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Abstract

The unique architecture of the human connectome is defined initially by genetics and
subsequently sculpted over time with experience. Thus, similarities in predisposition and
experience that lead to similarities in social, biological, and cognitive attributes should also be
reflected in the local architecture of white matter fascicles. Here we employ a method known as
local connectome fingerprinting that uses diffusion MRI to measure the fiber-wise characteristics
of macroscopic white matter pathways throughout the brain. This fingerprinting approach was
applied to a large sample (N=841) of subjects from the Human Connectome Project, revealing a
reliable degree of between-subject correlation in the local connectome fingerprints, with a
relatively complex, low-dimensional substructure. Using a cross-validated, high-dimensional
regression analysis approach, we derived local connectome phenotype (LCP) maps that could
reliably predict a subset of subject attributes measured, including demographic, health and
cognitive measures. These LCP maps were highly specific to the attribute being predicted but
also sensitive to correlations between attributes. Collectively, these results indicate that the local
architecture of white matter fascicles reflects a meaningful portion of the variability shared

between subjects along several dimensions.
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Author Summary

The local connectome is the pattern of fiber systems (i.e., number of fibers, orientation, and
size) within a voxel and reflects the proximal characteristics of white matter fascicles distributed
throughout the brain. Here we show how variability in the local connectome is correlated in a
principled way across individuals. This inter-subject correlation is reliable enough that unique
phenotype maps can be learned to predict between-subject variability in a range of social,
health, and cognitive attributes. This work shows, for the first time, how shared variability across

individuals is reflected in the local connectome.
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Introduction

The unique pattern of connections among the billions of neurons in the brain is termed the
connectome (Sporns, Tononi, & Kotter, 2005), and this pattern encapsulates a fundamental
constraint on neural computation and cognition (Gu et al., 2015; Thivierge & Marcus, 2007).
This connective architecture is initially structured by genetics and then sculpted by experience
over time (Kochunov, Fu, et al., 2016; Kochunov, Thompson, et al., 2016; Yeh, Vettel, et al.,
2016). Recent advancements in neuroimaging techniques, particularly diffusion MRI (dMRI),
have opened the door to mapping the macroscopic-level properties of the structural connectome
in vivo (Le Bihan & Johansen-Berg, 2012). As a result, a growing body of research has focused
on quantifying how variability in structural connectivity associates with individual differences in
functional properties of brain networks (Muldoon et al., 2016; Passingham, Stephan, & Kétter,
2002), as well as associating with differences in social (Gianaros, Marsland, Sheu, Erickson, &
Verstynen, 2013; Molesworth, Sheu, Cohen, Gianaros, & Verstynen, 2015), biological
(Arfanakis et al., 2013; Miralbell et al., 2012; Verstynen et al., 2013), and cognitive (Muraskin et
al., 2016; Verstynen, 2014; Ystad et al., 2011) attributes.

DMRI works by measuring the microscopic diffusion pattern of water trapped in cellular
tissues, allowing for a full characterization of white matter pathways, such as axonal fiber
direction and integrity (for review see Jbabdi, Sotiropoulos, Haber, Van Essen, & Behrens,
2015; Le Bihan & Johansen-Berg, 2012). Previous studies have used dMRI to map the global
properties of the macroscopic connectome by determining end-to-end connectivity between
brain regions (Hagmann et al., 2010; Hagmann et al., 2008, 2010; Sporns, 2014). The resulting
connectivity estimates can then be summarized, often using graph theoretic techniques that are
then associated with variability across individuals (Bullmore & Sporns, 2009; Rubinov & Sporns,
2010). While dMRI acquisition and reconstruction approaches have improved substantially in
recent years (Fan et al.,, 2016; Van Essen et al., 2012), the reliability and validity of many

popular fiber tractography algorithms have come into question (Daducci, Dal Palu, Descoteaux,
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& Thiran, 2016; Reveley et al., 2015; Thomas et al., 2014). As a result, the reliability of
subsequent inter-region connectivity estimates may be negatively impacted.

Instead of mapping end-to-end connectivity between regions, we recently introduced the
concept of the local connectome as an alternative measure of structural connectivity that does
not rely on fiber tracking (Yeh, Badre, & Verstynen, 2016). The local connectome is defined as
the pattern of fiber systems (i.e., number of fibers, orientation, and size) within a voxel, as well
as immediate connectivity between adjacent voxels, and can be quantified by measuring the
fiber-wise density of microscopic water diffusion within a voxel. This voxel-wise measure shares
many similarities with the concept of a “fixel” proposed by others (Raffelt et al., 2015). The
complete collection of these multi-fiber diffusion density measurements within all white matter
voxels, termed the local connectome fingerprint, provides a high-dimensional feature vector that
can describe the unique configuration of the structural connectome (Yeh, Vettel, et al., 2016). In
this way, the local connectome fingerprint provides a diffusion-informed measure along the
fascicles that supports inter-regional communication, rather than determining the start and end
positions of a particular fiber bundle.

We recently showed that the local connectome fingerprint is highly specific to an
individual, affording near-perfect accuracy on within-versus-between subject classification tests
among hundreds of participants (Yeh, Badre, et al., 2016). Importantly, this demonstrated that a
large portion of an individual’s local connectome is driven by experience. Whole-fingerprint
distance tests revealed only a 12.51% similarity between monozygotic twins, relative to almost
no similarity between genetically unrelated individuals. In addition, within-subject uniqueness
showed substantial plasticity, changing at a rate of approximately 12.79% every 100 days (Yeh,
Vettel, et al., 2016). Thus, the unique architecture of the local connectome appears to be initially
defined by genetics and then subsequently sculpted over time with experience.

The plasticity of the local white matter architecture suggests that it is important to

consider how whole-fingerprint uniqueness may mask more subtle similarities arising from
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common experiences. If experience, including common social or environmental factors, is a
major force impacting the structural connectome, then common experiences between
individuals may also lead to increased similarity in their local connectomes. In addition, since
the white matter is a fundamental constraint on cognition, similarities in local connectomes are
expected to associate with similarities in cognitive function. Thus, we hypothesized that shared
variability in certain social, biological, or cognitive attributes can be predicted from the local
connectome fingerprints.

To test this, we reconstructed multi-shell dMRI data from the Human Connectome
Project (HCP) to produce individual local connectome fingerprints from 841 subjects. A set of 32
subject-level attributes was used for predictive modeling, including many social, biological, and
cognitive factors. A model between each fiber in the local connectome fingerprint and a target
attribute was learned using a cross-validated, sparse version of principal component regression.
The predictive utility of each attribute map, termed a local connectome phenotype (LCP), was
evaluated by predicting a given attribute using cross validation. Our results show that specific
characteristics of the local connectome are sensitive to shared variability across individuals, as
well as being highly reliable within an individual (Yeh, Vettel, et al., 2016), confirming its utility

for understanding how network organization reflects genetic and experiential factors.

Materials and Methods

Participants

We used publicly available dMRI data from the S900 (2015) release of the Human Connectome
Project (HCP; (Van Essen et al., 2013)), acquired by Washington University in St. Louis and the
University of Minnesota. Out of the 900 participants released, 841 participants (370 male, ages
22-37, mean age 28.76) had viable dMRI datasets. Our analysis was restricted to this
subsample. All data collection procedures were approved by the institutional review boards at

Washington University in St. Louis and the University of Minnesota. The post hoc data analysis
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was approved as exempt by the institutional review board at Carnegie Mellon University, in

accordance with 45 CFR 46.101(b)(4) (IRB Protocol Number: HS14-139).

Diffusion MRI Acquisition

The dMRI data were acquired on a Siemens 3T Skyra scanner using a 2D spin-echo single-shot
multiband EPI sequence with a multiband factor of 3 and monopolar gradient pulse. The spatial
resolution was 1.25 mm isotropic (TR = 5500 ms, TE = 89.50 ms). The b-values were 1000,
2000, and 3000 s/mm?. The total number of diffusion sampling directions was 90 for each of the

three shells in addition to 6 b0 images. The total scanning time was approximately 55 minutes.

Local Connectome Fingerprint Reconstruction

An outline of the pipeline for generating local connectome fingerprints is shown in the top panel
of Figure 1. The dMRI data for each subject was reconstructed in a common stereotaxic space
using g-space diffeomorphic reconstruction (QSDR) (F. C. Yeh & Tseng, 2011), a nonlinear
registration approach that directly reconstructs water diffusion density patterns into a common
stereotaxic space at 1-mm? resolution.

Using the HCP dataset, we derived an atlas of axonal direction in each voxel (publicly
available at http://dsi-studio.labsolver.org). A spin distribution function (SDF) sampling
framework was used to provide a consistent set of directions @ to sample the magnitude of
SDFs along axonal directions in the cerebral white matter. Since each voxel may have more
than one fiber direction, multiple measurements were extracted from the SDF for voxels that
contained crossing fibers, while a single measurement was extracted for voxels with fibers in a
single direction. The appropriate number of density measurements from each voxel was
sampled by the left-posterior-superior voxel order and compiled into a sequence of scalar
values. Gray matter was excluded using the ICBM-152 white matter mask (MacConnell Brain

Imaging Centre, McGill University, Canada). The cerebellum was also excluded due to different
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slice coverage in cerebellum across participants. Since the density measurement has arbitrary
units, the local connectome fingerprint was scaled to make the variance equal to 1 (Yeh, Vettel,
et al., 2016). The resulting local connectome fingerprint is thus a one-dimensional vector where
each entry represents the density estimate of restricted water diffusion in a specific direction
along an average fiber. The magnitude of this value reflects the average signal across a large
number of coherently oriented axons, as well as support tissue like myelin and other glia.

The local connectome fingerprint construction was conducted using DSI Studio

(http://dsi-studio.labsolver.org), an open-source diffusion MRI analysis tool for connectome

analysis. The source code, documentation, and local connectome fingerprint data are publicly

available on the same website.
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Figure 1. Data analysis pipeline. dMRI from the HCP dataset were preprocessed
consistent with previous research investigating the local connectome fingerprint (top panel)

and included registration via QSDR and estimation of SDF using an axonal directional atlas


https://doi.org/10.1101/122945
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/122945; this version posted October 15, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

Powell et al., Local Connectome Phenotypes, 10

derived from the HCP dataset. Once fingerprints were estimated for each individual, the
pipeline for analysis of the continuous response variables consisted of four major steps: 1)
a PCA-based dimensionality reduction, 2) a LASSO model based on the lower-dimensional
components of the local connectome fingerprint, 3) local connectome phenotype estimation
from projection of the contributing components of the LASSO model, and 4) prediction on
the held-out dataset. A similar pipeline was used for categorical response variables with
the exception that a logistic lasso model was used in the LASSO-PCR step and prediction
accuracy was assessed as percent correct rather than as a predicted vs. observed

correlation.

Response Variables

A total of 32 response variables across social, health, and cognitive factors were selected from
the public and restricted data sets released as part of the HCP. Each variable is summarized in
Table 1, but additional details can be found in the HCP Data Dictionary

(https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-

+500+Subject+Release). Table 1 provides a description of relevant distributional parameters of

all of the continuous variables tested. Descriptions of distributional properties of categorical
variables are provided in the descriptions below. Supplementary Table 1 shows the correlation
between all continuous variables tested.

Demographic and social factors included age (years), gender (56% female, 44% male),
race (82% white and 18% black in a reduced subset of the total population), ethnicity (91.4%
Hispanic, 8.6% non-Hispanic), handedness, income (from the Semi-Structured Assessment for
the Genetics of Alcoholism (SSAGA) scale), education (SSAGA), and relationship status
(SSAGA, 44.3% in a "Married or Live-in Relationship" and 55.7% not in such a relationship).

Health factors included body mass index, mean hematocrit, blood pressure (diastolic

and systolic), hemoglobin A1c, and sleep quality (Pittsburgh Sleep Quality Index).
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Cognitive measures included 11 tests that sampled a broad spectrum of domains: (1)
the NIH Picture Sequence Memory Test assessed episodic memory performance, (2) NIH
Dimensional Change Card Sort tested executive function and cognitive flexibility, (3) NIH
Flanker Inhibitory Control and Attention Test evaluated executive function and inhibition control,
(4) Penn Progressive Matrices examined fluid intelligence and was measured using three
performance metrics (number of correct responses, total skipped items, and median reaction
time for correct responses), (5) NIH Oral Reading Recognition Test assessed language and
reading performance, (6) NIH Picture Vocabulary Test examined language skills indexed by
vocabulary comprehension, (7) NIH Pattern Comparison Processing Speed Test evaluated
processing speed, (8) Delay Discounting tested self-regulation and impulsivity control using two
different financial incentives (Area Under the Curve (AUC) for discounting of $200, AUC for
discounting of $40,000), (9) Variable Short Penn Line Orientation assessed spatial orientation
performance and was measured using three metrics (total number correct, median reaction time
divided by expected number of clicks for correct, total positions off for all trials), (10) Penn Word
Memory Test evaluated verbal episodic memory using two performance metrics (total number of
correct responses, median reaction time for correct responses), and (11) the NIH List Sorting

Task tested working memory performance.

Measured Quantity SaSrir;zle Mean | Median | Skewness OO/Gt:\i/:e”ri %Oﬁi(l};er;nze ?_503;:' forul\gzzr:
Age (in years) 841 28.76 29.00 -0.08 0.00 0.00 28.51 29.01
Handedness® [-100,100] 841 65.36 80.00 -2.18 0.10 0.07 62.33 68.40
(thi’;?:e';?‘;sf%‘Igy(')%cé’f“&g’ggg) 836 | 501 | 500 -0.28 0.00 0.00 487 | 516
Years of Education Completed 840 14.92 16.00 -0.74 0.00 0.00 14.80 15.04
Body Mass Index 840 26.51 25.42 0.95 0.03 0.00 26.15 26.86
Mean Hematocrit Sample 740 43.39 43.50 -0.68 0.02 0.00 43.05 43.73
Diastolic Blood Pressure 830 76.77 76.00 0.33 0.02 0.00 76.06 77.49
Systolic Blood Pressure 830 123.76 | 123.00 0.51 0.01 0.00 122.80 | 124.71
Systolic-Diastolic Blood Pressure 830 | 163 | 1.61 0.97 0.03 0.00 161 | 164
Hemoglobin A1C 566 5.26 5.30 0.12 0.05 0.01 5.22 5.29
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Pittsburgh Sleep Quality Index 841 5.18 5.00 0.91 0.01 0.00 4.98 5.39

NIH Picture Sequence Memory Test 840 111.83 | 110.70 0.11 0.00 0.00 110.92 | 112.73
#‘é‘:tDime”SiO”a' Change Card Sort | g3q | 44528 | 115.07 0.18 0.02 0.00 114.59 | 115.97
NIH Flanker Inhibitory Control and 841 | 11252 | 112.21 0.25 0.01 0.00 111.84 | 113.20
Attention Test

Penn Progressive Matrices: Number | g3 | 1676 | 18.00 055 0.00 0.00 16.44 | 17.09
of Correct Responses

Penn Progressive Matrices: Total 838 | 312 | 1.00 1.01 0.00 0.00 286 | 3.39

Skipped Items

Penn Progressive Matrices: Median

Reaction Time for Correct 838 15.61 14.65 0.91 0.01 0.00 14.99 16.23
Responses (sec)

NIH Oral Reading Recognition Test 841 116.96 | 117.59 -0.14 0.01 0.00 116.24 | 117.67
NIH Picture Vocabulary Test 841 116.76 | 117.03 0.09 0.01 0.00 116.12 | 117.40
NIH Toolbox Pattern Comparison 841 | 114.15 | 113.16 0.22 0.03 0.00 113.14 | 115.16
Processing Speed Test

Delay Discounting: Area Under the

Curve for Discounting of $200 838 0.25 0.20 1.39 0.05 0.00 0.24 0.27

Delay Discounting: Area Under the

Curve for Discounting of $40,000 838 0.50 0.49 0.05 0.00 0.00 0.48 0.52

Variable Short Penn Line

Orientation: Total Number Correct 838 14.80 15.00 -0.23 0.00 0.00 14.51 15.10
Variable Short Penn Line

Orientation: Median Reaction Time

Divided by Expected Number of 838 1.15 1.10 1.31 0.03 0.00 1.13 1.17

Clicks for Correct (sec)

Variable Short Penn Line

Orientation: Total Positions Off for 838 24.34 21.00 3.16 0.05 0.02 23.33 25.35
All Trials

penn Word Memory Test: Total 838 | 3564 | 36.00 0.82 0.01 0.00 3544 | 35.84
Number of Correct Responses

Penn Word Memory Test: Median

Reaction Time for Correct 838 1.56 1.51 1.85 0.03 0.01 1.54 1.58

Responses (sec)

#‘é‘:tL'St Sorting Working Memory 841 | 111.21 | 108.06 0.16 0.02 0.00 110.45 | 111.97

T Using the interquartile range (IQR: 75th percentile minus 25th percentile), we define a mild outlier to be any point greater than

the 75th percentile or less than the 25th percentile by an amount at least 1.5 times the IQR.

2 Using the interquartile range (IQR: 75th percentile minus 25th percentile), we define an extreme outlier to be any point greater

than the 75th percentile or less than the 25th percentile by an amount at least 3 times the IQR.

® Handedness is a bimodal distribution with a strong preference for righthandedness in the HCP cohort, thus labeling as extreme
outliers a large number of individuals with strong left-hand dominance.

Table 1. Summary statistics for 28 continuous HCP attributes used in the modeling analysis.

LASSO Principal Components Regression (LASSO-PCR).

The primary goal of our analysis pipeline was to identify specific patterns of variability in the

local connectome that reliably predict individual differences in a specific attribute. These unique
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patterns would reflect a local connectome phenotype for that attribute. The LASSO-PCR
pipeline used to generate local connectome phenotype (LCP) maps is illustrated in the lower
panel of Figure 1. This process relied on a 5-fold cross-validation scheme in which a unique
20% of the participants were assigned to each of five subsamples. For each cross-validation
fold, we trained models using 80% of the participants in order to make predictions on the held-
out 20% of participants. The large number of HCP participants and the infrequent occurrence of
outliers in the continuous response variables (see Table 1) justified random fold assignments
with little concern about a higher density of outliers existing in any one fold. The random
assignment of subjects to folds could pose issues for any infrequent categories in the binary
response variables, but the removal of insufficiently represented categories and a verification of
near-even class distributions in each fold alleviated these concerns. The analysis pipeline
consisted of four major steps.

Step 1: Dimensionality Reduction. The matrix of local connectome fingerprints (841

participants x 433,386 features) contains many more features than participants (p >> N),
thereby posing a problem for fitting virtually any type of model. To efficiently develop and
evaluate predictive models in a cross-validation framework, on each fold we first performed an
economical singular value decomposition (SVD) on the matrix of training subjects' local
connectome fingerprints (Wall, Andreas, and Rocha, n.d.) :

X=UsvT (Eq. 1)
where X is an nxp matrix containing local connectome fingerprints for n participants in the
cross-validation fold (~673 subjects x 433,386 elements per fingerprint), VT is an nxp matrix
with row vectors representing the orthogonal principal axes of X, and the matrix product US is an
nxn matrix with rows corresponding to the principal components required to reproduce the

original matrix X when multiplied by the principal axes matrix V7.
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Step 2: LASSO Model. To reduce the chance of overfitting and improve the

generalizability of the model for a novel test set, we employed LASSO regression, a technique
that penalizes the multivariate linear model for excessive complexity (i.e., number and
magnitude of nonzero coefficients) (Tibshirani, 2011). The penalty in this approach arises from
the L1 sparsity constraint in the fitting process, and this combined method, known as LASSO-
PCR, has been used successfully in similar high-dimensional prediction models from
neuroimaging data sets (Wager et al., 2013; Wager, Atlas, Leotti, & Rilling, 2011). In short, the
LASSO-PCR approach identifies a sparse set of components that reliably associate individual
response variables (see Figure 1) and takes the following form:
p = arg ming{|ly — ZB|I1> + AllBI1} (Eq. 2)

where Z = US as defined above. Using a cross-validation approach, we estimated the optimal A
parameter and associated £ coefficients using the “gimnet” package in R (Friedman & Hastie,
2009) (see https://cran.r-project.org/web/packages/gimnet/gimnet.pdf for documentation). For
each response-specific regression model, the model inputs included the principal components
estimated from Eq. 1, i.e., US (see Figure 2), and intracranial volume (ICV). For continuous
variables (e.g., reaction times), a linear regression LASSO was used. For binarized categorical
variables (e.g., gender), a logistic regression variant of LASSO was used. In order to assess the
value of the local connectome fingerprint components in modeling continuous response
variables, the LASSO-produced f vector was truncated (*) to exclude ICV and thereby restrict
interpretation to the relationship between the response variables and the principal components.

The inclusion of ICV while building a model allows for the isolation of any predictive
power present in the local connectome fingerprint and not to head size, which is a common
adjustment used when attempting to understand structural differences between individuals or
groups to reduce the possibility of type-I errors (O’Brien et al., 2011). Our LASSO-PCR

procedure considers ICV in every model, and in some cases, ICV is deemed a significant
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contributor to variance in the response variable. In other cases, ICV is assigned a regression
coefficient of zero. We observe empirically that the correlation of ICV to local connectome
fingerprint principal component scores is quite small. This is to be expected considering the
orthogonality of the principal components and small chance that ICV would align meaningfully
with one or more component. Combining the observation that ICV has small, non-meaningful
correlations with the local connectome fingerprint principal components with the knowledge that
the local connectome fingerprint components are themselves orthogonal, we mitigate a common
result of regression modeling in which the inclusion of a highly correlated feature may drastically
alter other features’ regression coefficients. Regardless of the coefficient assigned to ICV, we
ultimately want to make predictions for the continuous response variables without any
knowledge of ICV by excluding the ICV coefficient and associated participant measurements
from the model prediction step. While the quality of the resulting predictions (Step 4 below) may
be negatively impacted by removing ICV as a potentially significant predictor in a model,
controlling for ICV in this manner ensures that any observed correlation is not related to
intracranial volume.

While truncating the LASSO-produced # vector allows for the calculation of ICV-ignorant
predictions for the continuous response variables, the same procedure cannot be adopted for
categorical response variables. Such an approach to our binary responses results in undesired
artifacts due to the nonlinear nature of logistic regression. An alternate approach to assess the
value of the local connectome fingerprint in a binary prediction is described in Step 4.

Step 3: Local Connectome Phenotype Map. For each response variable, we expect /?* to

contain non-zero weights on a subset of the orthogonal principal components (US, or
equivalently, XV), and these weights were used to construct a local connectome phenotype
map, defined as the weighted influence of each fiber in the local connectome on the modeled

response variable. To convert the regression coefficients into the dimensions of the local
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connectome, the sparse vector of regression coefficients #* was multiplied by the principal axes
matrix V to produce a weighted linear combination of the principal axes deemed relevant to a

particular subject attribute.

w=Vp (Eq. 3)
This linear combination of principal axes, w, represents a p x1 vector reflecting the white matter
substructure of the local connectome fingerprint vector relevant to a particular observed

response. We refer to the vector w as the local connectome phenotype for the associated
response variable.

Step 4: Prediction. Finally, we use the reconstructed local connectome phenotype map

to predict a variety of continuous social, biological, and cognitive responses for participants in

the test set. Ultimately, we sought a model that predicted a response variable y; for subject i in

the test set such that y, = Y{W where W is the response-related local connectome phenotype
and x, is the individual participant's local connectome fingerprint. A prediction was generated for
all participants in the hold-out set on each validation fold. Once predictions for all participants
were generated for a given response variable, the performance of the model was evaluated
using the correlation between predicted and observed values (continuous variables only).

While LCP maps were still constructed for categorical response variables, the utility of
these LCP maps for prediction was estimated by comparing the classification accuracy of an
ICV-only model to that of a model incorporating ICV and the local connectome fingerprint. In
the case where the fingerprint-informed model outperforms the ICV-only model, the increase in
classification accuracy can be attributed to information contained in the local connectome
fingerprint map.

The calculated significance of each continuous prediction model stems from a 10,000-
trial nonparametric permutation test. In each trial, the response values were permuted prior to

executing the LASSO model fitting procedure while ensuring that the fingerprint PC-ICV
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measurements were still paired as same-subject inputs to the models. After permuting the
response values, the LASSO model fitting procedure was used to construct a response-specific
model from the randomly permuted data. Correctly mapped fingerprint and ICV information was
then used to predict subjects’ response values using the permutation test models. Correlation
was computed for each set of model predictions and true observations to build a null distribution
of the chance performance of a LASSO model for the given response. The proportion of trials in
the permutation test in which the magnitude of the computed correlation met or exceeded the
magnitude of the observed vs. prediction correlation in Table 3 is reported as the correlation p-
value. In creating a LASSO model with permuted response values, we observed many cases in
which no PCs were retained as significant predictors of variance. A resulting intercept-only
model yields a constant, thus having a standard deviation of 0. Correlation between the
prediction and observation in this case is undefined and was not included in the calculation of

the associated p-value.

Results

Covariance Structure and Dimensionality of Local Connectome Fingerprints

Inter-voxel white matter architecture, reflected in the local connectome fingerprint, has been
shown to be unique to an individual and sculpted by both genetic predisposition and experience
(Yeh, Vettel, et al., 2016); however, it is not yet clear whether the local connectome also exhibits
reliable patterns of shared variability across individuals. To illustrate this, Figure 2A shows three
exemplar fingerprints from separate subjects in the sample. These exemplars reveal the
sensitivity of the method to capture both common and unique patterns of variability. For
example, the highest peaks in the three fingerprints are similar in terms of their size and
location. This pattern appears to exist across subjects and is generally expressed in the mean
fingerprint (Fig. 2C). However, there are also clear differences between participants. For

example, consider the sharpness and location of the rightmost peaks in the three exemplar
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fingerprints in Figure 2A. This uniqueness supports our previous work highlighting single
subject classification from the fingerprint across varying temporal intervals (Yeh, Vettel, et al.,

2016).

A Individual Fingerprints B Principal Components Analysis

Fingerprint Variance Explained

100%
L
80%
70%
60%
50%
40%
30%
20%

Cumulative Percent Variance Explained

10%

0% 100 200 300 400 500 600 700 800
| Component

Linear Sum of Individually-fit
Principal Components

Figure 2. Lower dimensional structure of the local connectome fingerprints. (A) Three
individual local connectome fingerprints, from three separate subjects, show coarse
commonalities and unique patterns of variability when connection density is reshaped in a
left-posterior-superior vector. (B) Cumulative summation of variance explained from each
component, sorted by the amount of variance explained by each component. Dotted lines
indicate the number of components (697) needed to explain 90% of the variability in the
fingerprint dataset. (C) Mean fingerprint across participants (blue, left) and linear

summation of principal components that explain 90% of the variance (red, right).

In order to explicitly test for covariance across participants, we looked at the distribution
of pairwise correlations between fingerprints. The histogram in Figure 3 shows the total

distribution of pairwise inter-subject correlations, revealing a tight spread of correlations such
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that the middle 95% of the distribution lies between 0.32 and 0.50. This confirms that inter-
subject correlations are substantially lower, averaging a correlation of 0.42 across all pairs of
841 HCP participants, than intra-subject correlations, found to be well above 0.90 (Yeh, Vettel,
et al., 2016). Thus, the local connectome fingerprint exhibits a moderate but reliable covariance
structure across participants, indicating its utility to examine shared structural variability across

subjects that capture similarity in social, health, and cognitive factors.

Subject
100 200 300 400 500 600 700 800

Distribution of Correlation Coefficients
0.12

0.1
0.08
& 0.06
o
0.04

0.02

0
01 02 03 04 05 06 07
Correlation Coefficient (p)

Figure 3. Correlations between fingerprints. The matrix of between-subject correlations in
local connectome fingerprints, sorted by participant index is shown on the right. The
distribution (inset) is the histogram of the upper triangle of the correlation matrix and the

best fit kernel density estimate (red line).

The dimensionality of the fingerprint itself (841 participants x 433,386 elements) poses a
major challenge when examining the predictive value of the local connectome for group
similarity. The group fingerprint contains many more features than subjects (p >> N), leading to
a strong risk of overfitting. We employed a dimensionality reduction routine that isolates

independent principal components from the entire local connectome fingerprint matrix to
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decompose the variance within the set of fingerprints. This analysis found that the
dimensionality of the local connectome fingerprint matrix was still relatively high and complex,
requiring 697 of 841 components to explain 90% of the variance (Figure 2B). While it appears
that many components are required to meaningfully explain fingerprint variance, the pattern of
the mean fingerprint could be successfully recovered by a linear combination of the principal
components (Figure 2C), confirming that this lower dimensional projection is adequate to

represent the much larger dimensional fingerprint.

Predicting Inter-Subject Variability

After identifying a covariance structure in the group fingerprint matrix, we fit regression models
to test how well the fingerprints could predict participant attributes, including social, biological,
and cognitive factors. Although we used the principal components as predictor variables, the
underlying dimensionality of the local connectome fingerprint matrix (697 components for 90%
variance) is still quite high relative to the sample size (841 participants). Therefore, we applied
an L1 sparsity constraint (i.e., LASSO) in the fitting process of a principal components
regression (LASSO-PCR), as this approach identifies a sparse set of components that reliably
predict individual response variables (see Figure 1).

Table 2 shows the logistic LASSO-PCR results for the four binary categorical participant
attributes: gender, race, ethnicity, and relationship status. An examination of the test accuracies
in Table 2 reveals that both gender and race predictions are significantly improved with the
inclusion of local connectome fingerprint information in the associated logistic regression
models. The 95% confidence intervals for prediction accuracy (ICV and local connectome
fingerprints) arise from bootstrapping prediction-observation pairs and reporting the appropriate
percentiles from a distribution of 10,000 bootstrapped classification accuracy calculations (see
Methods). The p-values associated with the reported classification accuracy arise from a

nonparametric permutation test performed for each response variable. The test began by
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permuting response values prior to the model fitting step in order to establish a null distribution
for chance accuracy achievable by a LASSO logistic regression model (see Methods). The
provided p-values reflect the proportion of 10,000 trials in which the accuracy achieved in the
permutation test met or exceeded the accuracy achieved in the CV-prediction of the indicated
response. The models for ethnicity and relationship status revealed no relationships and

perform at exactly the base rate for their respective categories.

Model Significant - o
Response Correlation Training CV-Prediction CV-Prediction Confidence Interval
P Sample . Accuracy Accuracy Accuracy
(Siginificant Size with (Measure of Accuracy (ICV and LCF [Lower, Upper] p-value
CV Results Intracranial . (ICV Only) (ICV and LCF PCs)
. Model Fit) PCs)
Italicized) Volume
Gender” 840 Yes 0.9405 0.8071 0.8691 0.8452 0.8905 0
Race” 760 Yes 0.9632 0.8276 0.9053 0.8842 0.9263 0
Ethnicity® 833 No 0.9136 0.9136 0.9136 0.8944 0.9316 1.0000
Solationship 840 No 0.6679 0.5571 0.5571 05226 | 05917 | 0.7620
* The prediction accuracy was statistically significant after applying the False Discovery Rate (FDR) correction for multiple
comparisons.

' The female-male split in the 840 subjects was 56%-44%, respectively.
% The white and black subpopulations made up 82% and 18%, respectively, of the 760 subjects reported here.

® The Not Hispanic/Latino and Hispanic split in the 833 subjects was 91.4%-8.6%, respectively.

* Relationship status included 44.3% of the population in a "Married or Live-in Relationship" and 55.7% not in such a
relationship.

Table 2. Logistic LASSO-PCR results for four categorical HCP attributes.

In addition to the binary participant attributes, we observed many reliable prediction
models with the continuous variables. Table 3 (fourth column) shows the training results for the
corresponding linear models. As expected, nearly all models were statistically significant in the
training evaluation, even after adjusting for multiple comparisons. Only two variables, the
Pittsburgh Sleep Quality Index and systolic blood pressure, were not significant when
considering this segment of the data, largely because the LASSO model did not contain any
non-zero coefficients. The LASSO form of penalized regression can drive coefficients to exactly

zero when their effects are sufficiently weak. This results in an intercept-only model that
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produces a uniform set of predictions, and observation-prediction correlation cannot be

calculated when there is no variability in the set of predictions.

Model Response Slgnlf_lcant_ Tramln_g Observed vs. Confidence .
L Sample | Correlation with Correlation - Correlation
(Siginificant CV Results . . CV-Prediction Interval
ltalicized) Size Intracranial (Measure of Correlation [Lower, Upper] p-value
Volume Model Fit) ’

Age (in years) 841 Yes 0.1430* 0.0311 -0.0378 | 0.1007 0.1776
Handedness 841 No 0.5581* -0.0594 -0.1208 | 0.0017 0.9475
Total Household Income 836 Yes 0.1604* -0.0029 -0.0753 | 0.0632 0.5181
Years of Education 840 No 0.4377* 0.0729* 0.0127 | 0.1343 | <10E-4
Completed
Body Mass Index 840 No 0.4976* 0.2736* 0.2067 0.3421 <10E-4
Mean Hematocrit Sample 740 Yes 0.4348* 0.1324* 0.0654 0.1939 <10E-4
Diastolic Blood Pressure 830 No 0.2058* 0.0615 -0.0154 | 0.1378 0.0331
Systolic Blood Pressure 830 Yes 0.3596* 0.1396* 0.0745 0.2076 <10E-4
Systolic-Diastolic Blood 830 Yes NA** -0.0240 -0.0926 | 0.0474 | 0.7457
Pressure Ratio
Hemoglobin A1C 566 No 0.2130* 0.0098 -0.0794 | 0.1071 0.4165
iftaburgh Sleep Quallty 841 No NA™ -0.0314 -0.0966 | 0.0415 | 0.8277
NIH Picture Sequence 840 No 0.5964* 0.0977* 0.0290 | 0.1618 | <10E-4
Memory Test
NIH Dimensional Change | g3q No 0.2381* -0.0299 -0.0945 | 0.0379 | 0.8071
Card Sort Test
NIH Flanker Inhibitory
Control and Attention 841 Yes 0.1285* -0.0001 -0.0706 | 0.0651 0.5161
Test
Penn Progressive
Matrices: Number of 838 Yes 0.2027* 0.0849* 0.0187 0.1502 <10E-4
Correct Responses
Penn Progressive
Matrices: Total Skipped 838 Yes 0.2090* 0.0733* 0.0120 0.1383 <10E-4
Items
Penn Progressive
Matrices: Median 838 Yes 0.1078* 0.0086 -0.0619 | 0.0754 | 0.4075
Reaction Time for Correct
Responses
NIH Oral Reading 841 Yes 0.1665* 0.0008 -0.0702 | 0.0660 | 0.4748
Recognition Test
#‘é’;’tp"’t“re Vocabulary 841 Yes 0.5206* 0.0481 -0.0187 | 0.1142 | 0.0781
NIH Toolbox Pattern
Comparison Processing 841 No 0.1814* -0.0569 -0.1260 | 0.0061 0.9390
Speed Test
Delay Discounting: Area
Under the Curve for 838 Yes 0.3010* 0.0275 -0.0311 | 0.0891 0.2202
Discounting of $200
Delay Discounting: Area
Under the Curve for 838 No 0.2056* 0.0802* 0.0132 0.1527 <10E-4
Discounting of $40,000
Variable Short Penn Line
Orientation: Total Number 838 Yes 0.4490* 0.0951* 0.0279 0.1589 <10E-4
Correct
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Variable Short Penn Line
Orientation: Median
Reaction Time Divided by 838 Yes 0.4449* -0.0572 -0.1302 | 0.0141 0.9520
Expected Number of
Clicks for Correct

Variable Short Penn Line
Orientation: Total 838 Yes 0.4695* 0.0014 -0.0621 0.0735 0.4741
Positions Off for All Trials
Penn Word Memory Test:

Total Number of Correct 838 No 0.2382* 0.0474 -0.0228 | 0.1189 0.0764
Responses

Penn Word Memory Test:

Median Reaction Time for 838 No 0.2354* -0.0391 -0.0965 | 0.0191 0.9034

Correct Responses

NIH List Sorting Working
Memory Test

841 Yes 0.4140* 0.0793* 0.0097 | 0.1540 <10E-4

* The observed-predicted correlation was statistically significant after applying the FDR correction for multiple comparisons.

** Training correlation could not be computed when the full HCP training set yielded no non-zero lasso coefficients for ICV or
LCF PCs.

Table 3. Linear LASSO-PCR results for 28 continuous HCP attributes.

To complement the model training results, we examined the predictive performance of
the models using 5-fold cross validation. This was done by projecting the regression weights in
component space back into local connectome space in order to provide a weight map for each
fiber in the local connectome to the target response variable. These maps reflect the local
connectome phenotype for that attribute and were multiplied against a full local connectome
fingerprint for each participant in the validation fold to generate a prediction for that participant
(see bottom panel, Figure 1).

We assessed the generalizability of 28 continuous response models in a cross-validation
paradigm and, as shown in Table 3 (fifth column), 10 of these attributes were significant
predictors after applying the False Discovery Rate (FDR) correction for multiple comparisons.
These factors included years of education, measures of body type (BMI), physiology (hematocrit
sample, blood pressure measures), and several cognitive measures including episodic memory
(NIH Picture Sequence Memory Test), fluid intelligence (Penn Progressive Matrices: Number of

Correct Responses & Total Skipped Items), self-regulation (Delay Discounting: Area Under the
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Curve for Discounting of $40,000), spatial orientation (Variable Short Penn Line Orientation:

Total Number Correct), and working memory (NIH List Sorting Working Memory Test).

Specificity of Phenotypes to Response Variables
In our final analysis, we examined the specificity of a local connectome phenotype map by
considering whether or not the predictive maps were unique for each participant attribute being
predicted. In other words, we tested whether a single map could capture a generalized
predictive relationship for multiple response variables, indicating that the models themselves
may lack specificity. If so, any given model may perform suitably well at predicting any
participant attribute (e.g., BMI), even if derived from training on a different participant factor
(e.g., years of education completed).

To explicitly test this, we looked at the correlation between the 10 significant phenotype
maps from the cross-validation tests shown in Table 3. This correlation is shown in Figure 4.
With the exception of the correlation between the phenotypes for the Variable Short Penn Line
Orientation task and the NIH List Sorting Working Memory Test, which was expected given the
moderate association between performance in these two tasks (Supplementary Table 1), most
of the phenotype maps were uncorrelated. We visualized the uniqueness of these phenotype
maps by projecting the local connectome phenotypes into voxel space, where the average
weight of multiple fibers within a voxel is depicted as a color map on the brain. A subset of these
maps is shown in Figure 4. Visual inspection of these example phenotype maps reveals large
heterogeneity between models. For instance, strong positive loadings are observed in portions
of the splenium of the corpus callosum and frontal association fiber systems for the Picture
Sequence Memory Task, while these same regions load negatively for the Variable Short Penn
Line Orientation test and NIH List Sorting Working Memory Test. Bilateral corona radiata
pathways appear to negatively load for the Penn Progressive Matrices and Variable Short Penn

Line Orientation test, but not for any of the other attributes. These qualitative comparisons,
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along with the direct correlation tests, confirm that the phenotype maps for predicting inter-

subject variability are highly specific to the variable being modeled.
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Figure 4. Local connectome phenotypes. Matrix inset is a correlation matrix displaying the
similarity between phenotypes of the local connectome to the continuous response
variables. Example phenotype maps are shown around the correlation matrix, and the color
scale for each has been adjusted to reveal the areas of the local connectome that are most

predictive of the labeled response variable.
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Discussion

Our analysis revealed that the local connectome fingerprint exhibits a moderate, but reliable,
correlation between participants that can be leveraged to predict at the level of the individual
along dimensions of social, biological, and cognitive attributes. Although the between-subject
correlation is much smaller than the within-participant correlation reported previously (Yeh,
Vettel, et al., 2016), it was robust enough to capture inter-subject similarities. Much to our
surprise, the lower dimensional structure of this inter-subject covariance was still relatively
complex, with hundreds of principal components required to explain most of the variance in the
sample. Using a cross-validation regression approach that is optimized for ultra-high
dimensional data sets, we show how patterns of variability in the local connectome not only
correlated with nearly all participant-level social, health, and cognitive attributes (i.e., strong and
significant training accuracy), but could also independently predict variability in many of the
features tested (i.e., hold-out test accuracy via cross validation). Finally, we were able to show
how the local connectome phenotype maps for individual attributes were highly specific to the
variable being modeled. This suggests that there is not some unique, generalizable feature of
local white matter that predicts inter-subject variability, but instead there are highly specific
patterns that predict variance in specific inter-subject attributes. Taken together, the current
results confirm our hypothesis that shared variability across participants is reflected in the local
connectome itself. This opens the door for leveraging the local connectome fingerprint, along
with functional measures of connectomic architecture (Shen et al., 2017), as a reliable marker
for individual differences in behavior.

The current findings clearly show how it is possible to recover a portion of variability in
social, biological, or cognitive attributes from local white matter architecture. This complements
recent reports that global functional connectome properties can reliably predict cognitive ability
(Ferguson, Anderson, & Spreng, 2017; Finn et al., 2015; Hearne, Mattingley, & Cocchi, 2016)

by providing a putative structural basis for these previous associations. For example, in our
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study, structural similarity in the local connectome fingerprint reliably predicted six of the tested
cognitive performance measurements, including a list sorting task that captures individual
variability in working memory performance (Gur et al., 2001; Gur et al., 2010). The associated
local connectome phenotype for working memory identified portions of what appear to be
frontoparietal pathways (Figure 4). Our results nicely complement a recent study of working
memory that focused on direct and indirect connectivity in the frontoparietal networks (Ekman,
Fiebach, Melzer, Tittgemeyer, & Derrfuss, 2016). In their work, the authors found that the
network centrality of focal structural connections in the frontal, temporal, and parietal cortices
could predict individual differences in working memory capacity using linear regression. When
considered in the context of the current study, our findings augment previous correlative findings
between frontoparietal regions and working memory capacity (Bender, Prindle, Brandmaier, &
Raz, 2016; Klingberg, 2006; Nagy, Westerberg, & Klingberg, 2004; Takeuchi et al., 2010) by
showing that the integrity of the pathway of these white matter fascicles reliably predicts working
memory performance.

The existence of reliable and predictive inter-subject covariance patterns in the white
matter fascicles of the human brain begs the question of mechanism: are these similarities
genetically determined, experientially sculpted, or developed through gene-by-environment
interactions? Emergent findings in genetics are suggesting that at least a portion of macroscopic
white matter structure is guided by genetics (Kochunov, Fu, et al., 2016; Kochunov, Thompson,
et al., 2016; Yeh, Vettel, et al., 2016). For example, recent work by Kochunov and colleagues
(2016a) examined a heritability relationship between whole-brain fractional anisotropy (FA) and
information processing speed in two interesting participant populations, the HCP twins cohort
and an Old Order Amish cohort. The cohorts both had well-characterized genetic properties, but
they differed in the amount of experiential variability since the Amish have higher environmental
homogeneity compared to the urban/suburban HCP cohort. Kochunov and colleagues (2016a)

argued that the replication of the genetic contribution to processing speed and FA of cerebral
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white matter despite the experiential variability in the cohorts suggested a strong phenotypic
association for the trait. Our analysis would be able to pick up such genetically mediated brain-
behavior phenotypes.

While genetics may contribute to white matter architecture, overwhelming evidence
suggests that experience sculpts these pathways over time. For example, variability in the white
matter signal has been shown to covary with several social (Gianaros et al., 2013; Molesworth
et al., 2015), biological (Arfanakis et al., 2013; Miralbell et al., 2012; Verstynen et al., 2013), and
cognitive (Muraskin et al., 2016; Verstynen, 2014; Ystad et al., 2011) attributes. In many cases,
it is difficult to extract or identify specific pathways or systems that link white matter pathways to
these shared experiential factors. However, several intervention studies have targeted more
specific experience-white matter associations. For example, prolonged training on a variety of
tasks has been shown to induce changes in the diffusion MRI signal (Blumenfeld-Katzir,
Pasternak, Dagan, & Assaf, 2011; Sampaio-Baptista et al., 2013; Scholz, Klein, Behrens, &
Johansen-Berg, 2009; Steele, Scholz, Douaud, Johansen-Berg, & Penhune, 2012). In some
cases, the particular change in the diffusion signal is consistent with alterations in the underlying
myelin (Sampaio-Baptista et al., 2013), for which there is emerging support from validation
studies in non-human animal models (Budde, Janes, Gold, Turtzo, & Frank, 2011; Budde, Xie,
Cross, & Song, 2009; Klawiter et al., 2011). One consistency in these reports of training-induced
plasticity in white matter pathways is that the effects are task-specific (i.e., training in a specific
task appears to impact specific white matter fascicles). This specificity of experiential factors on
white matter pathways is necessary in order to be able to build reliable prediction models from
the diffusion MRI signal.

Our previous work showed that the local connectome fingerprint reflects both genetic
and experiential factors that contribute to between-subject variability in white matter architecture
(Yeh, Vettel, et al., 2016). We found that monozygotic twins expressed a modest degree of

similarity in their local connectome fingerprints, with ~12% of the local connectome pattern
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being similar between monozygotic twins. This similarity was much higher than what was
detected in siblings or dizygotic twins; however, genetic similarities overall seemed to contribute
very little to similarities in the local connectome. In contrast, most of the structure in the local
connectome fingerprint appeared to be driven by experience. By comparing changes in the
fingerprint over time, average intra-subject similarity changed linearly with time. While it can be
argued that part of this change simply reflects aspects of the normal aging process (Simmonds,
Hallquist, Asato, & Luna, 2014; Westlye et al., 2010), we should point out that the intra-subject
changes seen in our previous study happen at a much faster rate than typical age-related
changes in white matter pathways (i.e., days and weeks vs. years, respectively). Thus, we
expect that much of this plasticity is likely due to experiential factors.

One of the strengths of the local connectome fingerprint approach used here is that it
does not rely on fiber tracking algorithms. Recent evidence indicates a false positive bias when
mapping white matter pathways (Daducci et al., 2016; Reveley et al., 2015; Thomas et al.,
2014). This is due in large part to the difficulty that tracking algorithms have when distinguishing
between a crossing and turning fiber pathway. Our approach does not rely on a deterministic or
probabilistic tracking algorithm; instead, we analyze the entire set of reconstructed fibers
throughout the brain as a unitary data object. This eliminates the false positive identification of
white matter fascicles by not attempting fascicular classification at all. However, without tracking
along pathways we cannot say whether specific pathways positively or negatively predict a
specific response variable. In the future, exploration of the local connectome phenotype maps
with careful pathway labeling (e.g., expert-vetted fiber labeling) can identify general regions that
positively or negatively contribute to the prediction.

Another limitation of the approach used here arises from the fact that, by necessity, the
local connectome fingerprints must be computed from a common, atlas-defined space. The
nonlinear transformations required in order to transform brains of various shapes and sizes into

a stereotaxic space through the QSDR procedure invariably introduce a degree of noise in the
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SDFs. The number and orientation of fibers in each voxel determine the local connectome
fingerprint, and these measurements could possibly be distorted during QSDR. Such a
transformation is unavoidable because the dimensionality of each fingerprint must be identical,
and each element of a fingerprint must represent the same brain micro-region as the
corresponding element in any other fingerprint. Only with this common, atlas-aligned
representation of the local connectome fingerprint can we apply LASSO-PCR to explore
common substructures. The potential price for this convenience is an introduction of noise in
the local connectome fingerprint itself, likely increasing the possibility of a false-negative error
(i.e., failing to recognize a true phenotypic relationship). In addition, the sampling of the local
connectome comes from identifying the peaks from the average SDF for this particular sample
of healthy young adults. While it is believed that this approach gives a reasonable estimate of
normative fiber structure (Yeh, Vettel, et al., 2016), it is possible that an atlas defined from
another population, with consistent differences in local white matter architecture (e.g., older
adults), could result in slightly different local connectome fingerprints and thus slightly different
phenotypic associations.

Our analytical design was constructed to examine the generalizability of associations
between local white matter architecture and demographic, health, and cognitive attributes rather
than to investigate simple descriptive correlations. Although training accuracies themselves do
not evaluate how well the model generalizes to unseen data, we included training model
performance results in Tables 2 and 3 to highlight two important points. First, in some cases,
test model performance is poor because the training model is also poor. This reflects cases
where the model fitting procedure simply failed to identify meaningful patterns, as opposed to
cases where the fitting procedure was highly biased to the training set, but exhibits low flexibility
(i.e., sensitive to meaningful, but not generalizable associations). Second, and more importantly,
many traditional neuroimaging approaches only report training model results that often

overestimate the strength of the relationship. Results in Tables 2 and 3 reveal that nearly all
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training models show strong, significant associations; however, only a small subset retain
significance on the independent hold out set, where the effect size is much smaller. We should
note that the effect sizes of the significant models in the hold out test validation, particularly the
cognitive measures, are substantially smaller than previously reported effect sizes of functional
connectome phenotypes (Ferguson, Anderson, & Spreng, 2017; Finn et al., 2015; Hearne,
Mattingley, & Cocchi, 2016). This may be due to the fact that variability in structural connections
may serve as a moderator of global network dynamics that drive behavior, but the functional
dynamics themselves are a more direct reflection of immediate brain function. This suggests
that multimodal analysis accounting for both structural and functional connectomic architecture
may provide a stronger prediction of individual variability in cognitive function.

The current work reveals that the local connectome fingerprint reliably reflects shared
variance between individuals in the macroscopic white matter pathways of the brain. For the
first time, we not only show how global white matter structure associates with different
participant features, but we also show how the entire local connectome itself can predict a
portion of the variability in independent samples. While the overall variance explained by the
local connectome fingerprint may at first seem small, it is consistent or even stronger than effect
sizes of genetic risk scores used in behavioral medicine (Plomin, DeFries, Knopik, &
Neiderhiser, 2016). Thus, our local connectome phenotyping approach may also be predictive
of not only normal, but also pathological variability (see also Yeh et al., 2013). Future work in
clinical populations should focus on applying this approach to generate diagnostic local
connectome phenotypes for neurological and psychiatric disorders, thereby leveraging the full

potential of this approach.
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Supplementary Table 1. Pairwise Pearson correlation matrix for 28 continuous HCP attributes.

Asterisks indicate significant correlations after correcting for multiple comparisons (FDR < 0.05).
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