
A Gaussian process model of human electrocorticographic1

data2

Lucy L. W. Owen1, Andrew C. Heusser1,2, and Jeremy R. Manning1∗

1Department of Psychological and Brain Sciences, Dartmouth College,
Hanover, NH 03755, USA

2Akili Interactive,
Boston, MA 02110, USA

3

Abstract4

We present a model-based method for inferring full-brain neural activity at millimeter-5

scale spatial resolutions and millisecond-scale temporal resolutions using standard human6

intracranial recordings. Our approach assumes that different people’s brains exhibit similar7

correlational structure, and that activity and correlation patterns vary smoothly over space.8

One can then ask, for an arbitrary individual’s brain: given recordings from a limited set9

of locations in that individual’s brain, along with the observed spatial correlations learned10

from other people’s recordings, how much can be inferred about ongoing activity at other11

locations throughout that individual’s brain? We show that our approach generalizes across12

people and tasks, thereby providing a person- and task-general means of inferring high spa-13

tiotemporal resolution full-brain neural dynamics from standard low-density intracranial14

recordings.15

16

Keywords: Electrocorticography (ECoG), intracranial electroencephalography (iEEG), local field17

potential (LFP), epilepsy, maximum likelihood estimation, Gaussian process regression18

Introduction19

Modern human brain recording techniques are fraught with compromise [33]. Commonly used20

approaches include functional magnetic resonance imaging (fMRI), scalp electroencephalogra-21

phy (EEG), and magnetoencephalography (MEG). For each of these techniques, neuroscientists22

and electrophysiologists must choose to optimize spatial resolution at the cost of temporal reso-23

lution (e.g., as in fMRI) or temporal resolution at the cost of spatial resolution (e.g., as in EEGand24

MEG). A less widely used approach (due to requiring work with neurosurgical patients) is to25

record fromelectrodes implanted directly onto the cortical surface (electrocorticography; ECoG)26
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or into deep brain structures (intracranial EEG; iEEG). However, these intracranial approaches27

also require compromise: the high spatiotemporal resolution of intracranial recordings comes28

at the cost of substantially reduced brain coverage, since safety considerations limit the number29

of electrodes one may implant in a given patient’s brain. Further, the locations of implanted30

electrodes are determined by clinical, rather than research, needs.31

An increasingly popular approach is to improve the effective spatial resolution of MEG or32

scalp EEG data by using a geometric approach called beamforming to solve the biomagnetic or33

bioelectrical inverse problem [28]. This approach entails using detailed brain conductancemod-34

els (often informed by high spatial resolution anatomical MRI images) along with the known35

sensor placements (localized precisely in 3D space) to reconstruct brain signals originating from36

theoretical point sources deep in the brain (and far from the sensors). Traditional beamforming37

approaches must overcome two obstacles. First, the inverse problem beamforming seeks to38

solve has infinitely many solutions. Researchers have made traction towards constraining the39

solution space by assuming that signal-generating sources are localized on a regularly spaced40

grid spanning the brain and that individual sources are small relative to their distances to the41

sensors [1, 11, 34]. The second, and in some ways much more serious, obstacle is that the42

magnetic fields produced by external (noise) sources are substantially stronger than those pro-43

duced by the neuronal changes being sought (i.e., at deep structures, as measured by sensors44

at the scalp). This means that obtaining adequate signal quality often requires averaging the45

measured responses over tens to hundreds of responses or trials (e.g., see review by [11]).46

Another approach to obtaining high spatiotemporal resolution neural data has been to col-47

lect fMRI and EEG data simultaneously. Simultaneous fMRI-EEG has the potential to balance48

the high spatial resolution of fMRI with the high temporal resolution of scalp EEG, thereby,49

in theory, providing the best of both worlds. In practice, however, the signal quality of both50

recordings suffers substantially when the two techniques are applied simultaneously (e.g., see51

2

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2018. ; https://doi.org/10.1101/121020doi: bioRxiv preprint 

https://doi.org/10.1101/121020
http://creativecommons.org/licenses/by-nc-nd/4.0/


review by [13]). In addition, the experimental designs that are ideally suited to each technique52

individually are somewhat at odds. For example, fMRI experiments often lock stimulus presen-53

tation events to the regularly spaced image acquisition time (TR), which maximizes the number54

of post-stimulus samples. By contrast, EEG experiments typically employ jittered stimulus pre-55

sentation times to maximize the experimentalist’s ability to distinguish electrical brain activity56

from external noise sources such as from 60 Hz alternating current power sources.57

The current “gold standard” for precisely localizing signals and sampling at high temporal58

resolution is to take (ECoG or iEEG) recordings from implanted electrodes (but from a limited59

set of locations in any given brain). This begs the following question: what can we infer about60

the activity exhibited by the rest of a person’s brain, given what we learn from the limited61

intracranial recordings we have from their brain and additional recordings taken from other62

people’s brains? Here we develop an approach, which we call SuperEEG1, based on Gaussian63

process regression [27]. SuperEEG entails using data from multiple people to estimate activ-64

ity patterns at arbitrary locations in each person’s brain (i.e., independent of their electrode65

placements). We test our SuperEEG approach using two large datasets of intracranial record-66

ings [7, 8, 12, 16–19, 21, 23, 30–32, 35, 41]. We show that the SuperEEG algorithm recovers67

signals well from electrodes that were held out of the training dataset. We also examine the68

factors that influence how accurately activity may be estimated (recovered), which may have69

implications for electrode design and placement in neurosurgical applications.70

Approach71

The SuperEEG approach to inferring high temporal resolution full-brain activity patterns is72

outlined and summarized in Figure 1. We describe (in this section) and evaluate (in Results) our73

1The term “SuperEEG” was coined by Robert J. Sawyer in his popular science fiction novel The Terminal Exper-
iment [29]. SuperEEG is a fictional technology that measures ongoing neural activity throughout the entire living
human brain with perfect precision and at arbitrarily high spatiotemporal resolution.
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approach using a two large previously collected dataset comprising multi-session intracranial74

recordings. Dataset 1 comprisesmulti-session recordings taken from 6876 electrodes implanted75

in the brains of 88 epilepsy patients [21, 23, 30–32]. Each recording session lasted from 0.2–76

3 h (total recording time: 0.3–14.2 h; Fig. S4E). During each recording session, the patients77

participated in a free recall list learning task, which lasted for up to approximately 1 h. In78

addition, the recordings included “buffer” time (the length varied by patient) before and after79

each experimental session, duringwhich the patientswent about their regular hospital activities80

(confined to their hospital room, and primarily in bed). These additional activities included81

interactions with medical staff and family, watching television, reading, and other similar82

activities. For the purposes of the Dataset 1 analyses presented here, we aggregated all data83

across each recording session, including recordings taken during the main experimental task84

as well as during non-experimental time. We used Dataset 1 to develop our main SuperEEG85

approach, and to examine the extent to which SuperEEGmight be able to generate task-general86

predictions. Dataset 2 comprised multi-session recordings from 4436 electrodes implanted in87

the brains of 40 epilepsy patients [7, 8, 12, 16–19, 35, 41]. Each recording session lasted from88

0.4–2.2 h (total recording time: 0.4–6.6 h; Fig. S4K). Whereas Dataset 1 included recordings89

taken as the patients participated in a variety of activities, Dataset 2 included recordings taken90

as each patient performed each of two specific experimental memory tasks: a randomword list91

free recall task (Experiment 1) and a categorized word list free recall task (Experiment 2). We92

used Dataset 2 to further examine the ability of SuperEEG to generalize its predictions within93

versus across tasks. Figure S4 provides additional information about both datasets.94

We first applied fourth order Butterworth notch filter to remove 60 Hz (± .5 Hz) line noise95

from every recording (from every electrode). Next, we downsampled the recordings (regard-96

less of the original samplerate) to 250 Hz. (This downsampling step served to both normalize97

for differences in sampling rates across patients and to ease the computational burden of our98
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Figure 1: Methods overview. A. Electrode locations. Each dot reflects the location of a single
electrode implanted in the brain of a Dataset 1 patient. A held-out recording location from one
patient is indicated in red, and the patient’s remaining electrodes are indicated in black. The
electrodes from the remaining patients are colored by k-means cluster (computed using the full-
brain correlation model shown in Panel D). B. Radial basis function kernel. Each electrode
contributed by the patient (black) weights on the full set of locations under consideration
(all dots in Panel A, defined as R̄ in the text). The weights fall off with positional distance
(in MNI space) according to an RBF. C. Per-patient correlation matrices. After computing
the pairwise correlations between the recordings from each patient’s electrodes, we use RBF-
weighted averages to estimate correlations between all locations in R̄. We obtain an estimated
full-brain correlation matrix using each patient’s data. D. Merged correlation model. We
combine the per-patient correlation matrices (Panel C) to obtain a single full-brain correlation
model that captures information contributed by every patient. Here we have sorted the rows
and columns to reflect k-means clustering labels [using k=7; 42], whereby we grouped locations
based on their correlations with the rest of the brain (i.e., rows of the matrix displayed in
the panel). The boundaries denote the cluster groups. The rows and columns of Panel C have
been sorted using the Panel D-derived cluster labels. E. Reconstructing activity throughout the
brain. Given theobserved recordings from thegivenpatient (shown inblack; held-out recording
is shown in blue), along with a full-brain correlation model (Panel D), we use Equation 12 to
reconstruct the most probable activity at the held-out location (red).
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subsequent analyses.) We then excluded any electrodes that showed putative epileptiform ac-99

tivity. Specifically, we excluded from further analysis any electrode that exhibited anmaximum100

kurtosis of 10 or greater across all of that patient’s recording sessions. We also excluded any pa-101

tients with fewer than 2 electrodes that passed this criteria, as the SuperEEG algorithm requires102

measuring correlations between 2 or more electrodes from each patient. For Dataset 1, this103

yielded clean recordings from 4168 electrodes implanted throughout the brains of 67 patients104

(Fig. 1A); for Dataset 2, this yielded clean recordings from 3159 electrodes from 24 patients.105

Each individual patient contributes electrodes from a limited set of brain locations, which we106

localized in a common space [MNI152; 10]; an example Dataset 1 patient’s 54 electrodes that107

passed the above kurtosis threshold test are highlighted in black and red.108

The recording from a given electrode is maximally informative about the activity of the

neural tissue immediately surrounding its recording surface. However, brain regions that are

distant from the recording surface of the electrode also contribute to the recording, albeit (ceteris

paribus) to a much lesser extent. One mechanism underlying these contributions is volume

conduction. The precise rate of falloff due to volume conduction (i.e., howmuch a small volume

of brain tissue at location x contributes to the recording from an electrode at location η) depends

on the size of the recording surface, the electrode’s impedance, and the conductance profile of

the volume of brain between x and η. As an approximation of this intuition, we place aGaussian

radial basis function (RBF) at the location η of each electrode’s recording surface (Fig. 1B). We

use the values of the RBF at any brain location x as a rough estimate of how much structures

around x contributed to the recording from location η:

rbf(x |η, λ) � exp
{
−
||x − η| |2

λ

}
, (1)

where the width variable λ is a parameter of the algorithm (which may in principle be set109

according to location-specific tissue conductance profiles) that governs the level of spatial110

smoothing. In choosing λ for the analyses presented here, we sought to maximize spatial111
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resolution (which implies a small value of λ) while also maximizing the algorithm’s ability112

to generalize to any location throughout the brain, including those without dense electrode113

coverage (which implies a large value of λ). Here we set λ � 20, guided in part by our prior114

work [22, 24], and in part by examining the brain coverage with non-zero weights achieved by115

placing RBFs at each electrode location in Dataset 1 and taking the sum (across all electrodes)116

at each voxel in a 4 mm3 MNI brain. (We then held λ fixed for our analyses of Dataset 2.) We117

note that this value could in theory be further optimized, e.g., using cross validation or a formal118

model [e.g., 24].119

A second mechanism whereby a given region x can contribute to the recording at η is120

through (direct or indirect) anatomical connections between structures near x and η. We use121

temporal correlations in the data to estimate these anatomical connections [2]. Let R̄ be the122

set of locations at which we wish to estimate local field potentials, and let Rs ⊆ R̄ be set of123

locations at which we observe local field potentials from patient s (excluding the electrodes that124

did not pass the kurtosis test described above). In the analyses below we define R̄ � ∪S
s�1Rs .125

We can calculate the expected inter-electrode correlation matrix for patient s, where Cs ,k(i , j) is126

the correlation between the time series of voltages for electrodes i and j from subject s during127

session k, using:128

C̄s � r( 1
n
(

n∑
k�1

z(Cs ,k))), where (2)

z(r) �
log(1 + r) − log(1 − r)

2
is the Fisher z−transformation and (3)

z−1(z) � r(z) �
exp(2z) − 1
exp(2z) + 1

is its inverse. (4)

Next, we use Equation 1 to construct a number of to-be-estimated locations by number of129

patient electrode locations weight matrix, Ws . Specifically, Ws approximates how informative130

the recordings at each location in Rs are in reconstructing activity at each location in R̄, where131
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the contributions fall off with an RBF according to the distances between the corresponding132

locations:133

Ws(i , j) � rbf(i | j, λ). (5)

Given this weightmatrix, Ws , and the observed inter-electrode correlationmatrix for patient134

s, C̄s , we can estimate the correlation matrix for all locations in R̄ (Ĉs ; Fig. 1C) using:135

N̂s(x , y) �
|Rs |∑
i�1

i−1∑
j�1

W(x , i) ·W(y , j) · z(C̄s(i , j)) (6)

D̂s(x , y) �
|Rs |∑
i�1

i−1∑
j�1

W(x , i) ·W(y , j). (7)

Ĉs � r
(

N̂s

D̂s

)
. (8)

After estimating the numerator (N̂s) and denominator (D̂s) placeholders for each Ĉs , we ag-

gregate these estimates across the S patients to obtain a single expected full-brain correlation

matrix (K̂; Fig. 1D):

K̂ � r

(∑S
s�1 N̂s∑S
s�1 D̂s

)
. (9)

Intuitively, the numerators capture the general structures of the patient-specific estimates of full-136

brain correlations, and the denominators account for which locations were near the implanted137

electrodes in each patient. To obtain K̂, we compute a weighted average across the estimated138

patient-specific full-brain correlation matrices, where patients with observed electrodes near a139

particular set of locations in K̂ contribute more to the estimate.140

Having used the multi-patient data to estimate a full-brain correlation matrix at the set141

of locations in R̄ that we wish to know about, we next use K̂ to estimate activity patterns142

everywhere in R̄, given observations at only a subset of locations in R̄ (Fig. 1E).143
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Let αs be the set of indices of patient s’s electrode locations in R̄ (i.e., the locations in Rs),144

and let βs be the set of indices of all other locations in R̄. In other words, βs reflects the locations145

in R̄ where we did not observe a recording for patient s (these are the recording locations we146

will want to fill in using SuperEEG). We can sub-divide K̂ as follows:147

K̂βs ,αs � K̂(βs , αs), and (10)

K̂αs ,αs � K̂(αs , αs). (11)

Here K̂βs ,αs represents the correlations between the “unknown” activity at the locations indexed148

by βs and the observed activity at the locations indexed by αs , and K̂αs ,αs represents the149

correlations between the observed recordings (at the locations indexed by αs).150

Let Ys ,k ,αs be the number-of-timepoints (T) by |αs | matrix of (observed) voltages from the151

electrodes in αs during session k from patient s. Then we can estimate the voltage from patient152

s’s k th session at the locations in βs using [27]:153

Ŷs ,k ,βs � ((K̂βs ,αs · K̂−1
αs ,αs
) · YT

s ,k ,αs
)T. (12)

This equation is the foundation of the SuperEEG algorithm. Whereas we observe recordings154

only at the locations indexed by αs , Equation 12 allows us to estimate the recordings at all loca-155

tions indexed by βs , which we can define a priori to include any locations we wish, throughout156

the brain. This yields estimates of the time-varying voltages at every location in R̄, provided that157

we define R̄ in advance to include the union of all of the locations in Rs and all of the locations158

at which we wish to estimate recordings (i.e., a timeseries of voltages).159

We designed our approach to be agnostic to electrode impedances, as electrodes that do not160

exist do not have impedances. Therefore our algorithm recovers voltages in standard deviation161

(z-scored) units rather than attempting to recover absolute voltages. (This property reflects the162
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fact that K̂βs ,αs and K̂αs ,αs are correlation matrices rather than covariance matrices.) Also, we163

note that Equation 12 requires computing a T by T matrix, which can become computationally164

intractable when T is very large (e.g., for the patient highlighted in Fig. 2, T � 12786750).165

However, because Equation 12 is time invariant, we may compute Ys ,k ,βs in a piecewise manner166

by filling in Ys ,k ,βs one row at a time (using the corresponding samples from Ys ,k ,αs ).167

The SuperEEG algorithm described above and in Figure 1 allows us to estimate, up to a168

constant scaling factor, local field potentials (LFPs) for each patient at all arbitrarily chosen169

locations in the set R̄, even if we did not record that patient’s brain at all of those locations. We next170

turn to an evaluation of the accuracy of those estimates.171

Results172

We used a cross-validation approach to test the accuracy with which the SuperEEG algorithm173

reconstructs activity throughout the brain. For each patient in turn, we estimated full-brain174

correlation matrices (Eqn. 9) using data from all of the other patients. This step ensured that the175

datawewere reconstructing could not also be used to estimate the between-location correlations176

that drove the reconstructions via Equation 12 (otherwise the analysis would be circular). For177

that held-out patient, we held out each electrode in turn. We used Equation 12 to reconstruct178

activity at the held-out electrode location, using the correlation matrix learned from all other179

patients’ data as K̂, and using activity recorded from the other electrodes from the held-out180

patient as Ys ,k ,αs . We then asked: how closely did each of the SuperEEG-estimated recordings181

at those electrodes match the observed recordings from those electrodes (i.e., how closely did182

the estimated Ŷs ,k ,βs match the observed Ys ,k ,βs )?183

To illustrate our approach, we first examine an individual held-out raw LFP trace and its184

associated SuperEEG-derived reconstruction. Figure 2A displays the observed LFP from the185

red electrode in Figure 1A (blue), and its associated reconstruction (red), during the 5 s time186
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Figure 2: Observed and reconstructed LFP from a single electrode. A. Example LFP. A
5 s recording from the red electrode in Figure 1A is displayed in blue, and the reconstructed
LFP during the same time window is shown in red. B. Observed versus reconstructed LFP
over 14.2 hours. The two-dimensional histogram reflects the relation between distributions
of observed versus reconstructed voltages from one patient, across the 14.2 hours of recorded
data collected over 6 recording sessions. The correlation reported in the panel is between the
observed and reconstructed voltages. Both panels: all voltages are represented in standard
deviation units (computed within session).

window during one of the example patient’s six recording sessions shown in Figure 1E. The187

two traces match closely (r � 0.86, p < 10−10). Figure 2B displays a two-dimensional histogram188

of the actual versus reconstructed voltages for the entire 14.2 total hours of recordings from the189

example electrode (correlation: r � 0.91, p < 10−10). This example confirms that the SuperEEG190

algorithm recovers the recordings from this single electrode well. Next, we used this general191

approach to quantify the algorithm’s performance across the full dataset.192

For each held-out electrode, from each held-out patient in turn, we computed the average193

correlation (across recording sessions) between the SuperEEG-reconstructed voltage traces and194

the observed voltage traces from that electrode. For this analysis we set R̄ to be the union of195

all electrode locations across all patients. This yielded a single correlation coefficient for each196

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted October 12, 2018. ; https://doi.org/10.1101/121020doi: bioRxiv preprint 

https://doi.org/10.1101/121020
http://creativecommons.org/licenses/by-nc-nd/4.0/


electrode location in R̄, reflecting how well the SuperEEG algorithm was able to recover the197

recording at that location by incorporating data across patients (black histogram in Fig. 3A,map198

in Fig. 3C). The observed distribution of correlations was centered well above zero (mean: 0.52;199

t-test comparing mean of distribution of z-transformed average patient correlation coefficients200

to 0: t(66) � 25.08, p < 10−10), indicating that the SuperEEGalgorithm recovers held-out activity201

patterns substantially better than random guessing.202

As a stricter benchmark, we compared the quality of these across-participant reconstructions203

(i.e., computed using a correlation model learned from other patients’ data) to reconstructions204

generated using a correlation model trained using the in-patient’s data. In other words, for205

this within-patient benchmark analysis we estimated Ĉs (Eqn. 8) for each patient in turn, using206

recordings from all of that patient’s electrodes except at the location we were reconstructing.207

These within-patient reconstructions serve as an estimate of how well data from all of the208

other electrodes from that single patient may be used to estimate held-out data from the209

same patient. This allows us to ask how much information about the activity at a given210

electrode might be inferred through (a) volume conductance or other sources of “leakage”211

from activity patterns measured from the patient’s other electrodes and (b) across-electrode212

correlations learned from that single patient. As shown in Figure 3A (gray histogram), the213

distribution of within-patient correlations was centered well above zero (mean: 0.32; t-test214

comparing mean of distribution of z-transformed average patient correlation coefficients to 0:215

t(66) � 15.16, p < 10−10). However, the across-patient correlations were substantially higher216

(t-test comparing average z-transformed within versus across patient electrode correlations:217

t(66) � 9.62, p < 10−10). This is an especially conservative test, given that the across-patient218

SuperEEG reconstructions exclude (from the correlation matrix estimates) all data from the219

patient whose data is being reconstructed. We repeated each of these analyses on a second220

independent dataset and found similar results (Fig. 3B, D; within versus across reconstruction221
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accuracy: t(23) � 6.93, p < 10−5). We also replicated this result separately for each of the two222

experiments from Dataset 2 (Fig. S1). This overall finding, that reconstructions of held-out data223

using correlation models learned from other patient’s data yield higher reconstruction accuracy224

than correlation models learned from the patient whose data is being reconstructed, has two225

important implications. First, it implies that distant electrodes provide additional predictive226

power to the data reconstructions beyond the information contained solely in nearby electrodes.227

(This follows from the fact that each patient’s grid, strip, and depth electrodes are implanted in228

a unique set of locations, so for any given electrode the closest electrodes in the full dataset tend229

to come from the same patient.) Second, it implies that the spatial correlations learned using230

the SuperEEG algorithm are, to some extent, similar across people.231

The recordings we analyzed from Dataset 1 comprised data collected as the patients per-232

formed a variety of (largely idiosyncratic) tasks throughout each day’s recording session. That233

we observed reliable reconstruction accuracy across patients suggests that the spatial correla-234

tions derived from the SuperEEG algorithm are, to some extent, similar across tasks. We tested235

this finding more directly using Dataset 2. In Dataset 2, the recordings were limited to times236

when each patient was participating in each of two experiments (Experiment 1, a random-word237

list free recall task, and Experiment 2, a categorized list free recall task). We wondered whether238

a correlation model learned from data from one experiment might yield good predictions of239

data from the other experiment. Further, we wondered about the extent to which it might be240

beneficial or harmful to combine data across tasks.241

To test the task-specificity of the SuperEEG-derived correlation models, we repeated the242

above within- and across-patient cross validation procedures separately for Experiment 1 and243

Experiment 2 data fromDataset 2. We then compared the reconstruction accuracies for held-out244

electrodes, for models trained within versus across the two experiments, or combining across245

both experiments (Fig. S2). In every case we found that across-patient models trained using246
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Figure 3: Reconstruction quality across all electrodes in two ECoG datasets. A. Distributions
of correlations between observed versus reconstructed activity by electrode, for Dataset 1.
The across-patient distribution (black) reflects reconstruction accuracy (correlation) using a
correlation model learned from all but one patient’s data, and then applied to that held-out
patient’s data. The within-patient distribution (gray) reflects performance using a correlation
model learned from the same patient who contributed the to-be-reconstructed electrode. B.
Distributions of correlations for Dataset 2. This panel is in the same format as Panel A, but
reflects results obtained from Dataset 2. The histograms aggregate data across both Dataset
2 experiments; for results broken down by experiment see Figure S3. C.–D. Reconstruction
performance by location. Each dot reflects the location of a single implanted electrode from
Dataset 1 (Panel C) or Dataset 2 (Panel D). The dot colors denote the average across-session
correlation, using the across-patient correlationmodel, between the observed and reconstructed
activity at the given electrode location.
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data from all other patients out-performedwithin-patient models trained on data only from the247

subject contributing the given electrode (ts(23) > 6.50, ps< 10−5). All reconstruction accuracies248

also reliably exceeded chance performance (ts(23) > 8.00, ps< 10−8). Average reconstruction249

accuracy was highest for the across-patient models limited to data from the same experiment250

(mean accuracy: 0.68); next-highest for the models that combined data across both experiments251

(mean accuracy: 0.61); and lowest for models trained across tasks (mean accuracy: 0.47). This252

result also held for each of the Dataset 2 experiments individually (Fig. S3). Taken together,253

these results indicate that there are reliable commonalities in the spatial correlations of full-brain254

activity across tasks, but that there are also reliable differences in these spatial correlations across255

tasks. Whereas reconstruction accuracy benefits from incorporating data from other patients,256

reconstruction accuracy is highest when constrained to within-task data, or data that includes257

a variety of tasks (e.g., Dataset 1, or combining across the two Dataset 2 experiments).258

Although both datasets we examined provide good full-brain coverage (when considering259

data from every patient; e.g. Fig. 3C, D), electrodes are not placed uniformly throughout the260

brain. For example, electrodes are more likely to be implanted in regions like the medial261

temporal lobe (MTL), and are rarely implanted in occipital cortex (Fig. 4A, B). Separately for262

each dataset, for each voxel in the 4 mm3 voxel MNI152 brain, we computed the proportion263

of electrodes in the dataset that were contained within a 20 MNI unit radius sphere centered264

on that voxel. We defined the density at that location as this proportion. Across Datasets265

1 and 2, the electrode placement densities were similar (correlation by voxel: r � 0.56, p <266

10−10). We wondered whether regions with good covererage might be associated with better267

reconstruction accuracy (e.g. Fig. 3C, D indicate thatmany electrodes in theMTL have relatively268

high reconstruction accuracy, and occipital electrodes tend to have relatively low reconstruction269

accuracy). To test whether this held more generally across the entire brain, for each dataset270

we computed the electrode placement density for each electrode from each patient (using271
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Figure 4: Electrode sampling density by location. A. Electrode sampling density by voxel
in Dataset 1. Each voxel is colored by the proportion of total electrodes in the dataset that are
located within a 20 MNI unit radius sphere centered on the given voxel. B. Electrode sampling
density by voxel in Dataset 2. This panel displays the sampling density map for Dataset 2, in
the same format as Panel A. C. Correspondence in sampling density by voxel across Datasets
1 and 2. The two-dimensional histogram displays the by-voxel densities in the two Datasets,
and the one-dimensional histograms display the proportions of voxels in each dataset with the
given density value. The correlation reported in the panel is across voxels in the 4 mm3 MNI
brain.

the proportion of other patients’ electrodes within 20 MNI units of the given electrode). We272

then correlated these density values with the across-patient reconstruction accuracies for each273

electrode. We found no reliable correlations between reconstruction accuracy and density for274

either dataset (Dataset 1: r � 0.09, p � 0.44; Dataset 2: r � −0.30, p � 0.15). This indicates that275

the reconstruction accuracies we observed are not driven solely by sampling density, but rather276

may also reflect higher order properties of neural dynamics such as functional correlations277

between distant voxels [3].278

In neurosurgical applications where one wishes to infer full-brain activity patterns, can our279

framework yield insights intowhere the electrodes should be placed? Abasic assumption of our280

approach (and ofmost prior ECoGwork) is that electrode recordings aremost informative about281

the neural activity near the recording surface of the electrode. But if we consider that activity282

patterns throughout the brain are meaningfully correlated, are there particular implantation283
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locations that, if present in a patient’s brain, yield especially high reconstruction accuracies284

throughout the rest of the brain? For example, one might hypothesize that brain structures285

that are heavily interconnected with many other structures could be more informative about286

full-brain activity patterns than comparatively isolated structures.287

To gain insights into whether particular electrode locations might be especially informative,288

we first computed the average reconstruction accuracy across all of each patient’s electrodes289

(using the across-patients cross validation test; black histograms in Fig. 3A and B). We labeled290

each patient’s electrodes in each dataset with the average reconstruction accuracy for that291

patient. In other words, we assigned every electrode from each given patient the same value,292

reflecting how well the activity patterns at those electrodes were reconstructed on average.293

Next, for each voxel in the 4 mm3 MNI brain, we computed the average value across any294

electrode (from any patient) that came within 20 MNI units of that voxel’s center. Effectively,295

we computed an information score for each voxel, reflecting the average reconstruction accuracy296

across any patientswith electrodes near each voxel–where the averageswereweighted to reflect297

patients who had more electrodes implanted near that location. This yielded a single map for298

each dataset, highlighting regions that are potentially promising implantation targets in terms299

of providing full-brain activity information via SuperEEG (Fig. 5A, B). Despite task and patient300

differences across the two datasets, we nonetheless found that the maps of the most promising301

implantation targets derived from both datasets were similar (voxelwise correlation between302

information scores across the two datasets: r � 0.20, p < 10−10). While the correspondence303

between the twomaps was imperfect, our finding that there were some commonalities between304

the two maps lends support to the notion that different brain areas are differently informative305

about full-brain activity patterns. We also examined the intersection between the top 10%most306

informative voxels across the two datasets (white outlines in Fig. 5A, B, Fig. S5). Supporting the307

notion that structures that are highly interconnectedwith the rest of the brainmight be especially308
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Figure 5: Most informative electrode locations. A. Dataset 1 information score by voxel.
The voxel colors reflect the weighted average reconstruction accuracy across all electrodes from
any patients with at least one electrode within 20 MNI units of the given voxel. B. Dataset 2
information score by voxel. This panel is in the same format as Panel A. In both panels the
contours indicate the intersections between the top 10% most informative voxels in each map
(also see Fig. S5). C. Correspondence in information scores by voxel across Datasets 1 and 2.
Same format as Figure 4C.

good targets for implantation, this intersecting set of voxels with the highest information scores309

includedmajor portions of the dorsal attention network (e.g., inferior parietal lobule, precuneus,310

inferior temporal gyrus, thalamus, and striatum) as well as some portions of the default mode311

network (e.g., angular gyrus) that are highly interconnected with a large proportion of the312

brain’s gray matter [e.g., 39].313

Discussion314

Are our brain’s networks static or dynamic? And to what extent are the network properties315

of our brains stable across people and tasks? One body of work suggests that our brain’s316

functional networks are dynamic [e.g., 24], person-specific [e.g., 9], and task-specific [e.g.,317

40]. In contrast, although the gross anatomical structure of our brains changes meaningfully318

over the course of years as our brains develop, on the timescales of typical neuroimaging ex-319

periments (i.e., hours to days) our anatomical networks are largely stable [e.g., 4]. Further,320
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many aspects of brain anatomy, including white matter structure, are largely preserved across321

people [e.g., 15, 26, 37]. There are several possible means of reconciling this apparent inconsis-322

tency between dynamic person- and task-specific functional networks versus stable anatomical323

networks. For example, relatively small magnitude anatomical differences across people may324

be reflected in reliable functional connectivity differences. Along these lines, one recent study325

found that diffusion tensor imaging (DTI) structural data is similar across people, but may be326

used to predict person-specific resting state functional connectivity data [2]. Similarly, other327

work indicates that task-specific functional connectivity may be predicted by resting state func-328

tional connectivity data [5, 38]. Another (potentially complementary) possibility is that our329

functional networks are constrained by anatomy, but nevertheless exhibit (potentially rapid)330

task-dependent changes [e.g., 36].331

Here we have taken a model-based approach to studying whether high spatiotemporal332

resolution activity patterns throughout the human brain may be explained by a static connec-333

tome model that is shared across people and tasks. Specifically, we trained a model to take334

in recordings from a subset of brain locations, and then predicted activity patterns during the335

same interval, but at other locations that were held out from the model. Our model, based on336

Gaussian process regression, was built on three general hypotheses about the nature of the337

correlational structure of neural activity (each of which we tested). First, we hypothesized that338

functional correlations are stable over time and across tasks. We found that, although aspects of339

the patients’ functional correlations were stable across tasks, we achieved better reconstruction340

accuracy when we trained the model on within-task data [we acknowledge that our general341

approach could potentially be extended to better model across-task changes, following 5, 38,342

and others]. Second, we hypothesized that some of the correlational structure of people’s brain343

activity is similar across individuals. Consistent with this hypothesis, our model explained the344

data best when we trained the correlation model using data from other patients– even when345
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compared to a correlation model trained on the same patient’s data. Third, we resolved am-346

biguities in the data by hypothesizing that neural activity from nearby sources will tend to be347

similar, all else being equal. This hypothesis was supported through our finding that all of the348

models we trained that incorporated this spatial smoothness assumption predicted held-out349

data well above chance.350

One potential limitation of our approach is that it does not provide a natural means of351

estimating the precise timing of single-neuron action potentials. Prior work has shown that352

gamma band and broadband activity in the LFP may be used to estimate the firing rates of353

neurons that underly the population contributing to the LFP [6, 14, 20, 25]. Because SuperEEG354

reconstructs LFPs throughout the brain, one could in principle use gamma or broadband power355

in the reconstructed signals to estimate the corresponding firing rates (though not the timings356

of individual action potentials).357

Beyond providing a means of estimating ongoing activity throughout the brain using al-358

ready implanted electrodes, our work also has implications for where to place the electrodes in359

the first place. Electrodes are typically implanted to maximize coverage of suspected epilep-360

togenic tissue. However, our findings suggest that this approach could be further optimized.361

Specifically, one could leverage not only the non-invasive recordings taken during an initial362

monitoring period (as is currently done routinely), but also recordings collected from other363

patients. We could then ask: given what we learn from other patients’ data (and potentially364

from the scalp EEG recordings of this new patient), where should we place a fixed number365

of electrodes to maximize our ability to map seizure foci? As shown in Figures 5 and S5,366

recordings from different locations are differently informative in terms of reconstructing the367

spatiotemporal activity patterns throughout the brain. This property might be leveraged in368

decisions about where to surgically implant electrodes in future patients.369
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Concluding remarks370

Over the past several decades, neuroscientists have begun to leverage the strikingly profound371

mathematical structure underlying the brain’s complexity to infer how our brains carry out372

computations to support our thoughts, actions, and physiological processes. Whereas tradi-373

tional beamforming techniques rely on geometric source-localization of signals measured at the374

scalp, here we propose an alternative approach that leverages the rich correlational structure375

of two large datasets of human intracranial recordings. In doing so, we are one step closer to376

observing, and perhaps someday understanding, the full spatiotemporal structure of human377

neural activity.378
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We have published an open-source toolbox implementing the SuperEEG algorithm. It may be380

downloaded here. Additionally, we have provided code for all analyses and figures reported in381

the current manuscript, available here.382

Data availability383

The dataset analyzed in this study was generously shared by Michael J. Kahana. A portion of384
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