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Abstract

Background: Traditional health information systems are generally devised to
support clinical data collection at the point of care. However, as the significance
of the modern information economy expands in scope and permeates the
healthcare domain, there is an increasing urgency for healthcare organisations to
offer information systems that address the expectations of clinicians, researchers
and the business intelligence community alike. Amongst other emergent
requirements, the principal unmet need might be defined as the 3R principle
(right data, right place, right time) to address deficiencies in organisational data
flow while retaining the strict information governance policies that apply within
the UK National Health Service (NHS). Here, we describe our work on creating
and deploying a low cost structured and unstructured information retrieval and
extraction architecture within King’s College Hospital, the management of
governance concerns and the associated use cases and cost saving opportunities
that such components present.

Results: To date, our CogStack architecture has processed over 300 million lines
of clinical data, making it available for internal service improvement projects at
King’s College London. On generated data designed to simulate real world clinical
text, our de-identification algorithm achieved up to 94% precision and up to 96%
recall.

Conclusion: We describe a toolkit which we feel is of huge value to the UK (and
beyond) healthcare community. It is the only open source, easily deployable
solution designed for the UK healthcare environment, in a landscape populated
by expensive proprietary systems. Solutions such as these provide a crucial
foundation for the genomic revolution in medicine.

Keywords: elasticsearch; electronic health records; information extraction;
clinical informatics; natural language processing

Background
Large healthcare organisations are often responsible for provisioning care in a wide

range of medical specialties. It is not uncommon for a given speciality to make

use of bespoke IT systems to support the specific requirements of clinicians at the

point of care, such as imaging technologies, electronic prescribing and intensive care
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monitoring. This leads to a tendency for healthcare IT departments to support a

large number of systems, which often suffer from integration issues, in the sense

that there may not be a single interface that allows users to access data across all

systems simultaneously. While there have been many attempts to standardise intra-

system communication with the use of controlled languages and data schemas, such

as HL7[1], the myriad of vendors, differential versioning of the standards and the

ambiguity in the interpretation of the standards has caused such efforts to be only

partially successful in practice[2, 3, 4]. This has lead to a high degree of hetero-

geneity in how information is managed within and between different NHS Trusts,

which in turn has inflated the costs of creating suitable data management and an-

alytics solutions, due to the investment required for successful implementation. For

the end user, whether they be a clinician, a researcher or a business intelligence

analyst, the implication is often described as a ‘needle in a haystack’ problem, ow-

ing to the complexity of how, where and why data is stored in a host of disparate

sources. Without significant guidance from central hospital IT departments, many

lay users of health information systems may not be aware of the logic of how data

flows between them, and thus opportunities to use the organisation’s data to drive

efficiency improvements are undermined.

The problem is further compounded by the nature of health data. In contrast

to domains where structured data are captured in abundance (for example in e-

commerce customer behaviour, retail loyalty card usage and financial trading pat-

terns), all but a thin supernatant of clinical information are recorded as unstruc-

tured data in the form of the clinical narrative, via free text clinical notes, discharge

summaries and referral letters[5, 6]. Since unstructured data are inherently more dif-

ficult to manage and query, this preference of clinicians manifests as a complication

in how data can be provisioned between stakeholders effectively.

Information retrieval technologies have the stated aim of providing the ability to

filter very large quantities of both structured and unstructured information and re-

turn relevant results at high speed. Due to their relatively straight-forward manner

of ingesting data without a requirement to pre-define a schema, they have enjoyed a

long history of success in almost every domain of information management, and are

deployed in business critical environments such as enterprise document retrieval,

bioinformatics, e-commerce and log management. Typically, they are provisioned

through a simple, intuitive interface by which a user can query structured and un-

structured data simultaneously, and rapidly refine their query to provide results

relevant to their intent. This feature of query refinement through iteration is es-

pecially important in healthcare, given the nature of the medical ‘sub-language’,

where concepts tend to be represented in clinical text with a high degree of as-

sumed knowledge and a low level of verbosity[7, 8].

When correctly implemented in a healthcare organisation, such technologies are

increasingly employed to overcome a range of data accessibility issues. We delineate

these issues by what we refer to as the 3R principle:

Right Data With large amounts of data flowing through an organisation, often

conflicting reports may occur. For example, two different diagnoses may be reported

on two separate occasions. A third party who only has access to a partial view of the
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data would not be able to make a judgement on the current status of a particular

patient. Therefore, maximising the recall (sensitivity) of an information retrieval

system is essential to ensure data sufficiency for a question answering system. On

the other hand, almost a decade of widespread EHR adoption has created a deluge

of data in many progressive healthcare organisations - a trend which is certain to

grow. A key consideration reflecting the usability of an information retrieval system

is therefore also its ability to avoid false positives (precision, or positive predictive

value) and not overburden the user with irrelevant results.

Right Place Many enterprise grade approaches to integration opt for data-

warehousing methods to provide a single end point, often a SQL relational database,

to offer an online analytical processing (OLAP) style capability. While the value

of such approaches is well established, it is often restricted to users of the business

intelligence community, and generally limited in its ability to effectively manage

free text. This constraint therefore inhibits users elsewhere in the organisation, who

may have simpler requirements regarding data use (for example, to find documents

relating to patients in their care that contain certain keywords). In addition, the

technical skills required to use OLAP resources effectively may concentrate in a rel-

atively small number of individuals. Therefore, user-friendly solutions with a lower

technical barrier for effective use will enable a degree of ‘self provisioned analytics’

and thus enjoy a wider uptake amongst employees.

Right Time Time based factors are often the difference between actionable and

‘stale’ information in clinical and business decision making. For instance, the op-

portunity to code clinical documents for repatriation may be lost if relevant data

cannot be supplied to a code billing team within a commercial deadline. Similarly, if

the data deluge negate the possibility of a human reading every document, there is

potential to under-code the dispensation of high cost drugs and/or services. In the

case of critical care, identifying antagonistic factors towards recovery at speed may

help to deliver more favourable outcomes. The requirement to make data available

throughout the organisation with as little latency as possible is critical to ensure

its effective use.

Information Governance

The aim of our project is to offer a general information retrieval system and OLAP

analytics capability to meet the requirements of a large variety of use cases. How-

ever, in order to protect the rights of individuals as per the UK 1998 Data Protection

Act, there are strict controls on how different types of data can be used for differ-

ent purposes. From a technical perspective, this imposes limitations on how and

where data can be provisioned and what transformations it must undergo. Gener-

ally speaking, the individuals within a given dataset may be classed as identifiable

(no information is removed), pseudonymised (identifiers replaced by a pseudonym,

enabling data linkage to other datasets), or anonymised (all identifiers removed,

or data aggregated such that re-identification of individuals is nearly impossible).

Each class of information removal represents different levels of risk regarding the

secondary use of data. Although the details of the Act are complex, the practical

applications in a clinical setting might be summarised in the following scenarios:
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Business Intelligence Activities that utilise the data a Trust holds for the purposes

of improving its operational efficiency. Here, named functions within the Trust may

use identifiable data for a limited number of well defined purposes. For example,

the Trusts clinical coding function has the remit to examine data generated in the

course of a patient’s care, to ensure that delivered clinical services are accurately

recorded and billed for. Alternatively, the Trust may use its data to meet its le-

gal requirements to report figures to central government departments concerning

the organisation’s performance or indicators of the nation’s health, such as cancer

survival or diabetes rates.

Service Improvement Activities Under approval from the Trust’s appointed

Caldicott guardian, Trust staff may access pseudonymised data in limited amounts

in order to undertake internal research projects with the aim of improving the qual-

ity and/or efficiency by which a Trust delivers clinical services. The criteria for this

generally requires that the affected patients will potentially directly benefit from

the project outcomes. For example, this scenario might be invoked if a clinician is

seeking to challenge current practices in service delivery, such as how the length

of inpatient of hospital visits are predicted in order to reduce the number of staff

hours invested in this task.

Enclave Style Research Environment An increasingly common method by which

non-staff researchers are able to access clinical record data. Similar to service im-

provement activities, this method covers an expanded scope that enables clinical

data to be used for research projects beyond direct patient benefit. Here, exter-

nal parties may access pseudonymised and de-identified clinical data in limited

quantities in highly secure environments under ethical agreements granted by UK

Research Ethics Councils. Examples include Clinical Records Interactive Search[9]

and Secure Anonymised Information Linkage Databank [10].

Explicitly Obtained Consent Perhaps the most common method of accessing clin-

ical data for research is by explicitly obtaining consent from patients to use their

identifiable data. This is also governed by Research Ethic Councils, and generally

involves strict practices to guard against data breach. Although the most liberal

in terms of how the data can be used (since patients are directly briefed as to the

nature of the research and how their details will be used), the resource intensive

means by which consent must be obtained generally creates a practical limit on the

number of patients that can be included in such studies. In turn, this affects the

type of study for which this approach is suitable.

Implementation
Here, we describe our work on the CogStack architecture, an open source infor-

mation retrieval and extraction architecture to provide an alternative to the UK

healthcare community in a space traditionally occupied by commercial vendors. We

describe its features and how it has been implemented within King’s College Hospi-

tal (KCH). We focus specifically on surfacing the deep data with the EHR for iden-

tification and recruitment of patients into the 100k Genomics England Project[11],
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for which the concept was funded and developed via NHS England Enablement

Funding. Finally, we explore a vision of how such technology can be exploited for a

range of use cases within the modern hospital environment.

Previous Work

There are several reports of systems that offer information retrieval solutions di-

rected at the challenges within the healthcare domain. Moen et al[12] proposed a

variety for methods for selecting similar care episodes from other patients, given

a particular case of interest. The NLP-Pier concept[13] combines an information

retrieval and a biomedical entity information extraction system based around the

popular open source project Elasticsearch. In the UK, comparable projects that

make use of information retrieval systems include the CRIS[14] project, which uses

the commercial FAST search engine and a custom text de-identification algorithm

to make clinical notes from mental health patients available for research.

Cognition

In addition, the open source Cognition platform[15, 16] is a vertically and hori-

zontally scalable application that retrieves binary encoded documents and plain

text from a relational database, and optionally de-identifies personal identifiers (for

example, patient names, addresses and phone numbers) in text.

During routine clinical administrative activity, PHIs are often routinely collected

as semi-structured data during the course of a patients care (for example, patient

and carer names, addresses, NHS numbers and dates of birth). Such information is

a valuable source of data for de-identification methods, as it offers highly precise

information about the nature of the text strings that should be removed. However,

in natural language, PHIs are often written in a variety of formats, requiring that

high accuracy approaches have a greater flexibility that can be achieved by simple

direct string matching. For instance, an address written “Institute of Psychiatry,

Psychology and Neuroscience, 16 De Crespigne Park, SE5 8AF” might be short-

ened to “Institute of Psychiatry, 16 De Crespigne Park SE5 8AF”. Similarly, PHIs

in natural language documents may contain spelling mistakes or additional punc-

tuation tokens. To achieve flexibility, the effectiveness of rules based approaches

has been demonstrated elsewhere[17]. The Cognition de-identification algorithms,

which are used in this work, are designed to take into account misspellings, tolerance

for missing/redundant information, and word order without the need for manual

rule crafting nor construction of labelled datasets for machine learning approaches,

which are known to be an expensive process[18]. Cognition applies a “sliding win-

dow” approach to detect the regions of text where patient identifiers are mentioned.

During the processing of a document, the patient specific PHIs are retrieved from

semi-structured fields in a database, and the Levenstein edit distance is calculated

for each PHI token at every character offset available in the document. If the Leven-

stein distance is above a configurable threshold, the offsets of the match are masked.

This allows for an efficient method of removing PHIs in a document, even if they

are misspelt in the document or source inputs.

The de-identified output text from Cognition contains meta-data related to pa-

tients and the document such as a hash code of a combination of the patient’s
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identifiers and document date, which are useful for version control. The output text

may also be output to a relational database or Elasticsearch index, to be used by

downstream services such as the Kibana web interface, or natural language process-

ing applications. Cognition uses the Apache Tika library for converting common

document formats such as Microsoft Word, PDFs, Excel etc. into text and further

applies Optical Character Recognition to scanned documents that are only avail-

able in image formats (including scanned PDFs) using the Tesseract library. Cogni-

tion handles horizontal scaling by using a HTTP-based coordinator-client approach

where a coordinator assigns work coordinates to the clients.

The CogStack Architecture

CogStack is a set of open source and open core services, co-ordinated by a batch pro-

cessing framework that builds on the concepts of the Cognition platform by offering

additional interfaces for NHS systems and NLP technologies. Out-of-the-box open

source components were selected from a variety of successful open source and freely

licensed projects. The services can be deployed using the Docker containerisation

technology, to maximise ease of deployment.

The overall goal of the architecture is to undertake a series of configurable trans-

formations of clinical data housed in relational databases and to load the trans-

formed data into an Elasticsearch information retrieval engine (otherwise known as

a search engine - described below), whereupon the 3R principles can be more readily

addressed than via direct communication with the untransformed source databases

alone. Each transformation is highly configurable, in accordance with the desired

use case of the end product. For example, it is not necessary (or even desirable) to

de-identify data for business intelligence use cases, and thus this can be disabled.

Similarly, not all use cases will require computationally expensive entity extraction

NLP processes. The rationale for the choice of components is described below, while

the flow of data and transformations in the CogStack architecture is described in

figure 1.

Handling Text and Other Unstructured Data

During a patient’s course of treatment, a large number of documents such as referral

letters and discharge summaries tend to be generated via word processing appli-

cations, predominently Microsoft Word. In addition, such documents may undergo

further manipulations, such as PDF conversion and printing and rescanning as an

image before they reach their final storage location, usually a relational database.

Such manipulations represent complications for search and NLP applications, as the

valuable electronic free text content may be ‘locked’ inside proprietary file formats,

or even lost during the conversion to an image format. The Apache Tika library[19]

provides the capability to extract electronic text from a wide variety of file formats,

and (in combination with the open source Tesseract Optical Character Recognition

(OCR) tool[20]), recover images of text back into character electronic format. At

the time of writing, Tika does not provide the capability to perform OCR on PDFs

containing images. To this end, we enhance Tika with a custom PDF parser class,

additionally making use of the ImageMagick tool in order to generate the required

inputs for use with Tesseract.
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Figure 1 CogStack Architecture and Dataflow All components can be deployed via the Docker
containerisation software. 1. New job execution Master instance of CogStack identifies new data
in Trust Data Sources at intermittent intervals. 2. Partitioning The job is partitioned into a user
definable number of work units. 3a. Derive the freetext content Extract plain and/or formatted
text from common proprietary document binary formats (performing OCR where necessary), using
the Tika Library to enable the downstream processing of high value unstructured data
elements.3b. Supplement the text content with meta-data Filter and de-normalise a subset of
the structured clinical data to provide a patient orientated, transparent representation of high
value metadata concepts. For example, this might include calculated fields to represent patient
age at document date, first part of postcode and ethnicity and lab results.3c. De-identification
Transform the resulting text documents into de-identified text documents, by masking personal
health identifiers via the use of the Cognition de-identification algorithms. This is necessary to
address governance concerns associated with the secondary use of patient data. Identifiers in
structured data can be excluded via SQL query, according to business requirements. 4.
Information Extraction Apply generic clinical IE pipelines to derive additional structured data
from free text and supplement the quantity of available structured data at the point of query. 5.
Indexing Build a JSON object from the resulting structured and unstructured data, which can
then be readily be indexed into an Elasticsearch cluster. 6. Visualisation The Kibana suite
provides a range of attractive options for viewing, aggregating and dash-boarding the loaded data

Biomedical Entity Extraction, Bio-YODIE and BioLark

Implementing an information retrieval system over clinical records represents a high

return on investment by lowering the barrier to large scale data access in line with

the 3R principle. However, the limitations of information retrieval are well recog-

nised in terms of its ability to deal with ambiguity, different word senses, negation

and other factors that are likely to produce an irrelevant or imprecise result. In

order to provide a higher granularity of data at the point of search, it is necessary

to implement information extraction (IE) techniques to enhance text elements with

meta-data. To this end, the CogStack architecture offers two third party pipelines,

with the capability to extend the system with additional pipelines via webservices.

First, Bio-YODIE is a clinical information extaction system designed for use with

UK clinical records. It development was necessitated in response to the widely

recognised generalisability issues of English language clinical NLP systems, which

have historically arisen in the United States[21, 22]. Bio-YODIE is designed to

extract a subset of Unified Medical Language System[23] concepts in free text. This

subset is selected for their high business value, and includes entities such as drug
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names (both brand and generic), disease names and procedures. The full UMLS

system is not used to reduce noise and retain scalability.

Bio-YODIE has been evaluated against two corpora; the MIMIC II corpus [24, 25]

and a new corpus created using patient records at the South London and Maudsley

NHS Foundation Trust. In the latter, 201 documents have been triple-annotated by

medical experts, achieving a three way interannotator agreement of 0.747. The cor-

pus is confidential; however annotator guidelines are available for public review[26].

Bio-YODIE achieves an accuracy of 0.926 on the task of correctly linking to UMLS

concepts on the SLAM corpus, 0.842 on the MIMIC 2013 test set and 0.827 on

the MIMIC 2014 test set. A separate evaluation of NER performance (finding the

right parts of the text, rather than as above, disambiguating them correctly given

that the span has already been located) shows that Bio-YODIE achieves an F1

of 0.751 on perfect span matches (0.823 when concepts with any degree of over-

lap are also counted) on the SLAM corpus; however when only correct types are

counted, this falls to 0.523 (0.564). NER performance was not evaluated on the

MIMIC corpus because this corpus is not fully NER-annotated. In a comparative

evaluation (forthcoming), Bio-YODIE and MetaMapLite offered similar advantages

over the competitors considered in terms of accuracy, speed and stability; however,

Bio-YODIE also offers the possibility to include prior probabilities from corpus

data, resulting in a substantial improvement in disambiguation accuracy. For this

reason, Bio-YODIE was chosen. Bio-YODIE is dual licensed under GNU Affero and

commercial options.

Second, Bio-lark encodes clinical text with Human Phenotype Ontology[27] con-

cepts - the principle ontology for phenotyping patients in the 100K Genomics

England Project. Negation detection for HPO terms is provided by the NegEx

algorithm[28]. An evaluation of the system over a Pubmed corpus is described in

[29]. Here, Biolark achieved an F1 score of 0.95 over a test set of 1 933 instances,

corresponding to 460 unique HPO concepts. Bio-lark is available under an academic

license.

The outputs of the NLP processes are captured as JSON objects and indexed using

the ‘nested’ type of Elasticsearch. In doing so, it is possible to query unstructured

data as though it were structured, although the accuracy will vary greatly depending

on a multitude of factors.

Text De-identification Performance

Different use cases for Trust data have different governance requirements. The re-

quirements for the anonymisation and pseudonymisation has been the subject of

national and international working groups[30, 31, 32]. The process of masking Pro-

tected Health Identifiers (PHIs) in clinical free text remains an active area of re-

search from both a governance and NLP perspective. The Informatics for Integrating

Biology and the Bedside (I2B2) organisation regularly organises open challenges for

NLP researchers to examine the state of the art in text de-identification technology,

by providing corpora of PHI annotated clinical text for international researchers

to experiment with[33]. Such efforts have undoubtedly yielded significant advances

in the field, to the extent that the performance of hybrid knowledge driven and

machine learning methods equals that of human annotated documents in controlled
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test environments. Nevertheless, there remain outstanding tasks to ensure that such

approaches are generalisable across different languages, dialects, specialities and

hospital systems.

Due to strict data protection laws, it is generally not possible for researchers to

access clinical text containing identifiable information. Therefore, validating the

Cognition de-identification algorithms poses certain challenges. While certain do-

main corpora are available via activities such as I2B2 described above, these are

not representative of UK clinical data. Therefore, we created a simulated dataset

to explore the performance on registered company address entities harvested from

public records. We devised a series of string mutator methods to attempt to recreate

a variety of likely scenarios that would cause named entities to vary between two

sources. These mutation methods were designed to represent real world events that

might cause clinical document PHIs to not match those entered via an administra-

tive process, and thus limit the effectiveness of exact string matching. We decided

to focus on address named entities only, as these tend to offer the greatest scope

for variation, compared with first/last name, telephone number and NHS number

PHIs.

We explored four types of mutation method. First, keyboard typographic errors

using prior probabilities of frequently mistyped keys, at a per character error rate

of 3%, 10% and 20% (for example, ’100 Meadow Street’ to ’100 Meagow Streat’.

Second, substituting full address tokens to common abbreviations and vice versa

(for example, ’Road’ to ’Rd’ and ’St’ to ’Street’) at a per token rate of 100% (i.e.

any detected possible address substitutions were replaced). Third, an address token

truncator, which removes tokens from the end of an address. The purpose of this

is to replicate the observation that in some cases, full addresses (often supplemen-

tal address lines) are not recorded. For instance, ’100 Meadow Street, Barkingford,

Greater London, London’ may be shortened to simply ’100 Meadow Street’. We

specified a token removal rate of 100%, with a minimum address length of three to-

kens. Finally, the most convoluted mutator we implemented was designed to mimic

the effects of poor quality OCR. This mutator includes the effects of the character

substitution mutator, with the additional possibility of inserting whitespace charac-

ters at random intervals within tokens. We tested this mutator with a per character

substitution rate of 3%, 10% and 20%, and a per character whitespace insertion

rate of 3%, 10% and 20%

The mutated address strings were then wrapped in ’Lorem Ipsum’ style generated

text to simulate surrounding language. We generated 1000 test documents under a

variety of degrees of PHI mutation and report precision and recall statistics for per

token masking.

Scalability and Database Synchronisation

Scalability is achieved using the remote partitioning concept. Here, a unit of work

is defined as a job (for example, to process 10 000 rows of new/updated data since

the last job was executed). A master process partitions this job into a configurable

number of smaller work units. These partitions and other job metadata are stored

in a job repository and then sent as a message to a Java Messaging Service (JMS)

server. These are then picked up by multiple worker processes operating on local or
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remote servers. Upon the arrival of a partition, each worker will begin to execute

the work described within the message. Upon completion, the worker processes will

inform the master process (again via JMS) about the status of the partition. If all

partitions are successful, the job will be marked as complete, and a new job will

start to process any new data generated by business activities during the processing

of the previous job. Via this mechanism, a degree of ‘near real-time’ synchronisation

with the source databases are achieved, although in practice it is constrained by

available hardware, database configuration and network speed.

Elasticsearch and Kibana

Following the data transformation steps, the data is loaded into Elasticsearch, a

popular open source search and analytics engine developed by Elastic.co. The non-

transactional, NoSQL data model used by Elasticsearch enables the ingestion of

large quantities of data at high speed, making it rapidly available for querying.

Elasticsearch was chosen as it offers a number of advantages over traditional rela-

tional databases, predominantly concerning it’s advanced capabilities to construct

complex queries over structured and unstructured data simultaneously. In addition,

the NoSQL data model it supports enables schema free loading of data (in the sense

that there is no need to predefine the structure of data before it is loaded). This is

particularly advantageous given the myriad of different database systems supported

within a typical NHS Trust, as the technical debt incurred by connecting new data

sources to the engine is greatly reduced. As an analytics engine, Elasticsearch allows

common and complex aggregations to be performed at speed. Finally, Elasticsearch

offers a Representational State Transfer (REST) web service, which cab be flexi-

bly leveraged to allow external applications and services to retrieve data using the

HTTP protocol.

For the end user experience, the open source Kibana data visualisation applica-

tion (also by Elastic.co) is specifically designed to interact with Elasticsearch, and

offers document visualisation, text highlighting and dashboarding capabilities. Via

Kibana, non-technical users are able to search document text and structured meta-

data in much the same way as one would use an e-commerce website. A screen shot

of the Kibana interface is provided in figure 2.

Security and Information Governance

Due to the sensitive nature of the clinical data, access is administered via a sys-

tem manager in line with the information governance scenarios described above.

Technical considerations are managed via commercial grade security provided by

Elasticsearch plugins, offering active directory/LDAP/HTTP user authentication

control, user access logging for audit, per index access restrictions with optional

document/field level access restrictions and private certificate authority SSL en-

cryption to protect in-flight data.

Results/Discussion
Data Model

As of December 2016, we have used the CogStack architecture to process approxi-

mately 300 million rows of clinical data from KCH databases. This data has been
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Figure 2 Kibana interface loaded with pseudo-data

organised into identifiable and de-identified indexes for business intelligence and

service improvement concerns, trial recruitment and tailored care use cases.

Each index is centred around a high value concept-

Observations Clinical notes taken during patient/doctor interactions (24 991 406

rows)

Basic Observations Test results from pathology systems and short notes (248 028

823 rows)

Orders Prescribing information (66 838 164 rows)

Documents Binary documents generated by inter and intra Trust communication,

comprising 8 736 295 rows. Of these, 4 505 750 (52%) resulted from MS Office, 3

479 583 (40%) were PDFs and 340 764 (4%)required OCR

Demographics of the Acute Patient Population at King’s College Hospital

A short demographic breakdown of patients across all years is given in table 1. Top

level ICD-10 groups, as assigned by clinical coders are presented in table 2.

Text de-identification validation

The results of our four methods to simulate PHI input errors for 1 000 addresses

are given in table 3. Because of the use of a random number generator to determine

when string manipulations should occur, the total number of PHI tokens varies

slightly between executions. For each test, approximately 8 500 pseudo-PHI address

tokens were generated. For our character substitution mutator, precision ranged

from 93.9% at a 3% substitution rate to 96.3% at a 20% substitution rate. Recall

ranged from 95.5% at a 3% substitution rate to 82.0% at a 20% substitution rate.

Performance over address aliasing achieved 94.4% precision and 94.8% recall. For

token removal, precision was calculated at 96.6% and recall 92.1%. Performance on
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simulated OCR documents performed the least well, with precision at 98.2% and

recall at 84.5% at a 3% character substitution rate and 3% white space insertion

rate. At 20% charater substition rate and 20% white spcae insertion rate, precision

was 92.3% and recall was 11.0%.

Discussion
Our CogStack software arose out of a requirement from the 100 000 Genome project

(100KGP) to find a low cost solution for providing relevant clinical data to the

programme amongst the large volumes of disparate data sources within KCH. In

response to this challenge, we have produced an open source integrated document

retrieval and information extraction, to solve a variety of typical issues associated

with analytics within an NHS environment. We chose a range of components on the

basis of ubiquity, robustness, commercially friendly licensing and price to offer a

viable alternative to commercial solutions. Beyond the initial scope of the 100KGP,

our CogStack architecture has enabled us to transform and ingest a large volume of

clinical data in a fashion consistent with the requirements for data reuse in business

intelligence, service improvement and research.

Case Study: Patient Recruitment into the 100 000 Genomes England Project

The 100 000 Genomes project is the largest human sequencing project in the world.

It is a UK initiative to sequence 100 000 genomes from individuals suffering from

various cancers and rare diseases, with the intent of developing a genomic medicine

capability for the NHS. This will create new diagnostic criteria for patients, and

contribute to research for new treatments and cures. While the ambitions are high,

the logistical and technical challenges of delivering such a capability within routine

care are substantial. Two areas of particular difficulty have been identified at KCH.

The first challenge is to find and contact eligible patients for recruitment. Ge-

nomics Medicine Centres around the UK (such as KCH) are responsible for the

recruitment and data collection of patients into the project, using the various in-

clusion criteria specified by the co-ordinating body, Genomics England. One of the

principal use cases for the CogStack architecture has been to offer the means to

rapidly develop search criteria such that appropriate individuals are identified.

As noted by Moen et al[12], quantitatively validating the quality of results pro-

duced by an information retrieval system is a complex task, as identifying the rel-

evance of results is often highly context specific. However, subjective reports of

users of the system suggest that project staff are able to work with clinical care

teams to navigate large quantities of structured and unstructured data, to find in-

formation required validate putative cases for recruitment and approach patients in

their normal course of care. For instance, the system allows researchers to quickly

assess which patients have records that contain pertinent keywords and/or UMLS

concepts, a process that would have previously required significant technical skill,

direct knowledge of patient cases or manual data trawling.

The second challenge posed is to subsequently surface the deep phenotype data

from recruited patients. A requirement for acceptance into the 100KGP is the com-

pletion of an extensive patient phenotypic data model by the recruiting Genomic

Medical Centre. Such data may be held in disparate systems, complicating its ex-

traction. Similarly to the recruitment challenge, collating data is substantially easier
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if held in a single source with extensive search functionality. In addition, the added

value of IE approaches to resolve relevance challenges such as word sense disam-

biguation and negation offer further options for data retrieval. The technologies

that make up the CogStack architecture enables members of the 100KGP team to

rapidly scour individual patient records, regardless of size, and efficiently extract

the required information.

Other use cases

While CogStack was built in response to the requirements of the 100k Genomics

England project, its potential for a large number of other use cases was quickly

realised. For instance, as previously described, clinical coding is the activity of hand

curating clinical documents to identify the exercise of care activities, such as the

prescription of drugs. Clinical coding is an important activity in acute care Trusts,

as its efficiency affects the Trusts reimbursement from central government for care

dispensed. The modern propensity to record and store large amounts of clinical

and administrative data has created new challenges for clinical coders, owing to the

increasingly unfavourable ratio of coding capacity to volume of data. Information

retrieval and extraction technologies offer the potential for a substantial return

on investment enabling clinical coders to navigate the data more efficiently. Such a

capability is especially valuable in complex cases, where co-morbidity factors hidden

amongst a mass of unstructured data can have a substantial impact in the accurate

assessment of the cost of patient care.

In addition, one of the most useful tasks in an organisation with complex data

flows is to be able to offer near real-time alerting capability. The commercial ’Alert-

ing’ plugin for Elasticsearch offers an easily configurable solution to send messages

to a variety of endpoints, such as email addresses, REST webservices and enterprise

communication software such as Slack and Hipchat. In a clinical setting, alert-

ing clinical teams to events outside of their immediate jurisdiction may offer new

opportunities for intervention. Within KCH, such capabilities are currently being

explored in the following scenarios: 1) abnormal creatinine and CCP antibody lev-

els to detect adverse reactions to methotrexate and pre-clinical rheumatoid arthritis

respectively, to hasten communication between the Rheumatology and Pathology

Departments 2) identification of previous evidence of adverse reactions such as rash

in response to Sulfasalazine treatment (especially in emergency contexts) 3) mon-

itoring for drug administration delays on wards 4) alerting of anti-coagulant team

for patients being discharged on anti-coagulation therapy and 5) alerting of clinical

intervention team if a high National Early Warning Score is detected. Presumably,

such a list represents only a fraction of the scenarios that would benefit from the

3R principle. Pending further development and successful trials, a future goal will

be to explore additional alerting scenarios.

Additional Implementation Issues/Limitations

The secondary reuse of EHRs is complicated by several factors. Fundamentally,

the clinotype and phenotype are related but different concepts in our semantics for

heath datasets. The sufficiency and robustness of the clinical record is often called

into question as a source of secondary research data[34, 35, 36]. For instance, our
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current deployment of CogStack at KCH does not have access to primary care data,

and therefore cannot be said to offer complete patient profiles. Similarly, no effort

has been made at this time to address the challenges of linking datasets across

different secondary care organisations.

EHR data is predominantly used for front line recording and communication

within care units. Missing data, or inconsistencies can be resolved if and when

they become relevant to direct care by patient/care unit interaction. Such error

correction routines are not possible in secondary use scenarios whereby corrective

intervention is not feasible. The heterogeneous landscape of systems, data owners

and APIs that are synonymous with IT infrastructure in large organisations are

likely to compound the problem. Recording the same (or related) information in

multiple systems, increases the likelihood of conflicts.

Governance, security and process issues require significant consideration in the

development of standard operating procedures. It is likely that many Trusts have

procedures in place to manage business intelligence, service improvement and re-

search project with explicitly obtained consent. However, some of the most for-

ward thinking opportunities for analytics require access to data at a scale where

explicitly obtained consent is not feasible. Such activities likely require the use ex-

ternal resource and expertise, as has been the doctrine behind the establishment

of NHS/University collaborations in the form of National Institute for Health Re-

search Biomedical Research Centres. Few Trusts have the facilities to offer enclave

style research environments to external researchers, for example in the form of the

aforementioned CRIS and SAIL security models. This creates a significant limita-

tion in the potential for localised secondary EHR use outside of such institutions,

and discussions to address such issues continue to take place at the national level.

Progress in this area is likely to take the form of substantial patient engagement

activities to ensure the retention of public trust, and the development of pioneering

models of consent such as Consent for Contact [37].

One particular factor of concern when managing unstructured data is the quality

of OCR performance. Although only 4% of binary documents required OCR at

KCH, our subjective assessment of the Tesseract library suggests OCR performance

varies greatly in line with the quality of input. Good performance was observed

when OCR was attempted on clean, printed black and white documents that were

carefully aligned to scanner boarders. Deviations from these factors resulted in a

rapid decline in OCR performance.

Regarding Information Extraction approaches, our efforts here offer Bio-lark and

Bio-YODIE ’out-of-the-box’ as a means to demonstrate compatibility with the

CogStack concept. However, the necessity for domain adaption to new corpora of

clinical text is well established[38, 39]. Future work will look the information ex-

traction performance and ease of domain adaptation of these technologies to the

KCH corpora.

The de-identification algorithms we make use of are deterministic string matching

method based upon the same principles described in[17]. Although we were unable

to validate the performance on real clinical data at this time, we would expect recall

metric to be approximately the same.

Because of our access limitations to identifiable clinical data, we are hesitant to

make broad comparisons with other methods in this area. We would have liked
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to compare performance across a range of algorithms, such as those proposed in

the I2B2 2014 task for text de-identification. However, it should be noted that the

majority of these algorithms are not available in the public domain. In addition, we

note that such algorithms are designed for US style identifiers rather than UK ones,

therefore requiring some form of domain adaptation for appropriate use. Regardless,

our experiences of automated de-identification techniques suggest that appropriate

ethical use should involve extensive internal validation on a per-dataset basis, before

such data is deemed suitably transformed for further use cases.

Our testing of the approach in a simulated environment suggests reasonable per-

formance of the de-identification algorithms to many forms of string perturbation,

with the most noticeable drops in performance occurring with our ‘poor OCR’ sim-

ulations. It should be noted that at the higher grades of OCR error, documents

became increasingly illegible, suggesting that PHIs may not be interpretable to

human observers.

One particular dependency of the de-identification algorithm is that it requires

PHIs to exist as structured or semi-structured fields in a database, which may

make it unsuitable for some types of EHR data. Many other forms of PHI masker

do not have this requirement[40]. However, due to the nature of its workings, it can

synergistically be combined with other de-identification approaches.

Regarding resource allocation during the progress of the project, the most sig-

nificant deployment cost arose from the need for the implementation team to un-

derstand the complex landscape of modern and legacy systems in place inside the

Trust. For instance, these commonly took the form of certain services being unavail-

able at certain times, or restrictions on the load that could be placed on certain

services to prevent interference with the day-to-day running of front line services.

In such cases, it was necessary to retain flexibility with regard to requirements, in

keeping with common agile management paradigms.

Conclusion

Our CogStack software arose out of a requirement to build an integrated docu-

ment retrieval and information extraction system for a large UK NHS Trust. Our

experiences have led us to identify a variety of typical issues associated with the

development of local analytics environments within the NHS, broadly encapsulated

as what we define as the 3Rs of right data, right place and right time. We have

released our software components under permissive licensing arrangements in the

hope that other NHS Trusts might benefit from our findings.

Availability and requirements

Project name: CogStack Project home page: The code, documentation, string mutator classes and example

configurations for CogStack are available at https://github.com/RichJackson/cogstack/ Operating system(s): JVM

based - The codebase should work on Windows and Linux systems, although Linux systems are recommended for

docker style deployment Programming Language: Java, Groovy, Spring Batch Framework Other requirements: Java

1.8 or higher License: Apache 2.0 Any restrictions to use by non-academics: Please check with Angus Roberts

(angus.roberts@sheffield.ac.uk) and Tudor Groza (t.groza@garvan.org.au) before using the Bio-Yodie and Biolark

components respectively Note: Instructions on how to reproduce the simulated data and results described here are

included in the associated documentation, available at the same location.

For information governance reasons, no clinical record data can be provided with this research.
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Tables

Table 1 Patient demographics, King’s College Hospital 2004-2016

Count %

Age (years)
≤ 20 435 796 14.80
21-40 811 865 27.57
41-60 876 467 29.77
61-80 490 153 16.65
≥ 80 326 453 11.09
Unknown 3 792 0.13

Gender
Male 1 369 074 46.50
Female 1 571 717 53.38
Indeterminate 550 0.02
Unknown 3 185 0.11

Race (Self Assigned
Asian or Asian British 95 682 3.25
Black or Black British 326 618 11.09
Mixed 59 214 2.01
Not specified 1 506 703 51.17
Other 9 7277 3.30
White 859 032 29.17
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Table 2 ICD10 Code assignment by clinical coders at King’s College Hospital

Group Unique Patient Count
I Certain infectious and parasitic diseases 171 988
II Neoplasms 259 975
III Diseases of the blood and blood-forming organs and certain disorders involving the immune mechanism 72 939
IV Endocrine, nutritional and metabolic diseases 272 317
IX Diseases of the circulatory system 504 581
V Mental and behavioural disorders 706 990
VI Diseases of the nervous system 179 710
VII Diseases of the eye and adnexa 183 841
VIII Diseases of the ear and mastoid process 13 416
X Diseases of the respiratory system 242 282
XI Diseases of the digestive system 598 165
XII Diseases of the skin and subcutaneous tissue 131 227
XIII Diseases of the musculoskeletal system and connective tissue 343 803
XIV Diseases of the genitourinary system 212 198
XIX Injury, poisoning and certain other consequences of external causes 351 608
XV Pregnancy, childbirth and the puerperium 327 111
XVI Certain conditions originating in the perinatal period 78 541
XVII Congenital malformations, deformations and chromosomal abnormalities 104 242
XVIII Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere classified 513 384
XX External causes of morbidity and mortality 650 984
XXI Factors influencing health status and contact with health services 1 520 107
XXII Codes for special purposes 385 417

Table 3 Performance of de-identification on simulated data

Mutator Type True Positives False Positives False Negatives Precision Recall
Character substitution (3%) 8 191 538 391 93.9 95.5
Character substitution (10%) 7 740 447 826 94.6 90.4
Character substitution (20%) 6 969 271 1 537 96.3 82
Address Alias Substitution 8 171 486 455 94.4 94.8
Address Token Removal 2 761 99 237 96.6 92.1
OCR (3% char. sub. 3% white space 8 464 160 1555 98.2 84.5
OCR (10% char. sub. 10% white space 5 327 180 7282 96.8 42.3
OCR (20% char. sub. 20% white space 1 802 151 14719 92.3 11.0
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