thought to be the most common genetically determined mechanism
269 of increased HDL levels in humans (Rader, 2006). The portion of the HDL GPS due to fitness behaviors may

270 explain some of the polygenic association with the test phenotypes of BMI and weight. Of note, while the HDL GPS
271 did not significantly predict the physical activity phenotype in S4S, the direction of effect was positive, and that
272 particular phenotype had one of the smallest sample sizes, at 433 EUR individuals, and therefore lower power than
273 others.

274 Using EUR GWAS summary statistics produced differential relationships of GPS with outcomes across
275 ancestry, with few effects replicating across ancestry groups. This could be due to decreased power to detect effects
276 given the smaller sample sizes of the other ancestry groups. However, within each ancestry group, new significant
277 effects across GPS and outcome measures were observed as well. These effects suggest ancestry-specific summary
278 statistics, or those with larger samples, may reveal differences in the pattern of relationships between phenotypes in
279 different groups. Results underscore a need for more GWAS of non-EUR ancestry samples.

280 There are a number of limitations to be aware of when interpreting these results. The synthesis of
281 information from so many sources compounds any methodological and psychometric issues present in the original
282 studies, so there is probable bias in multiple levels of the analysis that is difficult to measure. It is unclear how
283 generalizable our results are to the general population. However, we might assume that bias in the college sample
284 would cause less robust associations with psychopathology, and that effects might be more pronounced in the
285 general population. In order to maintain proximity with real outcomes, we did not transform our phenotypic
286 variables to increase normality, but standardized the continuous variables computed from the participant responses
287 to maintain comparable ranges of measurement. However, none of the phenotypes in which we found significant
288 results evidenced high skew or kurtosis, so it is unlikely that significant effects were due to non-normal phenotype
289 distributions. While LDpred performs adequately across ancestry groups, the accuracy in non-European ancestry
290 groups is attenuated to the degree that multiple causal variants fall in regions where LD patterns differ across
291 ancestry. In addition, a recent pre-print (Martin *et al.* 2016) shows biased predictions in several different populations
292 using GPS for phenotypes that are also used in this paper (for example, Type 2 diabetes and SZ). Finally, we
293 observed some differential effects across priors in our analyses. Until these effects are replicated at a given prior, or
294 there is justified precedent in the literature, we are unable to choose one ideal prior.

295 Overall, this broader picture of genetic vulnerability has important implications for how we study risk and
296 resilience in emerging adulthood. While the variance explained by any of these GPSs is small, (for instance, the
297 largest R^2 for predicting the height phenotype was 0.055, from the height GPS at a prior level of 1) they provide

298 easily accessible information to guide future prediction, prevention, and intervention efforts to improve health and
299 quality of life outcomes. Future longitudinal and intervention research could elaborate on this atlas to examine the
300 predictive validity and prevention utility of many of the phenotypes here, such as neuroticism, family history,
301 trauma, and nicotine use. This research also suggests that future polygenic work would benefit from GPSs based on
302 non-European ancestry groups when such summary statistics are available. Phenome-wide research utilizing deeper
303 phenotyping methods will likely further enhance results, and thus future prediction of positive and negative health
304 outcomes.

305 Finally, the relationships outlined here provide implicit suggestions for studies of the causal structure of the
306 GPS phenotypes themselves. The genetic architecture of most of the traits and disorders in the atlas display
307 substantial overlap; a significant portion of genetic variation involved in the etiology of these constructs does not
308 selectively contribute to risk for one phenotype as we know it, but rather has effects that act on some axis of liability
309 that increases the likelihood of many phenotypes. Analyzing multiple related phenotypes in a holistic fashion allows
310 elucidation of the individual patterns of genetic and environmental factors that may explain causal mechanisms—
311 which risk factors they share, and which are unique to one phenotype, thus serving to refine our nosological theories.
312 Any epidemiological analysis is limited if the construct under study is not a uniform disease entity, but as
313 characterization of constructs improves, the power to find their correlates does as well. The better we ask the
314 questions, the more useful the answers become, for both clinical and scientific purposes.

315

Author Contributions

316 A. R. Docherty, A. Moscati, and K. S. Kendler developed the study concept. A. Moscati, J. E. Savage, J. E.
317 Salvatore, and M. Cooke contributed to psychometric analyses and data collection. D. Dick and K. S. Kendler
318 oversaw data collection. A. Moscati and A. R. Docherty performed the data analysis and interpretation under the
319 supervision of B. T. Webb, S. A. Bacanu, D. E. Adkins, F. Aliev, A. C. Edwards, and B. P. Riley. A. R. Docherty
320 and A. Moscati drafted the manuscript, and K. Kendler, A. C. Edwards, J. E. Savage, J. E., Salvatore, M. Cooke, B.
321 T. Webb, S. A. Bacanu, D. E. Adkins, A. Moore, R. Peterson, and D. Dick provided edits. All authors approved the
322 final version of the manuscript for submission.

323

Acknowledgements

324 We would like to thank the participants and the many VCU faculty, students, and staff who contributed to the design

325 and implementation of this project.

326

Financial Disclosures

327 All authors declare no conflict of interest with respect to the authorship or publication of this article. Data collection
328 for the study was funded by R37AA011408, P20AA107828, K02AA018755, and P50AA022537 from the National
329 Institute on Alcohol Abuse and Alcoholism, by Virginia Commonwealth University, and by UL1RR031990 from
330 the National Center for Research Resources and National Institutes of Health Roadmap for Medical Research. A.
331 Docherty was funded by K01MH109765 from the National Institute of Mental Health, and by a Brain & Behavior
332 Research Foundation (formerly NARSAD) Young Investigator Award. A. Moscati, A. Moore were supported by
333 institutional training grant T32MH20030. J. Salvatore was supported by F32AA22269 and K01AA024152. M.
334 Cooke received support from UL1TR000058 from the National Institutes of Health National Center for Advancing
335 Translational Science. A. Edwards was supported by K01AA021399.

336

337

338

Declaration of Interest

339 Authors report no conflicts of interest.

340

341 **References**

342 **Akaike H** (1974). A new look at the statistical model identification. *IEEE Transactions on Automatic*
343 *Control* **19**, 716-723.

344 **American Psychiatric Association**. (2000). *Diagnostic and Statistical Manual of Mental Disorder* (4th ed.).
345 Washington, DC: American Psychiatric Association

346 **American Psychiatric Association**. (2013). *Diagnostic and Statistical Manual of Mental Disorders* (5th ed.).
347 Arlington, VA: American Psychiatric Association.

348 **Benyamin B, Pourcain B, Davis OS, Davies G, Hansell NK, Brion MJ, Kirkpatrick RM, Cents RA, Franic S, Miller MB, Haworth CM, Meaburn E, Price TS, Evans DM, Timpson N, Kemp J, Ring S, McArdle W, Medland SE, Yang J, Harris SE, Liewald DC, Scheet P, Xiao X, Hudziak JJ, de Geus EJ, Jaddoe VW, Starr JM, Verhulst FC, Pennell C, Tiemeier H, Iacono WG, Palmer LJ, Montgomery GW, Martin NG, Boomsma DI, Posthuma D, McGue M, Wright MJ, Davey Smith G, Deary IJ, Plomin R, Visscher PM** (2014). Childhood intelligence is heritable, highly polygenic and associated with FNPB1L. *Molecular Psychiatry* **19**, 253-258.

354

355 **Benjamini Y, Hochberg Y** (1995). Controlling the false discovery rate: A practical and powerful
356 approach to multiple testing. *Journal of the Royal Statistical Society. Series B (Methodological)*
357 **57**, 289-300.

358 **Brener ND, Kann L, Kinchen SA, Grunbaum JA, Whalen L, Eaton D, Hawkins J, Ross JG** (2004).
359 Methodology of the youth risk behavior surveillance system. *MMWR Recommendations and*
360 *Reports* **53**, 1-13.

361 **Brown KW, Ryan RM** (2003). The benefits of being present: Mindfulness and its role in
362 psychological well-being. *Journal of Personality and Social Psychology* **84**, 822-848.

363 **Bucholz KK, Cadoret R, Cloninger CR, Dinwiddie SH, Hesselbrock VM, Nurnberger JI, Schuckit MA** (1994). A new, semi-structured psychiatric interview for use in genetic linkage
364 studies: A report on the reliability of the SSAGA. *Journal of Studies on Alcohol* **55**, 149-158.

365

366 **Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh PR, Duncan L, Perry JR, Patterson N, Robinson EB, Daly MJ, Price AL, Neale BM** (2015). An atlas of genetic correlations across human
367 diseases and traits. *Nature Genetics* **47**, 1236-1241.

368

369 **Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ** (1989). The Pittsburgh Sleep Quality Index: A new
370 instrument for psychiatric practice and research. *Psychiatry Research* **28**, 193-213.

371 **Connor KM, Davidson JR** (2003). Development of a new resilience scale: The Connor-Davidson
372 Resilience Scale (CD-RISC). *Depression and Anxiety* **18**, 76-82.

373 **Craig CL, Marshall AL, Sjostrom M, Bauman AE, Booth ML, Ainsworth BE, Pratt M, Ekelund U, Yngve A,**
374 **Sallis JF, Oja P** (2003). International physical activity questionnaire: 12-country reliability and validity.
375 *Medicine & Science in Sports & Exercise* **35**, 1381-1395.

376 **Cross-Disorder Group of the Psychiatric Genomics Consortium** (2013). Identification of risk loci with shared
377 effects on five major psychiatric disorders: A genome-wide analysis. *Lancet* **381**, 1371-1379.

378 **Cuijpers P, Smit F, Pennington BW, de Graaf R, ten Have M, Beekman AT** (2010). Economic costs of
379 neuroticism: A population-based study. *Archives of General Psychiatry* **67**, 1086-1093.

380 **Derogatis LR, Cleary PA** (1977). Confirmation of the dimensional structure of the SCL-90: A study in construct
381 validation. *Journal of Clinical Psychology* **33**, 981-989.

382 **Dick DM, Nasim A, Edwards AC, Salvatore JE, Cho SB, Adkins A, Meyers J, Yan J, Cooke M, Clifford J,**
383 **Goyal N, Halberstadt L, Ailstock K, Neale Z, Opalesky J, Hancock L, Donovan KK, Sun C, Riley B,**
384 **Kendler KS** (2014). Spit for Science: Launching a longitudinal study of genetic and environmental
385 influences on substance use and emotional health at a large US university. *Frontiers in Genetics* **5**, 47.

386 **Docherty AR, Moscati AA, Fanous AH** (2016). Cross-disorder psychiatric genomics: A review. *Current*
387 *Behavioral Neuroscience Reports* **3**, 256-263.

388 **Docherty AR, Moscati A, Peterson R, Edwards AC, Bigdeli TB, Adkins DE, Bacanu SA, Bigdeli TB, Webb**
389 **BT, Flint J, Kendler KS** (2016). SNP-based heritability estimates of the personality dimensions and
390 polygenic prediction of both neuroticism and major depression: Findings from CONVERGE. *Translational*
391 *Psychiatry* **6**, e926.

392 **Docherty AR, Sponheim SR** (2008). Anhedonia as a phenotype for the Val158Met COMT polymorphism in
393 relatives of patients with schizophrenia. *Journal of Abnormal Psychology* **117**, 788-798.

394 **Docherty AR, Sponheim SR** (2014). Anhedonia as an indicator of genetic liability to schizophrenia. In M. Ritsner
395 (Ed.), *Anhedonia: A Comprehensive Handbook*. Dordrecht: Springer.

396 **Docherty AR, Sponheim SR, Kerns JG** (2015). Self-reported affective traits and current affective experiences of
397 biological relatives of people with schizophrenia. *Schizophrenia Research* **161**, 340-344.

398 **Fanous A, Gardner C, Walsh D, Kendler KS** (2001). Relationship between positive and negative symptoms of
399 schizophrenia and schizotypal symptoms in nonpsychotic relatives. *Archives of General Psychiatry* **58**,
400 669-673.

401 **Fisher RA** (1919). On the correlation between relatives on the supposition of mendelian inheritance. *Transactions*
402 *of the Royal Society of Edinburgh: Earth and Environmental Science* **52**, 399-433.

403 **Gale CR, Hagenaars SP, Davies G, Hill WD, Liewald DC, Cullen B, Penninx BW, Boomsma DI, Pell J,**
404 **McIntosh AM, Smith DJ, Deary IJ, Harris SE** (2016). Pleiotropy between neuroticism and physical and
405 mental health: Findings from 108,038 men and women in UK Biobank. *Translational Psychiatry* **6**, e791.

406 **Genetics of Personality Consortium, de Moor MH, van den Berg SM, Verweij KJ, Krueger RF, Luciano M, . . .**
407 **. Boomsma DI** (2015). Meta-analysis of genome-wide association studies for neuroticism, and the
408 polygenic association with major depressive disorder. *JAMA Psychiatry* **72**, 642-650.

409 **Gray MJ, Litz BT, Hsu JL, Lombardo TW** (2004). Psychometric properties of the life events checklist.
410 *Assessment* **11**, 330-341.

411 **Hagenaars SP, Harris SE, Davies G, Hill WD, Liewald DC, Ritchie SJ, Marioni RE, Fawns-Ritchie C, Cullen**
412 **B, Malik R, Worrall BB, Sudlow CL, Wardlaw JM, Gallacher J, Pell J, McIntosh AM, Smith DJ,**
413 **Gale CR, Deary IJ** (2016). Shared genetic aetiology between cognitive functions and physical and mental
414 health in UK Biobank (N=112 151) and 24 GWAS consortia. *Molecular Psychiatry* **21**, 1624-1632.

415 **Hays RD, Sherbourne CD, Mazel RM** (1995). *User's manual for the Medical Outcomes Study (MOS): Core*
416 *measures of health-related quality of life*. Santa Monica, CA: RAND.

417 **Heatherton TF, Kozlowski LT, Frecker RC, Fagerstrom KO** (1991). The Fagerstrom Test for Nicotine
418 Dependence: A revision of the Fagerstrom Tolerance Questionnaire. *British Journal of Addiction* **86**, 1119-
419 1127.

420 **Hendrick SS** (1988). A generic measure of relationship satisfaction. *Journal of Marriage and Family* **50**, 93-98.

421 **Hibar DP, Stein JL, Renteria ME, Arias-Vasquez A, Desrivieres S, Jahanshad N, Toro R, Wittfeld K,**
422 **Abramovic L, Andersson M, Aribisala BS, Armstrong NJ, Bernard M, Bohlken MM, Boks MP,**
423 **Bralten J, Brown AA, Chakravarty MM, Chen Q, Ching CR, Cuellar-Partida G, den Braber A,**

424 **Giddaluru S, Goldman AL, Grimm O, Guadalupe T, Hass J, Woldehawariat G, Holmes AJ,**
425 **Hoogman M, Janowitz D, Jia T, Kim S, Klein M, Kraemer B, Lee PH, Olde Loohuis LM, Luciano M,**
426 **Macare C, Mather KA, Mattheisen M, Milaneschi Y, Nho K, Papmeyer M, Ramasamy A, Risacher**
427 **SL, Roiz-Santianez R, Rose EJ, Salami A, Samann PG, Schmaal L, Schork AJ, Shin J, Strike LT,**
428 **Teumer A, van Donkelaar MM, van Eijk KR, Walters RK, Westlye LT, Whelan CD, Winkler AM,**
429 **Zwiers MP, Alhusaini S, Athanasiu L, Ehrlich S, Hakobjan MM, Hartberg CB, Haukvik UK, Heister**
430 **AJ, Hoehn D, Kasperaviciute D, Liewald DC, Lopez LM, Makkinje RR, Matarin M, Naber MA,**
431 **McKay DR, Needham M, Nugent AC, Putz B, Royle NA, Shen L, Sprooten E, Trabzuni D, van der**
432 **Marel SS, van Hulzen KJ, Walton E, Wolf C, Almasy L, Ames D, Arepalli S, Assareh AA, Bastin**
433 **ME, Brodaty H, Bulayeva KB, Carless MA, Cichon S, Corvin A, Curran JE, Czisch M, de Zubicaray**
434 **GI, Dillman A, Duggirala R, Dyer TD, Erk S, Fedko IO, Ferrucci L, Foroud TM, Fox PT, Fukunaga**
435 **M, Gibbs JR, Goring HH, Green RC, Guelfi S, Hansell NK, Hartman CA, Hegenscheid K, Heinz A,**
436 **Hernandez DG, Heslenfeld DJ, Hoekstra PJ, Holsboer F, Homuth G, Hottenga JJ, Ikeda M, Jack**
437 **CR, Jr., Jenkinson M, Johnson R, Kanai R, Keil M, Kent JW, Jr., Kochunov P, Kwok JB, Lawrie**
438 **SM, Liu X, Longo DL, McMahon KL, Meisenzahl E, Melle I, Mohnke S, Montgomery GW, Mostert**
439 **JC, Muhleisen TW, Nalls MA, Nichols TE, Nilsson LG, Nothen MM, Ohi K, Olvera RL, Perez-**
440 **Iglesias R, Pike GB, Potkin SG, Reinvang I, Reppermund S, Rietschel M, Romanczuk-Seiferth N,**
441 **Rosen GD, Rujescu D, Schnell K, Schofield PR, Smith C, Steen VM, Sussmann JE, Thalamuthu A,**
442 **Toga AW, Traynor BJ, Troncoso J, Turner JA, Valdes Hernandez MC, van 't Ent D, van der Brug**
443 **M, van der Wee NJ, van Tol MJ, Veltman DJ, Wassink TH, Westman E, Zielke RH, Zonderman AB,**
444 **Ashbrook DG, Hager R, Lu L, McMahon FJ, Morris DW, Williams RW, Brunner HG, Buckner RL,**
445 **Buitelaar JK, Cahn W, Calhoun VD, Cavalleri GL, Crespo-Facorro B, Dale AM, Davies GE, Delanty**
446 **N, Depondt C, Djurovic S, Drevets WC, Espeseth T, Gollub RL, Ho BC, Hoffmann W, Hosten N,**
447 **Kahn RS, Le Hellard S, Meyer-Lindenberg A, Muller-Myhsok B, Nauck M, Nyberg L, Pandolfo M,**
448 **Penninx BW, Roffman JL, Sisodiya SM, Smoller JW, van Bokhoven H, van Haren NE, Volzke H,**
449 **Walter H, Weiner MW, Wen W, White T, Agartz I, Andreassen OA, Blangero J, Boomsma DI,**
450 **Brouwer RM, Cannon DM, Cookson MR, de Geus EJ, Deary IJ, Donohoe G, Fernandez G, Fisher**
451 **SE, Francks C, Glahn DC, Grabe HJ, Gruber O, Hardy J, Hashimoto R, Hulshoff Pol HE, Jonsson**

452 EG, Kloszewska I, Lovestone S, Mattay VS, Mecocci P, McDonald C, McIntosh AM, Ophoff RA,
453 Paus T, Pausova Z, Ryten M, Sachdev PS, Saykin AJ, Simmons A, Singleton A, Soininen H,
454 Wardlaw JM, Weale ME, Weinberger DR, Adams HH, Launer LJ, Seiler S, Schmidt R, Chauhan G,
455 Satizabal CL, Becker JT, Yanek L, van der Lee SJ, Ebli M, Fischl B, Longstreth WT, Jr., Greve
456 D, Schmidt H, Nyquist P, Vinke LN, van Duijn CM, Xue L, Mazoyer B, Bis JC, Gudnason V,
457 Seshadri S, Ikram MA, Martin NG, Wright MJ, Schumann G, Franke B, Thompson PM, Medland
458 SE (2015). Common genetic variants influence human subcortical brain structures. *Nature* **520**, 224-229.
459 Horikoshi M, Yaghoodeh H, Mook-Kanamori DO, Sovio U, Taal HR, Hennig BJ, Bradfield JP, St Pourcain
460 B, Evans DM, Charoen P, Kaakinen M, Cousminer DL, Lehtimaki T, Kreiner-Moller E, Warrington
461 NM, Bustamante M, Feenstra B, Berry DJ, Thiering E, Pfab T, Barton SJ, Shields BM, Kerkhof M,
462 van Leeuwen EM, Fulford AJ, Katalik Z, Zhao JH, den Hoed M, Mahajan A, Lindi V, Goh LK,
463 Hottenga JJ, Wu Y, Raitakari OT, Harder MN, Meirhaeghe A, Ntalla I, Salem RM, Jameson KA,
464 Zhou K, Monies DM, Lagou V, Kirin M, Heikkinen J, Adair LS, Alkuraya FS, Al-Odaib A, Amouyel
465 P, Andersson EA, Bennett AJ, Blakemore AI, Buxton JL, Dallongeville J, Das S, de Geus EJ, Estivill
466 X, Flexeder C, Froguel P, Geller F, Godfrey KM, Gottrand F, Groves CJ, Hansen T, Hirschhorn JN,
467 Hofman A, Hollegaard MV, Hougaard DM, Hypponen E, Inskip HM, Isaacs A, Jorgensen T,
468 Kanaka-Gantenbein C, Kemp JP, Kiess W, Kilpelainen TO, Klopp N, Knight BA, Kuzawa CW,
469 McMahon G, Newnham JP, Niinikoski H, Oostra BA, Pedersen L, Postma DS, Ring SM, Rivadeneira
470 F, Robertson NR, Sebert S, Simell O, Slowinski T, Tiesler CM, Tonjes A, Vaag A, Viikari JS, Vink
471 JM, Vissing NH, Wareham NJ, Willemsen G, Witte DR, Zhang H, Zhao J, Wilson JF, Stumvoll M,
472 Prentice AM, Meyer BF, Pearson ER, Boreham CA, Cooper C, Gillman MW, Dedoussis GV, Moreno
473 LA, Pedersen O, Saarinen M, Mohlke KL, Boomsma DI, Saw SM, Lakka TA, Korner A, Loos RJ,
474 Ong KK, Vollenweider P, van Duijn CM, Koppelman GH, Hattersley AT, Holloway JW, Hocher B,
475 Heinrich J, Power C, Melbye M, Guxens M, Pennell CE, Bonnelykke K, Bisgaard H, Eriksson JG,
476 Widen E, Hakonarson H, Uitterlinden AG, Pouta A, Lawlor DA, Smith GD, Frayling TM, McCarthy
477 MI, Grant SF, Jaddoe VW, Jarvelin MR, Timpson NJ, Prokopenko I, Freathy RM (2013). New loci
478 associated with birth weight identify genetic links between intrauterine growth and adult height and
479 metabolism. *Nature Genetics* **45**, 76-82.

480 **John OP, Srivastava S** (1999). The Big-Five trait taxonomy: History, measurement, and theoretical perspectives. In
481 L. A. Pervin (Ed.), *Handbook of Personality: Theory and Research* (pp. 102-183). New York: Guilford
482 Press.

483 **Jones HJ, Stergiakouli E, Tansey KE, Hubbard L, Heron J, Cannon M, Holmans P, Lewis G, Linden DE, Jones PB, Davey Smith G, O'Donovan MC, Owen MJ, Walters JT, Zammit S** (2016). Phenotypic
484 manifestation of genetic risk for schizophrenia during adolescence in the general population. *JAMA Psychiatry* **73**, 221-228.

485 **Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Schumm LP, Sharma Y, Anderson CA, Essers J, Mitrovic M, Ning K, Cleynen I, Theatre E, Spain SL, Raychaudhuri S, Goyette P, Wei Z, Abraham C, Achkar JP, Ahmad T, Amininejad L, Ananthakrishnan AN, Andersen V, Andrews JM, Baidoo L, Balschun T, Bampton PA, Bitton A, Boucher G, Brand S, Buning C, Cohain A, Cichon S, D'Amato M, De Jong D, Devaney KL, Dubinsky M, Edwards C, Ellinghaus D, Ferguson LR, Franchimont D, Fransen K, Gearry R, Georges M, Gieger C, Glas J, Haritunians T, Hart A, Hawkey C, Hedl M, Hu X, Karlsen TH, Kupcinskas L, Kugathasan S, Latiano A, Laukens D, Lawrence IC, Lees CW, Louis E, Mahy G, Mansfield J, Morgan AR, Mowat C, Newman W, Palmieri O, Ponsioen CY, Potocnik U, Prescott NJ, Regueiro M, Rotter JI, Russell RK, Sanderson JD, Sans M, Satsangi J, Schreiber S, Simms LA, Sventoraityte J, Targan SR, Taylor KD, Tremelling M, Verspaget HW, De Vos M, Wijmenga C, Wilson DC, Winkelmann J, Xavier RJ, Zeissig S, Zhang B, Zhang CK, Zhao H, Silverberg MS, Annese V, Hakonarson H, Brant SR, Radford-Smith G, Mathew CG, Rioux JD, Schadt EE, Daly MJ, Franke A, Parkes M, Vermeire S, Barrett JC, Cho JH** (2012). Host-microbe interactions have shaped the genetic architecture of
500 inflammatory bowel disease. *Nature* **491**, 119-124.

501 **Kendler KS** (2016). The schizophrenia polygenic risk score: To what does it predispose in adolescence? *JAMA Psychiatry* **73**, 193-194.

502 **Kendler KS, Gardner CO, Prescott CA** (1997). Religion, psychopathology, and substance use and abuse; A
503 multimeasure, genetic-epidemiologic study. *American Journal of Psychiatry* **154**, 322-329.

504 **Kendler KS, Jacobson K, Myers JM, Eaves LJ** (2008). A genetically informative developmental study of the
505 relationship between conduct disorder and peer deviance in males. *Psychological Medicine* **38**, 1001-1011.

508 **Kendler KS, Karkowski LM, Prescott CA** (1999) Causal relationship between stressful life events and the onset
509 of major depression. *American Journal of Psychiatry* **156**, 837-841.

510 **Kendler KS, Karkowski-Shuman L, Walsh D** (1996). The risk for psychiatric illness in siblings of
511 schizophrenics: The impact of psychotic and non-psychotic affective illness and alcoholism in parents. *Acta
512 Psychiatrica Scandinavica* **94**, 49-55.

513 **Kendler KS, Myers J** (2010). The genetic and environmental relationship between major depression and the five-
514 factor model of personality. *Psychological Medicine* **40**, 801-806.

515 **Kendler KS, Prescott CA** (1999). Caffeine intake, tolerance, and withdrawal in women: A population-based twin
516 study. *American Journal of Psychiatry* **156**, 223-228.

517 **Kessler RC, Angermeyer M, Anthony JC, R DEG, Demyttenaere K, Gasquet I, G DEG, Gluzman S, Gureje
518 O, Haro JM, Kawakami N, Karam A, Levinson D, Medina Mora ME, Oakley Browne MA, Posada-
519 Villa J, Stein DJ, Adley Tsang CH, Aguilar-Gaxiola S, Alonso J, Lee S, Heeringa S, Pennell BE,
520 Berglund P, Gruber MJ, Petukhova M, Chatterji S, Ustun TB** (2007): Lifetime prevalence and age-of-
521 onset distributions of mental disorders in the World Health Organization's World Mental Health Survey
522 Initiative. *World Psychiatry* **6**, 168-176.

523 **Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE** (2005). Lifetime prevalence and age-
524 of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. *Archives of
525 General Psychiatry* **62**, 593-602.

526 **Kokkinos PF, Fernhall B** (1999). Physical activity and high density lipoprotein cholesterol levels: What is the
527 relationship? *Sports Medicine* **28**, 307-314.

528 **Krapohl E, Euesden J, Zabaneh D, Pingault JB, Rimfeld K, von Stumm S, Dale PS, Breen G, O'Reilly PF,
529 Plomin R** (2015). Phenome-wide analysis of genome-wide polygenic scores. *Molecular Psychiatry* **21**,
530 1188-1193.

531 **Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC,
532 Beecham GW, Grenier-Boley B, Russo G, Thornton-Wells TA, Jones N, Smith AV, Chouraki V,
533 Thomas C, Ikram MA, Zelenika D, Vardarajan BN, Kamatani Y, Lin CF, Gerrish A, Schmidt H,
534 Kunkle B, Dunstan ML, Ruiz A, Bihoreau MT, Choi SH, Reitz C, Pasquier F, Cruchaga C, Craig D,
535 Amin N, Berr C, Lopez OL, De Jager PL, Deramecourt V, Johnston JA, Evans D, Lovestone S,**

536 Letenueur L, Moron FJ, Rubinsztein DC, Eiriksdottir G, Sleegers K, Goate AM, Fievet N,
537 Huentelman MW, Gill M, Brown K, Kamboh MI, Keller L, Barberger-Gateau P, McGuiness B,
538 Larson EB, Green R, Myers AJ, Dufouil C, Todd S, Wallon D, Love S, Rogaeva E, Gallacher J, St
539 George-Hyslop P, Clarimon J, Lleo A, Bayer A, Tsuang DW, Yu L, Tsolaki M, Bossu P, Spalletta G,
540 Proitsi P, Collinge J, Sorbi S, Sanchez-Garcia F, Fox NC, Hardy J, Deniz Naranjo MC, Bosco P,
541 Clarke R, Brayne C, Galimberti D, Mancuso M, Matthews F, Moebus S, Mecocci P, Del Zompo M,
542 Maier W, Hampel H, Pilotto A, Bullido M, Panza F, Caffarra P, Nacmias B, Gilbert JR, Mayhaus M,
543 Lannefelt L, Hakonarson H, Pichler S, Carrasquillo MM, Ingelsson M, Beekly D, Alvarez V, Zou F,
544 Valladares O, Younkin SG, Coto E, Hamilton-Nelson KL, Gu W, Razquin C, Pastor P, Mateo I,
545 Owen MJ, Faber KM, Jonsson PV, Combarros O, O'Donovan MC, Cantwell LB, Soininen H,
546 Blacker D, Mead S, Mosley TH, Jr., Bennett DA, Harris TB, Fratiglioni L, Holmes C, de Brujin RF,
547 Passmore P, Montine TJ, Bettens K, Rotter JI, Brice A, Morgan K, Foroud TM, Kukull WA,
548 Hannequin D, Powell JF, Nalls MA, Ritchie K, Lunetta KL, Kauwe JS, Boerwinkle E,
549 Riemenschneider M, Boada M, Hiltuenen M, Martin ER, Schmidt R, Rujescu D, Wang LS,
550 Dartigues JF, Mayeux R, Tzourio C, Hofman A, Nothen MM, Graff C, Psaty BM, Jones L, Haines
551 JL, Holmans PA, Lathrop M, Pericak-Vance MA, Launer LJ, Farrer LA, van Duijn CM, Van
552 Broeckhoven C, Moskvina V, Seshadri S, Williams J, Schellenberg GD, Amouyel P (2013). Meta-
553 analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease. *Nature Genetics*
554 **45**, 1452-1458.
555 Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, Powell C, Vedantam S, Buchkovich ML, Yang
556 J, Croteau-Chonka DC, Esko T, Fall T, Ferreira T, Gustafsson S, Kutalik Z, Luan J, Magi R,
557 Randall JC, Winkler TW, Wood AR, Workalemahu T, Faul JD, Smith JA, Zhao JH, Zhao W, Chen
558 J, Fehrman R, Hedman AK, Karjalainen J, Schmidt EM, Absher D, Amin N, Anderson D,
559 Beekman M, Bolton JL, Bragg-Gresham JL, Buyske S, Demirkhan A, Deng G, Ehret GB, Feenstra B,
560 Feitosa MF, Fischer K, Goel A, Gong J, Jackson AU, Kanoni S, Kleber ME, Kristiansson K, Lim U,
561 Lotay V, Mangino M, Leach IM, Medina-Gomez C, Medland SE, Nalls MA, Palmer CD, Pasko D,
562 Pechlivanis S, Peters MJ, Prokopenko I, Shungin D, Stancakova A, Strawbridge RJ, Sung YJ,
563 Tanaka T, Teumer A, Trompet S, van der Laan SW, van Setten J, Van Vliet-Ostaptchouk JV, Wang

564 Z, Yengo L, Zhang W, Isaacs A, Albrecht E, Arnlov J, Arscott GM, Attwood AP, Bandinelli S,
565 Barrett A, Bas IN, Bellis C, Bennett AJ, Berne C, Blagieva R, Bluher M, Bohringer S, Bonnycastle
566 LL, Bottcher Y, Boyd HA, Bruinenberg M, Caspersen IH, Chen YI, Clarke R, Daw EW, de Craen
567 AJM, Delgado G, Dimitriou M, Doney ASF, Eklund N, Estrada K, Eury E, Folkersen L, Fraser RM,
568 Garcia ME, Geller F, Giedraitis V, Gigante B, Go AS, Golay A, Goodall AH, Gordon SD, Gorski M,
569 Grabe HJ, Grallert H, Grammer TB, Grassler J, Gronberg H, Groves CJ, Gusto G, Haessler J, Hall
570 P, Haller T, Hallmans G, Hartman CA, Hassinen M, Hayward C, Heard-Costa NL, Helmer Q,
571 Hengstenberg C, Holmen O, Hottenga JJ, James AL, Jeff JM, Johansson A, Jolley J, Juliusdottir T,
572 Kinnunen L, Koenig W, Koskenvuo M, Kratzer W, Laitinen J, Lamina C, Leander K, Lee NR,
573 Lichtner P, Lind L, Lindstrom J, Lo KS, Lobbens S, Lorbeer R, Lu Y, Mach F, Magnusson PKE,
574 Mahajan A, McArdle WL, McLachlan S, Menni C, Merger S, Mihailov E, Milani L, Moayyeri A,
575 Monda KL, Morken MA, Mulas A, Muller G, Muller-Nurasyid M, Musk AW, Nagaraja R, Nothen
576 MM, Nolte IM, Pilz S, Rayner NW, Renstrom F, Rettig R, Ried JS, Ripke S, Robertson NR, Rose
577 LM, Sanna S, Scharnagl H, Scholtens S, Schumacher FR, Scott WR, Seufferlein T, Shi J, Smith AV,
578 Smolonska J, Stanton AV, Steinhorsdottir V, Stirrups K, Stringham HM, Sundstrom J, Swertz MA,
579 Swift AJ, Syvanen AC, Tan ST, Tayo BO, Thorand B, Thorleifsson G, Tyrer JP, Uh HW, Vandenput
580 L, Verhulst FC, Vermeulen SH, Verweij N, Vonk JM, Waite LL, Warren HR, Waterworth D,
581 Weedon MN, Wilkens LR, Willenborg C, Wilsgaard T, Wojczynski MK, Wong A, Wright AF, Zhang
582 Q, Brennan EP, Choi M, Dastani Z, Drong AW, Eriksson P, Franco-Cereceda A, Gadin JR, Gharavi
583 AG, Goddard ME, Handsaker RE, Huang J, Karpe F, Kathiresan S, Keildson S, Kiryluk K, Kubo
584 M, Lee JY, Liang L, Lifton RP, Ma B, McCarroll SA, McKnight AJ, Min JL, Moffatt MF,
585 Montgomery GW, Murabito JM, Nicholson G, Nyholt DR, Okada Y, Perry JRB, Dorajoo R,
586 Reinmaa E, Salem RM, Sandholm N, Scott RA, Stolk L, Takahashi A, Tanaka T, van 't Hooft FM,
587 Vinkhuyzen AAE, Westra HJ, Zheng W, Zondervan KT, Heath AC, Arveiler D, Bakker SJL, Beilby
588 J, Bergman RN, Blangero J, Bovet P, Campbell H, Caulfield MJ, Cesana G, Chakravarti A,
589 Chasman DI, Chines PS, Collins FS, Crawford DC, Cupples LA, Cusi D, Danesh J, de Faire U, den
590 Ruijter HM, Dominiczak AF, Erbel R, Erdmann J, Eriksson JG, Farrall M, Felix SB, Ferrannini E,
591 Ferrieres J, Ford I, Forouhi NG, Forrester T, Franco OH, Gansevoort RT, Gejman PV, Gieger C,

592 **Gottesman O, Gudnason V, Gyllensten U, Hall AS, Harris TB, Hattersley AT, Hicks AA, Hindorff**
593 **LA, Hingorani AD, Hofman A, Homuth G, Hovingh GK, Humphries SE, Hunt SC, Hypponen E, Illig**
594 **T, Jacobs KB, Jarvelin MR, Jockel KH, Johansen B, Jousilahti P, Jukema JW, Jula AM, Kaprio J,**
595 **Kastelein JJP, Keinanen-Kiukaanniemi SM, Kiemeney LA, Knekt P, Kooner JS, Kooperberg C,**
596 **Kovacs P, Kraja AT, Kumari M, Kuusisto J, Lakka TA, Langenberg C, Marchand LL, Lehtimaki T,**
597 **Lyssenko V, Mannisto S, Marette A, Matise TC, McKenzie CA, McKnight B, Moll FL, Morris AD,**
598 **Morris AP, Murray JC, Nelis M, Ohlsson C, Oldehinkel AJ, Ong KK, Madden PAF, Pasterkamp G,**
599 **Peden JF, Peters A, Postma DS, Pramstaller PP, Price JF, Qi L, Raitakari OT, Rankinen T, Rao DC,**
600 **Rice TK, Ridker PM, Rioux JD, Ritchie MD, Rudan I, Salomaa V, Samani NJ, Saramies J, Sarzynski**
601 **MA, Schunkert H, Schwarz PEH, Sever P, Shuldiner AR, Sinisalo J, Stolk RP, Strauch K, Tonjes A,**
602 **Tregouet DA, Tremblay A, Tremoli E, Virtamo J, Vohl MC, Volker U, Waeber G, Willemse G,**
603 **Witteman JC, Zillikens MC, Adair LS, Amouyel P, Asselbergs FW, Assimes TL, Bochud M, Boehm**
604 **BO, Boerwinkle E, Bornstein SR, Bottinger EP, Bouchard C, Cauchi S, Chambers JC, Chanock SJ,**
605 **Cooper RS, de Bakker PIW, Dedoussis G, Ferrucci L, Franks PW, Froguel P, Groop LC, Haiman**
606 **CA, Hamsten A, Hui J, Hunter DJ, Hveem K, Kaplan RC, Kivimaki M, Kuh D, Laakso M, Liu Y,**
607 **Martin NG, Marz W, Melbye M, Metspalu A, Moebus S, Munroe PB, Njolstad I, Oostra BA, Palmer**
608 **CNA, Pedersen NL, Perola M, Perusse L, Peters U, Power C, Quertermous T, Rauramaa R,**
609 **Rivadeneira F, Saaristo TE, Saleheen D, Sattar N, Schadt EE, Schlessinger D, Slagboom PE, Snieder**
610 **H, Spector TD, Thorsteinsdottir U, Stumvoll M, Tuomilehto J, Uitterlinden AG, Uusitupa M, van der**
611 **Harst P, Walker M, Wallaschofski H, Wareham NJ, Watkins H, Weir DR, Wichmann HE, Wilson**
612 **JF, Zanen P, Borecki IB, Deloukas P, Fox CS, Heid IM, O'Connell JR, Strachan DP, Stefansson K,**
613 **van Duijn CM, Abecasis GR, Franke L, Frayling TM, McCarthy MI, Visscher PM, Scherag A,**
614 **Willer CJ, Bohnke M, Mohlke KL, Lindgren CM, Beckmann JS, Barroso I, North KE, Ingelsson E,**
615 **Hirschhorn JN, Loos RJF, Speliotes EK (2015). Genetic studies of body mass index yield new insights**
616 **for obesity biology. *Nature* **518**, 197-206.**

617 **Lynam DR, Smith GT, Whiteside SP, Cyders MA (2006). *The UPPS-P: Assessing five personality pathways to***
618 ***impulsive behavior. Technical report.*** West Lafayette, IN: Purdue University.

619 **Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium** (2013). A mega-analysis
620 of genome-wide association studies for major depressive disorder. *Molecular Psychiatry* **18**, 497-511.

621 **Marigorta UM, Navarro A** (2013): High trans-ethnic replicability of GWAS results implies common causal
622 variants. *PLoS Genetics* **9**, e1003566.

623 **Martin AR, Gignoux CR, Walters RK, Wojcik GL, Neale BM, Gravel S, Daly MJ, Bustamante CD, Kenny**
624 **EE** (2016). Population genetic history and polygenic risk biases in 1000 genomes. Unpublished
625 manuscript. Available at: <http://biorxiv.org/content/early/2016/08/23/070797>

626 **Morris AP, Voight BF, Teslovich TM, Ferreira T, Segre AV, Steinhorsdottir V, Strawbridge RJ, Khan H,**
627 **Grallert H, Mahajan A, Prokopenko I, Kang HM, Dina C, Esko T, Fraser RM, Kanoni S, Kumar A,**
628 **Lagou V, Langenberg C, Luan J, Lindgren CM, Muller-Nurasyid M, Pechlivanis S, Rayner NW,**
629 **Scott LJ, Wiltshire S, Yengo L, Kinnunen L, Rossin EJ, Raychaudhuri S, Johnson AD, Dimas AS,**
630 **Loos RJ, Vedantam S, Chen H, Florez JC, Fox C, Liu CT, Rybin D, Couper DJ, Kao WH, Li M,**
631 **Cornelis MC, Kraft P, Sun Q, van Dam RM, Stringham HM, Chines PS, Fischer K, Fontanillas P,**
632 **Holmen OL, Hunt SE, Jackson AU, Kong A, Lawrence R, Meyer J, Perry JR, Platou CG, Potter S,**
633 **Rehnberg E, Robertson N, Sivapalaratnam S, Stancakova A, Stirrups K, Thorleifsson G, Tikkainen**
634 **E, Wood AR, Almgren P, Atalay M, Benediktsson R, Bonnycastle LL, Burtt N, Carey J, Charpentier**
635 **G, Crenshaw AT, Doney AS, Dorkhan M, Edkins S, Emilsson V, Eury E, Forsen T, Gertow K,**
636 **Gigante B, Grant GB, Groves CJ, Guiducci C, Herder C, Hreidarsson AB, Hui J, James A, Jonsson**
637 **A, Rathmann W, Klopp N, Kravic J, Krjutskov K, Langford C, Leander K, Lindholm E, Lobbens S,**
638 **Mannisto S, Mirza G, Muhleisen TW, Musk B, Parkin M, Rallidis L, Saramies J, Sennblad B, Shah**
639 **S, Sigurethsson G, Silveira A, Steinbach G, Thorand B, Trakalo J, Veglia F, Wennauer R, Winckler**
640 **W, Zabaneh D, Campbell H, van Duijn C, Uitterlinden AG, Hofman A, Sijbrands E, Abecasis GR,**
641 **Owen KR, Zeggini E, Trip MD, Forouhi NG, Syvanen AC, Eriksson JG, Peltonen L, Nothen MM,**
642 **Balkau B, Palmer CN, Lyssenko V, Tuomi T, Isomaa B, Hunter DJ, Qi L, Shuldiner AR, Roden M,**
643 **Barroso I, Wilsgaard T, Beilby J, Hovingh K, Price JF, Wilson JF, Rauramaa R, Lakka TA, Lind L,**
644 **Dedoussis G, Njolstad I, Pedersen NL, Khaw KT, Wareham NJ, Keinanen-Kiukaanniemi SM,**
645 **Saaristo TE, Korpi-Hyovalti E, Saltevo J, Laakso M, Kuusisto J, Metspalu A, Collins FS, Mohlke**
646 **KL, Bergman RN, Tuomilehto J, Boehm BO, Gieger C, Hveem K, Cauchi S, Froguel P, Baldassarre**

647 D, Tremoli E, Humphries SE, Saleheen D, Danesh J, Ingelsson E, Ripatti S, Salomaa V, Erbel R,
648 Jockel KH, Moebus S, Peters A, Illig T, de Faire U, Hamsten A, Morris AD, Donnelly PJ, Frayling
649 TM, Hattersley AT, Boerwinkle E, Melander O, Kathiresan S, Nilsson PM, Deloukas P,
650 Thorsteinsdottir U, Groop LC, Stefansson K, Hu F, Pankow JS, Dupuis J, Meigs JB, Altshuler D,
651 Boehnke M, McCarthy MI (2012). Large-scale association analysis provides insights into the genetic
652 architecture and pathophysiology of type 2 diabetes. *Nature Genetics* **44**, 981-990.
653 Neale BM, Medland SE, Ripke S, Asherson P, Franke B, Lesch KP, Faraone SV, Nguyen TT, Schafer H,
654 Holmans P, Daly M, Steinhause HC, Freitag C, Reif A, Renner TJ, Romanos M, Romanos J,
655 Walitzka S, Warnke A, Meyer J, Palmason H, Buitelaar J, Vasquez AA, Lambregts-Rommelse N, Gill
656 M, Anney RJ, Langely K, O'Donovan M, Williams N, Owen M, Thapar A, Kent L, Sergeant J,
657 Roeyers H, Mick E, Biederman J, Doyle A, Smalley S, Loo S, Hakonarson H, Elia J, Todorov A,
658 Miranda A, Mulas F, Ebstein RP, Rothenberger A, Banaschewski T, Oades RD, Sonuga-Barke E,
659 McGough J, Nisenbaum L, Middleton F, Hu X, Nelson S (2010). Meta-analysis of genome-wide
660 association studies of attention-deficit/hyperactivity disorder. *Journal of the American Academy of Child
661 and Adolescent Psychiatry* **49**, 884-897.
662 Okbay A, Baselmans BM, De Neve JE, Turley P, Nivard MG, Fontana MA, Meddents SF, Linner RK,
663 Rietveld CA, Derringer J, Gratten J, Lee JJ, Liu JZ, de Vlaming R, Ahluwalia TS, Buchwald J,
664 Cavadino A, Frazier-Wood AC, Furlotte NA, Garfield V, Geisel MH, Gonzalez JR, Haitjema S,
665 Karlsson R, van der Laan SW, Ladwig KH, Lahti J, van der Lee SJ, Lind PA, Liu T, Matteson L,
666 Mihailov E, Miller MB, Minica CC, Nolte IM, Mook-Kanamori D, van der Most PJ, Oldmeadow C,
667 Qian Y, Raitakari O, Rawal R, Realo A, Rueedi R, Schmidt B, Smith AV, Stergiakouli E, Tanaka T,
668 Taylor K, Wedenoja J, Wellmann J, Westra HJ, Willems SM, Zhao W, Amin N, Bakshi A, Boyle PA,
669 Cherney S, Cox SR, Davies G, Davis OS, Ding J, Direk N, Eibich P, Emeny RT, Fatemifar G, Faul
670 JD, Ferrucci L, Forstner A, Gieger C, Gupta R, Harris TB, Harris JM, Holliday EG, Hottenga JJ,
671 De Jager PL, Kaakinen MA, Kajantie E, Karhunen V, Kolcic I, Kumari M, Launer LJ, Franke L,
672 Li-Gao R, Koini M, Loukola A, Marques-Vidal P, Montgomery GW, Mosing MA, Paternoster L,
673 Pattie A, Petrovic KE, Pulkki-Raback L, Quaye L, Raikkonen K, Rudan I, Scott RJ, Smith JA, Sutin
674 AR, Trzaskowski M, Vinkhuyzen AE, Yu L, Zabaneh D, Attia JR, Bennett DA, Berger K, Bertram

675 L, Boomsma DI, Snieder H, Chang SC, Cucca F, Deary IJ, van Duijn CM, Eriksson JG, Bultmann U,
676 de Geus EJ, Groenen PJ, Gudnason V, Hansen T, Hartman CA, Haworth CM, Hayward C, Heath
677 AC, Hinds DA, Hypponen E, Iacono WG, Jarvelin MR, Jockel KH, Kaprio J, Kardia SL,
678 Keltikangas-Jarvinen L, Kraft P, Kubzansky LD, Lehtimaki T, Magnusson PK, Martin NG, McGue
679 M, Metspalu A, Mills M, de Mutsert R, Oldehinkel AJ, Pasterkamp G, Pedersen NL, Plomin R,
680 Polasek O, Power C, Rich SS, Rosendaal FR, den Ruijter HM, Schlessinger D, Schmidt H, Svento R,
681 Schmidt R, Alizadeh BZ, Sorensen TI, Spector TD, Steptoe A, Terracciano A, Thurik AR, Timpson
682 NJ, Tiemeier H, Uitterlinden AG, Vollenweider P, Wagner GG, Weir DR, Yang J, Conley DC, Smith
683 GD, Hofman A, Johannesson M, Laibson DI, Medland SE, Meyer MN, Pickrell JK, Esko T, Krueger
684 RF, Beauchamp JP, Koellinger PD, Benjamin DJ, Bartels M, Cesarini D (2016). Genetic variants
685 associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-
686 wide analyses. *Nature Genetics* **48**, 624-633.

687 Otowa T, Hek K, Lee M, Byrne EM, Mirza SS, Nivard MG, Bigdeli T, Aggen SH, Adkins D, Wolen A,
688 Fanous A, Keller MC, Castelao E, Kutalik Z, der Auwera SV, Homuth G, Nauck M, Teumer A,
689 Milaneschi Y, Hottenga JJ, Direk N, Hofman A, Uitterlinden A, Mulder CL, Henders AK, Medland
690 SE, Gordon S, Heath AC, Madden PA, Pergadia ML, van der Most PJ, Nolte IM, van Oort FV,
691 Hartman CA, Oldehinkel AJ, Preisig M, Grabe HJ, Middeldorp CM, Penninx BW, Boomsma D,
692 Martin NG, Montgomery G, Maher BS, van den Oord EJ, Wray NR, Tiemeier H, Hettema JM
693 (2016) Meta-analysis of genome-wide association studies of anxiety disorders. *Molecular Psychiatry* **21**,
694 1391-1399.

695 Perry JR, Day F, Elks CE, Sulem P, Thompson DJ, Ferreira T, He C, Chasman DI, Esko T, Thorleifsson G,
696 Albrecht E, Ang WQ, Corre T, Cousminer DL, Feenstra B, Franceschini N, Ganna A, Johnson AD,
697 Kjellqvist S, Lunetta KL, McMahon G, Nolte IM, Paternoster L, Porcu E, Smith AV, Stolk L,
698 Teumer A, Tsernikova N, Tikkainen E, Ulivi S, Wagner EK, Amin N, Bierut LJ, Byrne EM, Hottenga
699 JJ, Koller DL, Mangino M, Pers TH, Yerges-Armstrong LM, Zhao JH, Andrulis IL, Anton-Culver
700 H, Atsma F, Bandinelli S, Beckmann MW, Benitez J, Blomqvist C, Bojesen SE, Bolla MK, Bonanni
701 B, Brauch H, Brenner H, Buring JE, Chang-Claude J, Chanock S, Chen J, Chenevix-Trench G,
702 Collee JM, Couch FJ, Couper D, Coveillo AD, Cox A, Czene K, D'Adamo A P, Smith GD, De Vivo I,

703 Demerath EW, Dennis J, Devilee P, Dieffenbach AK, Dunning AM, Eiriksdottir G, Eriksson JG,
704 Fasching PA, Ferrucci L, Flesch-Janys D, Flyger H, Foroud T, Franke L, Garcia ME, Garcia-Closas
705 M, Geller F, de Geus EE, Giles GG, Gudbjartsson DF, Gudnason V, Guenel P, Guo S, Hall P,
706 Hamann U, Haring R, Hartman CA, Heath AC, Hofman A, Hooning MJ, Hopper JL, Hu FB, Hunter
707 DJ, Karasik D, Kiel DP, Knight JA, Kosma VM, Kutalik Z, Lai S, Lambrechts D, Lindblom A, Magi
708 R, Magnusson PK, Mannermaa A, Martin NG, Masson G, McArdle PF, McArdle WL, Melbye M,
709 Michailidou K, Mihailov E, Milani L, Milne RL, Nevanlinna H, Neven P, Nohr EA, Oldehinkel AJ,
710 Oostra BA, Palotie A, Peacock M, Pedersen NL, Peterlongo P, Peto J, Pharoah PD, Postma DS,
711 Pouta A, Pylkas K, Radice P, Ring S, Rivadeneira F, Robino A, Rose LM, Rudolph A, Salomaa V,
712 Sanna S, Schlessinger D, Schmidt MK, Southey MC, Sovio U, Stampfer MJ, Stockl D, Storniolo AM,
713 Timpson NJ, Tyrer J, Visser JA, Vollenweider P, Volzke H, Waeber G, Waldenberger M,
714 Wallaschofski H, Wang Q, Willemsen G, Winqvist R, Wolffenduttel BH, Wright MJ, Boomsma DI,
715 Econs MJ, Khaw KT, Loos RJ, McCarthy MI, Montgomery GW, Rice JP, Streeten EA,
716 Thorsteinsdottir U, van Duijn CM, Alizadeh BZ, Bergmann S, Boerwinkle E, Boyd HA, Crisponi L,
717 Gasparini P, Gieger C, Harris TB, Ingelsson E, Jarvelin MR, Kraft P, Lawlor D, Metspalu A,
718 Pennell CE, Ridker PM, Snieder H, Sorensen TI, Spector TD, Strachan DP, Uitterlinden AG,
719 Wareham NJ, Widen E, Zygmunt M, Murray A, Easton DF, Stefansson K, Murabito JM, Ong KK
720 (2014). Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. *Nature*
721 **514**, 92-97.

722 **Psychiatric GWAS Consortium Bipolar Disorder Working Group** (2011). Large-scale genome-wide association
723 analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. *Nature Genetics* **43**, 977-983.

724 Rader DJ (2006). Molecular regulation of HDL metabolism and function: Implications for novel therapies. *The
725 Journal of Clinical Investigation* **116**, 3090-3100.

726 Rietveld CA, Medland SE, Derringer J, Yang J, Esko T, Martin NW, Westra HJ, Shakhbazov K, Abdellaoui
727 A, Agrawal A, Albrecht E, Alizadeh BZ, Amin N, Barnard J, Baumeister SE, Benke KS, Bielak LF,
728 Boatman JA, Boyle PA, Davies G, de Leeuw C, Eklund N, Evans DS, Ferhmann R, Fischer K, Gieger
729 C, Gjessing HK, Hagg S, Harris JR, Hayward C, Holzapfel C, Ibrahim-Verbaas CA, Ingelsson E,
730 Jacobsson B, Joshi PK, Jugessur A, Kaakinen M, Kanoni S, Karjalainen J, Kolcic I, Kristiansson K,

731 Katalik Z, Lahti J, Lee SH, Lin P, Lind PA, Liu Y, Lohman K, Loitfelder M, McMahon G, Vidal
732 PM, Meirelles O, Milani L, Myhre R, Nuotio ML, Oldmeadow CJ, Petrovic KE, Peyrot WJ, Polasek
733 O, Quaye L, Reinmaa E, Rice JP, Rizzi TS, Schmidt H, Schmidt R, Smith AV, Smith JA, Tanaka T,
734 Terracciano A, van der Loos MJ, Vitart V, Volzke H, Wellmann J, Yu L, Zhao W, Allik J, Attia JR,
735 Bandinelli S, Bastardot F, Beauchamp J, Bennett DA, Berger K, Bierut LJ, Boomsma DI, Bultmann
736 U, Campbell H, Chabris CF, Cherkas L, Chung MK, Cucca F, de Andrade M, De Jager PL, De Neve
737 JE, Deary IJ, Dedoussis GV, Deloukas P, Dimitriou M, Eiriksdottir G, Elderson MF, Eriksson JG,
738 Evans DM, Faul JD, Ferrucci L, Garcia ME, Gronberg H, Guethnason V, Hall P, Harris JM, Harris
739 TB, Hastie ND, Heath AC, Hernandez DG, Hoffmann W, Hofman A, Holle R, Holliday EG, Hottenga
740 JJ, Iacono WG, Illig T, Jarvelin MR, Kahonen M, Kaprio J, Kirkpatrick RM, Kowgier M, Latvala
741 A, Launer LJ, Lawlor DA, Lehtimaki T, Li J, Lichtenstein P, Lichtner P, Liewald DC, Madden PA,
742 Magnusson PK, Makinen TE, Masala M, McGue M, Metspalu A, Mielck A, Miller MB, Montgomery
743 GW, Mukherjee S, Nyholt DR, Oostra BA, Palmer LJ, Palotie A, Penninx BW, Perola M, Peyser PA,
744 Preisig M, Raikkonen K, Raitakari OT, Realo A, Ring SM, Ripatti S, Rivadeneira F, Rudan I,
745 Rustichini A, Salomaa V, Sarin AP, Schlessinger D, Scott RJ, Snieder H, St Pourcain B, Starr JM,
746 Sul JH, Surakka I, Svento R, Teumer A, Tiemeier H, van Rooij FJ, Van Wagoner DR, Vartiainen E,
747 Viikari J, Vollenweider P, Vonk JM, Waeber G, Weir DR, Wichmann HE, Widen E, Willemsen G,
748 Wilson JF, Wright AF, Conley D, Davey-Smith G, Franke L, Groenen PJ, Hofman A, Johannesson
749 M, Kardia SL, Krueger RF, Laibson D, Martin NG, Meyer MN, Posthuma D, Thurik AR, Timpson
750 NJ, Uitterlinden AG, van Duijn CM, Visscher PM, Benjamin DJ, Cesaroni D, Koellinger PD (2013).
751 GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. *Science*
752 **340**, 1467-1471.
753 Schizophrenia Working Group of the Psychiatric Genomics Consortium (2014). Biological insights from 108
754 schizophrenia-associated genetic loci. *Nature* **511**, 421-427.
755 Schuckit MA, Smith TL, Tipp JE (1997). The Self-Rating of the Effects of alcohol (SRE) form as a retrospective
756 measure of the risk for alcoholism. *Addiction* **92**, 979-988.
757 Schunkert H, Konig IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, Preuss M, Stewart AF, Barbalic M,
758 Gieger C, Absher D, Aherrahrou Z, Allayee H, Altshuler D, Anand SS, Andersen K, Anderson JL,

759 Ardissino D, Ball SG, Balmforth AJ, Barnes TA, Becker DM, Becker LC, Berger K, Bis JC,
760 Boekholdt SM, Boerwinkle E, Braund PS, Brown MJ, Burnett MS, Buysschaert I, Carlquist JF,
761 Chen L, Cichon S, Codd V, Davies RW, Dedoussis G, Dehghan A, Demissie S, Devaney JM, Diemert
762 P, Do R, Doering A, Eifert S, Mokhtari NE, Ellis SG, Elosua R, Engert JC, Epstein SE, de Faire U,
763 Fischer M, Folsom AR, Freyer J, Gigante B, Girelli D, Gretarsdottir S, Gudnason V, Gulcher JR,
764 Halperin E, Hammond N, Hazen SL, Hofman A, Horne BD, Illig T, Iribarren C, Jones GT, Jukema
765 JW, Kaiser MA, Kaplan LM, Kastelein JJ, Khaw KT, Knowles JW, Kolovou G, Kong A, Laaksonen
766 R, Lambrechts D, Leander K, Lettre G, Li M, Lieb W, Loley C, Lotery AJ, Mannucci PM, Maouche
767 S, Martinelli N, McKeown PP, Meisinger C, Meitinger T, Melander O, Merlini PA, Mooser V,
768 Morgan T, Muhleisen TW, Muhlestein JB, Munzel T, Musunuru K, Nahrstaedt J, Nelson CP,
769 Nothen MM, Olivieri O, Patel RS, Patterson CC, Peters A, Peyvandi F, Qu L, Quyyumi AA, Rader
770 DJ, Rallidis LS, Rice C, Rosendaal FR, Rubin D, Salomaa V, Sampietro ML, Sandhu MS, Schadt E,
771 Schafer A, Schillert A, Schreiber S, Schrezenmeir J, Schwartz SM, Siscovick DS, Sivananthan M,
772 Sivapalaratnam S, Smith A, Smith TB, Snoep JD, Soranzo N, Spertus JA, Stark K, Stirrups K, Stoll
773 M, Tang WH, Tennstedt S, Thorgeirsson G, Thorleifsson G, Tomaszewski M, Uitterlinden AG, van
774 Rij AM, Voight BF, Wareham NJ, Wells GA, Wichmann HE, Wild PS, Willenborg C, Witteman JC,
775 Wright BJ, Ye S, Zeller T, Ziegler A, Cambien F, Goodall AH, Cupples LA, Quertermous T, Marz
776 W, Hengstenberg C, Blankenberg S, Ouwehand WH, Hall AS, Deloukas P, Thompson JR, Stefansson
777 K, Roberts R, Thorsteinsdottir U, O'Donnell CJ, McPherson R, Erdmann J, Samani NJ (2011).
778 Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. *Nature*
779 *Genetics* **43**, 333-338.
780 Shungin D, Winkler TW, Croteau-Chonka DC, Ferreira T, Locke AE, Magi R, Strawbridge RJ, Pers TH,
781 Fischer K, Justice AE, Workalemahu T, Wu JMW, Buchkovich ML, Heard-Costa NL, Roman TS,
782 Drong AW, Song C, Gustafsson S, Day FR, Esko T, Fall T, Kutalik Z, Luan J, Randall JC, Scherag
783 A, Vedantam S, Wood AR, Chen J, Fehrmann R, Karjalainen J, Kahali B, Liu CT, Schmidt EM,
784 Absher D, Amin N, Anderson D, Beekman M, Bragg-Gresham JL, Buyske S, Demirkiran A, Ehret GB,
785 Feitosa MF, Goel A, Jackson AU, Johnson T, Kleber ME, Kristiansson K, Mangino M, Leach IM,
786 Medina-Gomez C, Palmer CD, Pasko D, Pechlivanis S, Peters MJ, Prokopenko I, Stancakova A,

787 Sung YJ, Tanaka T, Teumer A, Van Vliet-Ostaptchouk JV, Yengo L, Zhang W, Albrecht E, Arnlov
788 J, Arscott GM, Bandinelli S, Barrett A, Bellis C, Bennett AJ, Berne C, Bluher M, Bohringer S,
789 Bonnet F, Bottcher Y, Bruunenberg M, Carba DB, Caspersen IH, Clarke R, Daw EW, Deelen J,
790 Deelman E, Delgado G, Doney AS, Eklund N, Erdos MR, Estrada K, Eury E, Friedrich N, Garcia
791 ME, Giedraitis V, Gigante B, Go AS, Golay A, Grallert H, Grammer TB, Grassler J, Grewal J,
792 Groves CJ, Haller T, Hallmans G, Hartman CA, Hassinen M, Hayward C, Heikkila K, Herzig KH,
793 Helmer Q, Hillege HL, Holmen O, Hunt SC, Isaacs A, Ittermann T, James AL, Johansson I,
794 Juliusdottir T, Kalafati IP, Kinnunen L, Koenig W, Kooner IK, Kratzer W, Lamina C, Leander K,
795 Lee NR, Lichtner P, Lind L, Lindstrom J, Lobbens S, Lorentzon M, Mach F, Magnusson PK,
796 Mahajan A, McArdle WL, Menni C, Merger S, Mihailov E, Milani L, Mills R, Moayyeri A, Monda
797 KL, Mooijaart SP, Muhleisen TW, Mulas A, Muller G, Muller-Nurasyid M, Nagaraja R, Nalls MA,
798 Narisu N, Glorioso N, Nolte IM, Olden M, Rayner NW, Renstrom F, Ried JS, Robertson NR, Rose
799 LM, Sanna S, Scharnagl H, Scholtens S, Sennblad B, Seufferlein T, Sitlani CM, Smith AV, Stirrups
800 K, Stringham HM, Sundstrom J, Swertz MA, Swift AJ, Syvanen AC, Tayo BO, Thorand B,
801 Thorleifsson G, Tomaschitz A, Troffa C, van Oort FV, Verweij N, Vonk JM, Waite LL, Wennauer
802 R, Wilsgaard T, Wojczynski MK, Wong A, Zhang Q, Zhao JH, Brennan EP, Choi M, Eriksson P,
803 Folkersen L, Franco-Cereceda A, Gharavi AG, Hedman AK, Hivert MF, Huang J, Kanoni S, Karpe
804 F, Keildson S, Kiryluk K, Liang L, Lifton RP, Ma B, McKnight AJ, McPherson R, Metspalu A, Min
805 JL, Moffatt MF, Montgomery GW, Murabito JM, Nicholson G, Nyholt DR, Olsson C, Perry JR,
806 Reinmaa E, Salem RM, Sandholm N, Schadt EE, Scott RA, Stolk L, Vallejo EE, Westra HJ,
807 Zondervan KT, Amouyel P, Arveiler D, Bakker SJ, Beilby J, Bergman RN, Blangero J, Brown MJ,
808 Burnier M, Campbell H, Chakravarti A, Chines PS, Claudi-Boehm S, Collins FS, Crawford DC,
809 Danesh J, de Faire U, de Geus EJ, Dorr M, Erbel R, Eriksson JG, Farrall M, Ferrannini E, Ferrieres
810 J, Forouhi NG, Forrester T, Franco OH, Gansevoort RT, Gieger C, Gudnason V, Haiman CA,
811 Harris TB, Hattersley AT, Heliovaara M, Hicks AA, Hingorani AD, Hoffmann W, Hofman A,
812 Homuth G, Humphries SE, Hypponen E, Illig T, Jarvelin MR, Johansen B, Jousilahti P, Jula AM,
813 Kaprio J, Kee F, Keinanen-Kiukaanniemi SM, Kooner JS, Kooperberg C, Kovacs P, Kraja AT,
814 Kumari M, Kuulasmaa K, Kuusisto J, Lakka TA, Langenberg C, Le Marchand L, Lehtimaki T,

815 Lyssenko V, Mannisto S, Marette A, Matise TC, McKenzie CA, McKnight B, Musk AW,
816 Mohlenkamp S, Morris AD, Nelis M, Ohlsson C, Oldehinkel AJ, Ong KK, Palmer LJ, Penninx BW,
817 Peters A, Pramstaller PP, Raitakari OT, Rankinen T, Rao DC, Rice TK, Ridker PM, Ritchie MD,
818 Rudan I, Salomaa V, Samani NJ, Saramies J, Sarzynski MA, Schwarz PE, Shuldiner AR, Staessen
819 JA, Steinhorsdottir V, Stolk RP, Strauch K, Tonjes A, Tremblay A, Tremoli E, Vohl MC, Volker U,
820 Vollenweider P, Wilson JF, Witteman JC, Adair LS, Bochud M, Boehm BO, Bornstein SR, Bouchard
821 C, Cauchi S, Caulfield MJ, Chambers JC, Chasman DI, Cooper RS, Dedoussis G, Ferrucci L,
822 Froguel P, Grabe HJ, Hamsten A, Hui J, Hveem K, Jockel KH, Kivimaki M, Kuh D, Laakso M, Liu
823 Y, Marz W, Munroe PB, Njolstad I, Oostra BA, Palmer CN, Pedersen NL, Perola M, Perusse L,
824 Peters U, Power C, Quertermous T, Rauramaa R, Rivadeneira F, Saaristo TE, Saleheen D, Sinisalo
825 J, Slagboom PE, Snieder H, Spector TD, Stefansson K, Stumvoll M, Tuomilehto J, Uitterlinden AG,
826 Uusitupa M, van der Harst P, Veronesi G, Walker M, Wareham NJ, Watkins H, Wichmann HE,
827 Abecasis GR, Assimes TL, Berndt SI, Boehnke M, Borecki IB, Deloukas P, Franke L, Frayling TM,
828 Groop LC, Hunter DJ, Kaplan RC, O'Connell JR, Qi L, Schlessinger D, Strachan DP,
829 Thorsteinsdottir U, van Duijn CM, Willer CJ, Visscher PM, Yang J, Hirschhorn JN, Zillikens MC,
830 McCarthy MI, Speliotes EK, North KE, Fox CS, Barroso I, Franks PW, Ingelsson E, Heid IM, Loos
831 RJ, Cupples LA, Morris AP, Lindgren CM, Mohlke KL (2015). New genetic loci link adipose and
832 insulin biology to body fat distribution. *Nature* **518**, 187-196.

833 Stahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S, Thomson BP, Li Y, Kurreeman FA, Zhernakova A,
834 Hinks A, Guiducci C, Chen R, Alfredsson L, Amos CI, Ardlie KG, Barton A, Bowes J, Brouwer E,
835 Burtt NP, Catanese JJ, Coblyn J, Coenen MJ, Costenbader KH, Criswell LA, Crusius JB, Cui J, de
836 Bakker PI, De Jager PL, Ding B, Emery P, Flynn E, Harrison P, Hocking LJ, Huizinga TW, Kastner
837 DL, Ke X, Lee AT, Liu X, Martin P, Morgan AW, Padyukov L, Posthumus MD, Radstake TR, Reid
838 DM, Seielstad M, Seldin MF, Shadick NA, Steer S, Tak PP, Thomson W, van der Helm-van Mil AH,
839 van der Horst-Bruinsma IE, van der Schoot CE, van Riel PL, Weinblatt ME, Wilson AG, Wolbink
840 GJ, Wordsworth BP, Wijmenga C, Karlson EW, Toes RE, de Vries N, Begovich AB, Worthington J,
841 Siminovitch KA, Gregersen PK, Klareskog L, Plenge RM (2010). Genome-wide association study
842 meta-analysis identifies seven new rheumatoid arthritis risk loci. *Nature Genetics* **42**, 508-514.

843 Steinberg L, Lamborn SD, Dornbusch SM, Darling N (1992). Impact of parenting practices on adolescent
844 achievement: Authoritative parenting, school involvement, and encouragement to succeed. *Child
845 Development* **63**, 1266-1281.

846 Taal HR, Pourcain BS, Thiering E, Das S, Mook-Kanamori DO, Warrington NM, Kaakinen M, Kreiner-
847 Moller E, Bradfield JP, Freathy RM, Geller F, Guxens M, Cousminer DL, Kerkhof M, Timpson NJ,
848 Ikram MA, Beilin LJ, Bonnelykke K, Buxton JL, Charoen P, Chawes BLK, Eriksson J, Evans DM,
849 Hofman A, Kemp JP, Kim CE, Klopp N, Lahti J, Lye SJ, McMahon G, Mentch FD, Muller M,
850 O'Reilly PF, Prokopenko I, Rivadeneira F, Steegers EAP, Sunyer J, Tiesler C, Yaghootkar H,
851 Breteler MMB, Debette S, Fornage M, Gudnason V, Launer LJ, van der Lugt A, Mosley TH,
852 Seshadri S, Smith AV, Vernooij MW, Blakemore AI, Chiavacci RM, Feenstra B, Fernandez-Benet J,
853 Grant SFA, Hartikainen AL, van der Heijden AJ, Iniguez C, Lathrop M, McArdle WL, Molgaard A,
854 Newnham JP, Palmer LJ, Palotie A, Pouta A, Ring SM, Sovio U, Standl M, Uitterlinden AG,
855 Wichmann HE, Vissing NH, DeCarli C, van Duijn CM, McCarthy MI, Koppelman GH, Estivill X,
856 Hattersley AT, Melbye M, Bisgaard H, Pennell CE, Widen E, Hakonarson H, Smith GD, Heinrich J,
857 Jarvelin MR, Jaddoe VWV (2012). Common variants at 12q15 and 12q24 are associated with infant head
858 circumference. *Nature Genetics* **44**, 532-538.

859 Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, Pirruccello JP, Ripatti S,
860 Chasman DI, Willer CJ, Johansen CT, Fouchier SW, Isaacs A, Peloso GM, Barbalic M, Ricketts SL,
861 Bis JC, Aulchenko YS, Thorleifsson G, Feitosa MF, Chambers J, Orho-Melander M, Melander O,
862 Johnson T, Li X, Guo X, Li M, Shin Cho Y, Jin Go M, Jin Kim Y, Lee JY, Park T, Kim K, Sim X,
863 Twee-Hee Ong R, Croteau-Chonka DC, Lange LA, Smith JD, Song K, Hua Zhao J, Yuan X, Luan J,
864 Lamina C, Ziegler A, Zhang W, Zee RY, Wright AF, Witteman JC, Wilson JF, Willemsen G,
865 Wichmann HE, Whitfield JB, Waterworth DM, Wareham NJ, Waeber G, Vollenweider P, Voight
866 BF, Vitart V, Uitterlinden AG, Uda M, Tuomilehto J, Thompson JR, Tanaka T, Surakka I,
867 Stringham HM, Spector TD, Soranzo N, Smit JH, Simisalo J, Silander K, Sijbrands EJ, Scuteri A,
868 Scott J, Schlessinger D, Sanna S, Salomaa V, Saharinen J, Sabatti C, Ruokonen A, Rudan I, Rose
869 LM, Roberts R, Rieder M, Psaty BM, Pramstaller PP, Pichler I, Perola M, Penninx BW, Pedersen
870 NL, Pattaro C, Parker AN, Pare G, Oostra BA, O'Donnell CJ, Nieminen MS, Nickerson DA,

871 **Montgomery GW, Meitinger T, McPherson R, McCarthy MI, McArdle W, Masson D, Martin NG,**
872 **Marroni F, Mangino M, Magnusson PK, Lucas G, Luben R, Loos RJ, Lokki ML, Lettre G,**
873 **Langenberg C, Launer LJ, Lakatta EG, Laaksonen R, Kyvik KO, Kronenberg F, Konig IR, Khaw**
874 **KT, Kaprio J, Kaplan LM, Johansson A, Jarvelin MR, Janssens AC, Ingelsson E, IgI W, Kees**
875 **Hovingh G, Hottenga JJ, Hofman A, Hicks AA, Hengstenberg C, Heid IM, Hayward C, Havulinna**
876 **AS, Hastie ND, Harris TB, Haritunians T, Hall AS, Gyllensten U, Guiducci C, Groop LC, Gonzalez**
877 **E, Gieger C, Freimer NB, Ferrucci L, Erdmann J, Elliott P, Ejebe KG, Doring A, Dominiczak AF,**
878 **Demissie S, Deloukas P, de Geus EJ, de Faire U, Crawford G, Collins FS, Chen YD, Caulfield MJ,**
879 **Campbell H, Burtt NP, Bonnycastle LL, Boomsma DI, Boekholdt SM, Bergman RN, Barroso I,**
880 **Bandinelli S, Ballantyne CM, Assimes TL, Quertermous T, Altshuler D, Seielstad M, Wong TY, Tai**
881 **ES, Feranil AB, Kuzawa CW, Adair LS, Taylor HA, Jr., Borecki IB, Gabriel SB, Wilson JG, Holm**
882 **H, Thorsteinsdottir U, Gudnason V, Krauss RM, Mohlke KL, Ordovas JM, Munroe PB, Kooner JS,**
883 **Tall AR, Hegele RA, Kastelein JJ, Schadt EE, Rotter JI, Boerwinkle E, Strachan DP, Mooser V,**
884 **Stefansson K, Reilly MP, Samani NJ, Schunkert H, Cupples LA, Sandhu MS, Ridker PM, Rader DJ,**
885 **van Duijn CM, Peltonen L, Abecasis GR, Boehnke M, Kathiresan S** (2010). Biological, clinical and
886 population relevance of 95 loci for blood lipids. *Nature* **466**, 707-713.
887 **Tobacco and Genetics Consortium** (2010). Genome-wide meta-analyses identify multiple loci associated with
888 smoking behavior. *Nature Genetics* **42**, 441-447.
889 **van der Valk RJ, Kreiner-Moller E, Kooijman MN, Guxens M, Stergiakouli E, Saaf A, Bradfield JP, Geller**
890 **F, Hayes MG, Cousminer DL, Korner A, Thiering E, Curtin JA, Myhre R, Huikari V, Joro R,**
891 **Kerkhof M, Warrington NM, Pitkanen N, Ntalla I, Horikoshi M, Veijola R, Freathy RM, Teo YY,**
892 **Barton SJ, Evans DM, Kemp JP, St Pourcain B, Ring SM, Davey Smith G, Bergstrom A, Kull I,**
893 **Hakonarson H, Mentch FD, Bisgaard H, Chawes B, Stokholm J, Waage J, Eriksen P, Sevelsted A,**
894 **Melbye M, van Duijn CM, Medina-Gomez C, Hofman A, de Jongste JC, Taal HR, Uitterlinden AG,**
895 **Armstrong LL, Eriksson J, Palotie A, Bustamante M, Estivill X, Gonzalez JR, Llop S, Kiess W,**
896 **Mahajan A, Flexeder C, Tiesler CM, Murray CS, Simpson A, Magnus P, Sengpiel V, Hartikainen**
897 **AL, Keinanen-Kiukaanniemi S, Lewin A, Da Silva Couto Alves A, Blakemore AI, Buxton JL,**
898 **Kaakinen M, Rodriguez A, Sebert S, Vaarasmaki M, Lakka T, Lindi V, Gehring U, Postma DS, Ang**

999 W, Newnham JP, Lyytikainen LP, Pahkala K, Raitakari OT, Panoutsopoulou K, Zeggini E,
999 Boomsma DI, Groen-Blokhuis M, Ilonen J, Franke L, Hirschhorn JN, Pers TH, Liang L, Huang J,
999 Hocher B, Knip M, Saw SM, Holloway JW, Melen E, Grant SF, Feenstra B, Lowe WL, Widen E,
999 Sergeyev E, Grallert H, Custovic A, Jacobsson B, Jarvelin MR, Atalay M, Koppelman GH, Pennell
999 CE, Niinikoski H, Dedoussis GV, McCarthy MI, Frayling TM, Sunyer J, Timpson NJ, Rivadeneira
999 F, Bonnelykke K, Jaddoe VW (2015). A novel common variant in DCST2 is associated with length in
999 early life and height in adulthood. *Human Molecular Genetics* **24**, 1155-1168.
999
999 van den Berg SM, de Moor MH, Verweij KJ, Krueger RF, Luciano M, Arias Vasquez A, Matteson LK,
999 Derringer J, Esko T, Amin N, Gordon SD, Hansell NK, Hart AB, Seppala I, Huffman JE, Konte B,
999 Lahti J, Lee M, Miller M, Nutile T, Tanaka T, Teumer A, Viktorin A, Wedenoja J, Abdellaoui A,
999 Abecasis GR, Adkins DE, Agrawal A, Allik J, Appel K, Bigdeli TB, Busonero F, Campbell H, Costa
999 PT, Smith GD, Davies G, de Wit H, Ding J, Engelhardt BE, Eriksson JG, Fedko IO, Ferrucci L,
999 Franke B, Giegling I, Grucza R, Hartmann AM, Heath AC, Heinonen K, Henders AK, Homuth G,
999 Hottenga JJ, Iacono WG, Janzing J, Jokela M, Karlsson R, Kemp JP, Kirkpatrick MG, Latvala A,
999 Lehtimaki T, Liewald DC, Madden PA, Magri C, Magnusson PK, Marten J, Maschio A, Mbarek H,
999 Medland SE, Mihailov E, Milaneschi Y, Montgomery GW, Nauck M, Nivard MG, Ouwens KG,
999 Palotie A, Pettersson E, Polasek O, Qian Y, Pulkki-Raback L, Raitakari OT, Realo A, Rose RJ,
999 Ruggiero D, Schmidt CO, Slutske WS, Sorice R, Starr JM, St Pourcain B, Sutin AR, Timpson NJ,
999 Trochet H, Vermeulen S, Vuoksimaa E, Widen E, Wouda J, Wright MJ, Zgaga L, Porteous D,
999 Minelli A, Palmer AA, Rujescu D, Ciullo M, Hayward C, Rudan I, Metspalu A, Kaprio J, Deary IJ,
999 Raikkonen K, Wilson JF, Keltikangas-Jarvinen L, Bierut LJ, Hettema JM, Grabe HJ, Penninx BW,
999 van Duijn CM, Evans DM, Schlessinger D, Pedersen NL, Terracciano A, McGue M, Martin NG,
999 Boomsma DI (2016). Meta-analysis of genome-wide association studies for extraversion: Findings from
999 the genetics of personality consortium. *Behavior Genetics* **46**, 170-182.
999
999 Vilhjalmsson BJ, Yang J, Finucane HK, Gusev A, Lindstrom S, Ripke S, Genovese G, Loh PR, Bhatia G, Do
999 R, Hayeck T, Won HH, Kathiresan S, Pato M, Pato C, Tamimi R, Stahl E, Zaitlen N, Pasaniuc B,
999 Belbin G, Kenny EE, Schierup MH, De Jager P, Patsopoulos NA, McCarroll S, Daly M, Purcell S,
999 Chasman D, Neale B, Goddard M, Visscher PM, Kraft P, Patterson N, Price AL (2015). Modeling

927 linkage disequilibrium increases accuracy of polygenic risk scores. *American Journal of Human Genetics*

928 **97**, 576-592.

929 **Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, Frayling TM** (2014). Defining the role of

930 common variation in the genomic and biological architecture of adult human height. *Nature Genetics* **46**,

931 1173-1186.

932

933