

1    **Real-time observation of flexible domain movements in Cas9**

2

3    Saki Osuka<sup>1,2</sup>, Kazushi Isomura<sup>1,2</sup>, Shohei Kajimoto<sup>1</sup>, Tomotaka Komori<sup>1</sup>, Hiroshi  
4    Nishimasu<sup>1</sup>, Tomohiro Shima<sup>1</sup>, Osamu Nureki<sup>1</sup>, and Sotaro Uemura<sup>1</sup>

5

6    1, Department of Biological Sciences, Graduate School of Science, The University of  
7    Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.

8    2, Authors contributed equally to this work.

9

10    Address correspondence to: Tomohiro Shima and Osamu Nureki,  
11    Department of Biological Sciences, Graduate School of Science, The University of  
12    Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan

13    T.S.      Tel: +81-3-5841-4399; Fax: +81-3-5841-4397;  
14                E-mail: [tomohiro.shima@bs.s.u-tokyo.ac.jp](mailto:tomohiro.shima@bs.s.u-tokyo.ac.jp)

15    O.N.      Tel: +81-3-5841-4392; Fax: +81-3-5841-8057;  
16                E-mail: [nureki@bs.s.u-tokyo.ac.jp](mailto:nureki@bs.s.u-tokyo.ac.jp)

17

18    Running title: Flexible domain movement in Cas9

19

20 **ABSTRACT**

21       **The CRISPR-associated protein Cas9 is a widely used genome editing tool that**  
22       **recognizes and cleaves target DNA through the assistance of a single-guide RNA**  
23       **(sgRNA). Structural studies have demonstrated the multi-domain architecture of**  
24       **Cas9 and sequential domain movements upon binding to the sgRNA and the target**  
25       **DNA. These studies also hinted at the flexibility between domains, but whether**  
26       **these flexible movements occur in solution is unclear. Here, we directly observed**  
27       **dynamic fluctuations of multiple Cas9 domains, using single-molecule FRET. The**  
28       **flexible domain movements allow Cas9 to adopt transient conformations beyond**  
29       **those captured in the crystal structures. Importantly, the HNH nuclease domain in**  
30       **Cas9 only accessed the DNA cleavage position during such flexible movements,**  
31       **suggesting the importance of this flexibility in the DNA cleavage process. Our**  
32       **FRET data also revealed the conformational flexibility of apo-Cas9, which may**  
33       **play a role in the assembly with the sgRNA. Collectively, our results highlight the**  
34       **potential role of domain fluctuations in driving Cas9-catalyzed DNA cleavage.**

35

36 **Key words**

37 Fluctuations, Gene-editing, Intramolecular FRET, Conformational plasticity

38 **INTRODUCTION**

39 CRISPR (clustered regularly interspaced short palindromic repeats)-Cas  
40 (CRISPR-associated) systems were originally found as adaptive immunity systems  
41 against viruses and plasmids in bacteria and archaea (Jansen *et al*, 2002; Soria *et al*,  
42 2005; Bolotin *et al*, 2005; Pourcel *et al*, 2005; Barrangou *et al*, 2007). Unlike other  
43 CRISPR-Cas systems that employ ensembles of Cas proteins to recognize and cleave  
44 nucleic acids, the type II CRISPR-Cas system utilizes the single RNA-guided  
45 endonuclease Cas9 protein for the destruction of foreign nucleic acids (Shmakov *et al*,  
46 2017). *Streptococcus pyogenes* Cas9 (henceforth, Cas9) has been widely used as a  
47 powerful genome editing tool (Jinek *et al*, 2012; Mali *et al*, 2013; Cong *et al*, 2013),  
48 especially since Cas9 can be programmed by a synthetic single-guide RNA (sgRNA) to  
49 cleave any specific DNA sequence followed by a protospacer-adjacent motif (PAM)  
50 (Jinek *et al*, 2012). In addition, Cas9 has been applied to visualize, modify and express  
51 endogenous target genes (Hsu *et al*, 2014; Terns & Terns, 2014; Konermann *et al*, 2014;  
52 Sternberg & Doudna, 2015). The continuing application of Cas9 technologies to various  
53 studies has stimulated strong interest in the molecular basis by which Cas9 recognizes  
54 and cleaves its target DNA.

55 A series of crystal structures of Cas9 with and without the sgRNA and the target  
56 DNA have been solved (Anders *et al*, 2014; Jinek *et al*, 2014; Nishimasu *et al*, 2014;  
57 Jiang *et al*, 2016, 2015). These structural studies demonstrated the multi-domain  
58 architecture of Cas9, which mainly consists of a recognition (REC) lobe and a nuclease  
59 (NUC) lobe. The NUC lobe can be further divided into the HNH, RuvC and  
60 PAM-interacting (PI) domains. The crystal structures also revealed the sequential  
61 rearrangements of the Cas9 domains upon binding to the sgRNA and the target DNA.

62 The binding of the sgRNA induces a large rotation of the REC lobe to convert Cas9 into  
63 the active conformation to form a central channel, which can accommodate the  
64 sgRNA-target DNA heteroduplex. Along with the DNA binding, the PI domain  
65 recognizes the PAM sequence in the target DNA, leading to the heteroduplex formation  
66 (Anders *et al*, 2014). This heteroduplex formation induces the translocation of the HNH  
67 domain and conformational changes in the RuvC domain, to cleave the double strands  
68 of the target DNA. These domain rearrangements during the Cas9 catalytic processes  
69 have been further confirmed by bulk FRET measurements (Sternberg *et al*, 2015).

70 Although the structural studies have revealed the distinct Cas9 domain  
71 configurations of the apo, sgRNA-bound and sgRNA/DNA-bound states, the crystal  
72 structures have also shown that some parts of Cas9 are disordered, suggesting that the  
73 domain configurations are flexible under specific conditions (Nishimasu *et al*, 2014;  
74 Jiang *et al*, 2016). The crystal structures and bulk FRET measurements indicated that  
75 the position of the HNH domain in the sgRNA/DNA-Cas9 ternary complex flexibly  
76 translocates relative to the REC lobe (Nishimasu *et al*, 2014; Anders *et al*, 2014;  
77 Sternberg *et al*, 2015; Jiang *et al*, 2016). In all of the available crystal structures, the  
78 active site in the HNH domain is located away from the cleavage site of the target DNA  
79 (Nishimasu *et al*, 2014; Anders *et al*, 2014; Jiang *et al*, 2016). Thus, the transition of the  
80 HNH domain that leads Cas9 to adopt conformations beyond those solved by the crystal  
81 structures should be crucial for the DNA cleavage. In addition, mismatched base pairs in  
82 the sgRNA-DNA heteroduplex hamper the HNH transition (Sternberg *et al*, 2015;  
83 Dagdas *et al*, 2017), suggesting that the flexibility of the HNH domain is closely related  
84 to not only DNA cleavage but also DNA recognition. A previous single molecule study  
85 implied the conformational flexibility during the DNA binding process (Singh *et al*,

86 2016), and molecular dynamics simulations have also shed light on the importance of  
87 the flexible movements of the Cas9 domains in the sgRNA/DNA binding (Zuo and Liu  
88 2016; Palermo *et al.* 2016; Zheng, 2017). Thus, the flexibility of the Cas9 domain  
89 configuration could be an important factor in the Cas9 catalytic processes. However,  
90 direct experimental evidence of such flexible movement of the Cas9 domain in solution  
91 has not been reported.

92 To address this question, we directly observed the movement between the  
93 REC-RuvC, REC-HNH and HNH-RuvC domains, using single-molecule FRET  
94 (smFRET). Even in the steady state in the presence or absence of nucleic acids, a subset  
95 of Cas9 molecules demonstrated dynamic fluctuations in the FRET efficiency, providing  
96 strong evidence that the Cas9 domains move in a flexible and reversible manner.  
97 Further analysis suggested that the HNH domain accesses the DNA cleavage site only  
98 during the flexible domain movements, yielding new insights into the molecular basis of  
99 the Cas9 catalytic process.

100

101 **RESULTS**

102 **Experimental setup for single-molecule FRET measurements of Cas9.**

103 To directly observe the mobility of the Cas9 domains at the single molecule level, Cas9  
104 was site-specifically labeled with Cy3 and Cy5 fluorochromes. Using C80L/C574E  
105 cysteine-free Cas9, which has activity comparable to wild-type Cas9 (Nishimasu *et al*,  
106 2014), as the starting construct, we introduced three pairs of cysteine residues at  
107 D435/E945, S355/S867 and S867/N1054 in Cas9, as done in a previous bulk FRET  
108 study (Sternberg *et al*, 2015). These three FRET constructs were designed to monitor  
109 the movements between REC-RuvC (D435C-E945C), REC-HNH (S355C-S867C) and  
110 HNH-RuvC (S867C-N1054C), respectively (Fig 1A-C). The introduced cysteine  
111 residues were labeled with Cy3- (donor) and Cy5- (acceptor) maleimide. Furthermore,  
112 the constructs were genetically fused with biotin-carboxyl-carrier-protein (BCCP) at  
113 their N-terminus, to anchor the Cas9 molecules on a glass surface via an avidin-biotin  
114 linkage (Fig 1E). We first examined whether the FRET constructs retain their catalytic  
115 activity. All three BCCP-tagged fluorescent Cas9 constructs showed over 90% DNA  
116 cleavage activity as compared with wild-type Cas9 (Fig EV1), confirming that the  
117 cleavage activity is not substantially affected by the fluorescent labeling and the fusion  
118 with the BCCP-tag.

119 We then performed smFRET measurements of the fluorescently labeled Cas9  
120 molecules under nucleic-acid free, sgRNA-bound and sgRNA/DNA-bound conditions,  
121 using total internal reflection fluorescent microscopy (TIRFM). To ensure the binding  
122 states of the Cas9 molecules in each condition, we incubated 0.3 to 1 nM fluorescently  
123 labeled Cas9 and 200 nM sgRNA with or without 200 nM target DNA, to measure the  
124 sgRNA-bound and sgRNA/DNA-bound Cas9 molecules. Considering the saturation rate

125 of sgRNA on Cas9 (Fig EV2) and the dissociation constant value ( $K_d$ ) of 0.8 nM for the  
126 target DNA loading onto sgRNA-bound Cas9 (Sternberg *et al*, 2015), we assumed that  
127 almost all of the fluorescently labeled Cas9 molecules were occupied with nucleic acids  
128 under our assay conditions. The sgRNA/DNA-bound molecules in our assay should  
129 maintain the ternary complex of the sgRNA and the cleaved target DNA, because  
130 previous studies demonstrated that Cas9 cleaves the target DNA at a rate higher than 10  
131  $\text{min}^{-1}$  and remains tightly bound to the cleaved DNA (Jinek *et al*, 2012; Sternberg *et al*,  
132 2014; Sternberg *et al*, 2015). The Cas9 molecules were then anchored on the glass  
133 surface through BCCP, and illuminated with a 532-nm laser under TIRFM. The FRET  
134 efficiency of each Cas9 molecule was calculated from the recorded fluorescence  
135 intensities of Cy3 and Cy5 (Fig 1F). After the smFRET measurements, we confirmed  
136 that 68–95% of the observed Cas9 molecules labeled with Cy3 and Cy5 showed FRET  
137 under the tested conditions (Table EV1), using the acceptor bleaching method (see  
138 Method Details). Thus, we further analyzed the FRET trajectories of Cas9 molecules  
139 that showed FRET.

140

#### 141 **Dynamic rearrangements of the Cas9 domains upon nucleic-acids binding**

142 From the FRET efficiency of the Cas9 molecules (Fig 2), we validated the dynamic  
143 rearrangements of the Cas9 domains upon sgRNA and target DNA binding. In the apo  
144 state (Fig 2A), the FRET histograms of the fluorescently-labeled D435C-E945C (left  
145 panel) and S867C-N1054C (right panel) showed primary peaks at  $0.99 \pm 0.02$  and  $0.99$   
146  $\pm 0.06$  (median  $\pm$  HWHM) FRET efficiencies, respectively. Consistent with the crystal  
147 structures (Fig 1A, C and Table EV1), the high FRET efficiencies of the constructs  
148 indicated the close locations between the labeled amino acids. In contrast, the FRET

149 histogram of the S355C-S867C construct in the apo state showed the primary peak at  
150  $0.12 \pm 0.08$  (Fig 2A, center panel), indicating the longer distance between the labeled  
151 amino acids. Upon sgRNA binding, the FRET efficiency of the D435C-E945C  
152 construct decreased (Fig 2B, left panel), suggesting that sgRNA binding induced drastic  
153 rotation of the REC lobe relative to the RuvC domain. In contrast, the changes in the  
154 FRET efficiencies of S355C-S867C and S867C-N1054C for the sgRNA binding were  
155 only slight (Fig 2B), as estimated from the crystal structures (Table EV1). Subsequent  
156 DNA binding increased the FRET peak values of D435C-E945C to  $0.25 \pm 0.11$  and  
157  $0.98 \pm 0.04$  (Fig 2C, left panel). Similarly, the S355C-S867C construct exhibited an  
158 increase in the FRET efficiency upon the target DNA binding (Fig 2B, center panel),  
159 suggesting that the HNH domain approaches the cleavage site of the target DNA. This  
160 model of the HNH domain transition was further supported by the appearance of a low  
161 FRET distribution (0–0.5 FRET efficiency) in the histogram of the S867C-N1054C  
162 construct with the sgRNA and the target DNA (Fig 2C, right panel). Note that the  
163 changes in both the distance and orientation between the domains would contribute to  
164 the FRET efficiency shifts, because the fluorochromes on the Cas9 molecules showed  
165 high anisotropy (0.34-0.41 for Cy3 and 0.27-0.32 for Cy5, Appendix Fig S1). However,  
166 the timing and direction of the shifts were consistent with the previously proposed  
167 model (Nishimasu *et al*, 2014; Jinek *et al*, 2014; Jiang *et al*, 2015, 2016).  
168

## 169 **The Cas9 domains showed highly flexible and reversible movements**

170 The histograms of the FRET efficiency under all of the tested conditions did not exhibit  
171 simple single-peak distributions (Fig 2), suggesting that the distances and/or angles  
172 between the Cas9 domains are not fixed. Consistently, a fraction of Cas9 molecules

173 showed frequent fluctuations in the FRET efficiency between multiple FRET states (Fig  
174 3). These fluctuations indicate the highly flexible and reversible movements of the Cas9  
175 domains and represent the direct observation of the Cas9 domain fluctuations in  
176 solution.

177 During the 100-s observations, some molecules exhibited transitions between the  
178 static and fluctuating states (Fig 3C), suggesting that the Cas9 domains are in  
179 equilibrium between these states. Since the flexibility of the Cas9 domains should affect  
180 this equilibrium, we considered the percentage of fluctuating molecules to be an  
181 indicator of the domain flexibility (Fig 3D). Here, we defined a fluctuating molecule as  
182 a fluorescently-labeled Cas9 that showed more than two anti-correlated shifts in the  
183 fluorescence intensities of Cy3 and Cy5 during our observation period (see Materials  
184 and Methods).

185 The percentage of fluctuating molecules depended on the binding state of Cas9 (Fig  
186 3D). As a common property of the D435C-E945C and S355C-S867C constructs,  
187 sgRNA binding lowered the percentage, suggesting the decreased flexibility between  
188 the REC and NUC (the HNH and RuvC domains) lobes by sgRNA binding. In contrast  
189 to the sgRNA binding, the target DNA binding increased the percentage of fluctuating  
190 molecules for both constructs (Fig 3D), suggesting the increased flexibility between the  
191 REC and NUC lobes in the Cas9-sgRNA-DNA ternary complex. Although the FRET  
192 fluctuations could be brought about by the increased dynamics within the REC domain  
193 itself, because the two opposite positions in the REC domain (S435 and S355) showed  
194 similar tendencies in their flexibility, it is most likely that the flexible movements occur  
195 between the two lobes. We further analyzed the flexibility in the NUC lobe, using the  
196 S867C-N1054C construct. Unlike the flexibility between the REC and NUC lobes, the

197 flexibility between the HNH and RuvC domains apparently increased upon the sgRNA  
198 binding, but the differences were not statistically significant ( $P = 0.08$ , Steel-Dwass  
199 test). As compared with the D435C-E945C and S355C-S867C constructs,  
200 S867C-N1054C showed a relatively low number of fluctuating molecules (Fig 3D);  
201 however, there is a possibility that we underestimated the number of fluctuating  
202 molecules because, due to the short distance between S867 and N1054 (Nishimasu *et al*,  
203 2014), the construct requires a relatively larger domain displacement for the FRET  
204 efficiency shift. Thus, it is not appropriate to compare the flexibilities of these three  
205 domains observed in the three constructs. However, because the percentages of  
206 fluctuating molecules of the D435C-E945C and S355C-S867C constructs were highly  
207 dependent on the nucleic-acid binding state, we conclude that the binding of  
208 nucleic-acids regulates the flexibility, at least between the REC and NUC lobes.

209 To elucidate the conformational differences between the fluctuating and static Cas9  
210 molecules, we compared their FRET histograms (Fig 4 and EV3). We found that the  
211 FRET efficiency of fluctuating D435C-E945C molecules in the apo state was widely  
212 distributed from 0 to 1, in contrast to the very narrow FRET distribution (HWHM =  
213 0.02) of static molecules in the apo state (Fig EV3). Considering the appearance of the  
214 low FRET peak in the FRET distribution of sgRNA-bound D435C-E945C (Fig 2B),  
215 some of the fluctuating molecules in the apo state should adopt a conformation that  
216 resembles the sgRNA-bound active form of Cas9. A similar tendency was observed in  
217 the S355C-S867C and S867C-N1054C constructs. The fluctuating S355C-S867C  
218 molecules in the apo state showed widely distributed FRET efficiencies without clear  
219 Gaussian peaks (Fig 4). In contrast, the static molecules showed a narrow peak at  $\sim 0.2$   
220 FRET efficiency (mean  $\pm$  HWHM =  $0.17 \pm 0.07$ ) in the apo state, and a gradual increase

221 of the efficiency by the sgRNA binding. In the case of the S867C-N1054C construct,  
222 the FRET distribution of the static molecules showed a narrow peak at a high FRET  
223 efficiency (mean  $\pm$  HWHM = 0.99  $\pm$  0.06) in the apo state, and the gradual appearance  
224 of a low FRET population upon sgRNA and target DNA binding (Fig EV3). In contrast,  
225 the fluctuating S867C-N1054C molecules frequently showed low FRET efficiencies in  
226 the apo and sgRNA-bound states. These results demonstrate that flexible domain  
227 movements allow Cas9 to adopt different conformations from the static ones solved in  
228 the crystal structures.

229

230 **The HNH domain accessed the DNA-cleavage position only during the flexible  
231 movement**

232 To assess the effects of the flexible domain movements on the DNA cleavage process,  
233 we further analyzed the movements of the HNH domain in the Cas9-sgRNA-DNA  
234 ternary complex. The FRET efficiency distributions of the fluctuating S355C-S867C  
235 molecules in the ternary complex exhibited several clear peaks, in contrast to the  
236 widespread distributions of the apo-Cas9 and sgRNA-bound binary complex (Fig 4).  
237 These results suggest that the HNH domain in the ternary complex moves between  
238 distinct positions relative to the REC lobe. Consistently, previous studies have  
239 demonstrated that the ternary complex can adopt at least two conformations in which  
240 the HNH domain is close to or far from the cleavage site of the target strand (Nishimasu  
241 *et al*, 2014; Anders *et al*, 2014; Jiang *et al*, 2016).

242 Since Cas9 requires Mg<sup>2+</sup> for DNA cleavage (Jinek *et al*, 2012), the  
243 Cas9-sgRNA-DNA complex can be trapped in the pre-cleavage state in the absence of  
244 Mg<sup>2+</sup>. The peak values of the FRET efficiency were ~0.2 and ~0.8 in the absence of

245  $Mg^{2+}$  (Fig 4A). As the lower peak value ( $\sim 0.2$ ) was similar to that of the sgRNA-bound  
246 S355C-S867C binary complex (Fig 2B), we considered the molecules with lower FRET  
247 efficiency as representing the RNA-bound (R) conformations, in which the HNH  
248 domain is located far from the target DNA (R position; distance between S355 and S867  
249  $\sim 8$  nm, Table EV1). The higher FRET efficiency ( $\sim 0.8$ ) indicates that the HNH domain  
250 exists very close to the cleavage site, but the Cas9 molecules in the absence of  $Mg^{2+}$  do  
251 not cleave the target DNA. Therefore, we refer to the HNH position with the higher  
252 FRET efficiency as the DNA semi-docked pre-cleavage (D\*) position. The time  
253 trajectories of the FRET efficiency suggested that the HNH domain in the ternary  
254 complex fluctuates among the R and D\* positions in the absence of  $Mg^{2+}$ .

255 The addition of  $Mg^{2+}$  to the ternary complex clearly changed the manner of the  
256 HNH fluctuations (Fig 4A). The addition of  $Mg^{2+}$  increased the percentage of  
257 fluctuating molecules more than two-fold ( $7 \pm 1\%$  to  $20 \pm 2\%$ , mean  $\pm$  SEM), and had  
258 only a slight effect on the FRET histogram of the S355C-S867C molecules remaining in  
259 the static state (Fig 4B). In contrast, fluctuating sgRNA/DNA-bound S355C-S867C  
260 molecules showed three major FRET efficiency peaks in the presence of  $Mg^{2+}$   
261 (approximately 0.4, 0.8 and 1.0; Fig 4A). The addition of  $Mg^{2+}$  increased the primary  
262 peak value to  $\sim 0.4$ . This increase is consistent with the previous bulk FRET study  
263 (Sternberg *et al*, 2015). As the value of  $\sim 0.4$  is in between the FRET peaks in the  
264 absence of  $Mg^{2+}$  ( $\sim 0.2$  and  $\sim 0.8$ ), in the majority of Cas9 molecules, the HNH domain  
265 would be located at an intermediate (I) position between the R and D\* positions. The  
266 probability of the HNH domain existing in the D\* position decreased by the addition of  
267  $Mg^{2+}$ . Instead of the decrease of the  $\sim 0.8$  FRET peak, the peak of the highest FRET  
268 efficiency ( $\sim 1.0$ ) appeared in the presence of  $Mg^{2+}$ . The highest FRET efficiency was

269 not observed in the absence of Mg<sup>2+</sup>, suggesting that the HNH domain can visit the third  
270 position only in the presence of Mg<sup>2+</sup>. Consistently, the probability of the HNH domain  
271 existing in the third position increased when the Mg<sup>2+</sup> concentration was increased (Fig  
272 EV4). Increases in the Mg<sup>2+</sup> concentrations also enhanced the DNA cleavage rate,  
273 yielding a strong correlation between the cleavage rate and the percentages of the Cas9  
274 showing the highest FRET efficiency. These results indicate that the third position  
275 represents the conformation in which the HNH domain cleaves the target DNA. Thus,  
276 we refer to this HNH position as the DNA-docked cleavage competent (D) position.  
277 Importantly, very few Cas9 molecules in the static state showed the FRET efficiency  
278 corresponding to the D position (Fig 4B), suggesting that the flexible movement is  
279 critical for the HNH domain to be located at the cleavage-competent D position. The  
280 time trajectories of the FRET efficiency demonstrated frequent and reversible  
281 transitions between these three FRET states (Fig 5A), suggesting that the HNH domain  
282 fluctuates between the I, D\* and D positions.

283 Finally, we investigated the movements of the HNH domain among the three  
284 positions. To analyze the relationship between the positions before and after the  
285 transitions of the HNH domain in the ternary complex, we measured the FRET time  
286 trajectories of sgRNA/DNA-bound S355C-S867C, using a hidden Markov model-based  
287 algorithm (Fig 5A), and plotted the FRET efficiencies of the pre- and post-HNH  
288 transitions (Fig 5B). Together with the transition density plot and Silhouette analysis  
289 (Fig EV5), the transitions can be classified into five types: transitions from a low FRET  
290 state to another low FRET state (I-R), between low and middle FRET states in both  
291 directions (I-D\*) and between low and high FRET states in both directions (I-D). To our  
292 surprise, transitions between middle and high FRET states were rare (less than 2% of all

293 transitions), suggesting that the HNH domain rarely moves between the D\* and D  
294 positions, and therefore needs to adopt the undocked I position before relocating to the  
295 D\* or D position.

296 Among the three positions, the HNH domain in the pre-cleavage D\* position  
297 showed the longest dwell time before the transition (Fig 5C and Appendix Fig S2),  
298 suggesting the high stability of the HNH domain in the D\* position, as compared to  
299 those in the other positions. Consistently, the frequency of the I to D\* transition (219  
300 times / 343 transitions = 64%) was approximately twice as high as that of the I to D  
301 transition (124 times / 343 transitions = 36%). Thus, the HNH in the D\* position should  
302 be a thermodynamically stable conformation. However, as mentioned above, the HNH  
303 domain in the D position rarely moves to the D\* position (Fig 5B). The results suggest  
304 that a structural barrier for the HNH transition exists between the D\* and D positions,  
305 which must be collapsed by the transition to the I position.

306

## 307 **DISCUSSION**

308 The purpose of the present study is to investigate whether Cas9 has a flexible structure  
309 in solution, as predicted by previous studies (Nishimasu *et al*, 2014; Jinek *et al*, 2014,  
310 Anders *et al*, 2014; Jiang *et al*, 2015; Sternberg *et al*, 2015; Jiang *et al*, 2016; Singh *et*  
311 *al*, 2016; Zheng, 2017). Here, using the smFRET technique, we directly observed the  
312 dynamic fluctuations of the Cas9 domain. These fluctuations allow Cas9 to adopt  
313 different conformations besides those previously reported by crystal structure analyses  
314 (Nishimasu *et al*, 2014; Jinek *et al*, 2014; Anders *et al*, 2014; Jiang *et al*, 2015; Jiang *et*  
315 *al*, 2016). Our detailed analysis highlights the potential roles of the transient

316 conformations regulated by the flexibility in both the DNA cleavage and sgRNA/DNA  
317 binding processes.

318 Here, we summarize the flexibility of the Cas9 domain configuration observed in  
319 the present study (Fig 6). Judging from the percentages of the fluctuated molecules (Fig  
320 3D), the NUC lobe flexibly moved relative to the REC lobe in the apo-Cas9. The  
321 binding of the sgRNA stabilizes the fluctuations between the REC and NUC lobes, but  
322 the subsequent target DNA binding enhances the fluctuations (Fig 3D). Our smFRET  
323 data indicated that the HNH domain in the ternary complex fluctuated between three  
324 distinct positions in the presence of  $Mg^{2+}$ : the I, D\* and D positions (Fig 5).

325 Even in the presence of  $Mg^{2+}$ , the Cas9 molecules in the static phase did not show  
326 the high FRET efficiency corresponding to the HNH domain in the cleavage competent  
327 D position (Fig 4B). This result indicated that the HNH domain can only access the D  
328 position during the fluctuating phase, thus emphasizing the importance of the flexible  
329 movement of the HNH domain in the DNA cleavage process. The movement of the  
330 HNH domain has been reported to control the nuclease activity of the RuvC domain on  
331 the noncomplementary strand, through intramolecular communication between the two  
332 domains (Sternberg *et al*, 2015; Jiang *et al*, 2016). Thus, besides its direct participation  
333 in the cleavage of the complementary strand, the flexibility of the HNH domain may  
334 also affect the noncomplementary strand cleavage by the RuvC domain.

335 The crystal structure demonstrated that apo-Cas9 adopts an autoinhibited  
336 conformation, in which the active sites in the HNH and RuvC domains are located away  
337 from the DNA binding cleft, and the interaction interfaces with the sgRNA are limited  
338 (Jinek *et al*, 2014). Our smFRET data revealed the fluctuations between the REC and  
339 NUC lobes in apo-Cas9 (Fig 3), indicating that apo-Cas9 adopts transient conformations

340 in addition to the static conformations revealed by the crystal structure. The REC  
341 movement against the NUC lobe can provide additional interaction interfaces for the  
342 sgRNA; thus, the flexible movement in apo-Cas9 may play an important role in the  
343 assembly with the sgRNA.

344 After the submission of our manuscript, three preprints of similar smFRET studies  
345 have been posted on bioRxiv (Dagdas *et al*, 2017; Yang *et al*, 2017; Chen *et al*, 2017).  
346 Consistent with our data, these studies demonstrated the dynamic translocations of the  
347 HNH domain among multiple (R, I and D) positions, although the fluctuating and static  
348 molecules were not distinguished in these studies. There are also several discrepancies  
349 among the studies. For instance, the populations of S355C-S867C molecules showing  
350 the high FRET efficiency in the sgRNA/DNA-bound state are different among these  
351 studies. In the studies by Dagdas *et al* and Chen *et al*, most of the S355C-S867C  
352 molecules exhibited ~1.0 FRET efficiency, suggesting that almost all of the Cas9  
353 molecules have the HNH domain in the cleavage competent (D) position. In contrast,  
354 the major peak value of the FRET efficiency was ~0.4 in the study by Yang *et al* and  
355 our study, suggesting that most of the HNH domain is located in the intermediate (I)  
356 position. The report by Yang *et al* and our study also demonstrated the existence of the  
357 pre-cleavage (D\*) HNH position. Yang *et al* proposed the possibility that heparin,  
358 which was only included in the buffers used by Dagdas *et al* and Chen *et al*, produces  
359 the difference, but further analyses are required to understand the underlying cause of  
360 the discrepancy.

361 Although verification of the function of the flexible movements awaits further  
362 studies, our results open a new door toward modifying and expanding Cas9-based tools  
363 by modulating the domain flexibility. Since the HNH domain in the D\* position must

364 return to the I position before it translocates to the cleavage competent D position,  
365 mutations in the interface of the HNH domain and the REC lobe that destabilize the  
366 HNH domain in the D\* and I positions may facilitate the HNH translocation to the D  
367 position, enhancing Cas9-mediated DNA cleavage. Together with the demonstration of  
368 the domain flexibility of apo-Cas9, which may play a role in the sgRNA binding, our  
369 data provide useful information for future improvements in Cas9-based tools for  
370 gene-editing, gene-visualization and gene expression control.

371

372 **MATERIALS AND METHODS**

373 **Sample preparation.**

374 Since the C80L/C574E mutations in Cas9 do not affect the cleavage activity and  
375 improve the solution behavior (Nishimasu *et al*, 2014), we used the Cas9 C80L/C574E  
376 mutant as wild-type Cas9 in this study. We introduced the mutations into the Cas9  
377 C80L/C574E mutant, to prepare D435C-E945C, S355C-S867C and S867C-N1054C.  
378 The Cas9 proteins were prepared as previously described (Nishimasu *et al*, 2014), with  
379 minor modifications. Briefly, the Cas9 variants were expressed as His<sub>6</sub>-GST-fusion  
380 proteins at 20°C in *Escherichia coli* Rosetta 2 (DE3) (Novagen), and purified by  
381 chromatography on Ni-NTA Super flow resin (QIAGEN). The His<sub>6</sub>-GST tag was  
382 removed by TEV protease digestion, and the proteins were further purified by  
383 chromatography on Ni-NTA, HiTrap SP HP (GE Healthcare), and Superdex 200  
384 Increase (GE Healthcare) columns. The purified Cas9 was stored at -80°C until use.

385

386 ***In vitro* cleavage assay.**

387 *In vitro* cleavage experiments were performed as previously described (Anders *et al*,  
388 2014), with minor modifications. A *Eco*RI-linearized pUC119 plasmid (100 ng, 5 nM),  
389 containing only one 20-nt target sequence followed by the NGG PAM (Appendix Fig  
390 S3), was incubated at 37°C for 5 min with the Cas9-sgRNA complex (25 and 50 nM) in  
391 10 µL of reaction buffer, containing 20 mM HEPES-NaOH, pH 7.5, 100 mM KCl, 2  
392 mM MgCl<sub>2</sub>, 1 mM DTT, and 5% glycerol. We confirmed that the plasmid DNA does  
393 not contain long off-target sequences (Appendix Fig S3). The reaction was stopped by  
394 the addition of a solution containing EDTA (40 mM final concentration) and Proteinase

395 K (1 mg/mL). Reaction products were resolved on an ethidium bromide-stained 1%  
396 agarose gel and then visualized using an Amersham Imager 600 (GE Healthcare).  
397 For the cleavage assays at various Mg<sup>2+</sup> concentrations, an *Eco*RI-linearized pUC119  
398 plasmid (3.5 nM) was incubated at 25 °C for 30 min with the fluorescent Cas9  
399 (S355C-S867C)-sgRNA complex (50 nM), in 10 µL of reaction buffer containing 20  
400 mM HEPES-NaOH, pH 7.5, 100 mM KCl, 0.5 mM EDTA, 1 mM DTT, and 5%  
401 glycerol, with 0.5, 1, 2 and 5 mM MgCl<sub>2</sub>. Following electrophoresis on a 1.5 % agarose  
402 gel, the reaction products were fluorescently stained using Midori Green Advance  
403 (Nippon Genetics Co., Ltd.) and then visualized using a Typhoon FLA 9500 imager (GE  
404 Healthcare) equipped with a 473 nm excitation laser and an LPB filter (GE Healthcare).

405

406 **Preparation of the sgRNA and the target plasmid DNA.**

407 The sgRNA was transcribed *in vitro* with T7 RNA polymerase, using a PCR-amplified  
408 DNA template, and purified by 10% denaturing (7 M urea) PAGE. The target plasmid  
409 DNA was amplified in the *E. coli* DH5a strain, grown in LB medium (Nacalai Tesque,  
410 Inc., Japan) at 37°C overnight. The plasmid DNA was purified using a Midiprep kit  
411 (FastGene Xpress Plasmid PLUS Kit, NIPPON Genetics), according to the  
412 manufacturer's method. The concentration of purified plasmid DNA was determined  
413 based on the absorption at 260 nm, using a NanoDrop 2000c spectrophotometer  
414 (Thermo Fisher). The single-guide RNA and the plasmid DNA were stored at -80 °C  
415 and -30 °C until use, respectively.

416

417 **Fluorescent labeling of Cas9.**

418 Cas9 was fluorescently labeled using Cy3- and Cy5-maleimide (GE Healthcare),  
419 according to the general method. Briefly, the buffer for Cas9 was exchanged into the  
420 labeling buffer (20 mM HEPES-KOH, pH 7.0, 100 mM KCl, 2 mM MgCl<sub>2</sub>, 5%  
421 glycerol), using a spin-gel filtration column (Micro Bio-Spin 30, Bio-Rad). Next, the  
422 Cas9 solution was incubated on ice for 30 min, after the final 0.5 mM TCEP addition  
423 into the Cas9 solution. Then, Cy3- and Cy5-maleimide were mixed with the Cas9  
424 solution at a 1: 20 molar ratio between the protein and each dye. The maleimide labeling  
425 reaction was conducted on ice for 2 h. Excess fluorescent maleimide dye was removed  
426 twice, using assay buffer (AB: 20 mM HEPES-KOH, pH 7.5, 100 mM KCl, 2 mM  
427 MgCl<sub>2</sub>, 5% glycerol, 0.5 mM EDTA, 1 mM DTT) and spin-gel filtration columns  
428 (Micro Bio-Spin 30, Bio-Rad). The fluorescently labeled Cas9 was snap-frozen in liquid  
429 nitrogen and stored at -80 °C until use.

430

#### 431 **FRET measurements for the stoichiometry of sgRNA binding to Cas9.**

432 All fluorescence measurements used a reaction mixture of 20 nM fluorescent Cas9  
433 (D435C-E945C) with or without the sgRNA (10 nM, 20 nM, 50 nM, 100 nM or 200  
434 nM) in AB with 0.1 U/μL RNasin Plus (Promega), and a commercial oxygen scavenger  
435 system (Pacific Bioscience) containing 2.5 mM TSY, 2.5 mM protocatechuiic acid  
436 (PCA) and 50-fold diluted protocatechuiic acid dehydrogenase (PCD) solution.  
437 Measurements were performed using a fluorescence spectrometer (RE-6000, Shimadzu,  
438 Japan) and a quartz cuvette with a 50 μL volume (T-703M-ES-10.50B, TOSOH, Japan),  
439 with 532 nm excitation and a scanning speed of 60 nm/min in the wavelength range of  
440 550 nm to 750 nm in 1 nm increments, at room temperature.

441

442 **Perrin plot to determine the orientation factors.**

443 All fluorescence measurements using the reaction mixture of 100 nM fluorescent Cas9  
444 (D435C-E945C, S355C-S867C and S867C-N1054C with no nucleic acid) in buffer (20  
445 mM HEPES-KOH, pH 7.5, 100 mM KCl, 2 mM MgCl<sub>2</sub>, 0.5 mM EDTA, 1 mM DTT  
446 and a commercial oxygen scavenger system) with or without methyl cellulose (0, 0.001,  
447 0.01 or 0.1%) were performed at room temperature, using the same fluorescence  
448 spectrometer and cuvette described in the previous section. The orientation factor  $\kappa^2$   
449 was determined as described below, according to the previous method (Dale *et al*, 1979).  
450 Briefly, the fluorescence anisotropy measurement was performed by manually placing  
451 the polarization filters in front of the exciter and detector in the fluorescence  
452 spectrometer. For Cy3, the fluorescence intensity was measured at a wavelength of 566  
453 nm by 554 nm excitation, while that of Cy5 was measured at a wavelength of 668 nm  
454 by 650 nm excitation. The slit width for emission and excitation was 5 nm, and the  
455 integration time was 1 s. Each measurement was repeated three times. Using these  
456 fluorescence intensities, the fluorescence anisotropy  $r$  was calculated as described  
457 below.

458

$$r = (Ivv - G)/(Ivv + 2G)$$

$$G = I\hbar v \frac{Ivh}{Ihh}$$

459

460  $Ivh$  indicates the fluorescence intensity of the horizontal polarization excited by the  
461 vertical polarized light.  $Ivv$ ,  $Ihv$  and  $Ihh$  are defined similarly. Following the plotting of  
462  $1/r$  against  $T/\eta$ , the y-intercept was calculated by fitting the plot to the linear function  
463 for each fluorescent Cas9, to estimate the  $\gamma$  values.

464

465 **Single molecule FRET measurement of fluorescent Cas9.**

466 The cover slips (No. 1S, 22 × 22 mm, Matsunami, Japan) were cleaned for 15 min,  
467 using 1 N KOH and an ultrasonic washing machine (BRANSONIC, Branson). All  
468 subsequent preparation procedures were performed on a clean bench (Matsusada  
469 Precision, Japan). After 20 rinses using Milli-Q water and drying in a dryer, the cover  
470 slips were cleaned using a plasma cleaner (YHS-R, SAKIGAKE-Semiconductor Co.,  
471 Ltd., Japan or PR300, Yamato Scientific Co., Ltd., Japan). Next, the cover slips were  
472 completely dried in a dryer. Following the cleaning of cover slips as described above,  
473 one side of the cover slips was silanized by sandwiching 10 µL of N-2  
474 (aminoethyl)-3-aminopropyl-triethoxysilane (KBE-603, Sin-Etsu Silicones, Japan). After  
475 an incubation at room temperature for 20 min, the cover slips were rinsed 20 times and  
476 dried. The silanized side of the cover slips was PEGylated by sandwiching 10 µL of 200  
477 mg/mL NHS-PEG and 1 mg/mL NHS-PEG-biotin (BI-050TS, NOF, Japan) in 50 mM  
478 MOPS (pH 7.5) for the observed surface of a flow chamber, and 200 mg/mL NHS-PEG  
479 (ME-050-TS, NOF, Japan) in 50 mM MOPS (pH 7.5) was used for the non-observed  
480 surface (Yokota *et al.* 2009). Following an incubation at room temperature for 2 h under  
481 moist conditions, the cover slips were rinsed 20 times with Milli-Q water and  
482 completely dried. A 0.5 µL volume micro-chamber was made by placing a PEG-coated  
483 small coverslip of 11 mm × 11 mm, which was cut from a commercial coverslip, over a  
484 PEG-biotin coated 22 mm × 22 mm glass coverslip using double-sided adhesive tape  
485 (30 µm thickness, Nitto Denko, Japan) in a clean hood (Matsusada Precision Inc.,  
486 Japan). First, 1 mg/mL Neutralized avidin (Wako, Japan) in AB was adsorbed onto the  
487 glass surface. After a 2 min incubation, the excess neutralized avidin was removed by 3

488 washes with 2  $\mu$ L AB. Next, the glass surface in the micro-chamber was illuminated by  
489 a 532 nm laser for 40 s per one field using fluorescence microscopy, to photobleach any  
490 residual fluorescent particles on the glass surface. After 3 washes with 2  $\mu$ L AB, 0.3 - 1  
491 nM fluorescent Cas9 was adsorbed onto the glass surface, using the avidin-biotin  
492 interaction. Here, for the sgRNA-bound fluorescent Cas9 imaging, fluorescent Cas9 was  
493 incubated with a final concentration of 200 nM sgRNA for 2 min at room temperature  
494 in a 0.6 mL tube before the Cas9 absorption, while the fluorescent Cas9 was  
495 successively incubated with 200 nM sgRNA and 200 nM plasmid DNA for 2 min, for  
496 the sgRNA- and DNA-bound fluorescent Cas9 imaging. After a 2 min incubation and 3  
497 washes with 2  $\mu$ L AB, AB with a commercial oxygen scavenger system (Pacific  
498 Bioscience), containing 2.5 mM TSY, 2.5 mM protocatechuic acid (PCA) and 50-fold  
499 diluted protocatechuic acid dehydrogenase (PCD) solution was placed in the  
500 micro-chamber for all samples, and then 200 nM sgRNA was added for the  
501 sgRNA-bound fluorescent Cas9 imaging and 200 nM sgRNA and 200 nM plasmid  
502 DNA were added for the sgRNA- and DNA-bound Cas9 imaging. Finally, the  
503 micro-chamber was subjected to total internal reflection fluorescence microscopy  
504 (TIRFM) for the single molecule FRET (smFRET) measurements.

505 The smFRET measurements of fluorescent Cas9 were achieved using a Nikon  
506 Ti-E based TIRFM, equipped with a multi-band filter set for fluorescence microscopy  
507 (LF405/488/532/635-A, Semrock), a dual-view apparatus (Optical Insights) containing  
508 dichroic (630, Optical Insights) and emission filters (FF01-593/40-25 for Cy3 imaging  
509 and FF01-692/40-25 for Cy5 imaging, Semrock), and a back-illuminated EMCCD  
510 camera (Andor, iXon+). Illumination was provided by a 532 nm laser (Coherent,  
511 Sapphire) and a 642 nm laser (Coherent, Cube). Image acquisition for the smFRET

512 measurements was performed with an acquisition rate of 10 frames per second, using  
513 532 nm illumination and open source microscopy software (Micro-Manager, Open  
514 Imaging) (Edelstein *et al*, 2014). The FRET efficiency distributions were calculated  
515 over the duration of the photobleaching of the fluorescent dye (donor or acceptor) or the  
516 entire observation time (120 s for D435C-E945C and S355C-S867C; 40 s for  
517 S867C-N1054C), in cases where no photobleaching was observed. We typically  
518 collected data from 12 observation fields of at least three different chambers for each  
519 condition. Following the smFRET measurements, the same field was illuminated using  
520 a 642 nm laser to directly excite the Cy5 fluorescence, for counting the Cy3 and Cy5  
521 double-labeled Cas9. This procedure allowed us to exclude the data from the molecules  
522 labeled with only the donor dye. From the Cy5 intensity before and after the  
523 photobleaching process, we judged whether the decreases in the Cy5 fluorescence  
524 intensity during the smFRET observation reflected the Cas9 conformational changes or  
525 were caused by fluorescence photobleaching. We confirmed that the levels of donor  
526 leakage in the acceptor detection channel and fluorescent photoblinking were negligible  
527 in our assay conditions.

528 For the smFRET analysis, the exported image data were imported into a  
529 home-built program written in Python and converted into fluorescence intensity, based  
530 on the fluorescent spots of both Cy3- and Cy5-labeled Cas9. The FRET efficiency of a  
531 single molecule was calculated as  $I_A/(I_A+\gamma I_D)$  (Roy *et al*, 2008). Here,  $I_A$  and  $I_D$  are the  
532 fluorescence intensities of the acceptor and donor, respectively.  $\gamma$  is equivalent to  
533  $|\Delta I_A/\Delta I_D|$ , where  $\Delta I_A$  and  $\Delta I_D$  are the fluorescence intensity changes of the acceptor  
534 and donor upon FRET efficiency fluctuation or photobleaching, respectively. The  
535 fluctuating molecules were initially sorted with standard deviation values of 0.4-Hz low

536 pass filtered time traces. After the initial sort, traces with multiple FRET transitions  
537 within 2.5 s were re-categorized as the fluctuating state. The traces exhibiting both  
538 fluctuating and static states were categorized as the fluctuating molecule. The transition  
539 points in the fluctuating traces of the sgRNA/DNA-bound fluorescently labeled Cas9  
540 (S355C-S867C) were detected based on the Hidden Markov Model (HMM) with the  
541 Baum-Welch forward-backward algorithm and the Viterbi algorithm (McKinney *et al*,  
542 2006), using the hmmlearn library for Python (<https://github.com/hmmlearn/hmmlearn>).  
543 Here, we assumed that HMM has three states, according to the FRET efficiency  
544 distribution (the bottom histogram in Fig 4A). The transition density plot was visualized  
545 using a Python plotting library (Matplotlib; <http://matplotlib.org>), while the plotted  
546 density was clustered into five groups based on the k-means method with  $k = 5$ , using  
547 the machine learning package for Python (Scikit-learn; <http://scikit-learn.org/>).

548

#### 549 **Data availability.**

550 The smFRET data were uploaded with the manuscript.

551

#### 552 **ACKNOWLEDGEMENTS**

553 This study is supported by JST, CREST (to S.U) and MEXT, Grants-in-Aid for Young  
554 Scientists (B), 15K18514 (to T.S.) and 17K15100 (to T.K.). We thank the members of  
555 the Uemura and Nureki laboratories for valuable discussions. We also thank M. Sugawa  
556 for technical assistance and P. Karagiannis for helpful discussions and comments on the  
557 manuscript.

558

#### 559 **Author contributions**

560 T.K., H.N., T.S., O.N. and S.U. designed the study. S.O. and T.K. collected and analyzed  
561 smFRET data; T.K. collected and analyzed bulk FRET data; K.I. and S.K. prepared the  
562 fluorescently-labeled protein; S.K. and T.K. performed functional analyses; and S.K.,  
563 T.K., H.N., T.S., O.N. and S.U. wrote the paper. All authors discussed the results and  
564 commented on the manuscript.

565

566 **Conflict of interest**

567 The authors declare no conflict of interest.

568

569 **REFERENCES**

570 Anders C, Niewoehner O, Duerst A & Jinek M (2014) Structural basis of  
571 PAM-dependent target DNA recognition by the Cas9 endonuclease. *Nature* **513**:  
572 569–73

573 Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA  
574 & Horvath P (2007) CRISPR provides acquired resistance against viruses in  
575 prokaryotes. *Science*. **315**: 1709–12

576 Bolotin A, Quinquis B, Sorokin A, & Ehrlich SD (2005) Clustered regularly interspaced  
577 short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin.  
578 *Microbiology* **151**: 2551–2561

579 Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W,  
580 Marraffini LA & Zhang F (2013) Multiplex Genome Engineering Using  
581 CRISPR/Cas Systems. *Science* **819**: 819-23

582 Dagdas YS, Chen JS, Sternberg SH, Doudna JA & Yildiz A (2017) A conformational  
583 checkpoint between DNA binding and cleavage by CRISPR-Cas9. *Sci. Adv.* **3**:  
584 eaao0027

585 Dale RE, Eisinger J & Blumberg WE (1979) The orientational freedom of molecular  
586 probes. The orientation factor in intramolecular energy transfer. *Biophys. J.* **26**:  
587 161–193

588 Edelstein AD, Tsuchida MA, Amodaj N, Pinkard H, Vale RD & Stuuman N (2014)  
589 Advanced methods of microscope control using  $\mu$ Manager software. *J. Bio.*

590        *Methods 1: e11*

591        Hsu PD, Lander ES & Zhang F (2014) Development and applications of CRISPR-Cas9  
592        for genome engineering. *Cell* **157**: 1262–1278

593        Jansen R, Embden JDA van, Gaastra W & Schouls LM (2002) Identification of genes  
594        that are associated with DNA repeats in prokaryotes. *Mol. Microbiol.* **43**: 1565–75

595        Jiang F, Taylor DW, Chen JS, Kornfeld JE, Zhou K, Thompson AJ, Nogales E &  
596        Doudna JA (2016) Structures of a CRISPR-Cas9 R-loop complex primed for DNA  
597        cleavage. *Science*. **351**: 867–871

598        Jiang F, Zhou K, Ma L, Gressel S & Doudna JA (2015) A Cas9-guide RNA complex  
599        preorganized for target DNA recognition. *Science*. **348**: 1477–1481

600        Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA & Charpentier E (2012) A  
601        programmable dual-RNA-guided DNA endonuclease in adaptive bacterial  
602        immunity. *Science* **337**: 816–21

603        Jinek M, Jiang F, Taylor DW, Sternberg SH, Kaya E, Ma E, Anders C, Hauer M, Zhou  
604        K, Lin S, Kaplan M, Iavarone AT, Charpentier E, Nogales E & Doudna JA (2014)  
605        Structures of Cas9 endonucleases reveal RNA-mediated conformational activation.  
606        *Science* **343**: 1247997

607        Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, Hsu PD,  
608        Habib N, Gootenberg JS, Nishimasu H, Nureki O & Zhang F (2014) Genome-scale  
609        transcriptional activation by an engineered CRISPR-Cas9 complex. *Nature* **517**:  
610        583–8

611 Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE & Church GM

612 (2013) RNA-guided human genome engineering via Cas9. *Science* **339**: 823–6

613 McKinney SA, Joo C & Ha T (2006) Analysis of Single-Molecule FRET Trajectories

614 Using Hidden Markov Modeling. *Biophys. J.* **91**: 1941–1951

615 Nishimasu H, Ran FA, Hsu PD, Konermann S, Shehata SI, Dohmae N, Ishitani R,

616 Zhang F & Nureki O (2014) Crystal structure of Cas9 in complex with guide RNA

617 and target DNA. *Cell* **156**: 935–949

618 Palermo G, Miao Y, Walker RC, Jinek M & McCammon A (2016) Striking Plasticity of

619 CRISPR-Cas9 and Key Role of Non-target DNA, as Revealed by Molecular

620 Simulations. *ACS Cent. Sci.* **2**: 756-763

621 Pourcel C, Salvignol G & Vergnaud G (2005) CRISPR elements in *Yersinia pestis*

622 acquire new repeats by preferential uptake of bacteriophage DNA, and provide

623 additional tools for evolutionary studies. *Microbiology* **151**: 653–663

624 Roy R, Hohng S & Ha T (2008) A practical guide to single-molecule FRET. *Nat.*

625 *Methods* **5**: 507–516

626 Shmakov S, Smargon A, Scott D, Cox D, Pyzocha N, Yan W, Abudayyeh OO,

627 Gootenberg JS, Makarova KS, Wolf YI, Severinov K, Zhang F & Koonin E V.

628 (2017) Diversity and evolution of class 2 CRISPR-Cas systems. *Nat. Rev.*

629 *Microbiol.* **15**: 169–182

630 Singh D, Sternberg SH, Fei J, Ha T & Doudna JA (2016) Real-time observation of

631 DNA recognition and rejection by the RNA-guided endonuclease Cas9. *Nat.*

632            *Commun.* **7:12778:** 1–8

633    Soria E, Mojica FJM, Díez-Villaseñor C, García-Martínez J & Soria E (2005)

634            Intervening sequences of regularly spaced prokaryotic repeats derive from foreign

635            genetic elements. *J. Mol. Evol.* **60:** 174–182

636    Sternberg SH & Doudna JA (2015) Expanding the Biologist's Toolkit with

637            CRISPR-Cas9. *Mol. Cell* **58:** 568–574

638    Sternberg SH, LaFrance B, Kaplan M & Doudna JA (2015) Conformational control of

639            DNA target cleavage by CRISPR-Cas9. *Nature* **527:** 1–14

640    Sternberg SH, Redding S, Jinek M, Greene EC & Doudna JA (2014) DNA interrogation

641            by the CRISPR RNA-guided endonuclease Cas9. *Nature* **507:** 62–67

642    Terns RM & Terns MP (2014) CRISPR-based technologies: Prokaryotic defense

643            weapons repurposed. *Trends Genet.* **30:** 111–118

644    Yang M, Peng S, Sun R, Lin J, Wang N & Chen C (2017) Conformational dynamics of

645            Cas9 governing DNA cleavage revealed by single molecule FRET. *bioRxiv* 167627.

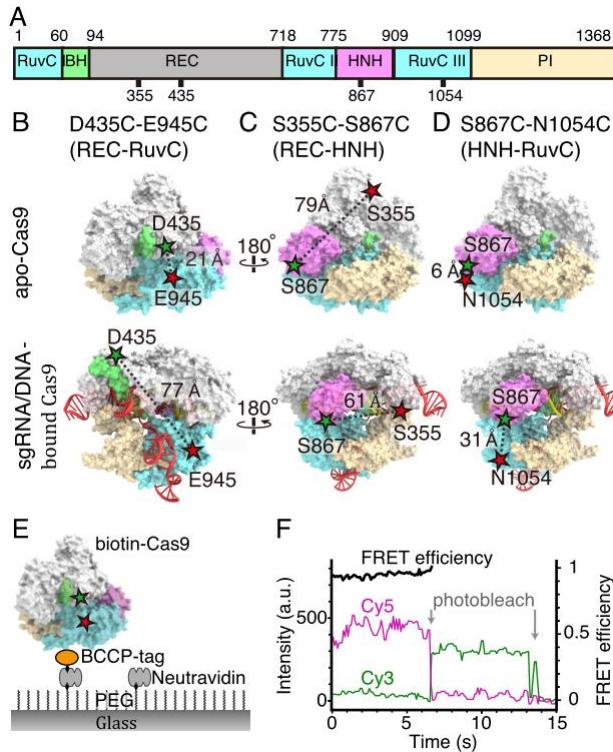
646    Yokota H, Han Y-W, Allemand JF, Xi XG, Bensimon D, Croquette V, Ito Y & Harada Y

647            (2009) Single-molecule Visualization of Binding Modes of Helicase to DNA on

648            PEGylated Surfaces. *Chemistry Letter* **38:** 308–309

649    Zheng W (2017) Probing the structural dynamics of the CRISPR-Cas9 RNA-guided

650            DNA-cleavage system by coarse-grained modeling. *Proteins* **85:** 342–353


651    Zuo Z & Liu J (2016) Cas9-catalyzed DNA Cleavage Generates Staggered Ends:

652 Evidence from Molecular Dynamics Simulations. *Sci. Rep.* **6**: 37584

653

654

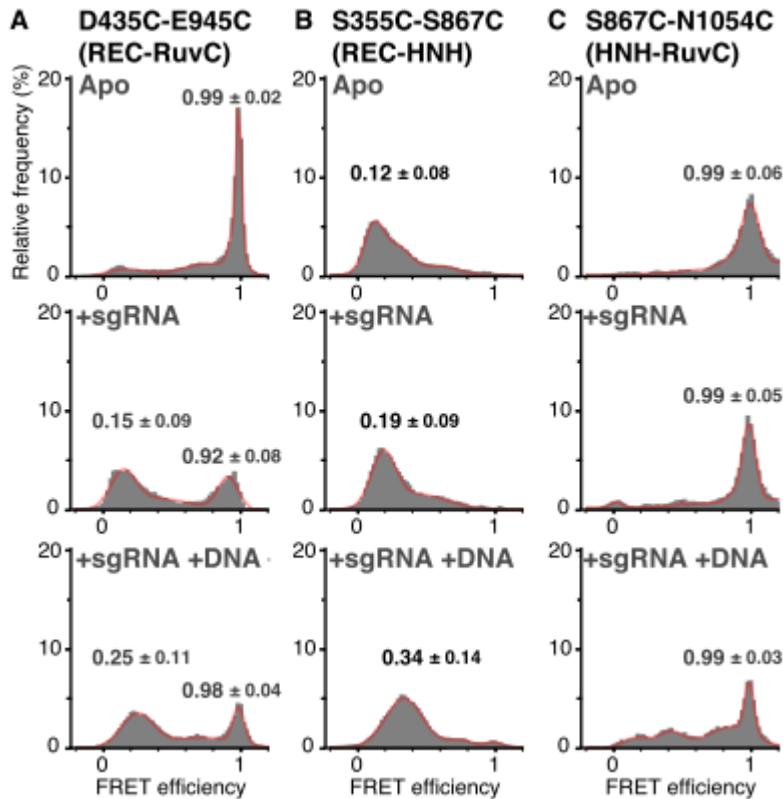
655 **Figure Legends**



656

657 **Figure 1 - Experimental setup for smFRET measurement of Cas9 domain movements.**

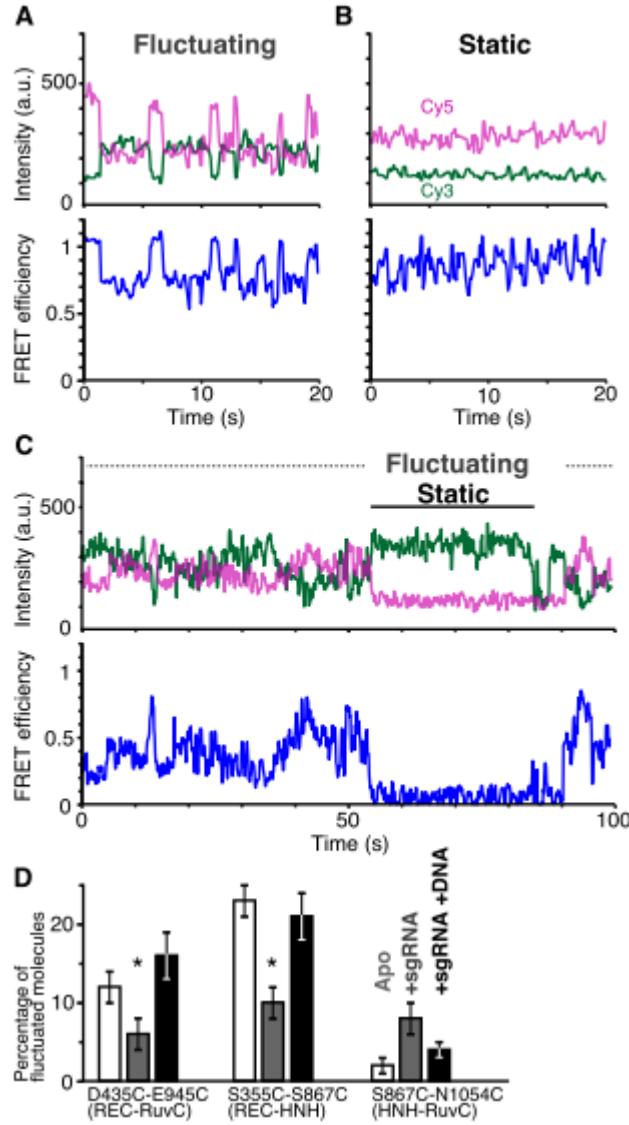
659 A The sequence diagram of the Cas9 molecule. The numbers indicate the amino  
660 acids that were fluorescently labeled in this study.


661 B-D Designs of Cas9 for single molecule FRET (smFRET) measurements. We  
662 constructed three constructs: D435C-E945C (B), S355C-S867C (C) and  
663 S867C-N1054C (D). Surface rendered models of Cas9 were generated from PDB 4CMP  
664 for apo-Cas9 (upper models) and PDB 4OO8 for sgRNA/DNA-bound Cas9 (bottom  
665 models). HNH-domain, REC lobe, RuvC domain, PI domain and Bridge helix are  
666 colored pink, gray, blue, light brown and green, respectively. The Cy3- and Cy5-labeled  
667 amino acids are depicted by green and red stars.

668 E Schematic drawing of the smFRET measurement system. Cas9, biotinylated

669 via BCCP (Biotin Carboxyl Carrier Protein), was immobilized on a PEG (polyethylene  
670 glycol)- and biotin-PEG-coated glass surface, using the avidin-biotin system. Images are  
671 not to scale.

672 F Time trajectories of single-molecule FRET efficiency of the D435C-E945C  
673 construct, labeled with Cy3 and Cy5. The green and magenta lines represent the  
674 fluorescence intensities of Cy3 and Cy5, respectively. We calculated the FRET  
675 efficiency (black lines) from the intensities of Cy3 and Cy5 before the photobleaching  
676 of either fluorochrome.


677



678

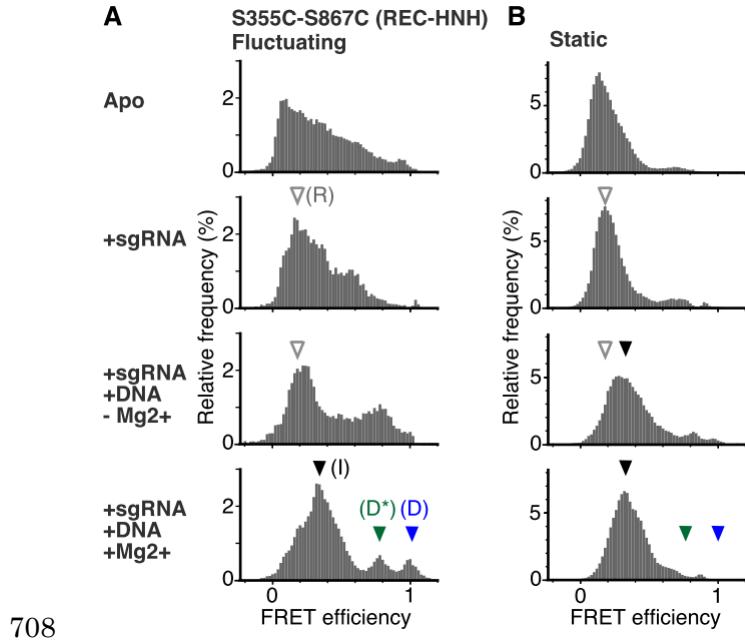
679 **Figure 2 - FRET efficiency histograms of all measured Cas9 molecules.**

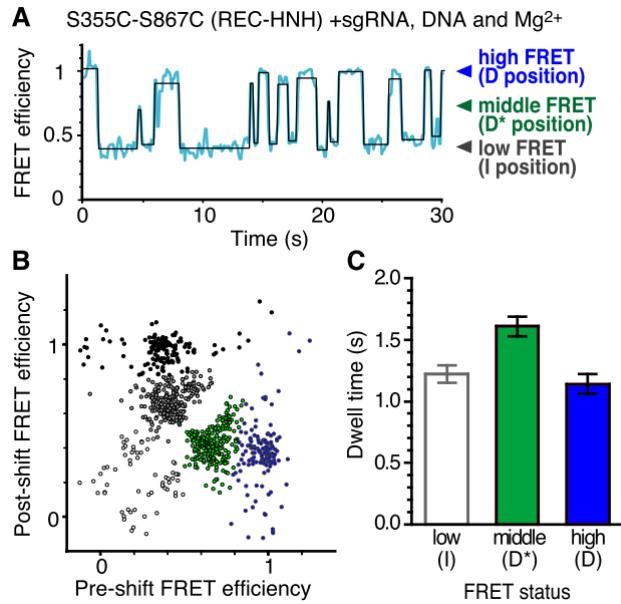
680 A-C FRET efficiency histograms of the D435C-E945C (left panels), S355C-S867C  
681 (center panels) and S867C-N1054C (right panels) constructs. The histograms were  
682 generated from the time traces of the FRET efficiency in the absence of nucleotides (A),  
683 in the presence of 200 nM sgRNA (B) and in the presence of 200 nM sgRNA and 200  
684 nM plasmid DNA (C). All of the experiments shown in this figure were performed in  
685 the presence of  $Mg^{2+}$ . The numbers of measured molecules are summarized in Table  
686 EV1. The histograms were fitted with multi-peaks Gaussian curves (red). The peak  
687 values of the primary peaks of FRET efficiency are shown on the histograms (median  $\pm$   
688 HWHM).  
689



690

691 **Figure 3 - The binding of sgRNA and target DNA changes the flexibility of the**  
692 **Cas9 domains.**


693 A, B Representative time trajectories of fluctuating (A) and static (B) D435C-E945C  
694 molecules in the sgRNA/DNA-bound ternary complex labeled with Cy3 and Cy5. The  
695 green and magenta lines represent the fluorescence intensities of Cy3 and Cy5,  
696 respectively (top trace). We calculated the FRET efficiency (black lines) from the  
697 intensities of Cy3 and Cy5 (bottom trace).


698 C Some of the time trajectories of the fluorescence intensities (top trace) and the

699 single-molecule FRET efficiency (bottom trace) show both fluctuating of and static  
700 phases.

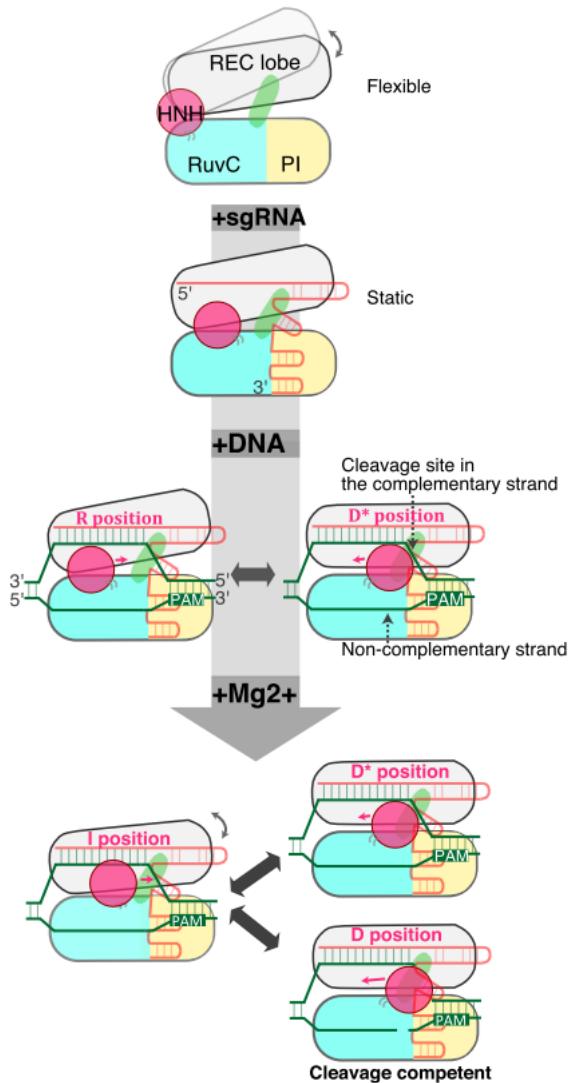
701 D The percentage of Cas9 molecules that showed fluctuations in FRET efficiency.  
702 The numbers of measured molecules are summarized in Table EV1. The bars from left  
703 to right represent the percentages in the absence of nucleic acid (white), in the presence  
704 of 200 nM sgRNA (grey), and in the presence of 200 nM sgRNA and 200 nM plasmid  
705 DNA (black). Error bars show SEM. Asterisks indicate the statistical differences ( $P <$   
706 0.05, Steel-Dwass test).

707





724


725 **Figure 5 - Reversible transitions of the HNH positioning in the ternary complex.**

726 **A** Representative time trajectory of the FRET efficiency, showing the fluctuation  
727 of the HNH domain in the sgRNA/target DNA-bound S355C-S867C complex with  
728  $Mg^{2+}$ . The transition points of the FRET efficiency (blue line) were detected using the  
729 HMM algorithm (black line).

730 **B** The transition density plot of different FRET states of the sgRNA/target  
731 DNA-bound S355C-S867C complex with  $Mg^{2+}$ . The density map was clustered into  
732 five groups (white, gray, black, green and blue closed circles) based on the  $k$ -means  
733 method with  $k = 5$ , suggesting that the HNH movement between the  $D^*$  and  $D$   
734 processes (middle and high FRET efficiencies) is rare.

735 **C** Bar plot of the dwell times for each transition. The mean dwell times were  
736 determined by fitting the dwell time distributions ( $n = 399, 223$  and  $136$  for low, middle  
737 and high FRET status, respectively) to a single exponential decay function (Appendix  
738 Fig S2). Error bars show SEM.

739

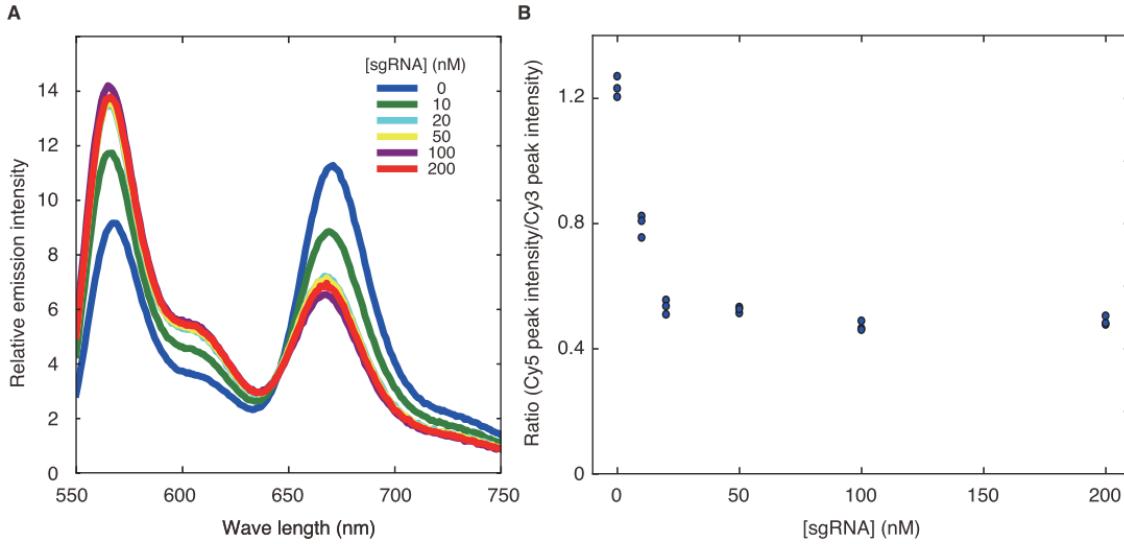


740

741 **Figure 6 - Model of Cas9-mediated DNA cleavage.**

742 The relative flexible movements of the REC lobe (gray) against the HNH (magenta) and  
743 RuvC (blue) domains are represented by the grey arrows. The binding of the sgRNA  
744 (orange) stabilizes the flexibility, but the binding of the target DNA (green) and Mg<sup>2+</sup>  
745 increases the flexibility between the REC and NUC lobes. The HNH positions in the  
746 ternary complex are indicated by magenta letters.

747


748 **Expanded View Figure Legends**

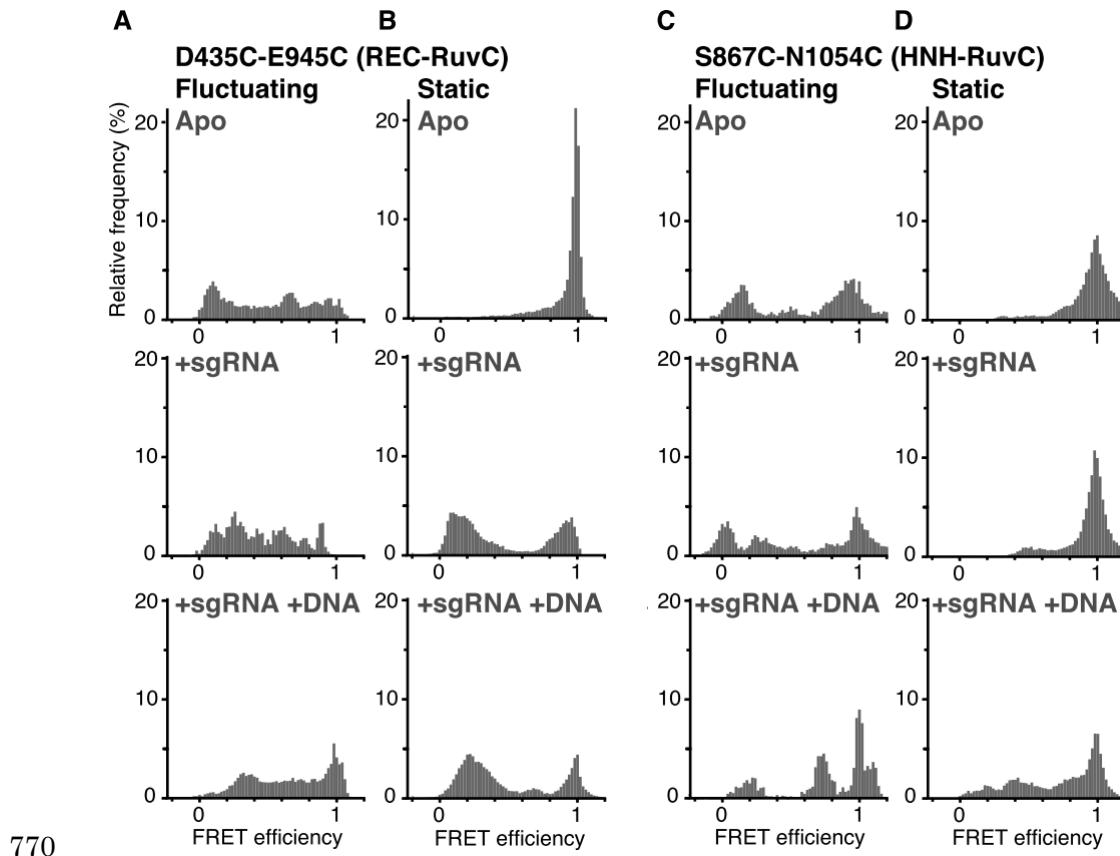


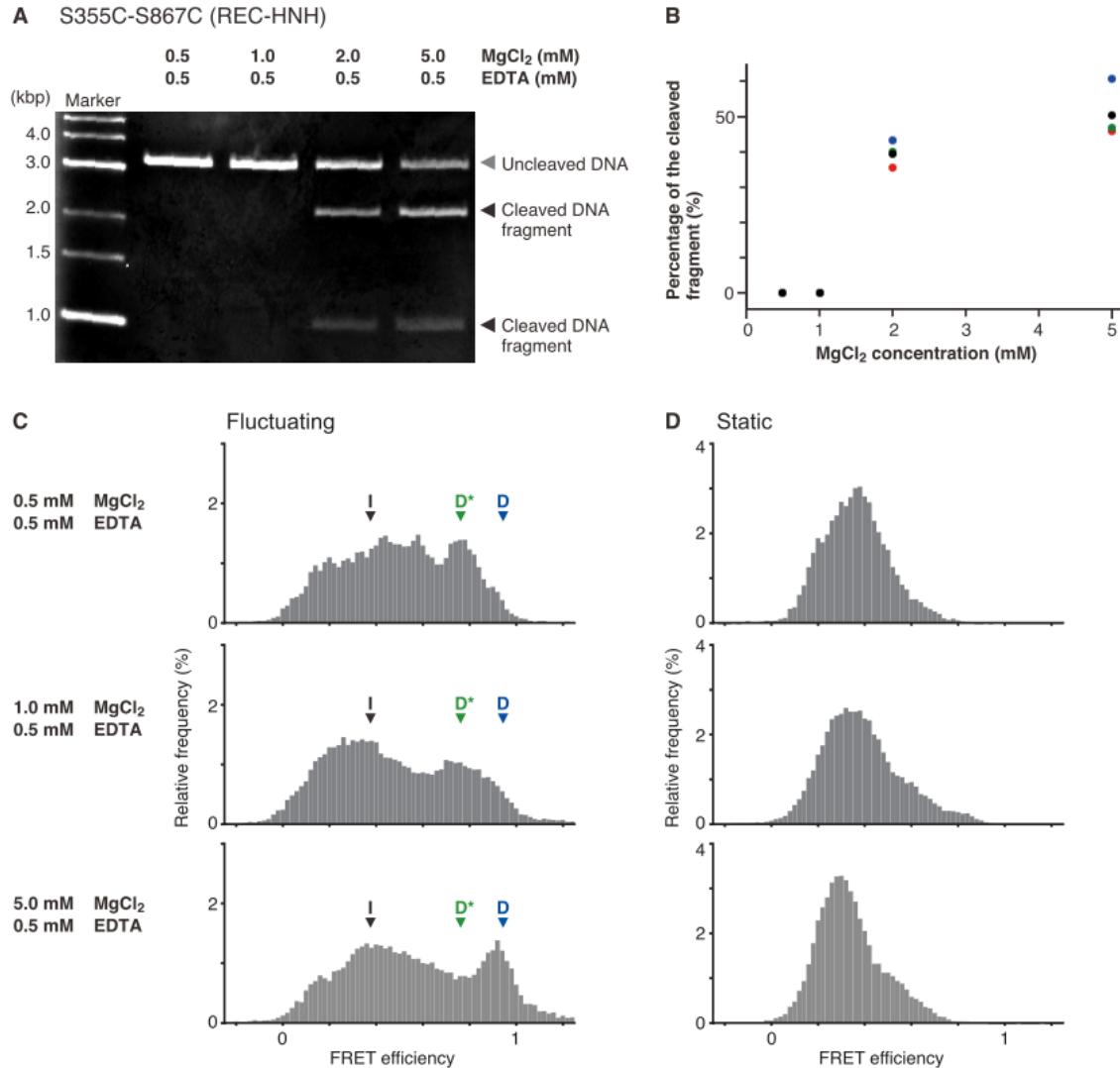
750 **Figure EV1 - DNA cleavage activity of fluorescently-labeled biotin-Cas9.**

751 All three FRET constructs were labeled with Cy3 and Cy5 and were tested for  
752 nuclease activity. After an incubation of 25 or 50 nM Cas9 - sgRNA complex and 5  
753 nM target DNA for 5 min at 37 °C, a fraction of the DNA was cleaved into two  
754 fragments. The three FRET constructs demonstrated nuclease activity comparable  
755 to that of non-labeled wild-type Cas9 (1.1 ± 0.1 for D435C-E945C, 0.9 ± 0.1 for  
756 S355C-S867C and 1.5 ± 0.3 for S867C-N1054C; mean relative activity ± SEM., n =  
757 3).

758




759


760 **Figure EV2 - Stoichiometry of sgRNA binding to Cas9.**

761 A        Fluorescence emission spectra of 20 nM fluorescent Cas9 (D435C-E945C)  
762        excited at 532 nm. The Cy3- and Cy5-fluorescence intensity changes were coupled  
763        with the FRET efficiency change, according to the sgRNA concentration.

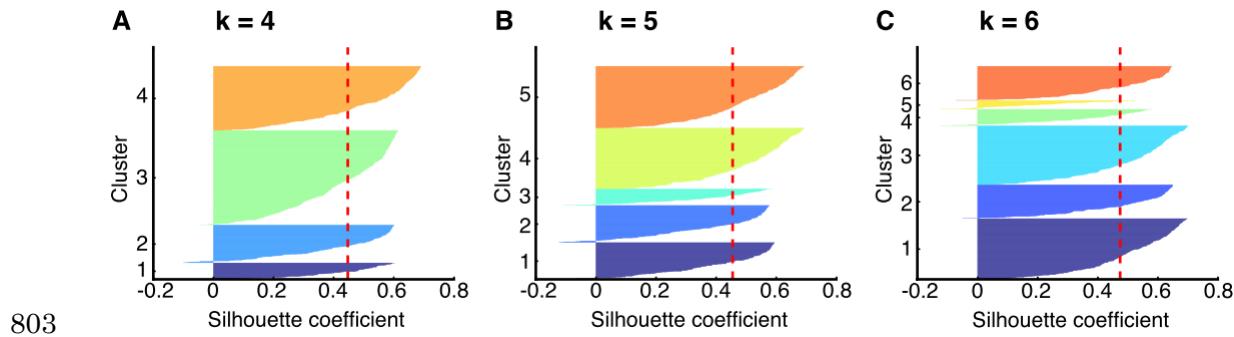
764 B        Quantification of the ratio between Cy3- and Cy5-fluorescence intensities.  
765        The ratios of Cy5-fluorescence peak intensity over Cy3-fluorescence peak intensity  
766        were plotted against the sgRNA concentration (n=3 for each sgRNA concentration).  
767        The FRET efficiency change coupled with the sgRNA binding was almost saturated  
768        at the Cas9 to sgRNA ratio of 1:1.

769





781


782 **Figure EV4 - Effects of Mg<sup>2+</sup> concentration on the DNA cleavage activity and**  
783 **the HNH location in the sgRNA/DNA-Cas9 ternary complex.**

784 A Representative gel image of the DNA cleavage assay using the fluorescently  
785 labeled S355C-S867C construct. The sgRNA/DNA-Cas9 ternary complex was  
786 incubated at room temperature (25 °C) for 30 min. This condition is equivalent to  
787 that of the smFRET measurement, as we observed smFRET for approximately  
788 30-40 min at room temperature.

789 B Percentages of cleaved DNA against MgCl<sub>2</sub> concentration. The plot shows  
790 the results of four individual assays (black, blue, green and red balls) for each  
791 MgCl<sub>2</sub> concentration. While the ternary complex with 0.5 or 1.0 mM MgCl<sub>2</sub> did not  
792 cleave the DNA, the complex with 2.0 and 5.0 mM MgCl<sub>2</sub> cleaved 39 ± 3% and 51 ±  
793 6% (mean ± SEM, n = 4) of the DNA, respectively.

794 C, D FRET efficiency histograms of fluctuating (C) and static (D) S355C-S867C  
795 molecules. The panels from top to bottom show data in the presence of 0.5, 1 and 5  
796 mM MgCl<sub>2</sub>. All of the assays were performed in the presence of 0.5 mM EDTA. The  
797 low, middle and high FRET efficiencies corresponding the I, D\* and D positions of  
798 the HNH domain are indicated by black, green and blue arrowheads, respectively  
799 (C). The DNA cleavage activity (A, B) correlated well with the appearance of the  
800 high FRET efficiency peak (C), providing evidence that Cas9 molecules with the  
801 HNH domain in the D position are in the cleavage competent state.

802



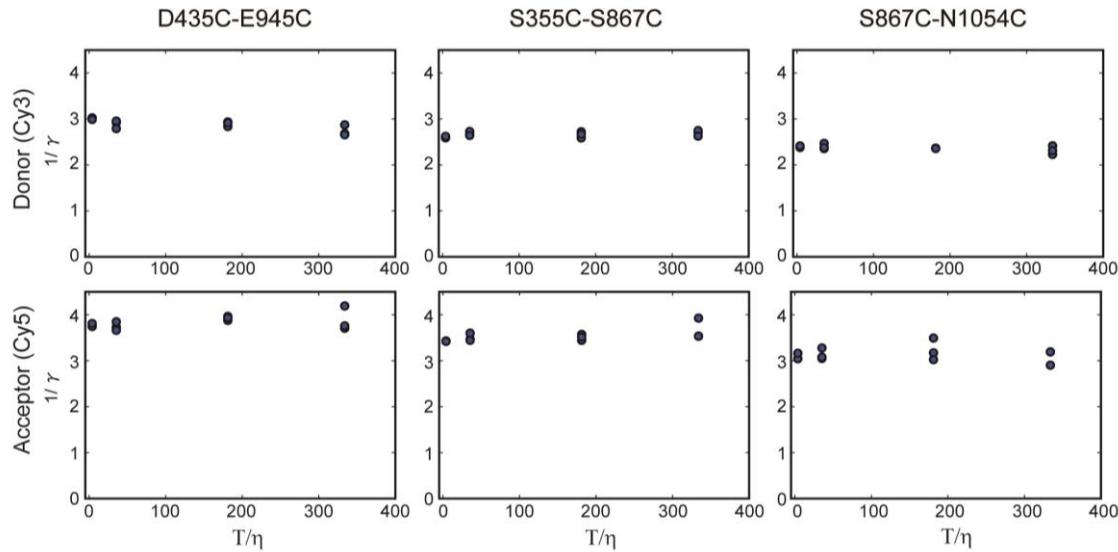
803 **Figure EV5 - Silhouette analysis on k-means clustering of the FRET efficiency**  
804 **shift to determine the number of clusters.**

805 The Silhouette coefficients, which were calculated using the machine learning  
806 Python Package Scikit learn, were plotted for each cluster in the cases of k=4, 5 and  
807 6, respectively (A-C). The vertical red dashed lines indicate the mean value of the  
808 Silhouette coefficients. In the cases of k=4 (A) and 5 (B), all clusters showed higher  
809 Silhouette coefficients than the mean values. This was not true for k=6, meaning  
810 that k=5 is the most probable number of clusters for the transition density plot  
811 shown in Fig 5B.

812

813

814


|                                              |               | The distance of the dyes estimated from the crystal structure | The ratio of molecules showing FRET / total Cy3- and Cy5- doubly labeled molecules (%) | The number of analyzed fluorescent molecules (Figure 2 and 3D) | The number of traces showing fluctuations (Figure 4 and EV3) |
|----------------------------------------------|---------------|---------------------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------|
| D435C-E945C<br>(REC lobe-<br>RuvC domain)    | No Nucleotide | 21 Å                                                          | 91 ± 2                                                                                 | 121                                                            | 14                                                           |
|                                              | sgRNA         | 78 Å                                                          | 90 ± 2                                                                                 | 92                                                             | 13                                                           |
|                                              | sgRNA/DNA     | 77 Å                                                          | 91 ± 2                                                                                 | 98                                                             | 26                                                           |
| S355C-S867C<br>(REC lobe-<br>HNH domain)     | No Nucleotide | 79 Å                                                          | 68 ± 2                                                                                 | 191                                                            | 79                                                           |
|                                              | sgRNA         | 81 Å                                                          | 79 ± 3                                                                                 | 128                                                            | 25                                                           |
|                                              | sgRNA/DNA     | 61 Å                                                          | 92 ± 2                                                                                 | 140                                                            | 42                                                           |
| S867C-N1054C<br>(HNH domain-<br>RuvC domain) | No Nucleotide | 6 Å                                                           | 95 ± 2                                                                                 | 103                                                            | 4                                                            |
|                                              | sgRNA         | 7 Å                                                           | 96 ± 2                                                                                 | 84                                                             | 10                                                           |
|                                              | sgRNA/DNA     | 34 Å                                                          | 89 ± 2                                                                                 | 107                                                            | 6                                                            |

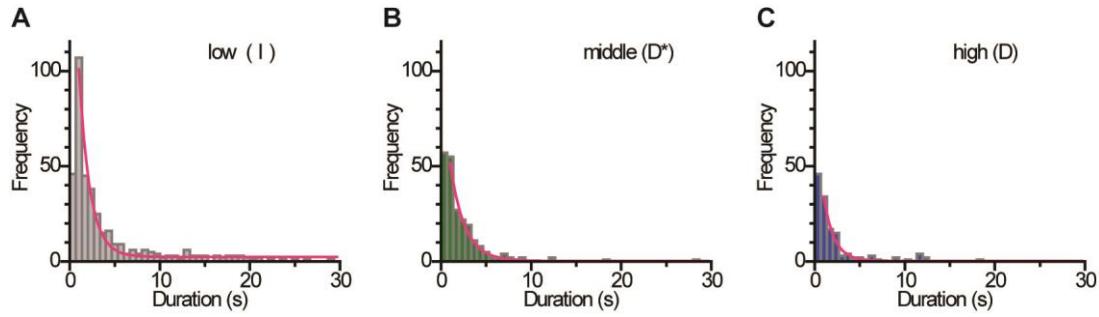
815 **Table EV1. List of parameters for smFRET measurements.**

816

817 **Appendix**

818




819

820 **Appendix Figure S1 - Perrin plots to calculate fluorescent anisotropy.**

821 The plots of the inverse of fluorescence anisotropies ( $\gamma$ ) of Cy3 and Cy5 on the Cas9  
822 constructs against  $T/\eta$ . Here, the absolute temperature  $T = 298$  K, and the  
823 viscosities of the sample  $\eta$  were 0.89, 1.64, 8.39 and 75.89, corresponding to 0,  
824 0.001, 0.01 and 0.1% methyl cellulose solutions, respectively. The plots are  
825 summaries of three individual experiments for each condition. The y-intercepts  
826 were calculated by extrapolating the plots to a linear function, yielding the  
827 estimated anisotropy values.

828 The values of Cy3 anisotropy were  $0.34 \pm 0.006$  in D435C-E945C,  $0.38 \pm 0.004$  in  
829 S355C-S867C and  $0.41 \pm 0.004$  in S867C-N1054C (mean  $\pm$  SEM,  $n = 3$ ). For Cy5,  $\gamma =$   
830  $0.27 \pm 0.005$  in D435C-E945C,  $0.29 \pm 0.006$  in S355C-S867C and  $0.32 \pm 0.009$  in  
831 S867C-N1054C (mean  $\pm$  SEM,  $n = 3$ ). In the case of low anisotropy, the orientation  
832 factor  $\kappa^2$  is close to the dynamic isotropic limit of  $\kappa^2 = 2/3$ . Otherwise,  $\kappa^2$  is widely

833 distributed in the range of  $0 \leq \kappa^2 \leq 4$ . Thus, the high anisotropies of Cy3 and Cy5  
834 obtained here, which are close to the theoretical maximum value of 0.4, obscured  
835 the value of  $\kappa^2$ , so that we were unable to estimate accurate distances between the  
836 two fluorochromes on the Cas9 molecules from the FRET efficiency.  
837



838

839 **Appendix Figure S2 - Dwell time histograms of the HNH domain in the three**  
840 **positions during flexible movements.**

841 A-C Dwell time distributions of the HNH domain in the I (A), D\* (B) and D (C)  
842 positions in the fluctuating S355C-S867C molecules. The assays were performed in  
843 the presence of Mg<sup>2+</sup>, sgRNA and target DNA. By fitting the distributions to a single  
844 exponential decay function (red curves), the mean dwell times were determined as  
845 1.22 ± 0.07 s for the I position (A: n = 399), 1.61 ± 0.08 s for the D\* position (B: n =  
846 219) and 1.14 ± 0.08 s for the D position (C: n = 124). Data: mean ± SEM.

847

848

### 849 Appendix Figure S3 - DNA sequence used in this study.

850 The pUC119 plasmid containing the 20-nt target sequence (blue) and the NGG PAM  
851 (red) was linearized by *Eco*RI (green) and used as the target DNA. The longest  
852 off-target matching sequence to the sgRNA was 4-nt with a PAM sequence (grey  
853 highlight). Since the Cas9 binding to such a short matching sequence is highly  
854 unstable (Singh *et al.*, 2016), we conclude that almost all of the Cas9 in the  
855 sgRNA/DNA-Cas9 ternary complex observed here was bound to the target  
856 sequence in the DNA.