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ABSTRACT 
 
Transcriptome-wide screens of peripheral blood during the onset and development of 
posttraumatic stress disorder (PTSD) indicate widespread immune dysregulation. However, 
little is known as to whether biological sex and the type of traumatic event influence shared 
or distinct biological pathways in PTSD. We performed a combined analysis of five 
independent PTSD blood transcriptome studies covering seven types of trauma in 229 
PTSD and 311 comparison individuals to synthesize the extant data. Analyses by trauma 
type revealed a clear pattern of PTSD gene expression signatures distinguishing 
interpersonal (IP)-related traumas from combat-related traumas. Co-expression network 
analyses integrated all data and identified distinct gene expression perturbations across 
sex and modes of trauma in PTSD, including one wound-healing module down-regulated in 
men exposed to combat traumas, one IL12-mediated signaling module up-regulated in men 
exposed to IP-related traumas, and two modules associated with lipid metabolism and 
MAPK-activity up-regulated in women exposed to IP-related traumas. Remarkably, a high 
degree of sharing of transcriptional dysregulation across sex and modes of trauma in PTSD 
was also observed converging on common signaling cascades, including cytokine, innate 
immune and type I interferon pathways. Collectively, these findings provide a broad view of 
immune dysregulation in PTSD and demonstrate inflammatory pathways of molecular 
convergence and specificity, which may inform mechanisms and diagnostic biomarkers for 
the disorder. 
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INTRODUCTION 
 
Posttraumatic stress disorder (PTSD) is a debilitating disorder that develops after exposure 
to a traumatic event and increases vulnerability to adverse health outcomes. The estimated 
lifetime prevalence of PTSD is ~5-6% in men and ~10-12% in women (Kessler, 1995), and 
even higher among recent war-veterans with estimates as high as ~20% (Ramchand et al, 
2010). Although extensive work has identified putative risk factors that are associated with 
PTSD (DiGanji et al, 2013), the identification of discrete diagnostic biomarkers for the 
disorder remains elusive. Heterogeneity in susceptibility to PTSD suggests that the 
response of an individual to trauma may depend on biological sex as well as the type of 
adverse event (e.g. early life adversity, violence, assault, accidents, combat). These 
factors, in turn, may determine downstream consequences, such as perturbation of 
biological pathways, making it unlikely that a valid, singular biomarker will be specific to all 
PTSD cases. 
 
Research into the mechanisms underlying the onset and development of PTSD converge 
on hypothalamic-pituitary-adrenal (HPA) axis and immune system functioning (Daskalakis 
et al, 2016; Cohen et al, 2016). As such, several studies have examined pro-inflammatory 
cytokines and glucocorticoid activity in peripheral blood mononuclear cells (PBMC) or 
lymphocytes in PTSD cases to build more effective models for identifying molecular factors 
underlying PTSD. These studies were reviewed by Passos et al (2016), who summarized 
that increases in C-reactive protein (CRP), interleukin 6 (IL-6), tumor necrosis factor alpha 
(TNF-α), interleukin 1 beta (IL-1β) and interferon gamma (IFN-γ) all underlie the onset and 
emergence of PTSD symptoms. However, despite the evident effects of biological sex on 
incidence rates of PTSD, very few of the reviewed studies examined sex differences in 
psychobiological or inflammatory responses to trauma. Moreover, the majority of these 
reports centered their analysis around pre-determined targets, limiting the ability to identify 
novel genes and molecular pathways relevant to the pathophysiology of PTSD.  
  
Transcriptome-wide screens of peripheral immune cells from individuals with PTSD have 
extended findings from candidate gene studies through systems-wide exploration of 
immune system dysregulation in response to PTSD. Segman et al (2005) first reported on 
transcriptomic differences in peripheral blood from trauma survivors with PTSD on the day 
of emergency room visit and four months later, implicating dysregulation of transcriptional 
enhancers and immune activating genes. We later described blood-based transcriptomic 
signatures implicating sex differences in cytokine pathways activated in PTSD from a 
population of individuals exposed to various traumatic backgrounds (Neylan et al, 2011). In 
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a separate and non-overlapping study, we also identified transcriptomic differences in 
central nervous system development and immune tolerance induction pathways in PTSD 
cases, both with and without a history of childhood maltreatment, implicating trauma-related 
dimorphism (Mehta et al, 2013). Parallel lines of research have identified candidate 
prognostic and diagnostic blood-based gene expression classifiers in war-veterans with 
PTSD (Glatt et al, 2015; Tylee et al 2015), that were largely associated with dysregulated 
innate immune function both prior to and following PTSD development (Breen et al, 2015). 
Collectively, while these data-driven approaches have formed the foundation of ongoing 
work to build PTSD biomarkers, they have yet to be widely replicated. Inconsistences may 
be attributable to various clinical factors (e.g. comorbidity, medication) and technical factors 
(e.g. various technologies and statistical methods used to evaluate data). More importantly, 
these studies are often severely underpowered and model gene expression changes in the 
context of an explicitly defined biological sex or trauma type. As such, a critical remaining 
question is how biological pathways in peripheral blood overlap across sex and modes of 
trauma in PTSD, and how this information may inform the search for more verifiable 
diagnostic biomarkers for the disorder.  
 
The primary goal of the current investigation was to synthesize the existing data from 
transcriptome-wide gene expression studies in PTSD and to clarify their relevance to PTSD 
pathophysiology, while explicitly modeling sex- and trauma-related differences. To do so, 
we performed a mega-analysis of five independent transcriptome-wide peripheral blood 
studies covering seven types of trauma in 229 PTSD and 311 comparison individuals. To 
address our goals, a standardized multistep analytic approach was used that we have 
reviewed in the context of blood-based biomarker discovery in neuropsychiatric disorders 
(Breen et al, 2016), and that we have also applied to other transcriptome-wide mega-
analyses (Hess et al, 2016; Tylee et al, 2016). To this end, our analyses specifically sought 
to: (1) determine the relatedness of PTSD gene expression signatures across different 
types of trauma; (2) identify candidate genes, pathways and co-regulatory networks in 
PTSD and determine if such alterations are distinct between different biological sexes and 
trauma types; and (3) construct diagnostic blood-based gene expression classifiers to 
differentiate PTSD cases from trauma-exposed control individuals and clarify the potential 
clinical utility of peripheral blood gene expression. 
 
METHODS 
 
Literature search and study criteria 

To systematically identify relevant studies for our combined mega-analysis, we performed a 
literature search (SCOPUS) and microarray database searches (NCBI GEO and EMBL-EBI 
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ArrayExpress) for transcriptome-wide studies of whole blood- or leukocyte-based gene 
expression in PTSD. Studies were included if they met the following criteria: (i) cross-
sectional post-trauma studies published between 2005-2015; (ii) contained individuals 
meeting structured diagnostic criteria for PTSD (e.g. DSM, PCL); (iii) also contained a 
trauma-exposed healthy control group. Studies were excluded on the bases of: (i) using 
qualitative real-time PCR or immunoassays as a means to investigate a targeted panel of 
candidate genes; (ii) investigating mechanisms in lymphoblastoid cell lines, skin fibroblast 
cultures, serum, and plasma; and (iii) secondary data integration analyses and review 
papers were also excluded. Five studies met these criteria for which raw gene expression 
data and clinical covariates (age, sex, ethnicity and trauma type) were available, and one 
additional study from which data were unavailable (Sarapas et al, 2011). Using these five 
studies, seven trauma-specific case-control bio-sets were curated by parsing individuals 
provided by Neylan et al, 2011 into two separate sub-groups (that is, combat- and assault-
related traumas) and Mehta et al, 2013 into two separate sub-groups (that is, childhood- 
and interpersonal-related traumas). All data were obtained from either the corresponding 
authors of the original studies or from publicly available data repositories. For diagnostic 
criteria, we relied on those used at each study site, some of which were based on clinician 
assessments and others based on standardized screening tool. There was no additional 
filtering of subjects based on medical comorbidities beyond what was described on the 
original studies.  

 
Gene expression data processing and quality control 
All statistical analyses were conducted in the statistical package R. Data from each study 
were processed, normalized and quality treated independently (see Supplementary 
Figure 1 for workflow). Briefly, when multiple microarray probes mapped to the same 
HGNC symbol, the probe with the highest average expression across all samples was used 
for further analysis. Normalized data were inspected for outlying samples using 
unsupervised hierarchical clustering of samples and principal component analysis to 
identify potential outliers outside two standard deviations from these grand averages. 
Combat batch correction (Leek et al, 2015) was applied to remove systematic sources of 
variability other than case/control status, such as technical, clinical, or demographic factors 
both within each study (as necessary), and then across all studies using common gene 
symbols, forming the bases for subsequent mega-analytic case-control groups. The 
frequencies of circulating immune cells were estimated for each individual in each study 
using Cibersort cell type de-convolution (https://cibersort.stanford.edu/) (Newman et al, 
2015). See Supplementary File for full details on these data processing steps.  
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Differential gene expression analyses 

Trauma-specific analyses: Differential gene expression (DGE) was performed 
independently for each of the seven case-control groups using the limma package (Ritchie 
et al, 2015) to detect relationships between diagnostic status and gene expression levels. 
The covariates age and sex were included in all models to adjust for their potential 
confounding influence on gene expression between main group effects. To determine the 
relatedness of DGE signatures across the seven trauma-specific groups, each gene list 
was converted into a matrix of binary gene presence/absence calls with respect to each 
group and a Jaccard coefficient was applied to create a gene-based phylogeny, as 
previously described (Diaz-Beltran et al, 2016).  

Mega-analytic analyses: To increase statistical power and test for biological sex- and 
trauma-specific gene signatures, individual samples from different experiments were 
combined based on i) biological sex and ii) type of trauma to form three large mega-analytic 
case-control groups. First, common gene symbols across all available samples were 
identified (ngenes=4,062). Then, Combat batch correction (Leek et al, 2015) was applied to 
remove systematic sources of variability other than case/control status, such as technical 
factors (e.g. difference technologies, duration of time from PTSD onset to blood 
acquisition), clinical factors (e.g. comorbidities) or demographic factors (e.g. ethnicity) 
across all individual studies. Finally, DGE analysis was performed for each mega-analytic 
case-control group controlling for effects of age, and unless otherwise specified, the 
significance threshold was a nominal P-value <0.05. This nominally significant P-value was 
used to yield a reasonable number of genes to include within functional annotation and 
gene network analyses.  

 

Weighted gene co-expression network analysis  

Weighted gene co-expression network analysis (WGCNA) (Langfelder et al, 2008) was 
used to build signed co-expression networks using a total of 4,062 genes found in common 
across all experiments (see Supplementary Information for details). Two broad analyses 
were performed. First, a series of module preservation analyses sought to determine 
whether PTSD development influences the underlying gene co-regulatory patterns, as 
being preserved or disrupted, compared to controls, and vice versa. For these analyses, 
module preservation was assessed using a permutation-based preservation statistic, 
Zsummary, implemented within WGCNA with 500 random permutations of the data 
(Langfelder et al, 2011). Zsummary takes into account the overlap in module membership as 
well as the density and connectivity patterns of genes within modules. A Zsummary score <2 
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indicates no evidence of preservation, 2<Zsummary<10 implies weak preservation and Zsummary 

>10 suggests strong preservation. Second, to increase confidence and power to detect 
biologically meaningful modules, a consensus network was built use all available samples. 
Once modules were identified from the consensus network, modules were assessed for 
significant associations to PTSD diagnostic status, sex and mode of trauma. Singular value 
decomposition of each module’s expression matrix was performed and the resulting module 
eigengene (ME), equivalent to the first principal component, was used to represent the 
overall expression profiles for each module. Differential analyses of MEs was performed 
using Bayes ANOVA (Kayala et al, 2012) (parameters: conf=12, bayes=1, winSize=5), 
comparing between diagnostic status, sex and mode of trauma, correcting P-values for 
multiple comparisons with post hoc Tukey tests.  

 

Functional annotation and protein interaction networks 

The ToppFunn module of ToppGene Suite software (Chen et al, 2015) was used to assess 
enrichment of Gene Ontology (GO) terms using a one-tailed hyper geometric distribution 
with family-wise false discovery rate (FDR) at 5%. GO semantic similarity analysis was 
used to assess shared/unique gene content amongst GO terms using the GoSemSim 
semantic similarity R package (Yu et al, 2015), and default semantic contribution factors 
(‘is_a’ relationship: 0.8 and ‘part_of’ relationship: 0.5). Second, gene modules were tested 
for over-representation of PTSD genome-wide association study (GWAS) signatures 
obtained from the DisGenNet database (Pinero et al, 2015), retrieved using the disease-
term query ‘PTSD’. Third, DGE signatures were used to build direct protein-protein 
interaction (PPI) networks, which can reveal key genes/transcription factors mediating the 
regulation of multiple target genes. PPIs were obtained from the STRING database 
(Franceschini et al, 2012) with a signature query of DGE lists from the mega-analytic case-
control comparisons. We used a combined STRING score of >0.4 (i.e. medium-to-high 
confidence interactions). For visualization, the STRING network was imported into 
CytoScape (Shannon et al, 2003).  

 

Construction of PTSD blood-based diagnostic classifiers 

BRB-Array Tools supervised classification methods (Simon et al, 2007) were used to 
construct gene expression classifiers. Three models were specified to distinguish PTSD 
cases from controls relative to: (1) men exposed to combat trauma (2) men exposed to IP 
traumas, and (3) women exposed to IP traumas. Each model consisted of three steps. 
First, to ensure a fair comparison, all genes in the training data with P <0.05 were subjected 
to classifier construction, respective for each mega-analytic case-control group. This 
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heuristic rule of thumb approach was used to cast a wide net to catch all potentially 
informative genes, while false-positives would be pared off by subsequent optimization and 
cross-validation steps. Second, classifiers composed of different numbers of genes were 
constructed by recursive feature elimination (RFE). RFE provided feature selection, model 
fitting and performance evaluation via identifying the optimal number of features with 
maximum predictive accuracy. Third, the ability for RFE to predict group outcome was 
assessed by support vector machines (SVM) and compared to four different multivariate 
classification methods (i.e. diagonal linear discriminant analysis (DLDA), nearest centroid 
(NC), first-nearest neighbors (1NN), three-nearest neighbors (3NN)). For each of the three 
models, classification accuracies are reported for both the training data (70% of data) and 
the completely withheld test data (30% of data) as area under the receiver operating curve 
(AUC).      

 

Statistical power and sample size computation 

We estimated the expected discovery rate (EDR), a multi-test equivalent to power, and 
sample size at a fixed number of biological replicates (n) and type I error rate (α) using the 
PowerAtlas software (Page et al, 2006). This sample size calculation method is based on 
studies of the distribution of P-values from DGE analyses from microarray studies 
controlling for EDR. For evaluating which n is best suited for a future study, we set the 
average probability of detecting an effect (EDR) to be >0.8 and α=0.05.  

 

Code and data availability 

Computational code and quality controlled gene expression data are available upon request 
to the corresponding author and can also be directly downloaded at 
https://github.com/BreenMS/PTSD-blood-transcriptome-mega-analysis. 
 
RESULTS 

Literature search and data curation 

A total of five cross-sectional PTSD studies met our criteria (Methods) for which raw gene 
expression data and clinical covariates were available (Table 1). From these five studies, 
seven trauma-specific case-control groups were derived, including three groups exposed to 
combat traumas, one group exposed to assault traumas, one group exposed to childhood-
related traumas, one group exposed to emergency room (ER) accident-related traumas, 
and one group exposed to ‘other’ interpersonal (IP)-related traumas which could not be 
explicitly defined. These seven trauma-specific groups were later combined to form three 
large mega-analytic case-control groups, aimed at explicitly modeling for sex- and trauma-
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related differences (Table 1, bottom), including: i) men exposed to combat traumas (nPTSD 
=85, nControl=84, kgenes

 =10,112); ii) men exposed to IP traumas (nPTSD=45, nControl=67, 
kgenes=4,378); and iii) women exposed to IP traumas (nPTSD=99, nControl =160,  kgenes

 =4,378). 

 

Between-trauma comparisons 

Following standardized data pre-processing procedures (see Methods and Supplementary 
File), the proportions of circulating immune cells were estimated for all individuals since 
complete cell counts with leukocyte differentials were not available. Comparative analyses 
of the estimated immune cell type proportions showed no significant differences between 
PTSD cases and controls in any of the seven trauma-specific case-control groups 
(Supplementary Table 1), suggesting that cell type frequencies would not confound 
downstream analyses. Subsequently, to determine the overall relatedness of the trauma-
specific groups, seven lists of covariate adjusted differential gene expression (DGE) 
signatures were generated, then converted into a binary matrix of gene presence/absence 
calls. Distance-based clustering with pairwise similarity was measured via Jaccard 
coefficient. A high degree of DGE similarity formed two distinct branches that clustered the 
five IP trauma groups how from the three combat trauma groups (Figure 1A). Pair-wise 
overlaps of the seven DGE lists were used to further quantify this result (Figure 1B-C) and 
identified a number of significant overlaps between: childhood and assault traumas (∩=35, 
P=0.05); childhood and ER-related traumas (∩=31, P=0.03); assault and ER-related 
traumas (∩=18, P=0.04); ER-related traumas and IP-related traumas  (∩=9, P=0.03); and 
combat traumas between Breen et al., and Neylan et al., (∩=23, P=6.9e-9) 
(Supplementary Table 2). No genes were consistently differentially expressed across all 
five IP trauma groups (Figure 1B), although two genes showed consistent but weak effects 
across all three combat trauma groups (Figure 1C); interferon induced protein 44 like 
(IFI44L) was over-expressed while G protein subunit gamma 11 (GNG11) was under-
expressed in PTSD cases relative to controls. Notably, no gene in any of the above 
comparisons survived FDR P <0.05.  

 

Mega-analytic comparisons 

To increase statistical power, these seven trauma-specific case-control groups were 
combined to form three large mega-analytic case-control groups designed to explicitly 
model for differences in sex and modes of trauma (that is, combat and IP traumas) and 
DGE lists were generated for each comparison (Supplementary Table 3). Comparatively 
equal numbers of over- and under-expressed genes were observed in men exposed to 
combat traumas (nup=150, ndown=174) and men exposed to IP traumas (nup=114, 
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ndown=145), while women exposed to IP traumas displayed significantly more over-
expressed genes than under-expressed genes (nup =123, ndown=63, P=1.2e-05; two-tailed 
proportions test) (Figure 2A). DGE indicated small, but significant, gene overlaps between 
men exposed to combat traumas and women exposed to IP traumas (∩=18, P=1.1e-08), 
men exposed to combat traumas and men exposed to IP traumas (∩=7, P=0.04), and 
between men and women exposed to IP traumas (∩=15, P=2.3e-08) (Figure 2B). Notably, 
one gene, interferon induced protein with tetratricopeptide repeats 3 (IFIT3), was 
significantly differentially expressed in all comparisons, albeit with different directions of 
change. Overall, DGE signatures were associated with PTSD diagnosis and not with any 
other factors, including age, ancestry, study site or estimated cell-type frequencies 
(Supplementary Figure 2).  

 

Though few genes were differentially expressed in all comparisons, functional annotation of 
these DGE signatures indicated a high degree of overlap of commonly perturbed biological 
processes between men exposed to combat- and IP-related traumas (∩=27, P=2.1e-14), 
men exposed to combat traumas and women exposed to IP traumas (∩=16, P=3.3e-12), 
and between men and women exposed to IP-related traumas (∩=42, P=1.3e-137) (Figure 
2C). In addition to several common biological processes, numerous unique gene-sets were 
also identified for each comparison (Supplementary Table 4) suggesting that differences 
in sex and trauma types may impact distinct biological processes. However, in exploring the 
semantic similarity between these distinct gene-sets, we identified a series of relevant, 
biologically meaningful interactions, positioning each distinct biological process as a 
component of a broad ‘stress response system’ (Figure 2D). To support this observation, 
we tested whether candidate genes that are dysregulated together indeed interact with 
each other at the protein level. A significant overrepresentation of direct protein interactions 
was identified for each DGE list, and a union of all three networks was constructed 
(Supplementary Figure 3). Notably, IFIT3 demonstrated protein-level interactions with 
partners across all three networks, among other interferon proteins such as IFI44L, IRF7, 
IFI44, IFI35, IFIT4 and IRF4. The network generated from men exposed to combat traumas 
featured several genes with a high degree of connectivity involved in type I interferon 
signaling and antiviral responses, including DDX58, IFIH1, IFIT1/2, MX1, RSAD2, STAT1, 
and members of the OAS gene family. Comparably, genes related to men with a history of 
IP trauma formed a relatively unique network with the most highly connected genes 
included EZR, H2AFZ, IMPDH2, JUND, STAT5B, and SYK. The network generated for 
women with a history of IP trauma, consisted of ABL1, ATM, TNF and UBB, which 
demonstrated the highest degree of connectivity.  
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Markedly, of the 15 biological processes found at the intersection of all comparisons 
(Figure 2C), all terms were strongly enriched for innate immune responses, cytokine 
signaling, and cytokine production (Figure 3A). Surprisingly, the genes within each of these 
gene-sets were predominantly over-expressed among men exposed to combat traumas 
and women exposed to IP traumas, but were under-expressed in men exposed to IP 
traumas. To further quantify this observation, the concordance of transcriptome-wide DGE 
patterns was calculated among the three mega-analytic case-control comparisons first 
constraining to all genes specific to innate immune or cytokine signaling and then using all 
remaining genes (Figure 3B-D). Positive associations in changes of innate immune and 
cytokine genes were observed between men exposed to combat traumas and women 
exposed to IP traumas (r=0.61, P=3.3e-34), and negative associations were observed 
between men exposed to combat and IP traumas (r=-0.37, P=6.4e-12), and between men 
and women exposed to IP traumas (r=-0.29, P=1.2e-12). Next, we sought to determine 
whether these biological processes were specific to PTSD or found in common with other 
neuropsychiatric disorders including major depression, schizophrenia, bipolar disorder and 
autism spectrum disorder, by implementing series of cross-disorder overlap comparisons, 
at both the individual gene and gene-ontology level (Supplementary Figure 4, 
Supplementary Table 4). Indeed, the majority of innate immune and cytokine signatures 
were more strongly related to a universal diagnosis of PTSD across differences in biological 
sex and modes of traumas, rather than in these other disorders. 

 

Stratified gene co-expression module preservation analyses 

WGCNA was used to assess the extent of module preservation by integrating all PTSD 
cases compared to all control individuals using a permutation-based preservation statistic 
(Zsummary, see Methods). This analysis identifies large differences in gene co-regulatory 
patterns as being disrupted in PTSD cases relative to controls, or vise versa (Figure 4A-B). 
In control individuals, sixteen modules were identified and one module implicated in anti-
inflammatory signaling was weakly preserved (Zsummary=8.6) in PTSD cases, including 
genes IL10, TNFSF14 and LILRB1. In the reverse approach, fourteen modules were 
identified across PTSD cases and all were highly preserved within control individuals, 
indicating that major changes in the underlying gene-gene connectivity may not be a basis 
for the pathology of PTSD. A separate series of between trauma-type comparisons were 
also performed (see Supplementary File and Supplementary Figure 5 for details). 

 

Consensus gene co-expression network analyses 
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Subsequently, we used the higher confidence and completeness of a consensus network 
by combining all individuals across the three mega-analytic case-control groups (Figure 
4C). This analysis identified 23 co-expression modules, which were tested for enrichment of 
DGE signatures and PTSD-related GWAS signals (Figure 4D). Module eigenvalues (MEs) 
were then subjected to a Bayes ANOVA testing to compare the extent of module 
expression differences between diagnostic status, sex and type of trauma (Figure 4E-J). A 
greenyellow module (68 genes) implicated in type I interferon-mediated signaling cascades 
and enriched with differentially expressed genes from all three mega-analytic comparisons 
was significantly over-expressed in PTSD-affected men exposed to combat traumas and 
PTSD-affected women exposed to IP traumas, but was under-expressed in PTSD-affected 
men exposed to IP traumas. A purple module (71 genes) implicated in blood coagulation 
and wound healing was under-expressed in PTSD-affected men exposed to combat 
traumas. A darkgrey module (31 genes) enriched with inflammatory response to wounding 
and cellular lipid membrane metabolic process, and a steelblue module (28 genes) 
implicated in intracellular pattern recognition receptor signaling and mitogen-activated 
protein kinase (MAPK) phosphate activity were both over expressed among PTSD-affected 
women exposed to IP traumas. A midnight blue module (51 genes) enriched for IL12-
mediated signaling and vascular development was over-expressed among PTSD-affected 
men exposed to IP traumas. This module also contained three potential PTSD risk-related 
genes (FASLG, IFN-γ, RORA) previously identified through GWAS, reflecting greater than 
chance overlap (P=0.012). A black module (179 genes) implicated in immune response and 
response to bacterial lipopolysaccharide was under-expressed among PTSD-affected men 
exposed to IP traumas. 

 

PTSD blood-based diagnostic classifier evaluation 

Supervised class prediction methods were used to directly assess the putative clinical utility 
of blood-based gene expression measurements for objective PTSD diagnosis, as well as to 
identify any discriminant gene(s) that may have been overlooked in our previous analyses. 
Three models were specified to distinguish PTSD cases from control individuals for each 
mega-analytic group. Classification accuracies were reported on the training data (70% of 
data) as well as independently withheld test data (30% of data), and support vector 
machine (SVM) learning consistently outperformed the other methods (Supplementary 
Figure 6). First, when distinguishing between PTSD cases and control individuals exposed 
to combat traumas, classification accuracies reached 81% in the training data and 60% in 
the withheld test data when the expression of 40 genes was used with SVM classification. 
Second, when separating PTSD-affected men from controls individuals exposed to IP 
traumas, classification accuracy reached 77% in the training data and 65% on the withheld 
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test data when the expression of 60 genes was used with SVM. Third, when separating 
PTSD-affected women from controls individuals exposed to IP traumas, classification 
accuracy reached 67% in the training data and 58% on the withheld test data when the 
expression of 25 genes as used with SVM; two common genes were selected by both IP-
related trauma models across men and women (GNB5 and DGCR14). Further details 
regarding these analyses are provided in Methods and Supplementary Table 6.  

 

Statistical power and sample size estimation 

To inform the design of future cross-sectional studies in PTSD, we estimated the expected 
discovery rate (EDR; a multi-test equivalent to power) and sample size for each mega-
analytic case-control group using lists of P-values derived from DGE analyses. Effect sizes 
estimated from these data were assumed to be fixed with a nominal error rate α=0.05 and 
several different sample sizes (n) were evaluated. To determine how many case and 
control samples need to be included in a future study, we set the threshold of inclusion to 
EDR >0.8. Overall, the sample size needed to reach a power of 0.8 for men exposed to IP 
trauma was n of 700, for women exposed to IP trauma was n of 7000, while men exposed 
to combat trauma was n of 10,000 (Supplementary Table 7). 

 
DISCUSSION 
 
To our knowledge, this is the largest transcriptome-wide analysis of PTSD conducted to 
date. Our combined mega-analysis covered 229 PTSD cases and 311 comparison 
individuals, enabling us to increase statistical power and to explicitly test whether 
differences in sex and trauma type play a role in perturbing common or distinct molecular 
pathways in PTSD. A battery of statistical tests were applied and we report several findings. 
First, re-analyses of seven trauma-specific case-control groups revealed a high degree of 
relatedness amongst IP-related traumas separate from combat-related traumas. Second, 
once individual samples were combined to form three mega-analytic case-control groups, 
we observed unique PTSD DGE signatures in men exposed to combat traumas, men 
exposed to IP traumas and women exposed to IP traumas, which all converged on shared 
biological processes of innate immune, cytokine and type I interferon signaling. Third, 
stratified network analysis identified low module preservation between control individuals 
exposed to different traumas, but high module preservation between PTSD cases exposed 
to the same types of trauma, suggesting that the underlying molecular response to different 
trauma types may be more homogenous in PTSD cases. Fourth, one anti-inflammatory 
module within control individuals was weakly preserved across all PTSD cases, indicating 
the disruption/absence of anti-inflammatory gene co-regulation within PTSD cases. Fifth, 
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upon integrating all data to construct one consensus network, numerous sex and trauma-
specific modules were identified, and one module implicated in innate immunity and type I 
interferon signaling was significantly associated to PTSD in all three mega-analytic groups. 
Sixth, supervised multivariate classification methods constructed diagnostic PTSD 
classifiers for each mega-analytic group with moderate-to-low classification accuracies on 
withheld test data. Taken together, our analyses indicate that while small-to-moderate 
effect sizes are the standard for cross-sectional post-trauma studies of PTSD, our findings 
consistently converge on similar down-stream inflammatory pathways irrespective of sex 
and the type of traumatic event.  
 
A novel finding was the small, but significant, between-trauma overlap of DGE signatures 
indicating the existence of a trauma-specific and across-trauma convergent gene regulation 
and signaling (Figure 1). Indeed, we previously tested the hypothesis that differences in 
trauma may impact the stress response in PTSD and we identified distinct gene expression 
signatures between PTSD cases with and without a history of childhood maltreatment that 
also converged on similar cellular processes (Mehta et al, 2013). Here, we extend upon 
these results and position them among a broad background of individuals exposed to a 
range of different traumatic events. Notably, not one of the seven trauma-specific case-
control comparisons resulted in a gene passing FDR P-value <0.05, indicating the 
underpowered nature of the observed data. Thus, to increase statistical power, this initial 
result provided enough empirical support to combine the data to form three mega-analytic 
case-control groups, enabling us to explicitly model for differences in sex and trauma.  
 
Our central finding was the identification of largely unique DGE perturbations specific to 
each mega-analytic case-control group, which converged on common biological processes 
of innate immune, cytokine and type I interferon signaling cascades (Figure 2). Our 
consensus network approach validated and refined this result through identification of a 
discrete co-regulated gene module (68 genes) implicated in innate immune and type I 
interferon signaling that displayed divergent expression patterns across sex and traumas in 
PTSD (Figure 4E-J). This result was previously reported in PTSD cases exposed to 
combat trauma (Breen et al, 2015), and is now replicated across a larger sample. With 
respect to potential mechanisms, some of the earliest observed effects of inflammatory 
cytokines in PTSD underline their impact on the HPA-axis, via negative feedback regulation 
(Michopoulos et al, 2015). Enhanced negative feedback regulation of the HPA axis function 
is a hallmark of PTSD and is reflected by increased responsiveness to glucocorticoids as 
manifested by decreased cortisol concentrations following dexamethasone administration 
(Michopoulos et al, 2015; Yehuda et al, 2002). Inflammatory cytokines have also been 
shown to access the brain and interact with virtually every pathophysiological domain 
relevant to PTSD, including neurotransmitter metabolism, neuroendocrine function and 
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neural plasticity (Felger et al, 2013). In doing so, peripheral cytokine signals activate 
relevant brain cell types that serve to amplify central inflammatory responses and 
conserved behavioral responses. Notably, we also found evidence for biological processes 
significantly overrepresented in only one of the three mega-analytic groups, suggesting that 
sex and type of trauma may influence different molecular pathways in PTSD (Figure 2C). 
However, in determining the relatedness between each of these distinct biological 
responses, we found that all dysregulated biological processes interacted and collectively 
formed a biologically meaningful ‘stress response system’ (Figure 2D). Indeed, a 
dysfunctional HPA axis-immune interface has been previously associated with similar 
immune and metabolic disturbances, including cell cycle, altered cytokine balance, blood 
coagulation and lipid and metabolic processes (Silverman et al, 2013; Silverman et al, 
2012; Elenkov et al, 2000). Under this standard, each dysregulated biological process 
represents one piece of a larger stress response system, irrespective of sex and trauma, 
that ultimately converges on shared inflammatory pathways.  
 
Some of the observed PTSD-related effects involved lower expression levels for cytokine-
related genes, specifically in men exposed to IP trauma compared to women, and men 
exposed to combat trauma (Figure 3). Differences in inflammatory cytokine levels in 
trauma survivors with PTSD have previously been reported (Gill et al, 2009). Discrepancies 
may potentially reflect different degrees of HPA-axis response suppression to 
glucocorticoid activation (Freidenberg et al, 2010), or alternatively, differences associated 
with the duration since the traumatic experience as well as other confounding factors. One 
study examining the levels of inflammatory markers within a refugee population with PTSD 
postulated that differences could partly be explained by a variable environmental 
component associated with less antigen exposure (Söndergaard et al, 2004). We also 
acknowledge that gene expression perturbations may be fundamentally different in controls 
with prolonged exposure to conflict zones compared to controls exposed to IP traumas, 
which may be influencing these results. To address this issue, a series of pair-wise co-
expression preservation analyses were performed using matched controls exposed to 
different types of trauma (Supplementary Figure 5). These analyses indicated that gene 
co-expression modules involved in processes other than inflammatory signatures differed 
on the basis of exposure to different traumatic events.  
 
Distinct gene expression perturbations were also identified, including (i) one wound healing 
module down-regulated in men with a history of combat trauma, (ii) two modules implicated 
in lipid processes and MAPK-activity up-regulated in women exposed to IP-related trauma 
and (iii) one IL12-mediated signaling module up-regulated in men exposed to IP-related 
trauma. Regarding to the first distinction (i), research highlights the role of platelets in 
innate and adaptive immune responses and suggest that platelet activation and reactivity is 
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dysregulated by mental stress. A stress response involving blood platelets has also been 
shown to be a critical biomarker of hemostatic, thrombotic, and inflammatory perturbations 
(Pacák et al, 2001). Notably, this result is also a re-affirmation of our previous finding 
indicating decreased wound healing and blood coagulation in war-veterans with PTSD 
(Breen et al, 2015), now replicated in a larger cohort of samples. Regarding the second 
distinction (ii), the MAPK pathway functions as a mediator of cellular stress, including 
inflammation, by also modulating the levels of glucocorticoid receptor phosphorylation, 
ultimately leading to differences in cellular transcriptional activity (Galliher-Beckley et al, 
2011; Reul, 2014). Since signaling cascades, such as the MAPK, couple to numerous 
receptors for stress-related neurotransmitters and neuropeptides (Whitaker et al, 2014), 
future work should determine more precisely which neurotransmitter signaling systems are 
driving the observed traumatic stress- and sex-induced changes. Regarding the final 
distinction (iii), the IL-12 signaling pathway initiates innate and adaptive immune responses 
in part by promoting NK cell toxicity as well as the differentiation of naive CD4+ T cells into 
T helper 1 cells, and induces the production of IFN-γ, which is also a member of this gene 
module. Here, up-regulation of IL-12 signaling in men exposed to IP trauma indicates 
immune priming that may promote inflammation. With respect to sex dimorphism, increased 
percentage of IL-12 producing monocytes and lymphocytes in response to physiological 
concentrations of testosterone has been reported in men compared to women (Posma et 
al, 2014). Taken together, these distinct biological perturbations all align with a common 
pro-inflammatory pathology across sex and modes of trauma in PTSD. However, a great 
deal of research is needed to further delineate the precise mechanisms, as well as cause 
and effect relationships, underlying these inflammatory signatures and sex disparities.  
 
Our study also has several limitations. First, sample size and power estimates indicated 
that our enhanced sample size is still underpowered and a substantially larger number of 
biological replicates are needed (Supplementary Table 7). These estimates are echoed 
by our inability to identify multiple test corrected DGE signatures and to construct accurate 
diagnostic blood-based PTSD classifiers, all of which reported low-to-moderate 
classification accuracies on withheld test data. Second, it is likely that our results may be 
influenced by clinical heterogeneity (e.g. medical comorbidity, medication) among PTSD 
cases, potentially contributing to the diminished power. While our effort to carefully 
measure the contribution of potential confounding factors on our gene expression results 
demonstrated that DGE signatures were associated with PTSD diagnosis and not with any 
other factors (e.g. age, ancestry, study site, cell-type frequencies), other unmeasured 
factors may also influence the results. Additionally, to fully understand the contribution of 
ancestry to gene expression variation, future studies may consider integrating principal 
components of ancestry from paired GWAS data if available. Third, we were unable to 
distinguish biological sex differences for combat-related traumas due to a large 
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ascertainment bias of men with a history of combat exposure. Fourth, though our estimates 
of cell type fractions implied no differences between case-control groups, we are unable to 
determine gene expression changes specific to any particular cell type. Finally, as the 
combined data are cross-sectional with considerable variation in the amount of time from 
PTSD onset to blood sample acquisition, we are unable to determine whether expression 
differences represent expression signature of past or current PTSD, or it is a marker of pre-
trauma vulnerability to PTSD development. Similarly, some traumas are defined by event 
(e.g. combat, assault) but others are defined by time (e.g. childhood) or place (e.g. ER). 
Likewise, both childhood and ER traumas might be due to similar trauma types, including 
assaults, which are unknown in the current study and may effect the interpretation of our 
results.  
 
In sum, these data provide evidence for shared inflammatory profiles in peripheral blood 
gene expression across sex and modes of trauma in PTSD as evident by transcriptional 
dysregulation and co-expression on processes of innate immune, cytokine and type I 
interferon signaling. Moreover, the fact that several unique biological processes were also 
affected across sex and trauma types that ultimately formed components of a broader 
stress response system, underscore a shared underlying molecular pathology. While 
existing animal and cellular work support the sex-dependent effects specific to MAPK and 
IL-12 signaling modules, further research is needed to delineate cause and effect 
relationships. Collectively, these findings may have implications for identifying objective 
diagnostic biomarkers, disease mechanisms and therapeutic interventions in immune 
disturbances for PTSD.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2017. ; https://doi.org/10.1101/123182doi: bioRxiv preprint 

https://doi.org/10.1101/123182
http://creativecommons.org/licenses/by-nd/4.0/


 
	
  
 

18 

 
 
 
 
 
 
 
 
 
REFERENCES 
 
1. Breen MS, Maihofer AX, Glatt SJ, Tylee DS, Chandler SD, Tsuang MT et al (2015). Gene networks 

specific for innate immunity define post-traumatic stress disorder. Molecular Psychiatry 20: 1538-
1545. 

2. Breen MS, Stein DS, Baldwin D (2016). Systematic review of blood transcriptome profiling in 
neuropsychiatric disorders: guidelines for biomarker discovery. Human Psychopharmacology: Clinical 
and Experimental 31: 373-381. 

3. Chen J, Bardes E, Aronow B, Jegga A (2015). ToppGene Suite for gene list enrichment analysis and 
candidate gene prioritization. Nucleic Acids Research 37: W305-W311. 

4. Cohen S, Janicki-Deverts D, Doyle WJ, Miller GE, Frank E, Rabin BS et al (2016). Chronic stress, 
glucocorticoid receptor resistance, inflammation, and disease risk. Proc. Natl. Acad. Sci. 109: 5995–
5999. 

5. Daskalakis N, Cohen H, Nievergelt CM, Baker DG, Buxbaum JD, Russo SJ et al (2016). New 
translational perspectives for blood-based biomarkers of PTSD: From glucocorticoid to immune 
mediators of stress susceptibility. Experimental Neurology 284: 133-140. 

6. Diaz-Beltran L, Esteban F, Wall D (2016). A common molecular signature in ASD gene expression: 
following Root 66 to autism. Translational Psychiatry 6: e705. 

7. DiGangi J, Gomez D, Mendoza L, Jason LA, Keys CB, Koenen KC (2013). Pretrauma risk factors for 
posttraumatic stress disorder: A systematic review of the literature. Clinical Psychology Review 33: 
728-744. 

8. Elenkov I, Wilder R, Chrousos G, Vizi E (2000). The sympathetic nerve--an integrative interface 
between two supersystems: the brain and the immune system. Pharmacol. Rev. 52: 595–638. 

9. Felger J, Lotrich F (2013). Inflammatory cytokines in depression: Neurobiological mechanisms and 
therapeutic implications. Neuroscience 246: 199-229. 

10. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A et al (2012). STRING v9.1: 
protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Research 
41: D808-D815. 

11. Freidenberg B, Gusmano R, Hickling EJ, Blanchard EB, Bremner JD, Frye C  (2010). Women with 
PTSD have lower basal salivary cortisol levels later in the day than do men with PTSD: A preliminary 
study. Physiology & Behavior 99: 234-236. 

12. Galliher-Beckley A, Williams J, Cidlowski J (2011). Ligand-Independent Phosphorylation of the 
Glucocorticoid Receptor Integrates Cellular Stress Pathways with Nuclear Receptor Signaling. 
Molecular and Cellular Biology 31: 4663-4675. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2017. ; https://doi.org/10.1101/123182doi: bioRxiv preprint 

https://doi.org/10.1101/123182
http://creativecommons.org/licenses/by-nd/4.0/


 
	
  
 

19 

13. Gill J, Saligan L, Woods S, Page G (2009). PTSD is Associated With an Excess of Inflammatory 
Immune Activities. Perspectives in Psychiatric Care 45: 262-277. 

14. Glatt SJ, Tylee DS, Chandler SD, PAzol J, Nievergelt CM, Woelk CH et al  (2015). Blood-based gene-
expression predictors of PTSD risk and resilience among deployed marines: A pilot study. American 
Journal of Medical Genetics Part B: Neuropsychiatric Genetics 162: 313-326. 

15. Hess J, Tylee DS, Barve R, de Jong S, Ophoff RA, Kumarasinghe N et al  (2016). Transcriptome-
wide mega-analyses reveal joint dysregulation of immunologic genes and transcription regulators in 
brain and blood in schizophrenia. Schizophrenia Research 176: 114-124. 

16. Kayala M, Baldi P (2012). Cyber-T web server: differential analysis of high-throughput data. Nucleic 
Acids Research 40: W553-W559. 

17. Kessler R (1995). Posttraumatic Stress Disorder in the National Comorbidity Survey. Archives of 
General Psychiatry 52: 1048. 

18. Langfelder P, Horvath S (2008). WGCNA: an R package for weighted correlation network analysis. 
BMC Bioinformatics 9: 559. 

19. Langfelder P, Luo R, Oldham M, Horvath S (2011). Is My Network Module Preserved and 
Reproducible?. PLoS Computational Biology 7: e1001057. 

20. Leek J, Johnson W, Parker H, Jaffe A, Storey J (2015). The sva package for removing batch effects 
and other unwanted variation in high-throughput experiments. Bioinformatics 28: 882-883. 

21. Mehta D, Klengel T, Conneely KN, Smith AK, Altmann A, Pace TW et al (2013). Childhood 
maltreatment is associated with distinct genomic and epigenetic profiles in posttraumatic stress 
disorder. Proceedings of the National Academy of Sciences 110: 8302-8307. 

22. Michopoulos V, Norrholm S, Jovanovic T  (2015). Diagnostic Biomarkers for Posttraumatic Stress 
Disorder: Promising Horizons from Translational Neuroscience Research. Biological Psychiatry 78: 
344-353. 

23. Newman A, Long Liu A, Green MR, Gentles AJ, Feng W, Xu Y et al (2015). Robust enumeration of 
cell subsets from tissue expression profiles. Nature Methods 12: 453-457. 

24. Neylan T Sun B, Rempel H, Ross J, Lenoci M, O’Donovan A et al  (2011). Suppressed monocyte 
gene expression profile in men versus women with PTSD. Brain, Behavior, and Immunity 25: 524-53. 

25. Pacák K, Palkovits M (2001). Stressor Specificity of Central Neuroendocrine Responses: Implications 
for Stress-Related Disorders. Endocrine Reviews 22: 502-548. 

26. Page GP, Edwards JW, Gadbury GL, Yelisetti P, Wang J, Trivedi P et al (2006). The PowerAtlas: A 
power and sample size atlas for microarray experimental design and research. BMC Bioinformatics, 
7: 84. 

27. Passos IC, Vasconcelos-Moreno MP, Costa LG, Kunz M, Brietzke E, Quevedo J et al (2015). 
Inflammatory markers in post-traumatic stress disorder: a systematic review, meta-analysis, and 
meta-regression. The Lancet Psychiatry 2: 1002-1012. 

28. Pinero J, Queralt-Rosinach N, Bravo A, Deu-Pons J, Bauer-Mehren A, Baron M et al (2015). 
DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. 
Database bav028-bav028. 

29. Posma, E, Moes, H, Heineman, M Faas M (2014). The Effect of Testosterone on Cytokine Production 
in the Specific and Non-specific Immune Response. American Journal of Reproductive Immunology 
52: 237-243. 

30. Ramchand R, Schell TL, Karney BR, Osilla KC, Bruns RM, Caldarone LB (2010). Disparate 
prevalence estimates of PTSD among service members who served in Iraq and Afghanistan: Possible 
explanations. Journal of Traumatic Stress n/a-n/a.  

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2017. ; https://doi.org/10.1101/123182doi: bioRxiv preprint 

https://doi.org/10.1101/123182
http://creativecommons.org/licenses/by-nd/4.0/


 
	
  
 

20 

31. Reul J (2014). Making Memories of Stressful Events: A Journey Along Epigenetic, Gene 
Transcription, and Signaling Pathways. Frontiers in Psychiatry 5. 

32. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W et al  (2015). limma powers differential 
expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research 43: e47-
e47. 

33. Sarapas C, Cai G, Bierer LM, Golier JA, Galea S, Ising M et al  (2011). Genetic Markers for PTSD 
Risk and Resilience Among Survivors of the World Trade Center Attacks. Disease Markers 30: 101-
110. 

34. Segman R, Shefi N, Goltser-Dubner T, Friedman N, Kaminski N, Shalev AY (2005). Peripheral blood 
mononuclear cell gene expression profiles identify emergent post-traumatic stress disorder among 
trauma survivors. Molecular Psychiatry 10: 425-425. 

35. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al (2003). Cytoscape: A Software 
Environment for Integrated Models of Biomolecular Interaction Networks. Genome Research 13: 
2498-2504. 

36. Silverman M, Pearce B, Biron C, Miller A (2013). Immune Modulation of the Hypothalamic-Pituitary-
Adrenal (HPA) Axis during Viral Infection. Viral Immunology 18: 41-78. 

37. Silverman M, Sternberg E (2012). Glucocorticoid regulation of inflammation and its functional 
correlates: from HPA axis to glucocorticoid receptor dysfunction. Annals of the New York Academy of 
Sciences 1261: 55-63. 

38. Simon R, Lam A, Li MC, Ngan M, Menenzes S, Zhao Y (2007). Analysis of gene expression data 
using BRB-Array tools. Cancer Inform 2: 11-17. 

39. Söndergaard H, Hansson L, Theorell T (2004). The inflammatory markers C-reactive protein and 
serum amyloid A in refugees with and without posttraumatic stress disorder. Clinica Chimica Acta 
342: 93-98. 

40. Tylee DS, Chandler SD, Nievergelt CM, Liu X, Pazol J, Woelk CH et al (2015). Blood-based gene-
expression biomarkers of post-traumatic stress disorder among deployed marines: A pilot study. 
Psychoneuroendocrinology 51: 472-494. 

41. Tylee DS, Jess JL, Quinn TP, Barve R, Huang H, Zhang-James Y et al (2016). Blood Transcriptomic 
Comparison of Individuals With and Without Autism Spectrum Disorder: A Combined-Samples Mega-
Analysis. Am J Med Genet Part B 9999: 1–21.  

42. Whitaker A, Gilpin N, Edwards S (2014). Animal models of post-traumatic stress disorder and recent 
neurobiological insights. Behav Pharmacol., 25: 398–409. 

43. Yehuda R, Halligan S, Grossman R, Golier J, Wong C (2002). The cortisol and glucocorticoid receptor 
response to low dose dexamethasone administration in aging combat veterans and holocaust 
survivors with and without posttraumatic stress disorder. Biological Psychiatry 52: 393-403. 

44. Yu G, Li F, Qin Y, Bo X, Wu Y,  Wang S (2015). GOSemSim: an R package for measuring semantic 
similarity among GO terms and gene products. Bioinformatics 26: 976-978. 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2017. ; https://doi.org/10.1101/123182doi: bioRxiv preprint 

https://doi.org/10.1101/123182
http://creativecommons.org/licenses/by-nd/4.0/


 
	
  
 

21 

 
 
Acknowledgements. We gratefully acknowledge the individual volunteers and their 
families, as well as the Marine and Navy volunteers for their military service and for their 
participation in these studies. Additionally, we thank Segman and colleagues (2005), as 
well as others, who have placed their data in the public domain. The Marine Resiliency 
Study (MRS) was supported by VA Health Service Research and Development project no. 
SDR 09-0128, the Marine Corps, and the Navy Bureau of Medicine and Surgery (DGB) and 
MRS II (DGB, VBR) and its Demonstration Project (CMN) by the Naval Medical Research 
Center's Advanced Medical Development program (Naval Medical Logistics Command 
Contract #N62645-11-C-4037. MRS-II acknowledges support from the administrative core, 
A Patel, A De La Rosa, members of the MRS-II Team and the Veterans Medical Research 
Foundation (VMRF). We thank the Marine and Navy volunteers for their military service and 
for their participation in this study. We also thank Dr. Anna Tocheva for further critical 
reading/assessment of our manuscript.  
 
 
Author contributions.  DST and SJG assembled all the data from independent sources. 
MSB designed the research question, analyzed the data and wrote the manuscript, with 
DST. All remaining authors contributed to the generation of the original data and provided 
critical reading/assessment of the current manuscript.  
 
Funding and Disclosure. The authors declare no conflict of interest. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2017. ; https://doi.org/10.1101/123182doi: bioRxiv preprint 

https://doi.org/10.1101/123182
http://creativecommons.org/licenses/by-nd/4.0/


 
	
  
 

22 

 
 
 

Table 1. Blood-based transcriptome-wide studies of Posttraumatic Stress Disorder included in the mega-analysis. 

Study Data Type PTSD  (n) Controls (n) % Female Age (Years) Sample Type Predominant 
Ancestry, % 

Genes 
Analyzed Additional Sample Information† 

Breen et al., 2015 
GSE64814 

Poly-A enriched,  
50bp paired-end 
sequencing on Illumina 
Hi-Seq 2000. 

46 Combat 46 Combat 0% 23.3 ± 3.22 Isolated 
Leukocytes European, 55.5% 13,944 

Marine Resilience Study (MRS) sample of 
U.S. Marines who served a 7 month combat 
deployment. Blood was drawn 3-months post-
deployment for each participant.  PTSD 
symptoms were assessed at this time using 
CAPS and diagnosis was determined using 
DSM-IV criteria for partial or full PTSD. 

Tylee et al., 2015 
GSE63878  

Affymetrix Hu-Gene 1.0 
ST Array 24 Combat 24 Combat 0% 22.2 ± 3.1 Isolated 

Leukocytes European, 72.0% 22,772 

MRS sample of U.S. Marines who served 7-9 
month combat deployment. Blood was drawn 
3-months post-deployment for each 
participant.  PTSD symptoms were assessed 
and diagnostic status was determined using 
the CAPS. 

Mehta et al., 2013 Illumina HT-12 version 
3.0 

54 Childhood 
67 Other IP 

38 Childhood 
166 Other IP 73.6% 42.0 ± 12.6 Whole Blood African American, 

88.9% 9,193 

General medical community-based sample 
(Atlanta, Georgia) selected for traumatic 
exposure. Blood samples were obtained years 
after trauma exposure.  PTSD symptoms were 
assessed using the PSS and diagnosis was 
determined by applying DSM-IV criteria to 
PSS items; control subjects were negative for 
current or lifetime PTSD.      

Neylan et al., 2011 CodeLink Human Whole 
Genome BioArrays 

15 Combat 
14 Assault 

14 Combat 
15 Assault 26.9% 30.0 ± 6.0 Isolated CD14+ 

Monocytes European, 56.7% 17,988 

Recruited through Veterans Affairs Medical 
Center PTSD Outpatient Program (San 
Francisco, California) and through community 
fliers.  Included both assault and combat-
related traumas. Blood samples were obtained 
years after trauma exposure.   Symptoms 
were assessed and diagnostic status was 
determined using the CAPS. 

Segman et al., 2005 Affymetrix Human 
Genome-U95A 9 ER-trauma 8 ER-trauma 37.5% 31.1 ± 11.4 

Isolated 
Mononuclear 

Cells 

Jewish Ancestry, 
100% 9,668 

Acute trauma exposure in emergency room 
setting.  Samples collected at 4 months after 
trauma onset. PTSD cases met DSM-IV 
criteria for PTSD 4 months post-trauma.    

Total: 5 studies  229 311       
Combat-Trauma, 
Men 

Mega-Analytical  
Group 1 85 84 0% 24.4 ± 4.7 Combined European,  

63.6 % 10,112  

IP-Trauma, 
Men 

Mega-Analytical  
Group 2 45 67 0% 41.1 ± 12.8 Combined African American 

69.7% 4,378  

IP-Trauma, 
Women 

Mega-Analytical  
Group 3 99 160 100% 39.5 ± 12.3 Combined African American 

76.1% 4,378  

We attempted to include available information pertaining to each sample, with particular emphasis on the type of trauma exposure, the time point of biological sample acquisition, and the diagnostic criteria used for each study.  All 
details were obtained from the referenced articles. Abbreviations: Clinician administered PTSD Scale (CAPS), cluster of differentiation 14-positive (CD14+), Diagnostic and Statistical Manual of Mental Disorders-IV (DSM-IV), quality 
control-passing (QC+), interpersonal trauma (IP). 
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Figure 1.  Concordance of differential gene expression (DGE) analyses across seven trauma-
specific case-control groups. (A) Jaccard clustering of PTSD DGE signatures from the seven 
trauma-specific case-control groups. Overlap of PTSD DGE signatures found in common across (B) 
interpersonal (IP) traumas and (C) combat traumas. For combat-related traumas, interferon Induced 
Protein 44 Like (IFI44L) was consistently over-expressed and G Protein Subunit Gamma 11 
(GNG11) was consistently under-expressed in PTSD cases relative to control individuals. All 
analyses were adjusted for age and sex. Supplementary Table 2 contains full lists of overlapping 
gene symbols.  
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Figure 2.  Differential gene expression (DGE) and gene ontology (GO) analyses for the three mega-analytic 
case-control comparisons. (A) Volcano plots compare the extent of log2 fold-change and -log10 P-value 
significance for DGE signatures in all three comparisons. The top over and under expressed genes are labeled 
for each comparison. Overlap of (B) significant DGE signatures and (C) enriched GO gene-sets for all 
comparisons are displayed. (D) Relatedness of all significantly dysregulated gene-sets by semantic similarity. 
Nodes represent GO-terms and edges represent semantic similarity > 0.5 (high degree of gene overlap). 
Nodes are split into thirds and shaded by FDR P-value significance for each mega-analytic group.  
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Figure 3.  Concordance of transcriptome-wide innate immune and cytokine signatures. (A) 
Semantic similarity for all fifteen common GO term pairs (left) clustered by hierarchical clustering 
method with the fraction of over- and under-expressed genes for each GO term (middle) as well as 
common ancestors (right). Log2 fold-changes (PTSD vs. controls) were used in a series of pair-wise 
correlations amongst the three mega-analytic case-control groups and focused on innate immune 
and cytokine genes relative to all other genes. (B) A positive association between PTSD-affected 
men exposed to combat traumas and PTSD-affected women exposed to IP traumas. Negative 
associations between PTSD-affected men exposed to IP traumas and (C) PTSD-affected men 
exposed to combat traumas and (D) PTSD-affected women exposed to IP traumas. Pearson 
correlation coefficients were applied. 
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Figure 4.  Consensus weighted gene co-expression network analysis (WGCNA). (A) Module 
preservation identified one module in control individuals with weak preservation in PTSD cases. (B) 
All PTSD modules were preserved in control samples. (C) Hierarchical clustering tree (dendrogram) 
of the consensus network and all samples comprising 4,062 genes. Each line represents a gene 
(leaf) and each low-hanging cluster represents a group of co-expressed genes with similar network 
connections (branch) on the tree. The first band underneath the tree indicates the twenty-three 
detected modules and subsequent bands indicate gene-trait correlation when red indicates a strong 
relationship and blue indicates a strong negative relationship. (D) Gene modules were enriched for 
DGE signatures and PTSD GWAS signatures curated from DisGenNet database (x-axis). The 
number of genes within each colored gene module are depicted (y-axis). The top number in each 
cell indicates the number of genes overlapping and the bottom number indicates the P-value 
significance of overlap using the Fisher’s Exact Test. (E-J) A Bayes ANOVA was used on ME 
values to test for significance between case-control status across different biological sex and 
trauma types and (*) indicates BH P <0.05, implying significant PTSD differences. For each module 
the top five most significant biological processes and/or pathways are reported.  
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