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Abstract 

The unique architecture of the human connectome is defined initially by genetics and 

subsequently sculpted over time with experience. Thus, similarities in predisposition and 

experience that lead to similarities in social, biological, and cognitive attributes should also be 

reflected in the local architecture of white matter fascicles. Here we employ a method known as 

local connectome fingerprinting that uses diffusion MRI to measure the fiber-wise characteristics 

of macroscopic white matter pathways throughout the brain. This fingerprinting approach was 

applied to a large sample (N=841) of subjects from the Human Connectome Project, revealing a 

reliable degree of between-subject correlation in the local connectome fingerprints, with a 

relatively complex, low-dimensional substructure. Using a cross-validated, high-dimensional 

regression analysis approach, we derived local connectome phenotype (LCP) maps that could 

reliably predict a subset of subject attributes measured, including demographic, health and 

cognitive measures. These LCP maps were highly specific to the attribute being predicted but 

also sensitive to correlations between attributes. Collectively, these results indicate that the local 

architecture of white matter fascicles reflects a meaningful portion of the variability shared 

between subjects along several dimensions. 
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Author Summary 

The local connectome is the pattern of fiber systems (i.e., number of fibers, orientation, and 

size) within a voxel and reflects the proximal characteristics of white matter fascicles distributed 

throughout the brain. Here we show how variability in the local connectome is correlated in a 

principled way across individuals. This inter-subject correlation is reliable enough that unique 

phenotype maps can be learned to predict between-subject variability in a range of social, 

health, and cognitive attributes. This work shows, for the first time, how shared variability across 

individuals is reflected in the local connectome.  
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Introduction 

The unique pattern of connections among the billions of neurons in the brain is termed the 

connectome (Sporns, Tononi, & Kotter, 2005), and this pattern encapsulates a fundamental 

constraint on neural computation and cognition (Gu et al., 2015; Thivierge & Marcus, 2007). 

This connective architecture is initially structured by genetics and then sculpted by experience 

over time (Kochunov, Fu, et al., 2016; Kochunov, Thompson, et al., 2016; Yeh, Vettel, et al., 

2016). Recent advancements in neuroimaging techniques, particularly diffusion MRI (dMRI), 

have opened the door to mapping the macroscopic-level properties of the structural connectome 

in vivo (Le Bihan & Johansen-Berg, 2012).  As a result, a growing body of research has focused 

on quantifying how variability in structural connectivity associates with individual differences in 

functional properties of brain networks (Muldoon et al., 2016; Passingham, Stephan, & Kötter, 

2002), as well as associating with differences in social (Gianaros, Marsland, Sheu, Erickson, & 

Verstynen, 2013; Molesworth, Sheu, Cohen, Gianaros, & Verstynen, 2015), biological 

(Arfanakis et al., 2013; Miralbell et al., 2012; Verstynen et al., 2013), and cognitive (Muraskin et 

al., 2016; Verstynen, 2014; Ystad et al., 2011) attributes. 

 DMRI works by measuring the microscopic diffusion pattern of water trapped in cellular 

tissues, allowing for a full characterization of white matter pathways, such as axonal fiber 

direction and integrity (for review see Jbabdi, Sotiropoulos, Haber, Van Essen, & Behrens, 

2015; Le Bihan & Johansen-Berg, 2012). Previous studies have used dMRI to map the global 

properties of the macroscopic connectome by determining end-to-end connectivity between 

brain regions (Hagmann et al., 2010; Hagmann et al., 2008, 2010; Sporns, 2014). The resulting 

connectivity estimates can then be summarized, often using graph theoretic techniques that are 

then associated with variability across individuals (Bullmore & Sporns, 2009; Rubinov & Sporns, 

2010). While dMRI acquisition and reconstruction approaches have improved substantially in 

recent years  (Fan et al., 2016; Van Essen et al., 2012), the reliability and validity of many 

popular fiber tractography algorithms have come into question (Daducci, Dal Palú, Descoteaux, 
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& Thiran, 2016; Reveley et al., 2015; Thomas et al., 2014). As a result, the reliability of 

subsequent inter-region connectivity estimates may be negatively impacted.   

Instead of mapping end-to-end connectivity between regions, we recently introduced the 

concept of the local connectome as an alternative measure of structural connectivity that does 

not rely on fiber tracking (Yeh, Badre, & Verstynen, 2016). The local connectome is defined as 

the pattern of fiber systems (i.e., number of fibers, orientation, and size) within a voxel, as well 

as immediate connectivity between adjacent voxels, and can be quantified by measuring the 

fiber-wise density of microscopic water diffusion within a voxel. This voxel-wise measure shares 

many similarities with the concept of a “fixel” proposed by others (Raffelt et al., 2015). The 

complete collection of these multi-fiber diffusion density measurements within all white matter 

voxels, termed the local connectome fingerprint, provides a high-dimensional feature vector that 

can describe the unique configuration of the structural connectome (Yeh, Vettel, et al., 2016). In 

this way, the local connectome fingerprint provides a diffusion-informed measure along the 

fascicles that supports inter-regional communication, rather than determining the start and end 

positions of a particular fiber bundle.  

We recently showed that the local connectome fingerprint is highly specific to an 

individual, affording near-perfect accuracy on within-versus-between subject classification tests 

among hundreds of participants (Yeh, Badre, et al., 2016). Importantly, this demonstrated that a 

large portion of an individual’s local connectome is driven by experience. Whole-fingerprint 

distance tests revealed only a 12.51% similarity between monozygotic twins, relative to almost 

no similarity between genetically unrelated individuals. In addition, within-subject uniqueness 

showed substantial plasticity, changing at a rate of approximately 12.79% every 100 days (Yeh, 

Vettel, et al., 2016). Thus, the unique architecture of the local connectome appears to be initially 

defined by genetics and then subsequently sculpted over time with experience. 

The plasticity of the local white matter architecture suggests that it is important to 

consider how whole-fingerprint uniqueness may mask more subtle similarities arising from 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/122945doi: bioRxiv preprint 

https://doi.org/10.1101/122945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Powell et al., Local Connectome Phenotypes, 7 

common experiences.  If experience, including common social or environmental factors, is a 

major force impacting the structural connectome, then common experiences between 

individuals may also lead to increased similarity in their local connectomes. In addition, since 

the white matter is a fundamental constraint on cognition, similarities in local connectomes are 

expected to associate with similarities in cognitive function. Thus, we hypothesized that shared 

variability in certain social, biological, or cognitive attributes can be predicted from the local 

connectome fingerprints.  

To test this, we reconstructed multi-shell dMRI data from the Human Connectome 

Project (HCP) to produce individual local connectome fingerprints from 841 subjects. A set of 32 

subject-level attributes was used for predictive modeling, including many social, biological, and 

cognitive factors. A model between each fiber in the local connectome fingerprint and a target 

attribute was learned using a cross-validated, sparse version of principal component regression. 

The predictive utility of each attribute map, termed a local connectome phenotype (LCP), was 

evaluated by predicting a given attribute using cross validation. Our results show that specific 

characteristics of the local connectome are sensitive to shared variability across individuals, as 

well as being highly reliable within an individual (Yeh, Vettel, et al., 2016), confirming its utility 

for understanding how network organization reflects genetic and experiential factors.  

 

Materials and Methods 

Participants 

We used publicly available dMRI data from the S900 (2015) release of the Human Connectome 

Project (HCP; (Van Essen et al., 2013)), acquired by Washington University in St. Louis and the 

University of Minnesota. Out of the 900 participants released, 841 participants (370 male, ages 

22-37, mean age 28.76) had viable dMRI datasets. Our analysis was restricted to this 

subsample. All data collection procedures were approved by the institutional review boards at 

Washington University in St. Louis and the University of Minnesota. The post hoc data analysis 
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was approved as exempt by the institutional review board at Carnegie Mellon University, in 

accordance with 45 CFR 46.101(b)(4) (IRB Protocol Number: HS14-139). 

 

Diffusion MRI Acquisition 

The dMRI data were acquired on a Siemens 3T Skyra scanner using a 2D spin-echo single-shot 

multiband EPI sequence with a multiband factor of 3 and monopolar gradient pulse.  The spatial 

resolution was 1.25 mm isotropic (TR = 5500 ms, TE = 89.50 ms). The b-values were 1000, 

2000, and 3000 s/mm2. The total number of diffusion sampling directions was 90 for each of the 

three shells in addition to 6 b0 images. The total scanning time was approximately 55 minutes. 

 

Local Connectome Fingerprint Reconstruction  

An outline of the pipeline for generating local connectome fingerprints is shown in the top panel 

of Figure 1. The dMRI data for each subject was reconstructed in a common stereotaxic space 

using q-space diffeomorphic reconstruction (QSDR) (F. C. Yeh & Tseng, 2011), a nonlinear 

registration approach that directly reconstructs water diffusion density patterns into a common 

stereotaxic space at 1-mm3 resolution. 

  Using the HCP dataset, we derived an atlas of axonal direction in each voxel (publicly 

available at http://dsi-studio.labsolver.org).  A spin distribution function (SDF) sampling 

framework was used to provide a consistent set of directions 𝑢 to sample the magnitude of 

SDFs along axonal directions in the cerebral white matter. Since each voxel may have more 

than one fiber direction, multiple measurements were extracted from the SDF for voxels that 

contained crossing fibers, while a single measurement was extracted for voxels with fibers in a 

single direction. The appropriate number of density measurements from each voxel was 

sampled by the left-posterior-superior voxel order and compiled into a sequence of scalar 

values. Gray matter was excluded using the ICBM-152 white matter mask (MacConnell Brain 

Imaging Centre, McGill University, Canada). The cerebellum was also excluded due to different 
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slice coverage in cerebellum across participants. Since the density measurement has arbitrary 

units, the local connectome fingerprint was scaled to make the variance equal to 1 (Yeh, Vettel, 

et al., 2016). The resulting local connectome fingerprint is thus a one-dimensional vector where 

each entry represents the density estimate of restricted water diffusion in a specific direction 

along an average fiber. The magnitude of this value reflects the average signal across a large 

number of coherently oriented axons, as well as support tissue like myelin and other glia.   

  The local connectome fingerprint construction was conducted using DSI Studio 

(http://dsi-studio.labsolver.org), an open-source diffusion MRI analysis tool for connectome 

analysis. The source code, documentation, and local connectome fingerprint data are publicly 

available on the same website. 

 

Figure 1. Data analysis pipeline. dMRI from the HCP dataset were preprocessed 

consistent with previous research investigating the local connectome fingerprint (top panel) 

and included registration via QSDR and estimation of SDF using an axonal directional atlas 
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derived from the HCP dataset. Once fingerprints were estimated for each individual, the 

pipeline for analysis of the continuous response variables consisted of four major steps: 1) 

a PCA-based dimensionality reduction, 2) a LASSO model based on the lower-dimensional 

components of the local connectome fingerprint, 3) local connectome phenotype estimation 

from projection of the contributing components of the LASSO model, and 4) prediction on 

the held-out dataset. A similar pipeline was used for categorical response variables with 

the exception that a logistic lasso model was used in the LASSO-PCR step and prediction 

accuracy was assessed as percent correct rather than as a predicted vs. observed 

correlation. 

Response Variables 

A total of 32 response variables across social, health, and cognitive factors were selected from 

the public and restricted data sets released as part of the HCP. Each variable is summarized in 

Table 1, but additional details can be found in the HCP Data Dictionary 

(https://wiki.humanconnectome.org/display/PublicData/HCP+Data+Dictionary+Public-

+500+Subject+Release). Table 1 provides a description of relevant distributional parameters of 

all of the continuous variables tested. Descriptions of distributional properties of categorical 

variables are provided in the descriptions below. Supplementary Table 1 shows the correlation 

between all continuous variables tested. 

 Demographic and social factors included age (years), gender (56% female, 44% male), 

race (82% white and 18% black in a reduced subset of the total population), ethnicity (91.4% 

Hispanic, 8.6% non-Hispanic), handedness, income (from the Semi-Structured Assessment for 

the Genetics of Alcoholism (SSAGA) scale), education (SSAGA), and relationship status 

(SSAGA, 44.3% in a "Married or Live-in Relationship" and 55.7% not in such a relationship). 

Health factors included body mass index, mean hematocrit, blood pressure (diastolic 

and systolic), hemoglobin A1c, and sleep quality (Pittsburgh Sleep Quality Index).  
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Cognitive measures included 11 tests that sampled a broad spectrum of domains: (1) 

the NIH Picture Sequence Memory Test assessed episodic memory performance, (2) NIH 

Dimensional Change Card Sort tested executive function and cognitive flexibility, (3) NIH 

Flanker Inhibitory Control and Attention Test evaluated executive function and inhibition control, 

(4) Penn Progressive Matrices examined fluid intelligence and was measured using three 

performance metrics (number of correct responses, total skipped items, and median reaction 

time for correct responses), (5) NIH Oral Reading Recognition Test assessed language and 

reading performance, (6) NIH Picture Vocabulary Test examined language skills indexed by 

vocabulary comprehension, (7) NIH Pattern Comparison Processing Speed Test evaluated 

processing speed, (8) Delay Discounting tested self-regulation and impulsivity control using two 

different financial incentives (Area Under the Curve (AUC) for discounting of $200, AUC for 

discounting of $40,000), (9) Variable Short Penn Line Orientation assessed spatial orientation 

performance and was measured using three metrics (total number correct, median reaction time 

divided by expected number of clicks for correct, total positions off for all trials), (10) Penn Word 

Memory Test evaluated verbal episodic memory using two performance metrics (total number of 

correct responses, median reaction time for correct responses), and (11) the NIH List Sorting 

Task tested working memory performance. 

 

Measured Quantity Sample 
Size Mean Median Skewness % Mild 

Outliers1 
% Extreme 
Outliers2 

95% CI for Mean 
Lower Upper 

Age (in years) 841 28.76 29.00 -0.08 0.00 0.00 28.51 29.01 

Handedness3 [-100,100] 841 65.36 80.00 -2.18 0.10 0.07 62.33 68.40 

Total Household Income                                      
(binned; 5 ~ $40,000 - $49,999) 836 5.01 5.00 -0.28 0.00 0.00 4.87 5.16 

Years of Education Completed 840 14.92 16.00 -0.74 0.00 0.00 14.80 15.04 

Body Mass Index 840 26.51 25.42 0.95 0.03 0.00 26.15 26.86 

Mean Hematocrit Sample 740 43.39 43.50 -0.68 0.02 0.00 43.05 43.73 

Diastolic Blood Pressure 830 76.77 76.00 0.33 0.02 0.00 76.06 77.49 

Systolic Blood Pressure 830 123.76 123.00 0.51 0.01 0.00 122.80 124.71 
Systolic-Diastolic Blood Pressure 
Ratio  830 1.63 1.61 0.97 0.03 0.00 1.61 1.64 

Hemoglobin A1C 566 5.26 5.30 0.12 0.05 0.01 5.22 5.29 
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Pittsburgh Sleep Quality Index 841 5.18 5.00 0.91 0.01 0.00 4.98 5.39 

NIH Picture Sequence Memory Test 840 111.83 110.70 0.11 0.00 0.00 110.92 112.73 
NIH Dimensional Change Card Sort 
Test 839 115.28 115.07 0.18 0.02 0.00 114.59 115.97 

NIH Flanker Inhibitory Control and 
Attention Test 841 112.52 112.21 0.25 0.01 0.00 111.84 113.20 

Penn Progressive Matrices: Number 
of Correct Responses 838 16.76 18.00 -0.55 0.00 0.00 16.44 17.09 

Penn Progressive Matrices: Total 
Skipped Items 838 3.12 1.00 1.01 0.00 0.00 2.86 3.39 

Penn Progressive Matrices: Median 
Reaction Time for Correct 
Responses (sec) 

838 15.61 14.65 0.91 0.01 0.00 14.99 16.23 

NIH Oral Reading Recognition Test 841 116.96 117.59 -0.14 0.01 0.00 116.24 117.67 

NIH Picture Vocabulary Test 841 116.76 117.03 0.09 0.01 0.00 116.12 117.40 

NIH Toolbox Pattern Comparison 
Processing Speed Test 841 114.15 113.16 0.22 0.03 0.00 113.14 115.16 

Delay Discounting: Area Under the 
Curve for Discounting of $200 838 0.25 0.20 1.39 0.05 0.00 0.24 0.27 

Delay Discounting: Area Under the 
Curve for Discounting of $40,000 838 0.50 0.49 0.05 0.00 0.00 0.48 0.52 

Variable Short Penn Line 
Orientation: Total Number Correct 838 14.80 15.00 -0.23 0.00 0.00 14.51 15.10 

Variable Short Penn Line 
Orientation: Median Reaction Time 
Divided by Expected Number of 
Clicks for Correct (sec) 

838 1.15 1.10 1.31 0.03 0.00 1.13 1.17 

Variable Short Penn Line 
Orientation: Total Positions Off for 
All Trials 

838 24.34 21.00 3.16 0.05 0.02 23.33 25.35 

Penn Word Memory Test:  Total 
Number of Correct Responses 838 35.64 36.00 -0.82 0.01 0.00 35.44 35.84 

Penn Word Memory Test:  Median 
Reaction Time for Correct 
Responses (sec) 

838 1.56 1.51 1.85 0.03 0.01 1.54 1.58 

NIH List Sorting Working Memory 
Test 841 111.21 108.06 0.16 0.02 0.00 110.45 111.97 
1 Using the interquartile range (IQR: 75th percentile minus 25th percentile), we define a mild outlier to be any point greater than 
the 75th percentile or less than the 25th percentile by an amount at least 1.5 times the IQR. 
2 Using the interquartile range (IQR: 75th percentile minus 25th percentile), we define an extreme outlier to be any point greater 
than the 75th percentile or less than the 25th percentile by an amount at least 3 times the IQR. 
3 Handedness is a bimodal distribution with a strong preference for righthandedness in the HCP cohort, thus labeling as extreme 
outliers a large number of individuals with strong left-hand dominance. 
 

Table 1. Summary statistics for 28 continuous HCP attributes used in the modeling analysis. 

  

LASSO Principal Components Regression (LASSO-PCR).  

The primary goal of our analysis pipeline was to identify specific patterns of variability in the 

local connectome that reliably predict individual differences in a specific attribute. These unique 
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patterns would reflect a local connectome phenotype for that attribute. The LASSO-PCR 

pipeline used to generate local connectome phenotype (LCP) maps is illustrated in the lower 

panel of Figure 1. This process relied on a 5-fold cross-validation scheme in which a unique 

20% of the participants were assigned to each of five subsamples.  For each cross-validation 

fold, we trained models using 80% of the participants in order to make predictions on the held-

out 20% of participants.  The large number of HCP participants and the infrequent occurrence of 

outliers in the continuous response variables (see Table 1) justified random fold assignments 

with little concern about a higher density of outliers existing in any one fold.  The random 

assignment of subjects to folds could pose issues for any infrequent categories in the binary 

response variables, but the removal of insufficiently represented categories and a verification of 

near-even class distributions in each fold alleviated these concerns.  The analysis pipeline 

consisted of four major steps. 

Step 1: Dimensionality Reduction. The matrix of local connectome fingerprints (841 

participants x 433,386 features) contains many more features than participants (𝑝 >> 𝑁), 

thereby posing a problem for fitting virtually any type of model. To efficiently develop and 

evaluate predictive models in a cross-validation framework, on each fold we first performed an 

economical singular value decomposition (SVD) on the matrix of training subjects' local 

connectome fingerprints (Wall, Andreas, and Rocha, n.d.) :  

𝑋 = 𝑈𝑆𝑉!     (Eq. 1)   

where 𝑋 is an 𝑛×𝑝 matrix containing local connectome fingerprints for n participants in the 

cross-validation fold (~673 subjects × 433,386 elements per fingerprint), 𝑉! is an 𝑛×𝑝 matrix 

with row vectors representing the orthogonal principal axes of 𝑋, and the matrix product 𝑈𝑆 is an 

𝑛×𝑛 matrix with rows corresponding to the principal components required to reproduce the 

original matrix 𝑋 when multiplied by the principal axes matrix 𝑉!.  
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Step 2: LASSO Model. To reduce the chance of overfitting and improve the 

generalizability of the model for a novel test set, we employed LASSO regression, a technique 

that penalizes the multivariate linear model for excessive complexity (i.e., number and 

magnitude of nonzero coefficients) (Tibshirani, 2011). The penalty in this approach arises from 

the L1 sparsity constraint in the fitting process, and this combined method, known as LASSO-

PCR, has been used successfully in similar high-dimensional prediction models from 

neuroimaging data sets (Wager et al., 2013; Wager, Atlas, Leotti, & Rilling, 2011).  In short, the 

LASSO-PCR approach identifies a sparse set of components that reliably associate individual 

response variables (see Figure 1) and takes the following form:  

𝛽 = 𝑎𝑟𝑔 𝑚𝑖𝑛!{||𝑦 − 𝑍𝛽||! + 𝜆||𝛽||}                             (Eq. 2) 

where 𝑍 = 𝑈𝑆 as defined above.  Using a cross-validation approach, we estimated the optimal 𝜆 

parameter and associated 𝛽 coefficients using the “glmnet” package in R (Friedman & Hastie, 

2009) (see https://cran.r-project.org/web/packages/glmnet/glmnet.pdf for documentation).  For 

each response-specific regression model, the model inputs included the principal components 

estimated from Eq. 1, i.e., 𝑈𝑆 (see Figure 2), and intracranial volume (ICV).  For continuous 

variables (e.g., reaction times), a linear regression LASSO was used. For binarized categorical 

variables (e.g., gender), a logistic regression variant of LASSO was used. In order to assess the 

value of the local connectome fingerprint components in modeling continuous response 

variables, the LASSO-produced 𝛽 vector was truncated (𝛽∗) to exclude ICV and thereby restrict 

interpretation to the relationship between the response variables and the principal components.  

The inclusion of ICV while building a model allows for the isolation of any predictive 

power present in the local connectome fingerprint and not to head size, which is a common 

adjustment used when attempting to understand structural differences between individuals or 

groups to reduce the possibility of type-I errors (O’Brien et al., 2011).  Our LASSO-PCR 

procedure considers ICV in every model, and in some cases, ICV is deemed a significant 
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contributor to variance in the response variable.  In other cases, ICV is assigned a regression 

coefficient of zero.  We observe empirically that the correlation of ICV to local connectome 

fingerprint principal component scores is quite small. This is to be expected considering the 

orthogonality of the principal components and small chance that ICV would align meaningfully 

with one or more component.  Combining the observation that ICV has small, non-meaningful 

correlations with the local connectome fingerprint principal components with the knowledge that 

the local connectome fingerprint components are themselves orthogonal, we mitigate a common 

result of regression modeling in which the inclusion of a highly correlated feature may drastically 

alter other features’ regression coefficients.  Regardless of the coefficient assigned to ICV, we 

ultimately want to make predictions for the continuous response variables without any 

knowledge of ICV by excluding the ICV coefficient and associated participant measurements 

from the model prediction step.  While the quality of the resulting predictions (Step 4 below) may 

be negatively impacted by removing ICV as a potentially significant predictor in a model, 

controlling for ICV in this manner ensures that any observed correlation is not related to 

intracranial volume. 

While truncating the LASSO-produced 𝛽 vector allows for the calculation of ICV-ignorant 

predictions for the continuous response variables, the same procedure cannot be adopted for 

categorical response variables.  Such an approach to our binary responses results in undesired 

artifacts due to the nonlinear nature of logistic regression.  An alternate approach to assess the 

value of the local connectome fingerprint in a binary prediction is described in Step 4.  

Step 3: Local Connectome Phenotype Map. For each response variable, we expect 𝛽∗ to 

contain non-zero weights on a subset of the orthogonal principal components (𝑈𝑆, or 

equivalently, 𝑋𝑉), and these weights were used to construct a local connectome phenotype 

map, defined as the weighted influence of each fiber in the local connectome on the modeled 

response variable. To convert the regression coefficients into the dimensions of the local 
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connectome, the sparse vector of regression coefficients 𝛽∗ was multiplied by the principal axes 

matrix 𝑉 to produce a weighted linear combination of the principal axes deemed relevant to a 

particular subject attribute. 

 
!̂w =V β̂ *                                                           (Eq. 3) 

This linear combination of principal axes, 𝑤, represents a 𝑝 ×1 vector reflecting the white matter 

substructure of the local connectome fingerprint vector relevant to a particular observed 

response.  We refer to the vector 𝑤 as the local connectome phenotype for the associated 

response variable.  

Step 4: Prediction. Finally, we use the reconstructed local connectome phenotype map 

to predict a variety of continuous social, biological, and cognitive responses for participants in 

the test set. Ultimately, we sought a model that predicted a response variable 𝑦!  for subject i in 

the test set such that 𝑦! = 𝑥!𝑤 where 𝑤 is the response-related local connectome phenotype 

and 𝑥! is the individual participant's local connectome fingerprint. A prediction was generated for 

all participants in the hold-out set on each validation fold. Once predictions for all participants 

were generated for a given response variable, the performance of the model was evaluated 

using the correlation between predicted and observed values (continuous variables only). 

While LCP maps were still constructed for categorical response variables, the utility of 

these LCP maps for prediction was estimated by comparing the classification accuracy of an 

ICV-only model to that of a model incorporating ICV and the local connectome fingerprint.  In 

the case where the fingerprint-informed model outperforms the ICV-only model, the increase in 

classification accuracy can be attributed to information contained in the local connectome 

fingerprint map. 

The calculated significance of each continuous prediction model stems from a 10,000-

trial nonparametric permutation test.  In each trial, the response values were permuted prior to 

executing the LASSO model fitting procedure while ensuring that the fingerprint PC-ICV 
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measurements were still paired as same-subject inputs to the models.  After permuting the 

response values, the LASSO model fitting procedure was used to construct a response-specific 

model from the randomly permuted data.  Correctly mapped fingerprint and ICV information was 

then used to predict subjects’ response values using the permutation test models.  Correlation 

was computed for each set of model predictions and true observations to build a null distribution 

of the chance performance of a LASSO model for the given response.  The proportion of trials in 

the permutation test in which the magnitude of the computed correlation met or exceeded the 

magnitude of the observed vs. prediction correlation in Table 3 is reported as the correlation p-

value.  In creating a LASSO model with permuted response values, we observed many cases in 

which no PCs were retained as significant predictors of variance.  A resulting intercept-only 

model yields a constant, thus having a standard deviation of 0.  Correlation between the 

prediction and observation in this case is undefined and was not included in the calculation of 

the associated p-value.   

 

Results 

Covariance Structure and Dimensionality of Local Connectome Fingerprints 

Inter-voxel white matter architecture, reflected in the local connectome fingerprint, has been 

shown to be unique to an individual and sculpted by both genetic predisposition and experience 

(Yeh, Vettel, et al., 2016); however, it is not yet clear whether the local connectome also exhibits 

reliable patterns of shared variability across individuals. To illustrate this, Figure 2A shows three 

exemplar fingerprints from separate subjects in the sample. These exemplars reveal the 

sensitivity of the method to capture both common and unique patterns of variability. For 

example, the highest peaks in the three fingerprints are similar in terms of their size and 

location. This pattern appears to exist across subjects and is generally expressed in the mean 

fingerprint (Fig. 2C). However, there are also clear differences between participants. For 

example, consider the sharpness and location of the rightmost peaks in the three exemplar 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/122945doi: bioRxiv preprint 

https://doi.org/10.1101/122945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Powell et al., Local Connectome Phenotypes, 18 

fingerprints in Figure 2A.  This uniqueness supports our previous work highlighting single 

subject classification from the fingerprint across varying temporal intervals (Yeh, Vettel, et al., 

2016). 

 

Figure 2. Lower dimensional structure of the local connectome fingerprints. (A) Three 

individual local connectome fingerprints, from three separate subjects, show coarse 

commonalities and unique patterns of variability when connection density is reshaped in a 

left-posterior-superior vector. (B) Cumulative summation of variance explained from each 

component, sorted by the amount of variance explained by each component. Dotted lines 

indicate the number of components (697) needed to explain 90% of the variability in the 

fingerprint dataset. (C) Mean fingerprint across participants (blue, left) and linear 

summation of principal components that explain 90% of the variance (red, right). 

 In order to explicitly test for covariance across participants, we looked at the distribution 

of pairwise correlations between fingerprints. The histogram in Figure 3 shows the total 

distribution of pairwise inter-subject correlations, revealing a tight spread of correlations such 
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that the middle 95% of the distribution lies between 0.32 and 0.50.  This confirms that inter-

subject correlations are substantially lower, averaging a correlation of 0.42 across all pairs of 

841 HCP participants, than intra-subject correlations, found to be well above 0.90 (Yeh, Vettel, 

et al., 2016). Thus, the local connectome fingerprint exhibits a moderate but reliable covariance 

structure across participants, indicating its utility to examine shared structural variability across 

subjects that capture similarity in social, health, and cognitive factors. 

 

Figure 3. Correlations between fingerprints. The matrix of between-subject correlations in 

local connectome fingerprints, sorted by participant index is shown on the right. The 

distribution (inset) is the histogram of the upper triangle of the correlation matrix and the 

best fit kernel density estimate (red line). 

The dimensionality of the fingerprint itself (841 participants x 433,386 elements) poses a 

major challenge when examining the predictive value of the local connectome for group 

similarity. The group fingerprint contains many more features than subjects (𝑝 >> 𝑁), leading to 

a strong risk of overfitting.  We employed a dimensionality reduction routine that isolates 

independent principal components from the entire local connectome fingerprint matrix to 
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decompose the variance within the set of fingerprints.  This analysis found that the 

dimensionality of the local connectome fingerprint matrix was still relatively high and complex, 

requiring 697 of 841 components to explain 90% of the variance (Figure 2B). While it appears 

that many components are required to meaningfully explain fingerprint variance, the pattern of 

the mean fingerprint could be successfully recovered by a linear combination of the principal 

components (Figure 2C), confirming that this lower dimensional projection is adequate to 

represent the much larger dimensional fingerprint. 

 

Predicting Inter-Subject Variability  

After identifying a covariance structure in the group fingerprint matrix, we fit regression models 

to test how well the fingerprints could predict participant attributes, including social, biological, 

and cognitive factors. Although we used the principal components as predictor variables, the 

underlying dimensionality of the local connectome fingerprint matrix (697 components for 90% 

variance) is still quite high relative to the sample size (841 participants). Therefore, we applied 

an L1 sparsity constraint (i.e., LASSO) in the fitting process of a principal components 

regression (LASSO-PCR), as this approach identifies a sparse set of components that reliably 

predict individual response variables (see Figure 1).  

Table 2 shows the logistic LASSO-PCR results for the four binary categorical participant 

attributes: gender, race, ethnicity, and relationship status.  An examination of the test accuracies 

in Table 2 reveals that both gender and race predictions are significantly improved with the 

inclusion of local connectome fingerprint information in the associated logistic regression 

models.  The 95% confidence intervals for prediction accuracy (ICV and local connectome 

fingerprints) arise from bootstrapping prediction-observation pairs and reporting the appropriate 

percentiles from a distribution of 10,000 bootstrapped classification accuracy calculations (see 

Methods). The p-values associated with the reported classification accuracy arise from a 

nonparametric permutation test performed for each response variable.  The test began by 
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permuting response values prior to the model fitting step in order to establish a null distribution 

for chance accuracy achievable by a LASSO logistic regression model (see Methods).  The 

provided p-values reflect the proportion of 10,000 trials in which the accuracy achieved in the 

permutation test met or exceeded the accuracy achieved in the CV-prediction of the indicated 

response.  The models for ethnicity and relationship status revealed no relationships and 

perform at exactly the base rate for their respective categories. 

 

Model 
Response                                   

(Siginificant 
CV Results 
Italicized) 

Sample 
Size 

Significant 
Correlation 

with 
Intracranial 

Volume 

Training 
Accuracy 

(Measure of 
Model Fit) 

CV-Prediction 
Accuracy    

(ICV Only) 

CV-Prediction 
Accuracy           

(ICV and LCF 
PCs) 

Confidence Interval 
[Lower, Upper]             

(ICV and LCF PCs) 

Accuracy         
p-value  

Gender1* 840 Yes 0.9405 0.8071 0.8691 0.8452 0.8905 0 

Race2* 760 Yes 0.9632 0.8276 0.9053 0.8842 0.9263 0 

Ethnicity3 833 No 0.9136 0.9136 0.9136 0.8944 0.9316 1.0000 
Relationship 
Status4 840 No 0.6679 0.5571 0.5571 0.5226 0.5917 0.7620 

* The prediction accuracy was statistically significant after applying the False Discovery Rate (FDR) correction for multiple 
comparisons. 
1 The female-male split in the 840 subjects was 56%-44%, respectively. 
2 The white and black subpopulations made up 82% and 18%, respectively, of the 760 subjects reported here. 
3 The Not Hispanic/Latino and Hispanic split in the 833 subjects was 91.4%-8.6%, respectively. 
4 Relationship status included 44.3% of the population in a "Married or Live-in Relationship" and 55.7% not in such a 
relationship. 
 

Table 2. Logistic LASSO-PCR results for four categorical HCP attributes. 

 

 In addition to the binary participant attributes, we observed many reliable prediction 

models with the continuous variables. Table 3 (fourth column) shows the training results for the 

corresponding linear models. As expected, nearly all models were statistically significant in the 

training evaluation, even after adjusting for multiple comparisons. Only two variables, the 

Pittsburgh Sleep Quality Index and systolic blood pressure, were not significant when 

considering this segment of the data, largely because the LASSO model did not contain any 

non-zero coefficients.  The LASSO form of penalized regression can drive coefficients to exactly 

zero when their effects are sufficiently weak.  This results in an intercept-only model that 
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produces a uniform set of predictions, and observation-prediction correlation cannot be 

calculated when there is no variability in the set of predictions. 

 

Model Response                                   
(Siginificant CV Results 

Italicized) 

Sample 
Size 

Significant 
Correlation with 

Intracranial 
Volume 

Training 
Correlation 
(Measure of 
Model Fit) 

Observed vs. 
CV-Prediction 

Correlation       

Confidence 
Interval          

[Lower, Upper] 

Correlation 
p-value 

Age (in years) 841 Yes 0.1430* 0.0311 -0.0378 0.1007 0.1776 

Handedness 841 No 0.5581* -0.0594 -0.1208 0.0017 0.9475 

Total Household Income 836 Yes 0.1604* -0.0029 -0.0753 0.0632 0.5181 
Years of Education 
Completed 840 No 0.4377* 0.0729* 0.0127 0.1343 <10E-4 

Body Mass Index 840 No 0.4976* 0.2736* 0.2067 0.3421 <10E-4 

Mean Hematocrit Sample 740 Yes 0.4348* 0.1324* 0.0654 0.1939 <10E-4 

Diastolic Blood Pressure 830 No 0.2058* 0.0615 -0.0154 0.1378 0.0331 

Systolic Blood Pressure 830 Yes 0.3596* 0.1396* 0.0745 0.2076 <10E-4 

Systolic-Diastolic Blood 
Pressure Ratio  830 Yes NA** -0.0240 -0.0926 0.0474 0.7457 

Hemoglobin A1C 566 No 0.2130* 0.0098 -0.0794 0.1071 0.4165 
Pittsburgh Sleep Quality 
Index 841 No NA** -0.0314 -0.0966 0.0415 0.8277 

NIH Picture Sequence 
Memory Test 840 No 0.5964* 0.0977* 0.0290 0.1618 <10E-4 

NIH Dimensional Change 
Card Sort Test 839 No 0.2381* -0.0299 -0.0945 0.0379 0.8071 

NIH Flanker Inhibitory 
Control and Attention 
Test 

841 Yes 0.1285* -0.0001 -0.0706 0.0651 0.5161 

Penn Progressive 
Matrices: Number of 
Correct Responses 

838 Yes 0.2027* 0.0849* 0.0187 0.1502 <10E-4 

Penn Progressive 
Matrices: Total Skipped 
Items 

838 Yes 0.2090* 0.0733* 0.0120 0.1383 <10E-4 

Penn Progressive 
Matrices: Median 
Reaction Time for Correct 
Responses 

838 Yes 0.1078* 0.0086 -0.0619 0.0754 0.4075 

NIH Oral Reading 
Recognition Test 841 Yes 0.1665* 0.0008 -0.0702 0.0660 0.4748 

NIH Picture Vocabulary 
Test 841 Yes 0.5206* 0.0481 -0.0187 0.1142 0.0781 

NIH Toolbox Pattern 
Comparison Processing 
Speed Test 

841 No 0.1814* -0.0569 -0.1260 0.0061 0.9390 

Delay Discounting: Area 
Under the Curve for 
Discounting of $200 

838 Yes 0.3010* 0.0275 -0.0311 0.0891 0.2202 

Delay Discounting: Area 
Under the Curve for 
Discounting of $40,000 

838 No 0.2056* 0.0802* 0.0132 0.1527 <10E-4 

Variable Short Penn Line 
Orientation: Total Number 
Correct 

838 Yes 0.4490* 0.0951* 0.0279 0.1589 <10E-4 
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Variable Short Penn Line 
Orientation: Median 
Reaction Time Divided by 
Expected Number of 
Clicks for Correct  

838 Yes 0.4449* -0.0572 -0.1302 0.0141 0.9520 

Variable Short Penn Line 
Orientation: Total 
Positions Off for All Trials 

838 Yes 0.4695* 0.0014 -0.0621 0.0735 0.4741 

Penn Word Memory Test:  
Total Number of Correct 
Responses 

838 No 0.2382* 0.0474 -0.0228 0.1189 0.0764 

Penn Word Memory Test:  
Median Reaction Time for 
Correct Responses 

838 No 0.2354* -0.0391 -0.0965 0.0191 0.9034 

NIH List Sorting Working 
Memory Test 841 Yes 0.4140* 0.0793* 0.0097 0.1540 <10E-4 

* The observed-predicted correlation was statistically significant after applying the FDR correction for multiple comparisons. 
** Training correlation could not be computed when the full HCP training set yielded no non-zero lasso coefficients for ICV or 
LCF PCs. 
 

Table 3. Linear LASSO-PCR results for 28 continuous HCP attributes. 

 

To complement the model training results, we examined the predictive performance of 

the models using 5-fold cross validation.  This was done by projecting the regression weights in 

component space back into local connectome space in order to provide a weight map for each 

fiber in the local connectome to the target response variable. These maps reflect the local 

connectome phenotype for that attribute and were multiplied against a full local connectome 

fingerprint for each participant in the validation fold to generate a prediction for that participant 

(see bottom panel, Figure 1).  

We assessed the generalizability of 28 continuous response models in a cross-validation 

paradigm and, as shown in Table 3 (fifth column), 10 of these attributes were significant 

predictors after applying the False Discovery Rate (FDR) correction for multiple comparisons. 

These factors included years of education, measures of body type (BMI), physiology (hematocrit 

sample, blood pressure measures), and several cognitive measures including episodic memory 

(NIH Picture Sequence Memory Test), fluid intelligence (Penn Progressive Matrices: Number of 

Correct Responses & Total Skipped Items), self-regulation (Delay Discounting: Area Under the 
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Curve for Discounting of $40,000), spatial orientation (Variable Short Penn Line Orientation: 

Total Number Correct), and working memory (NIH List Sorting Working Memory Test). 

 

Specificity of Phenotypes to Response Variables  

In our final analysis, we examined the specificity of a local connectome phenotype map by 

considering whether or not the predictive maps were unique for each participant attribute being 

predicted. In other words, we tested whether a single map could capture a generalized 

predictive relationship for multiple response variables, indicating that the models themselves 

may lack specificity. If so, any given model may perform suitably well at predicting any 

participant attribute (e.g., BMI), even if derived from training on a different participant factor 

(e.g., years of education completed).  

To explicitly test this, we looked at the correlation between the 10 significant phenotype 

maps from the cross-validation tests shown in Table 3. This correlation is shown in Figure 4. 

With the exception of the correlation between the phenotypes for the Variable Short Penn Line 

Orientation task and the NIH List Sorting Working Memory Test, which was expected given the 

moderate association between performance in these two tasks (Supplementary Table 1), most 

of the phenotype maps were uncorrelated.  We visualized the uniqueness of these phenotype 

maps by projecting the local connectome phenotypes into voxel space, where the average 

weight of multiple fibers within a voxel is depicted as a color map on the brain. A subset of these 

maps is shown in Figure 4. Visual inspection of these example phenotype maps reveals large 

heterogeneity between models. For instance, strong positive loadings are observed in portions 

of the splenium of the corpus callosum and frontal association fiber systems for the Picture 

Sequence Memory Task, while these same regions load negatively for the Variable Short Penn 

Line Orientation test and NIH List Sorting Working Memory Test. Bilateral corona radiata 

pathways appear to negatively load for the Penn Progressive Matrices and Variable Short Penn 

Line Orientation test, but not for any of the other attributes. These qualitative comparisons, 
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along with the direct correlation tests, confirm that the phenotype maps for predicting inter-

subject variability are highly specific to the variable being modeled.  

 

 

Figure 4. Local connectome phenotypes. Matrix inset is a correlation matrix displaying the 

similarity between phenotypes of the local connectome to the continuous response 

variables. Example phenotype maps are shown around the correlation matrix, and the color 

scale for each has been adjusted to reveal the areas of the local connectome that are most 

predictive of the labeled response variable.  
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Discussion 

Our analysis revealed that the local connectome fingerprint exhibits a moderate, but reliable, 

correlation between participants that can be leveraged to predict at the level of the individual 

along dimensions of social, biological, and cognitive attributes. Although the between-subject 

correlation is much smaller than the within-participant correlation reported previously (Yeh, 

Vettel, et al., 2016), it was robust enough to capture inter-subject similarities. Much to our 

surprise, the lower dimensional structure of this inter-subject covariance was still relatively 

complex, with hundreds of principal components required to explain most of the variance in the 

sample. Using a cross-validation regression approach that is optimized for ultra-high 

dimensional data sets, we show how patterns of variability in the local connectome not only 

correlated with nearly all participant-level social, health, and cognitive attributes (i.e., strong and 

significant training accuracy), but could also independently predict variability in many of the 

features tested (i.e., hold-out test accuracy via cross validation). Finally, we were able to show 

how the local connectome phenotype maps for individual attributes were highly specific to the 

variable being modeled. This suggests that there is not some unique, generalizable feature of 

local white matter that predicts inter-subject variability, but instead there are highly specific 

patterns that predict variance in specific inter-subject attributes. Taken together, the current 

results confirm our hypothesis that shared variability across participants is reflected in the local 

connectome itself. This opens the door for leveraging the local connectome fingerprint, along 

with functional measures of connectomic architecture (Shen et al., 2017), as a reliable marker 

for individual differences in behavior. 

The current findings clearly show how it is possible to recover a portion of variability in 

social, biological, or cognitive attributes from local white matter architecture. This complements 

recent reports that global functional connectome properties can reliably predict cognitive ability 

(Ferguson, Anderson, & Spreng, 2017; Finn et al., 2015; Hearne, Mattingley, & Cocchi, 2016) 

by providing a putative structural basis for these previous associations.  For example, in our 
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study, structural similarity in the local connectome fingerprint reliably predicted six of the tested 

cognitive performance measurements, including a list sorting task that captures individual 

variability in working memory performance (Gur et al., 2001; Gur et al., 2010). The associated 

local connectome phenotype for working memory identified portions of what appear to be 

frontoparietal pathways (Figure 4). Our results nicely complement a recent study of working 

memory that focused on direct and indirect connectivity in the frontoparietal networks (Ekman, 

Fiebach, Melzer, Tittgemeyer, & Derrfuss, 2016). In their work, the authors found that the 

network centrality of focal structural connections in the frontal, temporal, and parietal cortices 

could predict individual differences in working memory capacity using linear regression. When 

considered in the context of the current study, our findings augment previous correlative findings 

between frontoparietal regions and working memory capacity (Bender, Prindle, Brandmaier, & 

Raz, 2016; Klingberg, 2006; Nagy, Westerberg, & Klingberg, 2004; Takeuchi et al., 2010) by 

showing that the integrity of the pathway of these white matter fascicles reliably predicts working 

memory performance.  

The existence of reliable and predictive inter-subject covariance patterns in the white 

matter fascicles of the human brain begs the question of mechanism: are these similarities 

genetically determined, experientially sculpted, or developed through gene-by-environment 

interactions? Emergent findings in genetics are suggesting that at least a portion of macroscopic 

white matter structure is guided by genetics (Kochunov, Fu, et al., 2016; Kochunov, Thompson, 

et al., 2016; Yeh, Vettel, et al., 2016).  For example, recent work by Kochunov and colleagues 

(2016a) examined a heritability relationship between whole-brain fractional anisotropy (FA) and 

information processing speed in two interesting participant populations, the HCP twins cohort 

and an Old Order Amish cohort. The cohorts both had well-characterized genetic properties, but 

they differed in the amount of experiential variability since the Amish have higher environmental 

homogeneity compared to the urban/suburban HCP cohort.  Kochunov and colleagues (2016a) 

argued that the replication of the genetic contribution to processing speed and FA of cerebral 
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white matter despite the experiential variability in the cohorts suggested a strong phenotypic 

association for the trait. Our analysis would be able to pick up such genetically mediated brain-

behavior phenotypes. 

 While genetics may contribute to white matter architecture, overwhelming evidence 

suggests that experience sculpts these pathways over time. For example, variability in the white 

matter signal has been shown to covary with several social (Gianaros et al., 2013; Molesworth 

et al., 2015), biological (Arfanakis et al., 2013; Miralbell et al., 2012; Verstynen et al., 2013), and 

cognitive (Muraskin et al., 2016; Verstynen, 2014; Ystad et al., 2011) attributes. In many cases, 

it is difficult to extract or identify specific pathways or systems that link white matter pathways to 

these shared experiential factors. However, several intervention studies have targeted more 

specific experience-white matter associations. For example, prolonged training on a variety of 

tasks has been shown to induce changes in the diffusion MRI signal (Blumenfeld-Katzir, 

Pasternak, Dagan, & Assaf, 2011; Sampaio-Baptista et al., 2013; Scholz, Klein, Behrens, & 

Johansen-Berg, 2009; Steele, Scholz, Douaud, Johansen-Berg, & Penhune, 2012). In some 

cases, the particular change in the diffusion signal is consistent with alterations in the underlying 

myelin (Sampaio-Baptista et al., 2013), for which there is emerging support from validation 

studies in non-human animal models (Budde, Janes, Gold, Turtzo, & Frank, 2011; Budde, Xie, 

Cross, & Song, 2009; Klawiter et al., 2011). One consistency in these reports of training-induced 

plasticity in white matter pathways is that the effects are task-specific (i.e., training in a specific 

task appears to impact specific white matter fascicles). This specificity of experiential factors on 

white matter pathways is necessary in order to be able to build reliable prediction models from 

the diffusion MRI signal.  

Our previous work showed that the local connectome fingerprint reflects both genetic 

and experiential factors that contribute to between-subject variability in white matter architecture 

(Yeh, Vettel, et al., 2016). We found that monozygotic twins expressed a modest degree of 

similarity in their local connectome fingerprints, with ~12% of the local connectome pattern 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 15, 2017. ; https://doi.org/10.1101/122945doi: bioRxiv preprint 

https://doi.org/10.1101/122945
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 
Powell et al., Local Connectome Phenotypes, 29 

being similar between monozygotic twins. This similarity was much higher than what was 

detected in siblings or dizygotic twins; however, genetic similarities overall seemed to contribute 

very little to similarities in the local connectome. In contrast, most of the structure in the local 

connectome fingerprint appeared to be driven by experience. By comparing changes in the 

fingerprint over time, average intra-subject similarity changed linearly with time. While it can be 

argued that part of this change simply reflects aspects of the normal aging process (Simmonds, 

Hallquist, Asato, & Luna, 2014; Westlye et al., 2010), we should point out that the intra-subject 

changes seen in our previous study happen at a much faster rate than typical age-related 

changes in white matter pathways (i.e., days and weeks vs. years, respectively). Thus, we 

expect that much of this plasticity is likely due to experiential factors.  

 One of the strengths of the local connectome fingerprint approach used here is that it 

does not rely on fiber tracking algorithms. Recent evidence indicates a false positive bias when 

mapping white matter pathways (Daducci et al., 2016; Reveley et al., 2015; Thomas et al., 

2014).  This is due in large part to the difficulty that tracking algorithms have when distinguishing 

between a crossing and turning fiber pathway. Our approach does not rely on a deterministic or 

probabilistic tracking algorithm; instead, we analyze the entire set of reconstructed fibers 

throughout the brain as a unitary data object. This eliminates the false positive identification of 

white matter fascicles by not attempting fascicular classification at all. However, without tracking 

along pathways we cannot say whether specific pathways positively or negatively predict a 

specific response variable. In the future, exploration of the local connectome phenotype maps 

with careful pathway labeling (e.g., expert-vetted fiber labeling) can identify general regions that 

positively or negatively contribute to the prediction. 

 Another limitation of the approach used here arises from the fact that, by necessity, the 

local connectome fingerprints must be computed from a common, atlas-defined space.  The 

nonlinear transformations required in order to transform brains of various shapes and sizes into 

a stereotaxic space through the QSDR procedure invariably introduce a degree of noise in the 
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SDFs.  The number and orientation of fibers in each voxel determine the local connectome 

fingerprint, and these measurements could possibly be distorted during QSDR.  Such a 

transformation is unavoidable because the dimensionality of each fingerprint must be identical, 

and each element of a fingerprint must represent the same brain micro-region as the 

corresponding element in any other fingerprint. Only with this common, atlas-aligned 

representation of the local connectome fingerprint can we apply LASSO-PCR to explore 

common substructures.  The potential price for this convenience is an introduction of noise in 

the local connectome fingerprint itself, likely increasing the possibility of a false-negative error 

(i.e., failing to recognize a true phenotypic relationship).  In addition, the sampling of the local 

connectome comes from identifying the peaks from the average SDF for this particular sample 

of healthy young adults. While it is believed that this approach gives a reasonable estimate of 

normative fiber structure (Yeh, Vettel, et al., 2016), it is possible that an atlas defined from 

another population, with consistent differences in local white matter architecture (e.g., older 

adults), could result in slightly different local connectome fingerprints and thus slightly different 

phenotypic associations.  

Our analytical design was constructed to examine the generalizability of associations 

between local white matter architecture and demographic, health, and cognitive attributes rather 

than to investigate simple descriptive correlations. Although training accuracies themselves do 

not evaluate how well the model generalizes to unseen data, we included training model 

performance results in Tables 2 and 3 to highlight two important points.  First, in some cases, 

test model performance is poor because the training model is also poor. This reflects cases 

where the model fitting procedure simply failed to identify meaningful patterns, as opposed to 

cases where the fitting procedure was highly biased to the training set, but exhibits low flexibility 

(i.e., sensitive to meaningful, but not generalizable associations). Second, and more importantly, 

many traditional neuroimaging approaches only report training model results that often 

overestimate the strength of the relationship. Results in Tables 2 and 3 reveal that nearly all 
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training models show strong, significant associations; however, only a small subset retain 

significance on the independent hold out set, where the effect size is much smaller.  We should 

note that the effect sizes of the significant models in the hold out test validation, particularly the 

cognitive measures, are substantially smaller than previously reported effect sizes of functional 

connectome phenotypes (Ferguson, Anderson, & Spreng, 2017; Finn et al., 2015; Hearne, 

Mattingley, & Cocchi, 2016). This may be due to the fact that variability in structural connections 

may serve as a moderator of global network dynamics that drive behavior, but the functional 

dynamics themselves are a more direct reflection of immediate brain function.  This suggests 

that multimodal analysis accounting for both structural and functional connectomic architecture 

may provide a stronger prediction of individual variability in cognitive function.  

 The current work reveals that the local connectome fingerprint reliably reflects shared 

variance between individuals in the macroscopic white matter pathways of the brain.  For the 

first time, we not only show how global white matter structure associates with different 

participant features, but we also show how the entire local connectome itself can predict a 

portion of the variability in independent samples.  While the overall variance explained by the 

local connectome fingerprint may at first seem small, it is consistent or even stronger than effect 

sizes of genetic risk scores used in behavioral medicine (Plomin, DeFries, Knopik, & 

Neiderhiser, 2016).  Thus, our local connectome phenotyping approach may also be predictive 

of not only normal, but also pathological variability (see also Yeh et al., 2013).  Future work in 

clinical populations should focus on applying this approach to generate diagnostic local 

connectome phenotypes for neurological and psychiatric disorders, thereby leveraging the full 

potential of this approach.  
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Supplementary Table 1. Pairwise Pearson correlation matrix for 28 continuous HCP attributes. 

Asterisks indicate significant correlations after correcting for multiple comparisons (FDR < 0.05). 
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