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Abstract

Motivation: Whole genome sequencing is becoming a diagnostics of choice for the identification of
rare inherited and de novo copy number variants in families with various pediatric and late-onset ge-
netic diseases. However, joint variant calling in pedigrees is hampered by the complexity of consen-
sus breakpoint alignment across samples within an arbitrary pedigree structure.

Results: We have developed a new tool, Canvas SPW, for the identification of inherited and de novo
copy number variants from pedigree sequencing data. Canvas SPW supports a number of family
structures and provides a wide range of scoring and filtering options to automate and streamline iden-
tification of de novo variants.

Availability: Canvas SPW is available for download from https://github.com/lllumina/canvas.
Contact: sivakhno@illumina.com

Supplementary information: Supplementary data are available at Bioinformatics online.

expand the number of analyzable family structures and provide explicit
1 INTRODUCTION and easy-to-interpret de novo variant calls, we have developed a new
workflow, Canvas SPW (Small Pedigree Workflow), for germline and de
novo variant calling in pedigrees. In addition to trios, Canvas SPW pro-
cesses quads and can also perform joint variant calling in medium-size
sample batches.

The advent of affordable high-throughput sequencing enables the charac-
terization of genes implicated in a wide range of genetic diseases and
makes it possible to provide diagnosis in clinical settings as exemplified
by Genomics England 100k Genomes Project for the National Health
Service (https://www.genomicsengland.co.uk). Whole genome sequenc-
ing of families is becoming a standard approach for identifying highly 2 METHOD
penetrant variants that cause rare disease, such as de novo or recessive
mutations. Accurate variant and genotype calling is crucial for successful
identification of such disease-causing mutations (Acuna-Hidalgo et al.
2016). Unfortunately, false positive and negative results can occur due to
technical artifacts or reduced sequencing coverage, which especially
impact copy number variants (CNVs) identified through read depth
estimation (Teo et al. 2012). CNV calling accuracy in families can be
improved over single-sample calling by incorporating pedigree structure
into the genotyping model to ensure that copy number genotypes are
consistent with Mendelian inheritance and low rates of de novo mutation.
While a number of tools have been developed for the identification of
germline CNVs from sequencing data (Boeva et al., 2011, Abyzov et al.,
2011 and Liu et al., 2016), most of them are limited to variant calling in
single samples. Even those designed for family-based CNV detection are
restricted to only deal with parent-offspring trios (Liu et al., 2016). To

Outline Canvas SPW comprises five distinct modules designed to (1) process
aligned read data and estimate depth in coverage bins, (2) perform outlier removal
and normalization of depth estimates, (3) partition bins into segments of uniform
copy number, (4) calculate associated allele counts from single nucleotide variants
(SNVs) and (5) assign germline and de novo copy numbers. While initial multi-
sample data processing and normalization steps are extensions of single-sample
methods described elsewhere (Roller et al., 2016), segmentation and variant calling
steps have been specifically developed for multi-sample pedigree-structured inputs.
We briefly describe them below. More information is available in the Supplemen-
tary Material, Section 1.

Segmentation The input to the segmentation module is a data matrix produced by
processing the aligned read data from all samples. Each row of the input data
matrix represents a single genomic bin with the same genomic coordinates across

all samples. In turn, each column represents the normalized depth estimate across
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all genomic bins for a given sample. A Hidden Markov Model (HMM) with multi-
variate negative binomial emission distribution uses this matrix for partitioning.
HMM hidden states are initialized to approximately follow copy number states
(exact CN assignment is done at the variant calling stage). First, the Expectation
Maximization algorithm is used to optimize parameters of the emission and transi-
tion distributions. Next, the Viterbi algorithm is used to derive the final partitions.

Variant calling and output For each segment determined by the HMM segmenta-
tion module, Canvas SPW uses the distribution of coverage across the various bins
along with the allele-specific depths at each SNV within the segment to assign a
copy number. As a rule, allele-specific depths are only used when a segment con-
tains enough SNV loci; allele-specific depths are not use in small segments con-
taining only a handful of SNV sites. A probabilistic model is fitted to estimate
likelihood (L) of copy number (CN) assignments within a pedigree given coverage
data (D) L(CN,; ,CNg, CNg /D)~ P(Dy;/CNy ) P(Dp/CNg) P(De/CNg) X
P(CN;/CNy, CNg) , where the last term incorporates both the Mendelian trans-
mission probabilities and the estimated de novo rate of CNVs. Likelihood evalua-
tion is done using exhaustive enumeration of all possible CN assignments within
the pedigree up to the maximal CN threshold. A joint probability table from the
model with the maximum likelihood is used to estimate single sample and de novo
quality scores for variant calls and every variant inconsistent with Mendelian
inheritance is assigned a de novo flag. A VCF 4.1 compliant file with common and
de novo CNV calls is produced at the end of each Canvas SPW run.

Implementation and performance Canvas SPW is implemented in the C# pro-
gramming language and can be run on Linux systems using mono/.NET Core or on
Windows systems under the .NET. Using a Linux system with 32 cores and peak
RAM consumption of less than 10G, the Canvas SPW runtime on a trio and a quad

pedigree with 40X sequencing coverage per-sample was 1.3h and 2.1h respectively.

3 RESULTS

Two key performance characteristics of Canvas SPW were evaluated:
(1) ability to accurately call inherited germline variants and (2) correct
de novo variant detection. To accomplish this we have created a number
of pedigree sequencing samples using Platinum Genomes (PG) dataset
(Eberle et al., 2016) that include: (1) normal trios, (2) negative control
replicates of a single sample, (3) de novo enriched trio and quad where
parents are derived from the same sample and (4) pedigree simulation
through haplotype down-sampling. The latter is an adaptation of the
previously described tHapMix simulation framework for somatic vari-
ants (Ivakhno et al., 2016) to germline CNVs within a pedigree relation-
ship structure. Truth sets were generated by merging structural variants
found in PG data using orthogonal variant calling tools. Further valida-
tion of these truth sets was done by checking for full consistency with
Mendelian inheritance and comparison with TruSeq synthetic long read
data (full details of the assessment methodology and results are available
in Supplementary Material, Section 2). Estimation of CNV calling accu-
racy, precision and recall was performed as previously reported using
genome-wide base-pair CN concordance (Roller et al., 2016). We as-
sessed the performance of Canvas SPW against a range of existing CNV
calling tools: Control-FREEC (Boeva et al., 2011), CNVnator (Abyzov
et al., 2011) and TrioCNV (Liu et al., 2016). All tools were tested for
germline CNV calling accuracy, precision and recall. TrioCNV was also
evaluated for its ability to call de novo variants. The assessment was

done separately on four real synthetic (Table 1) and six haplotype-
simulated pedigrees (Table 2).
Table 1. CNV calling performance metrics for real synthetic pedigrees

Germline Variants De novo variants

Method Accu- Preci- Re- Accu- Preci-
. . Recall
racy sion call racy sion
Canvas 90.15 96.81  90.72 99.12 99.21 99.82
SPW
CNVnator 84.32 85.69  82.62 63.37 61.14 67.57
FREEC 47.21 49.46  46.63 NA NA NA

TrioCNV 26.71 1523 17.23 | 21.21 17.11 15.82
Table 2. CNV calling performance metrics for haplotype simulated pedigrees

Germline Variants De novo variants

Method Accu- Preci- Re- Accu- Preci-
. . Recall
racy sion call racy sion
Canvas 91.21 9439 8876 | 98.25 98.89 97.14
SPW
CNVnator 75.24 8745 77.82 | 62.19 49.14 64.57
FREEC 40.82 4329  42.38 NA NA NA

TrioCNV 22.34 12.86 13.93 24.57 15.27 13.49

Canvas SPW showed superior performance in comparison with existing
tools for both inherited and de novo germline variants. It also outper-
forms the single-sample germline Canvas workflow (Supplementary
Material, Table 2), suggesting that joint CNV calling with pedigree
information not only enables de novo variants detection, but also im-
proves performance on inherited germline variants. This is particularly
true for the recall where the pooling of sequencing coverage from multi-
ple samples amplifies signal, thereby decreasing the number of false
negative calls. To conclude, Canvas SPW provides fast, accurate and
easy to use workflow for the identification of inherited and de novo
germline CNV variants in pedigrees.
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