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4 Abstract

5 We present a model-based method for inferring full-brain neural activity at millimeter-
6 scale spatial resolutions and millisecond-scale temporal resolutions using standard human
7 intracranial recordings. Our approach assumes that different people’s brains exhibit similar
8 correlational structure, and that activity and correlation patterns vary smoothly over space.
9 One can then ask, for an arbitrary individual’s brain: given recordings from a limited set

10 of locations in that individual’s brain, along with the observed spatial correlations learned
1 from other people’s recordings, how much can be inferred about ongoing activity at other
12 locations throughout that individual’s brain? We show that our approach generalizes across
1 people and tasks, thereby providing a person- and task-general means of inferring high spa-
14 tiotemporal resolution full-brain neural dynamics from standard low-density intracranial
15 recordings.

16

17 Keywords: Electrocorticography (ECoG), intracranial electroencephalography (GEEG), local field
18 potential (LFP), epilepsy, maximum likelihood estimation, Gaussian process regression

» Introduction

20 Modern human brain recording techniques are fraught with compromise [33]. Commonly used
21 approaches include functional magnetic resonance imaging (fMRI), scalp electroencephalogra-
22 phy (EEG), and magnetoencephalography (MEG). For each of these techniques, neuroscientists
23 and electrophysiologists must choose to optimize spatial resolution at the cost of temporal reso-
24 lution (e.g., as in fMRI) or temporal resolution at the cost of spatial resolution (e.g., as in EEG and
s MEG). A less widely used approach (due to requiring work with neurosurgical patients) is to

2 record from electrodes implanted directly onto the cortical surface (electrocorticography; ECoG)
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27 or into deep brain structures (intracranial EEG; iEEG). However, these intracranial approaches
s also require compromise: the high spatiotemporal resolution of intracranial recordings comes
20 at the cost of substantially reduced brain coverage, since safety considerations limit the number
s of electrodes one may implant in a given patient’s brain. Further, the locations of implanted
st electrodes are determined by clinical, rather than research, needs.

%2 An increasingly popular approach is to improve the effective spatial resolution of MEG or
s scalp EEG data by using a geometric approach called beamforming to solve the biomagnetic or
s bioelectrical inverse problem [28]. This approach entails using detailed brain conductance mod-
s els (often informed by high spatial resolution anatomical MRI images) along with the known
s sensor placements (localized precisely in 3D space) to reconstruct brain signals originating from
a7 theoretical point sources deep in the brain (and far from the sensors). Traditional beamforming
ss approaches must overcome two obstacles. First, the inverse problem beamforming seeks to
o solve has infinitely many solutions. Researchers have made traction towards constraining the
w0 solution space by assuming that signal-generating sources are localized on a regularly spaced
« grid spanning the brain and that individual sources are small relative to their distances to the
22 sensors [1} 11, 34]. The second, and in some ways much more serious, obstacle is that the
s magnetic fields produced by external (noise) sources are substantially stronger than those pro-
s duced by the neuronal changes being sought (i.e., at deep structures, as measured by sensors
ss at the scalp). This means that obtaining adequate signal quality often requires averaging the
s measured responses over tens to hundreds of responses or trials (e.g., see review by [11])).

a7 Another approach to obtaining high spatiotemporal resolution neural data has been to col-
ss  lect fMRI and EEG data simultaneously. Simultaneous fMRI-EEG has the potential to balance
s the high spatial resolution of fMRI with the high temporal resolution of scalp EEG, thereby,
so in theory, providing the best of both worlds. In practice, however, the signal quality of both

st recordings suffers substantially when the two techniques are applied simultaneously (e.g., see
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sz review by [13]). In addition, the experimental designs that are ideally suited to each technique
ss individually are somewhat at odds. For example, fMRI experiments often lock stimulus presen-
s« tation events to the regularly spaced image acquisition time (TR), which maximizes the number
s of post-stimulus samples. By contrast, EEG experiments typically employ jittered stimulus pre-
ss sentation times to maximize the experimentalist’s ability to distinguish electrical brain activity
s7 from external noise sources such as from 60 Hz alternating current power sources.

58 The current “gold standard” for precisely localizing signals and sampling at high temporal
so resolution is to take (ECoG or iEEG) recordings from implanted electrodes (but from a limited
o set of locations in any given brain). This begs the following question: what can we infer about
st the activity exhibited by the rest of a person’s brain, given what we learn from the limited
2 intracranial recordings we have from their brain and additional recordings taken from other
s people’s brains? Here we develop an approach, which we call SuperEEGT, based on Gaussian
s« process regression [27]. SuperEEG entails using data from multiple people to estimate activ-
es ity patterns at arbitrary locations in each person’s brain (i.e., independent of their electrode
ss placements). We test our SuperEEG approach using two large datasets of intracranial record-
o7 ings [7, 18, 12}, 16419, 21} 23} 30-32, 35, 41]. We show that the SuperEEG algorithm recovers
s signals well from electrodes that were held out of the training dataset. We also examine the
o factors that influence how accurately activity may be estimated (recovered), which may have

70 implications for electrode design and placement in neurosurgical applications.
» Approach

72 The SuperEEG approach to inferring high temporal resolution full-brain activity patterns is

72 outlined and summarized in Figure[l} We describe (in this section) and evaluate (in Results) our

1The term “SuperEEG” was coined by Robert J. Sawyer in his popular science fiction novel The Terminal Exper-
iment [29]. SuperEEG is a fictional technology that measures ongoing neural activity throughout the entire living
human brain with perfect precision and at arbitrarily high spatiotemporal resolution.
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7+ approach using a two large previously collected dataset comprising multi-session intracranial
75 recordings. Dataset 1 comprises multi-session recordings taken from 6876 electrodes implanted
76 in the brains of 88 epilepsy patients [21} 23] 30H32]. Each recording session lasted from 0.2—
77 3 h (total recording time: 0.3-14.2 h; Fig. S4E). During each recording session, the patients
7¢ participated in a free recall list learning task, which lasted for up to approximately 1 h. In
7o addition, the recordings included “buffer” time (the length varied by patient) before and after
so each experimental session, during which the patients went about their regular hospital activities
st (confined to their hospital room, and primarily in bed). These additional activities included
&2 interactions with medical staff and family, watching television, reading, and other similar
ss activities. For the purposes of the Dataset 1 analyses presented here, we aggregated all data
s« across each recording session, including recordings taken during the main experimental task
s as well as during non-experimental time. We used Dataset 1 to develop our main SuperEEG
ss approach, and to examine the extent to which SuperEEG might be able to generate task-general
&7 predictions. Dataset 2 comprised multi-session recordings from 4436 electrodes implanted in
ss the brains of 40 epilepsy patients [7, 8} 12, 16419, 35, 41]]. Each recording session lasted from
so 0.4-2.2 h (total recording time: 0.4-6.6 h; Fig. S4K). Whereas Dataset 1 included recordings
o taken as the patients participated in a variety of activities, Dataset 2 included recordings taken
o1 as each patient performed each of two specific experimental memory tasks: a random word list
e free recall task (Experiment 1) and a categorized word list free recall task (Experiment 2). We
s used Dataset 2 to further examine the ability of SuperEEG to generalize its predictions within
« versus across tasks. Figure 5S4 provides additional information about both datasets.

% We first applied fourth order Butterworth notch filter to remove 60 Hz (+ .5 Hz) line noise
s from every recording (from every electrode). Next, we downsampled the recordings (regard-
o7 less of the original samplerate) to 250 Hz. (This downsampling step served to both normalize

e for differences in sampling rates across patients and to ease the computational burden of our
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Figure 1: Methods overview. A. Electrode locations. Each dot reflects the location of a single
electrode implanted in the brain of a Dataset 1 patient. A held-out recording location from one
patient is indicated in red, and the patient’s remaining electrodes are indicated in black. The
electrodes from the remaining patients are colored by k-means cluster (computed using the full-
brain correlation model shown in Panel D). B. Radial basis function kernel. Each electrode
contributed by the patient (black) weights on the full set of locations under consideration
(all dots in Panel A, defined as R in the text). The weights fall off with positional distance
(in MNI space) according to an RBF. C. Per-patient correlation matrices. After computing
the pairwise correlations between the recordings from each patient’s electrodes, we use RBF-
weighted averages to estimate correlations between all locations in R. We obtain an estimated
full-brain correlation matrix using each patient’s data. D. Merged correlation model. We
combine the per-patient correlation matrices (Panel C) to obtain a single full-brain correlation
model that captures information contributed by every patient. Here we have sorted the rows
and columns to reflect k-means clustering labels [using k=7;42], whereby we grouped locations
based on their correlations with the rest of the brain (i.e., rows of the matrix displayed in
the panel). The boundaries denote the cluster groups. The rows and columns of Panel C have
been sorted using the Panel D-derived cluster labels. E. Reconstructing activity throughout the
brain. Given the observed recordings from the given patient (shown in black; held-out recording
is shown in blue), along with a full-brain correlation model (Panel D), we use Equation (12 to
reconstruct the most probable activity at the held-out location (red).
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% subsequent analyses.) We then excluded any electrodes that showed putative epileptiform ac-

10 tivity. Specifically, we excluded from further analysis any electrode that exhibited an maximum
101 kurtosis of 10 or greater across all of that patient’s recording sessions. We also excluded any pa-
12 tients with fewer than 2 electrodes that passed this criteria, as the SuperEEG algorithm requires
13 measuring correlations between 2 or more electrodes from each patient. For Dataset 1, this
104 yielded clean recordings from 4168 electrodes implanted throughout the brains of 67 patients
s (Fig. [IJA); for Dataset 2, this yielded clean recordings from 3159 electrodes from 24 patients.
16 Each individual patient contributes electrodes from a limited set of brain locations, which we
17 localized in a common space [MNI152; [10]; an example Dataset 1 patient’s 54 electrodes that
18 passed the above kurtosis threshold test are highlighted in black and red.

The recording from a given electrode is maximally informative about the activity of the
neural tissue immediately surrounding its recording surface. However, brain regions that are
distant from the recording surface of the electrode also contribute to the recording, albeit (ceteris
paribus) to a much lesser extent. One mechanism underlying these contributions is volume
conduction. The precise rate of falloff due to volume conduction (i.e., how much a small volume
of brain tissue at location x contributes to the recording from an electrode at location 17) depends
on the size of the recording surface, the electrode’s impedance, and the conductance profile of
the volume of brain between x and 7. As an approximation of this intuition, we place a Gaussian
radial basis function (RBF) at the location 7 of each electrode’s recording surface (Fig. ). We
use the values of the RBF at any brain location x as a rough estimate of how much structures

around x contributed to the recording from location 7:

_ 2
lx An|| } "

rbf(x|n, A) = exp {
19 where the width variable A is a parameter of the algorithm (which may in principle be set
1o according to location-specific tissue conductance profiles) that governs the level of spatial

11 smoothing. In choosing A for the analyses presented here, we sought to maximize spatial

6
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112 resolution (which implies a small value of 1) while also maximizing the algorithm’s ability
13 to generalize to any location throughout the brain, including those without dense electrode
14 coverage (which implies a large value of A). Here we set A = 20, guided in part by our prior
15 work [22,24], and in part by examining the brain coverage with non-zero weights achieved by
16 placing RBFs at each electrode location in Dataset 1 and taking the sum (across all electrodes)
117 at each voxel in a 4 mm® MNI brain. (We then held A fixed for our analyses of Dataset 2.) We
11s note that this value could in theory be further optimized, e.g., using cross validation or a formal
19 model [e.g., 24].

120 A second mechanism whereby a given region x can contribute to the recording at 7 is
121 through (direct or indirect) anatomical connections between structures near x and 1. We use
122 temporal correlations in the data to estimate these anatomical connections [2]. Let R be the
123 set of locations at which we wish to estimate local field potentials, and let Ry C R be set of
124 locations at which we observe local field potentials from patient s (excluding the electrodes that
s did not pass the kurtosis test described above). In the analyses below we define R = UleRs.
126 We can calculate the expected inter-electrode correlation matrix for patient s, where C; (i, j) is
12z the correlation between the time series of voltages for electrodes i and j from subject s during

128 session k, using:

_ 1 <
Co =1(- (D #(Cs))), where @

k=1

log(1 —log(1 -
z(r) = os(l+1) 5 os(1-1) is the Fisher z—transformation and 3)
i exp(2z) -1

= = — . 4
z (z) =r(z) oxp(22) 71 is its inverse 4)

120 Next, we use Equation [I| to construct a number of to-be-estimated locations by number of
130 patient electrode locations weight matrix, W;. Specifically, W, approximates how informative

131 the recordings at each location in R; are in reconstructing activity at each location in R, where

7
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132 the contributions fall off with an RBF according to the distances between the corresponding

133 locations:

Wi(i, j) = rbf(i}, A). ()

134 Given this weight matrix, W5, and the observed inter-electrode correlation matrix for patient

s s, Cs, we can estimate the correlation matrix for all locations in R (C s; Fig. ) using:

[Rs| i—-1
No(x,y) = > )" Wix,i)- Wiy, j) - 2(Cs(i, /) (6)
i=1 j=1
A IRs| i-1
Ds(x,y) = W(x,i)- W(y, j)- 7)
i=1 j=1
3 N,
Cs=r1 (D_s) . (8)

After estimating the numerator (N,) and denominator (D) placeholders for each C,, we ag-

gregate these estimates across the S patients to obtain a single expected full-brain correlation

matrix (K; Fig. ):

K:r( 1 Ns . )

Zle Ds

s Intuitively, the numerators capture the general structures of the patient-specific estimates of full-

1

w

17 brain correlations, and the denominators account for which locations were near the implanted
s electrodes in each patient. To obtain K, we compute a weighted average across the estimated

1

W

o patient-specific full-brain correlation matrices, where patients with observed electrodes near a

o particular set of locations in K contribute more to the estimate.

N

141 Having used the multi-patient data to estimate a full-brain correlation matrix at the set

2 of locations in R that we wish to know about, we next use K to estimate activity patterns

o

s everywhere in R, given observations at only a subset of locations in R (Fig. ).

8
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144 Let ;s be the set of indices of patient s’s electrode locations in R (i.e., the locations in Ry),
1s and let B, be the set of indices of all other locations in R. In other words, s reflects the locations
s in R where we did not observe a recording for patient s (these are the recording locations we

17 will want to fill in using SuperEEG). We can sub-divide K as follows:

Kﬁs,as = K(ﬁs/ as)/ and (10)

Kas,ocs = K(as/ as)- (11)

s Here K ps,as Tepresents the correlations between the “unknown” activity at the locations indexed
s by Bs and the observed activity at the locations indexed by a;, and K,, ., represents the
150 correlations between the observed recordings (at the locations indexed by ;).

151 Let Y; ko, be the number-of-timepoints (T) by |as| matrix of (observed) voltages from the
12 electrodes in as during session k from patient s. Then we can estimate the voltage from patient

s s’s k" session at the locations in Bs using [27]:

Yorp = (Kp, o - Kol o) - Y] O (12)

14 This equation is the foundation of the SuperEEG algorithm. Whereas we observe recordings
15 only at the locations indexed by as, Equation[12]allows us to estimate the recordings at all loca-
16 tions indexed by B, which we can define a priori to include any locations we wish, throughout
17 the brain. This yields estimates of the time-varying voltages at every location in R, provided that
155 we define R in advance to include the union of all of the locations in R, and all of the locations
19 at which we wish to estimate recordings (i.e., a timeseries of voltages).

160 We designed our approach to be agnostic to electrode impedances, as electrodes that do not
161 exist do not have impedances. Therefore our algorithm recovers voltages in standard deviation

12 (z-scored) units rather than attempting to recover absolute voltages. (This property reflects the

9
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163 fact that Kﬁs,as and K, ,, are correlation matrices rather than covariance matrices.) Also, we
164 note that Equationrequires computing a T by T matrix, which can become computationally
1es intractable when T is very large (e.g., for the patient highlighted in Fig. 2, T = 12786750).
s However, because Equationis time invariant, we may compute Y; x g, in a piecewise manner
17 by filling in Y5 x g, one row at a time (using the corresponding samples from Yk 4, ).

168 The SuperEEG algorithm described above and in Figure [I| allows us to estimate, up to a
169 constant scaling factor, local field potentials (LFPs) for each patient at all arbitrarily chosen
170 locations in the set R, even if we did not record that patient’s brain at all of those locations. We next

171 turn to an evaluation of the accuracy of those estimates.
= Results

172 We used a cross-validation approach to test the accuracy with which the SuperEEG algorithm
174 reconstructs activity throughout the brain. For each patient in turn, we estimated full-brain
175 correlation matrices (Eqn.[9) using data from all of the other patients. This step ensured that the
176 data we were reconstructing could not also be used to estimate the between-location correlations
177 that drove the reconstructions via Equation (12| (otherwise the analysis would be circular). For
75 that held-out patient, we held out each electrode in turn. We used Equation (12| to reconstruct
179 activity at the held-out electrode location, using the correlation matrix learned from all other
w0 patients’ data as K, and using activity recorded from the other electrodes from the held-out
181 patient as Y x o,. We then asked: how closely did each of the SuperEEG-estimated recordings
122 at those electrodes match the observed recordings from those electrodes (i.e., how closely did
183 the estimated Ys,k,/gs match the observed Y x g,)?

184 To illustrate our approach, we first examine an individual held-out raw LFP trace and its
185 associated SuperEEG-derived reconstruction. Figure displays the observed LFP from the

18s red electrode in Figure (blue), and its associated reconstruction (red), during the 5 s time

10
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Figure 2: Observed and reconstructed LFP from a single electrode. A. Example LFP. A
5 s recording from the red electrode in Figure [1A is displayed in blue, and the reconstructed
LFP during the same time window is shown in red. B. Observed versus reconstructed LFP
over 14.2 hours. The two-dimensional histogram reflects the relation between distributions
of observed versus reconstructed voltages from one patient, across the 14.2 hours of recorded
data collected over 6 recording sessions. The correlation reported in the panel is between the
observed and reconstructed voltages. Both panels: all voltages are represented in standard
deviation units (computed within session).
17 window during one of the example patient’s six recording sessions shown in Figure [IE. The
18 two traces match closely (r = 0.86, p < 10719). Figure @B displays a two-dimensional histogram
19 of the actual versus reconstructed voltages for the entire 14.2 total hours of recordings from the
10 example electrode (correlation: r = 0.91, p < 1071°). This example confirms that the SuperEEG
191 algorithm recovers the recordings from this single electrode well. Next, we used this general
192 approach to quantify the algorithm’s performance across the full dataset.
193 For each held-out electrode, from each held-out patient in turn, we computed the average
194 correlation (across recording sessions) between the SuperEEG-reconstructed voltage traces and

s the observed voltage traces from that electrode. For this analysis we set R to be the union of

196 all electrode locations across all patients. This yielded a single correlation coefficient for each

11
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197 electrode location in R, reflecting how well the SuperEEG algorithm was able to recover the
1s  recording at that location by incorporating data across patients (black histogram in Fig. , map
1ee  in Fig. ). The observed distribution of correlations was centered well above zero (mean: 0.52;
200 t-test comparing mean of distribution of z-transformed average patient correlation coefficients
201 t00: £(66) = 25.08, p < 107'9), indicating that the SuperEEG algorithm recovers held-out activity
22 patterns substantially better than random guessing.

203 As a stricter benchmark, we compared the quality of these across-participant reconstructions
204 (i.e., computed using a correlation model learned from other patients” data) to reconstructions
205 generated using a correlation model trained using the in-patient’s data. In other words, for
206 this within-patient benchmark analysis we estimated Cs (Eqn.|8) for each patient in turn, using
207 recordings from all of that patient’s electrodes except at the location we were reconstructing.
28 These within-patient reconstructions serve as an estimate of how well data from all of the
200 other electrodes from that single patient may be used to estimate held-out data from the
210 same patient. This allows us to ask how much information about the activity at a given
211 electrode might be inferred through (a) volume conductance or other sources of “leakage”
212 from activity patterns measured from the patient’s other electrodes and (b) across-electrode
213 correlations learned from that single patient. As shown in Figure (gray histogram), the
214 distribution of within-patient correlations was centered well above zero (mean: 0.32; t-test
215 comparing mean of distribution of z-transformed average patient correlation coefficients to 0:
216 1(66) = 15.16,p < 1071%). However, the across-patient correlations were substantially higher
217 (t-test comparing average z-transformed within versus across patient electrode correlations:
218 £(66) = 9.62,p < 10719). This is an especially conservative test, given that the across-patient
219 SuperEEG reconstructions exclude (from the correlation matrix estimates) all data from the
220 patient whose data is being reconstructed. We repeated each of these analyses on a second

221 independent dataset and found similar results (Fig. , D; within versus across reconstruction

12
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22 accuracy: t(23) = 6.93,p < 107°). We also replicated this result separately for each of the two
223 experiments from Dataset 2 (Fig. S1). This overall finding, that reconstructions of held-out data
224 using correlation models learned from other patient’s data yield higher reconstruction accuracy
22s than correlation models learned from the patient whose data is being reconstructed, has two
226 important implications. First, it implies that distant electrodes provide additional predictive
227 power to the data reconstructions beyond the information contained solely in nearby electrodes.
228 (This follows from the fact that each patient’s grid, strip, and depth electrodes are implanted in
220 aunique set of locations, so for any given electrode the closest electrodes in the full dataset tend
20 to come from the same patient.) Second, it implies that the spatial correlations learned using
21 the SuperEEG algorithm are, to some extent, similar across people.

232 The recordings we analyzed from Dataset 1 comprised data collected as the patients per-
23 formed a variety of (largely idiosyncratic) tasks throughout each day’s recording session. That
2« we observed reliable reconstruction accuracy across patients suggests that the spatial correla-
25 tions derived from the SuperEEG algorithm are, to some extent, similar across tasks. We tested
26 this finding more directly using Dataset 2. In Dataset 2, the recordings were limited to times
27 when each patient was participating in each of two experiments (Experiment 1, a random-word
28 list free recall task, and Experiment 2, a categorized list free recall task). We wondered whether
20 a correlation model learned from data from one experiment might yield good predictions of
20 data from the other experiment. Further, we wondered about the extent to which it might be
s beneficial or harmful to combine data across tasks.

242 To test the task-specificity of the SuperEEG-derived correlation models, we repeated the
213 above within- and across-patient cross validation procedures separately for Experiment 1 and
21« Experiment 2 data from Dataset 2. We then compared the reconstruction accuracies for held-out
s electrodes, for models trained within versus across the two experiments, or combining across

26 both experiments (Fig. S2). In every case we found that across-patient models trained using
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Figure 3: Reconstruction quality across all electrodes in two ECoG datasets. A. Distributions
of correlations between observed versus reconstructed activity by electrode, for Dataset 1.
The across-patient distribution (black) reflects reconstruction accuracy (correlation) using a
correlation model learned from all but one patient’s data, and then applied to that held-out
patient’s data. The within-patient distribution (gray) reflects performance using a correlation
model learned from the same patient who contributed the to-be-reconstructed electrode. B.
Distributions of correlations for Dataset 2. This panel is in the same format as Panel A, but
reflects results obtained from Dataset 2. The histograms aggregate data across both Dataset
2 experiments; for results broken down by experiment see Figure S3. C.-D. Reconstruction
performance by location. Each dot reflects the location of a single implanted electrode from
Dataset 1 (Panel C) or Dataset 2 (Panel D). The dot colors denote the average across-session
correlation, using the across-patient correlation model, between the observed and reconstructed
activity at the given electrode location.
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27 data from all other patients out-performed within-patient models trained on data only from the
28 subject contributing the given electrode (ts(23) > 6.50, ps< 1075). All reconstruction accuracies
20 also reliably exceeded chance performance (ts(23) > 8.00, ps< 1078). Average reconstruction
20 accuracy was highest for the across-patient models limited to data from the same experiment
251 (mean accuracy: 0.68); next-highest for the models that combined data across both experiments
22 (mean accuracy: 0.61); and lowest for models trained across tasks (mean accuracy: 0.47). This
23 result also held for each of the Dataset 2 experiments individually (Fig. S3). Taken together,
24 theseresults indicate that there are reliable commonalities in the spatial correlations of full-brain
255 activity across tasks, but that there are also reliable differences in these spatial correlations across
26 tasks. Whereas reconstruction accuracy benefits from incorporating data from other patients,
257 reconstruction accuracy is highest when constrained to within-task data, or data that includes
28 a variety of tasks (e.g., Dataset 1, or combining across the two Dataset 2 experiments).

259 Although both datasets we examined provide good full-brain coverage (when considering
200 data from every patient; e.g. Fig. BIC, D), electrodes are not placed uniformly throughout the
21 brain. For example, electrodes are more likely to be implanted in regions like the medial
22 temporal lobe (MTL), and are rarely implanted in occipital cortex (Fig. @A, B). Separately for

%3 each dataset, for each voxel in the 4 mm?

voxel MNI152 brain, we computed the proportion
24 Of electrodes in the dataset that were contained within a 20 MNI unit radius sphere centered
2s on that voxel. We defined the density at that location as this proportion. Across Datasets
26 1 and 2, the electrode placement densities were similar (correlation by voxel: r = 0.56,p <
27 1071%). We wondered whether regions with good covererage might be associated with better
266 reconstruction accuracy (e.g. Fig.BC, D indicate that many electrodes in the MTL have relatively
269 high reconstruction accuracy, and occipital electrodes tend to have relatively low reconstruction

2o accuracy). To test whether this held more generally across the entire brain, for each dataset

21 we computed the electrode placement density for each electrode from each patient (using
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Figure 4: Electrode sampling density by location. A. Electrode sampling density by voxel
in Dataset 1. Each voxel is colored by the proportion of total electrodes in the dataset that are
located within a 20 MNI unit radius sphere centered on the given voxel. B. Electrode sampling
density by voxel in Dataset 2. This panel displays the sampling density map for Dataset 2, in
the same format as Panel A. C. Correspondence in sampling density by voxel across Datasets
1 and 2. The two-dimensional histogram displays the by-voxel densities in the two Datasets,
and the one-dimensional histograms display the proportions of voxels in each dataset with the
given density value. The correlation reported in the panel is across voxels in the 4 mm?® MNI
brain.

22 the proportion of other patients’ electrodes within 20 MNI units of the given electrode). We
273 then correlated these density values with the across-patient reconstruction accuracies for each
24 electrode. We found no reliable correlations between reconstruction accuracy and density for
275 either dataset (Dataset 1: r = 0.09, p = 0.44; Dataset 2: r = —0.30, p = 0.15). This indicates that
276 the reconstruction accuracies we observed are not driven solely by sampling density, but rather
27 may also reflect higher order properties of neural dynamics such as functional correlations
278 between distant voxels [3].

279 In neurosurgical applications where one wishes to infer full-brain activity patterns, can our
20 framework yield insights into where the electrodes should be placed? A basic assumption of our
281 approach (and of most prior ECoG work) is that electrode recordings are most informative about
22 the neural activity near the recording surface of the electrode. But if we consider that activity

283 patterns throughout the brain are meaningfully correlated, are there particular implantation
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284« locations that, if present in a patient’s brain, yield especially high reconstruction accuracies
s throughout the rest of the brain? For example, one might hypothesize that brain structures
26 that are heavily interconnected with many other structures could be more informative about
27 full-brain activity patterns than comparatively isolated structures.

288 To gain insights into whether particular electrode locations might be especially informative,
s We first computed the average reconstruction accuracy across all of each patient’s electrodes
200 (using the across-patients cross validation test; black histograms in Fig. BA and B). We labeled
201 each patient’s electrodes in each dataset with the average reconstruction accuracy for that
22 patient. In other words, we assigned every electrode from each given patient the same value,
23 reflecting how well the activity patterns at those electrodes were reconstructed on average.
20« Next, for each voxel in the 4 mm3 MNI brain, we computed the average value across any
25 electrode (from any patient) that came within 20 MNI units of that voxel’s center. Effectively,
26 we computed an information score for each voxel, reflecting the average reconstruction accuracy
27 across any patients with electrodes near each voxel- where the averages were weighted to reflect
28 patients who had more electrodes implanted near that location. This yielded a single map for
200 each dataset, highlighting regions that are potentially promising implantation targets in terms
s of providing full-brain activity information via SuperEEG (Fig.[5|A, B). Despite task and patient
201 differences across the two datasets, we nonetheless found that the maps of the most promising
w2 implantation targets derived from both datasets were similar (voxelwise correlation between
w03 information scores across the two datasets: » = 0.20,p < 1071%). While the correspondence
s+ between the two maps was imperfect, our finding that there were some commonalities between
w05 the two maps lends support to the notion that different brain areas are differently informative
s0s about full-brain activity patterns. We also examined the intersection between the top 10% most
07 informative voxels across the two datasets (white outlines in Fig.5|A, B, Fig. S5). Supporting the

w8 notion thatstructures that are highly interconnected with the rest of the brain might be especially
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Figure 5: Most informative electrode locations. A. Dataset 1 information score by voxel.
The voxel colors reflect the weighted average reconstruction accuracy across all electrodes from
any patients with at least one electrode within 20 MNI units of the given voxel. B. Dataset 2
information score by voxel. This panel is in the same format as Panel A. In both panels the
contours indicate the intersections between the top 10% most informative voxels in each map
(also see Fig. S5). C. Correspondence in information scores by voxel across Datasets 1 and 2.
Same format as Figure [4C.

ws  good targets for implantation, this intersecting set of voxels with the highest information scores

s1o included major portions of the dorsal attention network (e.g., inferior parietal lobule, precuneus,

si  inferior temporal gyrus, thalamus, and striatum) as well as some portions of the default mode

sz network (e.g., angular gyrus) that are highly interconnected with a large proportion of the

s13  brain’s gray matter [e.g., [39].
= Discussion

sis Are our brain’s networks static or dynamic? And to what extent are the network properties
ste  Of our brains stable across people and tasks? One body of work suggests that our brain’s
a7 functional networks are dynamic [e.g., 24], person-specific [e.g., 9], and task-specific [e.g.,
sis. 40]. In contrast, although the gross anatomical structure of our brains changes meaningfully
s1e  over the course of years as our brains develop, on the timescales of typical neuroimaging ex-

20 periments (i.e., hours to days) our anatomical networks are largely stable [e.g., 4]. Further,
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221 many aspects of brain anatomy, including white matter structure, are largely preserved across
w22 people [e.g., [15,126]37]. There are several possible means of reconciling this apparent inconsis-
w23 tency between dynamic person- and task-specific functional networks versus stable anatomical
s« networks. For example, relatively small magnitude anatomical differences across people may
s2s be reflected in reliable functional connectivity differences. Along these lines, one recent study
w26 found that diffusion tensor imaging (DTI) structural data is similar across people, but may be
s27 used to predict person-specific resting state functional connectivity data [2]. Similarly, other
s2s  work indicates that task-specific functional connectivity may be predicted by resting state func-
we tional connectivity data [5, 38]. Another (potentially complementary) possibility is that our
w0 functional networks are constrained by anatomy, but nevertheless exhibit (potentially rapid)
a1 task-dependent changes [e.g., 36].

a2 Here we have taken a model-based approach to studying whether high spatiotemporal
3 resolution activity patterns throughout the human brain may be explained by a static connec-
a4 tome model that is shared across people and tasks. Specifically, we trained a model to take
w5 in recordings from a subset of brain locations, and then predicted activity patterns during the
s3s  same interval, but at other locations that were held out from the model. Our model, based on
s7  Gaussian process regression, was built on three general hypotheses about the nature of the
ss correlational structure of neural activity (each of which we tested). First, we hypothesized that
xe functional correlations are stable over time and across tasks. We found that, although aspects of
s  the patients” functional correlations were stable across tasks, we achieved better reconstruction
sar - accuracy when we trained the model on within-task data [we acknowledge that our general
sz approach could potentially be extended to better model across-task changes, following 5} 38}
us  and others]. Second, we hypothesized that some of the correlational structure of people’s brain
sas  activity is similar across individuals. Consistent with this hypothesis, our model explained the

us data best when we trained the correlation model using data from other patients— even when
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us compared to a correlation model trained on the same patient’s data. Third, we resolved am-
a7 biguities in the data by hypothesizing that neural activity from nearby sources will tend to be
us  similar, all else being equal. This hypothesis was supported through our finding that all of the
us  models we trained that incorporated this spatial smoothness assumption predicted held-out
ss0 data well above chance.

351 One potential limitation of our approach is that it does not provide a natural means of
ss2  estimating the precise timing of single-neuron action potentials. Prior work has shown that
3 gamma band and broadband activity in the LFP may be used to estimate the firing rates of
ss4 neurons that underly the population contributing to the LFP [6, 14, 20| 25]. Because SuperEEG
sss  reconstructs LFPs throughout the brain, one could in principle use gamma or broadband power
ss6  in the reconstructed signals to estimate the corresponding firing rates (though not the timings
7 of individual action potentials).

368 Beyond providing a means of estimating ongoing activity throughout the brain using al-
s ready implanted electrodes, our work also has implications for where to place the electrodes in
so the first place. Electrodes are typically implanted to maximize coverage of suspected epilep-
s togenic tissue. However, our findings suggest that this approach could be further optimized.
sz Specifically, one could leverage not only the non-invasive recordings taken during an initial
ss monitoring period (as is currently done routinely), but also recordings collected from other
w4 patients. We could then ask: given what we learn from other patients’” data (and potentially
ss from the scalp EEG recordings of this new patient), where should we place a fixed number
s Of electrodes to maximize our ability to map seizure foci? As shown in Figures |5/ and S5,
se7 recordings from different locations are differently informative in terms of reconstructing the
ss  spatiotemporal activity patterns throughout the brain. This property might be leveraged in

9 decisions about where to surgically implant electrodes in future patients.
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2 Concluding remarks

s Over the past several decades, neuroscientists have begun to leverage the strikingly profound
sz mathematical structure underlying the brain’s complexity to infer how our brains carry out
ss  computations to support our thoughts, actions, and physiological processes. Whereas tradi-
s74 tional beamforming techniques rely on geometric source-localization of signals measured at the
ars  scalp, here we propose an alternative approach that leverages the rich correlational structure
are  of two large datasets of human intracranial recordings. In doing so, we are one step closer to
sz observing, and perhaps someday understanding, the full spatiotemporal structure of human

s7e  neural activity.
s Code availability

s0  We have published an open-source toolbox implementing the SuperEEG algorithm. It may be
ss1  downloaded here. Additionally, we have provided code for all analyses and figures reported in

ss2 the current manuscript, available here.
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ss Dataset 1 may be downloaded here. Dataset 2 may be downloaded here.
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