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Abstract

Transcription factors (TFs) often work cooperatively, where the binding of one TF to DNA enhances the
binding affinity of a second TF to a nearby location. Such cooperative binding is important for activating gene
expression from promoters and enhancers in both prokaryotic and eukaryotic cells. Existing methods to detect
cooperative binding of a TF pair rely on analyzing the sequence that is bound. We propose a method that uses,
instead, only ChIP-seq peak intensities and an expectation maximization (CPI-EM) algorithm. We validate our
method using ChIP-seq data from cells where one of a pair of TFs under consideration has been genetically knocked
out. Our algorithm relies on our observation that cooperative TF-TF binding is correlated with weak binding of
one of the TFs, which we demonstrate in a variety of cell types, including E. coli, S. cerevisiae and M. musculus
cells. We show that this method performs significantly better than a predictor based only on the ChIP-seq peak
distance of the TFs under consideration. This suggests that peak intensities contain information that can help
detect the cooperative binding of a TF pair. CPI-EM also outperforms an existing sequence-based algorithm in
detecting cooperative binding. The CPI-EM algorithm is available at https://github.com/vishakad/cpi-em.

1 Introduction

Transcription factors (TFs) regulate the transcription of a set of genes by binding specific regulatory regions of DNA.
The magnitude of the change in transcription caused by a TF depends in part on its affinity to the bound DNA
sequence. Some times, it is possible that a second TF binding a nearby sequence increases the first TF’s binding
affinity. In this case, the two TFs are said to cooperatively or combinatorially bind DNA [1]. The cooperative binding
of transcription factors at enhancers and promoters is known to strongly increase gene expression [2, 3, 4, 5]. The
presence of cooperativity has been used to explain the rapid rate of evolution of TF binding sites in multicellular
organisms [6].

The role of cooperative binding in protein complex assembly has been extensively studied and computational
methods have been proposed to detect such interactions within genomes [7, 8, 9]. In these studies, cooperativity
results in the oligomerization of proteins after they bind DNA through protein-protein contacts. In such TF pairs, this
typically occurs only when their binding sites are at a particular distance from each other. Earlier theoretical methods
have successfully detected many such instances of cooperatively bound TF pairs [10, 11, 12, 13, 14, 15, 16, 1, 17].
The input to these methods is a set of sequences bound by both TFs under investigation. These methods scan these
sequences for closely spaced binding sites of both TFs, using position weight matrix (PWM) models of each TF [18],
and predict the distance between the binding sites at which cooperative interactions can occur.

However, many TF pairs can cooperatively bind DNA even if the distance between their binding sites is changed
[19], and need not form protein-protein contacts upon binding DNA [20, 21]. The strength of the cooperative effect
in these cases can depend on the distance between the binding sites [21]. Such a distance-independent cooperative
interaction can arise from a mechanism such as assisted binding [22], where a TF, say A, that is already bound
to DNA increases the affinity of nearby binding site towards a second TF, say B. Such a cooperative interaction
may be asymmetric in nature i.e., a TF A may be able to assist a TF B in binding DNA, but not vice versa [22].
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The sequence that links the two binding sites can also modulate the cooperative effect. For instance, nucleotide
substitutions in the sequence linking binding sites of the transcription factors Sox2 and Pax6 were found to convert
a cooperatively bound enhancer sequence in the D. melanogaster genome to a non-cooperatively bound one [23].

An important consequence of these findings is that a pair of TFs that cooperatively bind DNA at one genomic
region may not bind cooperatively at a different genomic region due to differences in the binding site arrangement
between both regions. For such TF pairs, it is unclear how well purely sequence-based methods that rely on binding
site co-occurrences can accurately detect that subset of locations which are cooperatively bound by both TFs.
However, differentiating between a location that is cooperatively bound by a pair of TFs from a second location that
is not cooperatively bound is possible through ChIP-seq (chromatin immuno-precipitation and sequencing) profiles
of both TFs.

ChIP-seq provides a list of locations bound by a TF across the genome in vivo, which are referred to as peaks, along
with peak intensities whose values are proportional to the TF’s affinity for the sequence bound at these locations
[24]. Three sets of ChIP-seq would need to be performed to determine locations where a pair of TFs, A and B, are
cooperatively bound. First, two ChIP-seq experiments are performed to determine binding locations of A and B in
cells. A third ChIP-seq is performed to find binding locations of A after B is genetically knocked out. We define
a location to be cooperatively bound by A and B if A no longer binds DNA, or has a lower peak intensity, after
B is knocked out. We consider locations where A continues to bind DNA with no change in its intensity after B
is knocked out to be non-cooperatively bound. We refer to this set of three experiments necessary to find locations
where A is cooperatively bound by B as A-B, and refer to A as the target TF and B as the partner TF. Instead
of knocking out B, if a ChIP-seq is performed to find binding locations of B after A is knocked out, we can infer
locations where B is cooperatively bound by A. This dataset is labeled B-A, with B and A referred to as target and
partner TFs, respectively. We note that this definition of cooperative binding between the target and partner TF
is an operational one based on knockout data and is independent of the mechanism that generates the cooperative
binding effect, of which there are several [22, 25].

However, ChIP-seq profiles of the target TF after the partner TF has been knocked out may not be easily available.
To find regions where the target TF is cooperatively bound by a partner TF in the absence of such data, we propose
the ChIP-seq Peak Intensity - Expectation Maximisation (CPI-EM) algorithm. At each location where ChIP-seq
peaks of two TFs overlap each other, CPI-EM computes a probability that the location is cooperatively bound by
both TFs. The highlight of this algorithm is that it utilizes only peak intensities to detect cooperative binding, and
does not rely on binding site searches within ChIP-seq peak regions. CPI-EM relies on the observation that a target
TF tends to be more weakly bound when it cooperatively bound DNA with a partner TF, in comparison to regions
where it did not cooperatively bind DNA. We observed this to be the case in ChIP-seq datasets we analyzed from
E. coli, S. cerevisiae, and M. musculus genomes [26, 1]. We chose these datasets because they included ChIP-seq
data from the target TF after the partner TF had been knocked out, which allowed us to validate and measure the
accuracy of CPI-EM in detecting regions where the target TF is cooperatively bound to DNA.

We compare the performance of CPI-EM with that of two other algorithms — a sequence-independent algorithm
that detects cooperative binding based on the distance between the summits of ChIP-seq peaks of both TFs, and
a published sequence-based algorithm, STAP (Sequence To Affinity Program) [17], that detects cooperative binding
based on the binding site composition of a location. We find that CPI-EM outperforms both these algorithms.
Importantly, since CPI-EM detects far more cooperative interactions amongst lower intensity ChIP-seq peaks than
STAP, our work demonstrates the potential of sequence-independent algorithms such as CPI-EM to complement
existing sequence-dependent algorithms in detecting more cooperatively bound locations.

2 Results

2.1 Peaks of target TFs have lower intensities when they are cooperatively bound
when compared to non-cooperatively bound peaks

We inferred cooperative and non-cooperative binding using knockout data from ChIP-seq datasets of FIS-CRP and
CRP-FIS pairs in E. coli in early-exponential and mid-exponential growth phases (accession number GSE92255),
GCN4-RTG3 and RTG3-GCN4 in S. cerevisiae [1], FOXAI-HNF4A, FOXA1-CEBPA, and HNF4A-CEBPA in the
mouse (M. musculus) liver [26]. A summary of the data is shown in Supplementary Table S1.

Figure 1A summarizes trends in cooperative and non-cooperative TF-DNA binding seen in these datasets. Co-
operatively and non-cooperatively bound locations were determined using ChIP-seq data from genetic knockouts as
discussed in Methods, with the intensity of a peak call being chosen as the 6th column of the narrowPeak output of
the peak call files. We also analyzed only those ChIP-seq peaks whose peak intensities were high enough for their
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irreproducible discovery rate (IDR) or their false discovery rate (FDR) to be less than a specified threshold (see
Supplementary Section S1). Cooperatively bound target TF peak intensities were significantly lower than those of
non-cooperatively bound target TF peaks across each of the TF-TF pairs (Wilcoxon rank-sum test, p < 0.001). In
contrast, there was no consistent trend in the intensities of the partner TF in each of these pairs. We checked if these
results arose from the variation in the length of the peak regions between different TFs. To control for this, we first
trimmed the ChIP-seq peaks of all datasets in Figure 1A to 50 base pairs on either side of the peak summits, and
then calculated anew the set of cooperatively and non-cooperatively bound regions using knockout data. We found
no change in the trends seen in Figure 1A, with peak intensities of cooperatively bound primary TFs continuing to
be lower than those of non-cooperatively bound primary TFs (Figure S4).

We proceeded to compare the motif scores of target and partner TFs between cooperatively and non-cooperatively
bound regions. We used motifs from the HOCOMOCO v10 [27] and ScerTF databases [28] for M. musculus and S.
cerevisiae TFs, while we used the MEME suite [29] to determine motifs for FIS and CRP in the E. coli data (see
Supplementary Figure S7). We calculated motif scores from the sequences underlying each ChIP-seq peak using the
SPRY-SARUS scanner [27] (see section 4.5.1 in Methods). In peaks which contained multiple matches to the TF’s
motif, we retained only the match that had the highest motif score for further analyses.

Similar to the trends in peak intensities in Figure 1A, we found that the motif scores of the target TF were
significantly lower in cooperatively bound regions than in non-cooperatively bound regions (Supplementary Figure
S3) while there was no such trend in the motif scores of the partner TF between both sets of regions. We then
computed the Pearson correlation coefficient (R?) between the motif scores and intensities of peaks within each
dataset and found different trends across datasets (Supplementary Figure S5). The motif scores were significantly
correlated with peak intensities in the M. musculus datasets, but this was not the case with the remaining datasets.
This means that even though the motif scores of the target TF were lower in cooperatively bound regions, they did
not explain the lower target TF peak intensities observed in these regions.

Some of the peaks in these datasets may have resulted from indirect or tethered binding, where the TF being
investigated does not directly bind DNA but is bound to a second protein that in turn binds DNA [30, 31, 32, 33]. If
a target TF were to bind DNA indirectly via the partner TF, knocking out the partner TF would lead to a loss of the
target TF’s ChIP-seq peak, or a reduction in its intensity. Such a target TF peak, which we consider cooperatively
bound based on information from the ChIP-seq after the partner TF is knocked out, may, in fact, be indirectly
bound.

We checked if the presence of indirectly bound peaks accounted for the trends observed in Figure 1A by removing
ChIP-seq peaks of target and partner TFs that did not contain a binding site sequence for their respective TFs (see
Section 4.5.2 for a full description of our method to remove indirectly bound peaks). To remove indirectly bound
peaks in a single ChIP-seq experiment, we first computed the motif scores of the strongest binding site within each
peak. We then computed a control distribution from motif scores of the strongest binding site within sequences that
were unbound in the ChIP-seq experiment (Supplementary Figure S8). We used the 90th percentile of this control
distribution as a threshold to detect indirectly bound peaks, where ChIP-seq peaks whose motif scores were lower
than the 90th percentile of this distribution were declared as indirectly bound.

The removal of these peaks significantly lowered the number of doubly bound regions available for further analysis
of the early-exponential phase CRP-FIS and RTG3-GCN4 datasets (see Supplementary Table S2). Nonetheless, we
found that even after indirectly bound ChIP-seq peaks were removed from our analysis, cooperatively bound target
TF peaks tended to have lower intensities (Supplementary Figure S2). We also found that the motif scores of the
target TF in cooperatively bound peak continued to be lower than those of non-cooperatively bound target TF peaks.
(Supplementary Figure S3B). The removal of the indirect peaks in the M. musculus dataset significantly weakens
the correlation between motif scores and peak intensities, which was higher when indirectly bound peak were present
in the data (Supplementary Figure S6).

Since the target TF intensity distributions from cooperatively bound regions significantly differed from those of
non-cooperatively bound regions, it should be possible to accurately label a pair of overlapping peaks as cooperative or
non-cooperative, based solely on their peak intensities and without carrying out an additional knockout experiment.
For instance, in the FOXA1-HNF4A dataset, a FOXA1 peak that has an intensity value of 5 is ~3.4 times more
likely to be cooperatively bound with HNF4A than to be non-cooperatively bound with it. In clear-cut cases such
as these, knowledge of the underlying sequence that is bound is not necessary to detect a cooperative interaction.

2.2 CPI-EM applied to ChIP-seq datasets from M. musculus, S. cerevisiae and E.
coli

The ChIP-seq Peak Intensity - Expectation Maximisation (CPI-EM) algorithm works as illustrated in Figure 2 (with
a detailed explanation in the Methods). We present a brief explanation below with each step illustrated in Figure
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2B.

The first step is to prepare the input to CPI-EM, which consists of a list of genomic locations where a peak of A
overlaps a peak of B by at least a single base pair. Note that the genomic locations of peaks of A after B has been
knocked out is not an input, since the goal of CPI-EM is to detect regions where A is cooperatively bound by B
without using information from the knockout of B. In the second step, each of these overlapping intensity pairs is fit
to a model that consists of a sum of two probability functions. These functions specify the probabilities of observing
a particular peak intensity pair given that it comes from a cooperatively or non-cooperatively bound region. These
probabilities are computed by fitting the model to the input data using the expectation-maximization algorithm (see
Supplementary Section S6). In the third step, Bayes’ formula is applied to the probabilities computed in the previous
step to find the probability of each peak intensity pair being cooperatively bound. Finally, each cooperative binding
probability computed in the third step that is greater than a threshold « is declared as cooperatively bound. To
validate these predictions, we compare this list of predicted locations with the list of cooperatively bound locations
inferred from knockout data (Figure 2A) in order to compute the number of correct and incorrect inferences made
by CPI-EM.

Figure 3 shows the result of the CPI-EM algorithm when used to predict genomic regions that are coopera-
tively bound by FOXA1-HNF4A, RTG3-GCN4 and FIS-CRP in M. musculus, S. cerevisiae and early-exponential
phase cultures of E. coli, respectively. The top row shows histograms of the cooperative binding probabilities
(p1°P,ps”", ..., "), which are computed by CPI-EM, for all peak intensity pairs from each of the three datasets.
The height of each bar is the fraction of peak intensity pairs in each probability bin that are actually cooperatively
bound (termed true positives, which are calculated based on knockout data as explained in Methods). True positives
are distributed differently between the bins across different datasets. The distribution of cooperative pairs into each
of these bins determines the number of errors made when all peak pairs with peoop > o are declared as cooperatively
bound. The false positive rate (FPR) of the CPI-EM algorithm is the fraction of non-cooperatively bound regions
erroneously declared as cooperatively bound, while the true positive rate (TPR) is the fraction of cooperatively
bound regions that are detected. Both these quantities are functions of «, and are estimated as

FPR(a) = YEP(Q)  ppp(g) = Nrela)
N”LC NC

where Npp(«) is the number of non-cooperatively bound regions mistakenly declared as cooperatively bound at a
threshold «, while Nyp(«) is the number of cooperatively bound regions correctly declared as cooperatively bound
with the threshold «. N, and N, represent the total number of cooperatively bound and non-cooperatively bound
regions, respectively, which are computed separately from the knockout data. The receiver operating characteristic
(ROC) curves at the bottom row of Figure 3 shows the trade-off between false positive rates and true positive rates
of CPI-EM at different values of o. A larger value of « results in fewer false positives in the final prediction set but
also results in fewer true positives being detected. For instance, in the FOXA1-HNF4A dataset, « = 0.73 allows
nearly 50% of all cooperative interactions to be detected. If « is lowered to 0.17, more than 90% of cooperative
peak pairs can be detected, but there will be more false positives in this prediction set since the FPR at this value
of « is three times higher than that at & = 0.73. The area under the ROC (auROC) curve provides a way of
quantifying the detection performance of an algorithm. The auROC is a measure of the average true positive rate of
the CPI-EM algorithm, with a higher value representing better detection performance. Thus, the auROC provides
a way of comparing between different detection algorithms.

In the ROC curves shown in Figure 3, CPI-EM fits a Log-normal distribution to the peak intensities of the TFs
in each dataset. We chose the Log-normal distribution because it gave a higher log-likelihood fit to peak intensities
compared to Gaussian and Gamma distributions in most datasets (see Figure 1B and Supplementary Table S4).
However, we still compared the auROC resulting from fitting a Log-normal distribution with the auROCs obtained
from fitting Gamma and Gaussian distributions to peak intensities of TFs across all datasets shown in Figure 1. We
found that CPI-EM with a Log-normal distribution gave the highest auROC compared to CPI-EM with Gamma
and Gaussian distributions across most datasets (see Supplementary Figure S1 in Supplementary Section S4).

2.3 CPI-EM outperforms both STAP and a sequence-independent algorithm based
on ChIP-seq peak distances in detecting cooperative binding events

Since CPI-EM relies solely on peak intensities and does not use any information from the sequences underlying
ChIP-seq peaks to detect cooperative binding, we compared it with algorithms that use sequences for detecting
cooperative binding. We compared CPI-EM with STAP, an algorithm which can detect genomic regions that are
cooperatively bound by multiple TFs [17]. To detect cooperative binding between a TF pair A-B, where A and B
are target and partner TFs respectively, STAP takes as input (a) motifs of A and B, (b) the peak intensities of A,
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and (c) the sequences underlying each peak of A. STAP then proceeds to build a statistical occupancy model of
each sequence in order to predict peak intensities for each location, which can include cooperative or competitive
interactions between A and B (see section 4.6 in Methods for more details on the inputs to STAP). STAP’s occupancy
model is biophysically rigorous in that it takes into account the occurrence of multiple binding sites of A and B,
binding site orientation and cooperativity between multiple copies of A and B while predicting peak intensities of
the target TF. The final output of STAP is a set of predicted peak intensities for each peak of A that is input to it.

In order to detect cooperative binding, we ran STAP in two modes, which we refer to as the cooperative binding
mode and the independent binding mode. In the cooperative binding mode, the occupancy model contains an
extra parameter that takes into account a possible cooperative or competitive interaction between A and B. In
the independent binding mode, on the other hand, the occupancy model assumes that there is no cooperative or
competitive interaction that occurs between A and B. Suppose I;,q = {Io, [1,...,In}, where N is the number of
regions with overlapping peaks of A and B, is the set of peak intensities of A predicted by STAP when it is run in
the independent binding mode, and I.,0p = {1}, ], ..., I} is the set of peak intensities of A predicted by STAP
when it is run in the cooperative binding mode. We then define a cooperative index A; for the j — th peak as
Aj = (I — 1;)/1;, with the set of cooperative indices A1, Ag,..., Ay constituting the region-wise predictions of
cooperative binding by STAP. Locations where A is greater than some threshold Az, which could be positive or
negative, are considered to be cooperatively bound.

The peak distance algorithm computes the distances between the summits of overlapping ChIP-seq peaks and
declares those overlapping peak pairs whose peaks are within a threshold distance d to be cooperatively bound (see
Section 4.4 in Methods). This detector represents a simpler sequence-independent criterion for detecting cooperative
binding.

We compared the performance of STAP, the peak distance algorithm and CPI-EM (Figure 4A) in detecting
cooperative interactions in the datasets shown in Figure 1, where the auROCs of CPI-EM, STAP and the peak
distance detector are shown in orange, sky blue and black, respectively. We found that CPI-EM has a higher auROC
than STAP in every dataset, while in the mid-exponential CRP-FIS, GCN4-RTG3 and RTG3-GCN4 datasets, STAP
performed more poorly than chance. After indirectly bound peaks of target and partner TFs were removed from the
input to both CPI-EM and STAP algorithms (see Section 4.5.2 in Methods), we found that CPI-EM predominantly
performed better than STAP, except in the early-exponential FIS-CRP dataset where STAP had a marginally
higher auROC than CPI-EM (Supplementary Figure S11A). Both STAP and CPI-EM out-perform the peak distance
detector, whose auROC is lower than chance in RTG3-GCN4 and early-exponential phase FIS-CRP datasets. We
encountered numerical stability issues when we ran STAP on CRP-FIS,FIS-CRP, RTG3-GCN4 and GCN4-RTG3
datasets, where the parameters of STAP’s occupancy model did not converge to the same set of parameters when
we ran it multiple times (see Section 4.6.1 in Methods). These datasets are marked with an asterisk in Figure 4A.

While CPI-EM detects more cooperative interactions than STAP at a given false positive rate, STAP detects
more cooperative interactions amongst higher intensity target TF peaks than CPI-EM. This is shown in Figure
4B, we divided cooperatively bound FOXA1-HNF4A and RTG3-GCN4 peak pairs into ten bins based on the peak
intensities of the target TFs in each data set, with the 10th bin containing peak pairs with the highest target TF
peak intensities. In both datasets, we ran CPI-EM and STAP at thresholds that resulted in a relatively high false
positive rate (~ 40%) and calculated the fraction of cooperatively bound peak pairs detected by both algorithms
from each intensity bin. While CPI-EM detected nearly all cooperatively bound peak pairs from the lower intensity
bins, it did not detect any cooperative interactions amongst the higher intensity bins. In contrast, STAP was able to
detect cooperative interactions from each of the intensity bins, although the fraction detected within each bin was
smaller compared to CPI-EM.

3 Discussion

Cooperative binding is known to play a role in transcription factor binding site evolution and enhancer detection
[34]. Cooperativity is also known to influence cis-regulatory variation between individuals of a species [35], which
could potentially capture disease-causing mutations that are known to occur in regulatory regions of the genome
[36]. CPI-EM is suited to study these phenomena since it can detect instances of cooperative binding between a pair
of transcription factors that may occur anywhere in the genome. While sequence-based approaches to cooperative
binding detection have been proposed [10, 11, 12, 13, 17, 14, 15, 16, 1], none use ChIP-seq peak intensities as the
sole criterion to detect cooperativity. We compare CPI-EM to a sequence-based approach, STAP [17], and a simpler
sequence-independent algorithm based on the distance between target and partner TF peaks, and show that CPI-
EM detects more cooperative interactions than either of them. However, STAP is better able to detect cooperative
interactions amongst high-intensity ChIP-seq peaks. Given that CPI-EM and STAP detected interactions amongst
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different peak populations, this shows that sequence-independent methods like CPI-EM can usefully complement
sequence-based detection algorithms.

3.1 Assumptions in the CPI-EM algorithm

The assumption that cooperatively bound target TFs are more weakly bound, on average, than non-cooperatively
bound target TFs is the key assumption in the CPI-EM algorithm. This assumption was based on our comparison
of cooperatively and non-cooperatively bound target TFs in FE. coli, S. cerevisiae and M. musculus genomes. We
checked if cooperatively bound TFs continue to be more weakly bound than non-cooperatively bound TFs even after
indirectly bound peaks are removed from our analysis. We detected indirectly bound peaks based on a sequence-
based motif analysis of the ChIP-seq peaks (see Methods) and note that there is currently no sequence-independent
method to detect indirect binding in ChIP-seq data. A method like CPI-EM will declare an indirectly bound peak as
cooperatively bound. However, we have shown that sequence-based criteria, such as the one employed in our analysis,
or other published methods [32, 30, 31] can be used to filter out such ChIP-seq peaks before they are input to the
CPI-EM algorithm. Furthermore, we show that filtering out these peaks before they are input to CPI-EM does not
impact the ability of CPI-EM to detect cooperatively bound regions that are not indirectly bound (Supplementary
Figure S10). However, this approach to filtering out indirectly bound peaks may discard genuine low-affinity binding
sites that are actually occupied in the ChIP-seq experiment. This is because in most methods meant to detect
indirect binding, a peak with a low motif score has a much higher probability of being declared as indirectly bound
than a peak with a high motif score.

A caveat about the predictions of CPI-EM is that when it declares a region to be cooperatively bound by a pair
of TFs, it does not implicate any particular mechanism of cooperative binding. Since CPI-EM analyzes the peak
intensities of only the two TFs in question, it is in principle possible that a third TF or a nucleosome mediates the
cooperative binding that is detected by CPI-EM. Thus, CPI-EM can be used to only select locations of interest that
are cooperatively bound in this manner, but further computational or experimental analysis would be required to
find the mechanism that give rise to the observed cooperative binding effect at each location.

Our choice of TFs to validate CPI-EM was motivated by the availability of ChIP-seq from the knockout of partner
TFs in each of these datasets. The importance of data from TF knockouts arises from recent studies on cooperative
binding [21, 23, 19, 20], which suggest that a pair of TFs that bind one genomic location cooperatively may not
do so in a second location if there are differences in the length or the composition of the sequence linking both TF
binding sites. In the absence of data from a ChIP-seq of one of the TFs after the other has been knocked out, it is
impossible to ascertain which of these locations are cooperatively bound.

Our observation that a TF that cooperatively bound DNA with the help of a partner TF was more weakly bound
than when it non-cooperatively bound DNA (Figure 1) is likely a signature of a short-range pair-wise cooperative
interaction. For instance, the interactions between GCN4 and RTG3 were independently verified in the publication
that reported this ChIP-seq data [1]. Along with the peak intensities of the target TF, the motif scores of the target
TF are also significantly lower in cooperatively bound regions. However, the correlation between motif scores and
peak intensities in cooperatively bound regions were low, which means that the motif scores do not directly explain
the low target TF peak intensities in cooperatively bound regions. However, earlier ChIP-seq studies [37, 38] have
also found a low correlation between motif score and peak intensity. These studies suggest that the correlation is
increased once other factors such as chromatin accessibility have been taken into account.

Low affinity binding sites are known to be evolutionarily conserved and functionally important in the Saccha-
romyces cerevisiae genome [39], with most of these binding sites being under purifying selection to maintain their
binding affinity [40]. Cooperative binding amongst such low-affinity binding sites are known to play a crucial role in
animal development. The binding of Ultrabithorax (Ubx) and Extradenticle at the shavenbaby enhancer in Drosophila
melanogaster embryos [41] occurs in closely spaced low-affinity binding sites to help coordinate tissue patterning.
Mutations that increased Ubx binding affinity led to the expression of proteins outside their naturally occurring
tissue boundaries [41]. Similarly, low-affinity binding sites that cooperatively bind Cubitus interruptus at the dpp
enhancer (which plays a crucial role in wing patterning in Drosophila melanogaster) are evolutionarily conserved
across twelve Drosophila species [42]. Cooperative binding among low-affinity transcription factor binding sites in
the segmentation network of Drosophila melanogaster contributes to the robustness of segment gene expression to
mutations [43].

3.2 Challenges to cooperativity detection using ChIP-seq peak intensities

There are two main computational challenges to detecting cooperative interactions using only ChIP-seq peak inten-
sities. As stated earlier, indirectly bound ChIP-seq peaks will be declared as cooperatively bound by CPI-EM unless
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these peaks are checked by a sequence-dependent analysis. The second issue with CPI-EM is that as a consequence
of our assumption that cooperatively bound peaks are more weakly bound than non-cooperative peaks, CPI-EM
is unlikely to detect regions where the target TF is cooperatively bound to DNA, but with a high peak intensity.
We found that STAP was able to detect cooperatively bound peak pairs even if the target TF was strongly bound
(Figure 4B), although it detected fewer interactions in total than CPI-EM. A method that better combines the
biophysically rigorous TF-DNA occupancy model of STAP with CPI-EM’s use of peak intensities might be able to
detect cooperative interactions irrespective of the intensity of the target TF.

Doing away with the assumption of cooperatively bound peaks being necessarily weaker than non-cooperatively
bound peaks would allow CPI-EM to detect cooperative interactions even amongst strongly bound peaks. We
hypothesize that one way to accomplish this would be to take into account the high value of mutual information
(MI) is expected between the binding affinities of a pair of cooperatively bound TFs [44]. The MI would then be
a tenth parameter the joint probability model fit to peak intensity data (in step 2 of the CPI-EM algorithm). The
precise form of such a modified joint probability model is not obvious, but it would increase the probability that a
high MI peak intensity pair would be labeled as cooperative, even if the target TF were strongly bound. However, we
found that the MI between the ChIP-seq peak intensities (and motif scores) of cooperatively bound TFs was low even
after indirectly bound peaks were removed (Supplementary Table S3). It is possible that peak intensities obtained
from experimental protocols such as ChIP-nexus [45, 46] and ChIP-exo [47, 33] might capture the high MI expected
between cooperatively and non-cooperatively bound TFs. If this is indeed the case, our suggested modifications to
CPI-EM would allow it detect more cooperative interactions between a pair of TFs.

The peak distance detector (Supplementary Figure S1) did not consistently detect cooperative binding across the
datasets we tested it on. This detector is based on the premise that ChIP-seq peak summits that are closer together
are more likely to interact with each other. The peak distance detector represented a potentially simpler criterion to
detect cooperative binding compared to peak intensities. Even though TF's that were bound closer to each other were
found to be more likely to interact with each other in in vitro studies [21, 19], the inconsistent performance of the
peak distance detector shows that peak intensities are a better sequence-independent criterion to detect cooperative
binding.

Ultimately, our method aims to detect cooperatively bound locations without making any direct assumptions
about the genomic sequence of that location. Therefore, it provides a useful way of finding binding sequence patterns
that allow for cooperative binding to occur in vivo but lie outside the range of existing sequence-based algorithms.

4 Methods

4.1 ChIP-seq processing pipeline

A single ChIP-seq “peak call” consists of the genomic coordinates of the location being bound, along with a peak
intensity. We determined ChIP-seq peak locations of different transcription factors from multiple genomes, namely,
E. coli (GSE92255), S. cerevisiae [1], cells from target M. musculus liver tissue [26]. We used our own ChIP-seq
pipeline to process raw sequence reads and call peaks from M. musculus and S. cerevisiae data, and utilized pre-
computed peak calls with the remaining datasets. This ensured that our validation sets were not biased by procedures
employed in our pipeline. See Supplementary Section S1 for details of our ChIP-seq pipeline for processing these
datasets.

4.2 Using ChIP-seq data from a genetic knockout to infer cooperative binding

From ChIP-seq profiles of a pair of TFs, A and B, we classified genomic regions containing overlapping ChIP-seq
peaks of A and B as cooperative or non-cooperative, based on the change in peak rank of A in response to a genetic
deletion of B. The ranks are assigned such that the peak with rank 1 has the highest peak intensity. In our analysis,
we consider a genomic region to be doubly bound by A and B if their peak regions overlap by at least a single base
pair. We used pybedtools v0.6.9 [48] to find these overlapping peak regions.

At each doubly bound genomic location, we define A as being cooperatively bound by B if (a) the peak rank
of A in the presence of B is significantly higher (i.e., closer to rank 1) than the peak rank of A measured after the
deletion of B, or (b) if A’s peak is absent after the deletion of B.

On the other hand, if the peak rank of A in the presence of B is significantly lower (i.e., further from rank 1)
than the peak rank of A after the deletion of B, or if it stays the same, we classify this as competitive or independent
binding, respectively. We refer to both these classes as non-cooperative binding. See Supplement Section S5 for
details on the statistical tests we performed to detect significant changes in peak ranks of A upon the knockout of B.
These tests require ChIP-seq data from multiple replicates. In the CRP-FIS, and FIS-CRP datasets, peak calls from
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individual replicates were not available, therefore we used only peak losses to find cooperatively bound locations in
these datasets.

4.3 The ChIP-seq Peak Intensity - Expectation Maximisation (CPI-EM) algorithm

We describe the working of the CPI-EM algorithm in step-wise fashion below, where each of the steps is numbered
according to Figure 2. In Figure 2 and in the description below, we assume that cooperative binding between TFs
A and B is being studied, where A is the target TF and B is the partner TF.

Step 1: From the ChIP-seq of A and B, find all pairs of peaks where A and B overlap by at least one base pair.
With these overlapping pairs, make a list of peak intensities (x1,41), (22,¥2)...(Zn, yn ), where 2; and y; are the peak
intensities of the i — th peak of A and B, respectively. This list of peak intensity pairs is the input data for the
CPI-EM algorithm.

Step 2: To this input data, fit a model of the joint probability p(x,y) of observing the peak intensity x and y from
TFs A and B, respectively, at a given location. Our model consists of a sum of two probability functions, which are
the probability of observing intensities 2z and y if they were (a) cooperatively bound, or (b) non-cooperatively bound.
We assume that both probability functions that are fitted have a Log-normal shape. This shape is characterized
by four parameters — a mean and a variance of the A and the B axes (we also examine other shapes such as the
Gamma or Gaussian functions — see Supplementary Table S4). A final ninth parameter sets the relative weight of
the two probability functions, which determines the fraction of overlapping pairs that are cooperatively bound. We
find the best fit for these nine parameters using a procedure called expectation maximization (described in detail in
Supplementary Section S6).

We make two other assumptions in this step, each of which is discussed further in Supplementary Section S6.

e The peak intensities of A and B at a location are statistically independent, irrespective of whether A and B
are cooperatively or non-cooperatively bound. We found this to be a reasonable assumption after we mea-
sured the mutual information between peak intensities of A and B from cooperatively and non-cooperatively
bound locations (Supplementary Table S3). Mutual information is known to be a robust measure of statistical
dependence [49].

e A target TF that is cooperatively bound to DNA is, on average, bound weaker than a non-cooperatively bound
target TF. We found this assumption to hold across all the datasets on which we ran CPI-EM (see section
“Peak intensities of cooperatively bound target TFs are weaker than non-cooperatively bound target TFs” in
Results, and Figure 1).

Step 3: Given the best-fit parameters, use Bayes’ formula to calculate the probability for each overlapping pair
of ChIP-seq peaks to be a site of cooperative binding (see Supplementary Section S6).

Step 4: Choose a threshold probability « and label an overlapping pair as cooperatively bound if the probability
calculated in step 3 is greater than «, and as being non-cooperatively bound otherwise. Validate with a list of known
cooperative binding sites, e.g., derived from the ChIP-seq of A after B is knocked out (as described in the previous
section).

4.4 Peak Distance Detector

For each peak intensity pair in the input data, the peak distance detector calculates the distance between the summits
of A and B peak regions. The summit is a location within each peak region that has the highest number of sequence
reads that overlap it, and is typically the most likely site at which the TF is physically attached to DNA. The peak
distance detector declares doubly bound regions as cooperatively bound if the distance between peaks of A and B
is lesser than a threshold distance d. We ran this detection algorithm on all the datasets on which CPI-EM was
employed to detect cooperative binding. Our goal in using this algorithm was to determine whether the distance
between peaks is a reliable criterion to discriminate between cooperative and non-cooperative binding.

4.5 Sequence-based analyses of ChIP-seq data

4.5.1 Motif discovery and scanning

The motifs of FOXA1, HNF4A and CEBPA in M. musculus ChIP-seq data were sourced from the HOCOMOCO
v10 database [27]. The motifs of GCN4 and RTG3 were sourced from the ScerTF database [28]. See Figure S7 for
all the motifs used in our analysis.
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302 The motifs of CRP and FIS in the wild-type, Acrp and Afis backgrounds were learned de novo using the MEME

53 suite (v4.12.0) [29]. For each of these ChIP-seq datasets, we sorted the peaks according to their peak intensity

30 and short-listed the sequences in the top 200 peaks as inputs to the MEME suite. MEME was run on these peak

w5 sequences with the options (-bfile <genome background file> -dna -p 7 -revcomp) to generate the CRP and

s FIS motifs shown in Figure S7. The genome background file was created by running the fasta-get-markov tool of

s the MEME suite with default options, which created a zeroth-order Markov model of the genome.

398 In order to scan ChIP-seq peaks for motif matches, we used the program SPRY-SARUS [27] (http://autosome.ru/chipmunk/)
a0 with the option besthit so that only the motif with the highest match score was output for each ChIP-seq peak.

w 4.5.2 Detecting indirectly bound peaks in a ChIP-seq dataset

w1 In order to detect indirectly bound peaks in each ChIP-seq dataset, we first extracted a set of N unbound sequences,
w2 each of length [ from the genome, where N is the number of peaks in the dataset and [ is the mean ChIP-seq peak
w3 length. In RTG3, GCN4, CRP and FIS datasets, where the number of peaks was small, we created a set of 10000
wa  unbound sequences of length [. We refer to this set of unbound sequences as the negative control dataset.

405 We then used the motif of the respective TF being probed using ChIP-seq and computed the score of the best
w6 motif match in each sequence of this negative control set using SPRY-SARUS as mentioned in the previous section.
w7 The distribution of the resulting set of motif scores is shown by the dashed lines in the panels of Figure S8.

408 The 90th percentile of this distribution, which we denote as T', is shown by a vertical gray line in each panel.
w We consider a ChIP-seq peak to be indirectly bound if the highest motif match score within the sequence of the
a0 peak is less than T'. The solid line in each panel of Figure S8 is the distribution of motif scores from the sequences
an underlying the ChIP-seq peaks. The numbers in the top-right of each panel denote the number of directly bound
a2 peaks and the total number of peaks in the dataset.

a3 This criterion for detecting indirectly bound peaks is similar to the one employed in an earlier analysis of ENCODE
ae  data [32]. In that analysis, a peak in a ChIP-seq for TF A whose sequence does not contain a subsequence that
a5 matches the motif for A but matches that for a different TF B is considered to be indirectly bound. In our case,
as  where we are interested in detecting peaks that indicate cooperative binding of A by B, if we find that a peak of
a7 the TF A does not have a motif match whose score is above T, we do not search the sequence for a motif match
as  for B but simply discard the peak altogether. This gives us the advantage of ensuring that peaks where A may be
a9 cooperatively bound by a third TF, say C, whose ChIP-seq data is not available to us, are also removed from the
a0 dataset.

= 4.6 Detecting cooperative binding with Sequence to Affinity Prediction( STAP )

22 We ran STAP v2 (https://github.com/UIUCSinhalab/STAP) to detect cooperatively bound regions across the
«23  genome. There are three inputs required to run STAP when using it to detect cooperative binding between A (target
w2 TF) and B (partner TF) —

5 e A training set that consists of a mixture of bound and unbound sequences from the ChIP-seq of the target TF
426 along with their peak intensities. We followed the same procedure to construct this training set as described in
a7 the original STAP publication [17]. We constructed this set using sequences of the 500 highest intensity peaks
a8 that were cooperatively bound (as detected from the knockout) and also 500 sequences from unbound genomic
229 regions. Fach unbound sequence was of length equal to the average length of a ChIP-seq peak in that dataset.
430 In cases where the number of cooperatively bound peaks were less than 500, we chose upto half of the total
31 number of cooperatively bound peaks and used sequences from non-cooperatively bound peaks to create the
a3 set of 500 bound sequences.

33 We set the peak intensities of the bound sequences to be the score column of the peak call file (which is typically
a3 the 5th column of the peak call file), while the peak intensities of the unbound sequences were set as 0. This
a3 was in line with the

436 o A test set that consisted of the remaining bound sequences from ChIP-seq peaks of the target TF A that were
437 not present in the training data.

438 e A motif file for the target and partner TFs being analyzed. When we ran STAP in the independent binding

430 mode, we passed the motif of only A as an input, and when we ran STAP in a cooperative binding mode, we
440 passed the motifs of both A and B as inputs.
aa1 As stated in the main text, we ran STAP in cooperative and independent binding modes and defined a cooperative

@2 index A; for the j —th peak in the test dataset as A; = (I — I;)/1;, where I; is the predicted peak intensity of
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A when there is no cooperative interaction assumed between A and B and I ]’ is the predicted peak intensity of A
when a cooperative interaction is assumed to exist between A and B. The set of cooperative indices Ay, Ao, ..., Ay
constitute the region-wise predictions of cooperative binding by STAP. Locations where A is greater than some
threshold Ar, which could be positive or negative, are considered to be cooperatively bound. By varying Ap, we
compute the ROC of STAP (see Supplementary Section S7).

4.6.1 Numerical stability of STAP runs

We found that on some datasets, particularly S. cerevisiae and E. coli datasets, STAP tended to generate different
predicted peak intensities when run multiple times. To deal with such instances, we ran STAP five times each in
both independent and cooperative binding modes on each dataset.

The key model parameters computed by STAP that allow it to predict peak intensities for each input sequence
are the Boltzmann weights of the configuration at each sequence [17]. The Boltzmann weights computed by STAP
for each sequence represent un-normalized probabilities of finding the sequence in either a bound state or an unbound
state. The default diagnostic output of STAP includes the largest pair of Boltzmann weights calculated by it. Across
each of the five runs of STAP, we stored this pair of Boltzmann weights and computed the coefficient of variation
of each of these weights (i.e. the ratio of the standard deviation to the mean). For datasets where this coefficient
of variation was greater than 10%, we considered STAP to be numerically unstable. Additionally, since Boltzmann
weights represent un-normalized probabilities, they should always be non-negative. In datasets where the maximum
Boltzmann weights output by STAP were negative in one of the runs, we considered STAP to be numerically unstable.

In cases where the STAP predictions differed between multiple runs, we chose that STAP run with the maximum
R? value between the predicted peak intensities and actual peak intensities as the representative one for computing
the ROC curve.
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Figure 1: Cooperatively bound target TF's are significantly more weakly bound than non-cooperatively
bound target TFs. (A) Box-plots of peak intensity distributions of cooperatively (orange) and non-cooperatively
(gray) bound TF pairs, with target TFs on the left and partner TFs on the right. **¥** #** and ** indicate p-values
of < 1074102 and 1072 from a Wilcoxon rank sum test. The whiskers of the box plot are the 5th and 95th
percentiles of the distributions shown.

(B) ChIP-seq peak intensity distributions can be approximated by a Log-normal distribution. Marginal
peak intensity distributions of FOXA1 and HNF4A peaks (in filled black and orange circles), with fitted Log-
normal distributions (solid black and orange lines). These, and similar distributions for the other TF pairs were
better approximated by a Log-normal distribution, which was evident from the higher log-likelihood value associated
with a Log-normal fit, compared to a Gaussian or Gamma distribution (Supplementary Table S4). Along side the
marginal intensity distributions of FOXA1 and HNF4A is a scatter plot of (FOXA1,HNF4A) peak intensity pairs
from cooperatively and non-cooperatively bound regions. The scatter points are colored according to the density of
points in that region, with darker shades indicating a higher density. cooperative and non-cooperative FOXA1 and
HNF4A peaks are shown. The density of points in the scatter were computed using the Gaussian kernel density
estimation procedure in the Python Scipy library.
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Figure 2: A schematic of the use of the CPI-EM algorithm and ChIP-seq from knockout data to sepa-
rately identify cooperative bound transcription factor pairs. ChIP-seq experiments carried out on two TFs,
A and B, yield a list of locations that are bound by both TFs, along with peak intensities at each location. From
this data, there are two ways in which we find genomic locations that are cooperatively bound by A and B.

(A) A method for inferring these locations from a ChIP-seq of A carried out after B is genetically deleted. Loca-
tions where a peak of A either disappears altogether, or is reduced in intensity after knocking out B are labelled as
cooperatively bound. In contrast, locations where a peak of A either remains unchanged or increases in intensity are
labelled as non-cooperatively bound (see section “Using ChIP-seq data from a genetic knockout to infer cooperative
binding” in Methods).

(B) Steps in predicting cooperatively bound locations are shown, where the numbers correspond to those in the
section “The ChIP-seq Peak Intensity - Expectation Maximisation (CPI-EM) algorithm” in Methods. (1) The input
to CPI-EM consists of a list of genomic locations where a peak of A overlaps a peak of B by at least a single base
pair. Note that the ChIP-seq of A after B is knocked out is not an input to the algorithm. (2) Each of these
overlapping intensity pairs is fit to a model that consists of a sum of two probability functions. These functions
specify the probabilities of observing a particular peak intensity pair given that it comes from a cooperatively or
non-cooperatively bound region. These probabilities are computed by fitting the model to the input data using the
expectation-maximization algorithm (see Supplementary Section S6). (3) Bayes’ formula is applied to the probabil-
ities computed in step (2) to find the probability of each peak intensity pair being cooperatively bound. (4) Each
cooperative binding probability computed in step (3) that is greater than a threshold « is declared as cooperatively
bound. We compare this list of predicted locations with the list of cooperatively bound locations inferred from
knockout data in order to compute the number of correct and incorrect inferences made by CPI-EM.
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Figure 3: CPI-EM applied to ChIP-seq datasets from M. musculus (FOXA1-HNF4A), S. cerevisiae
(RTG3-GCN4) and early-exponential phase cultures of E. coli (CRP-FIS). For each dataset, CPI-EM
computes a list of cooperative binding probabilities at all the locations bound by the TF pair under consideration.
Top row: The fraction of cooperatively bound pairs, as determined from knockout data, that fall into
each cooperative binding probability bin. The bins are equally spaced with a width of 0.1 and the heights of the
bars within each histogram add up to 1. Bottom row: Receiver operating characteristic (ROC) curves that
evaluate the performance of CPI-EM in detecting cooperatively bound pairs. The curve is generated by
calculating, for each value of o between 0 and 1, the true and false positive rate of the algorithm. The true positive
rate (I'PR(«)) is the ratio of the number of cooperatively bound regions detected (when peoop is compared to a
threshold of «) to the total number of regions that are found to be cooperatively bound from the knockout data.
The false positive rate (F/PR(«)) is the ratio of the number of non-cooperatively bound regions mistakenly detected
as cooperatively bound (when peeop is compared to a threshold of «), to the total number of regions that are found
to be non-cooperatively bound from the knockout data. Small values of « give a higher TPR, but at the cost of a
higher FPR. The area under the ROC (auROC) is a measure of detection performance, whose value cannot exceed
1, which corresponds to a perfect detector. Given the auROC of two different algorithms, the one with a higher
auROC is better, on average, at detecting cooperative binding.
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Figure 4: CPI-EM outperforms STAP and the peak distance detector in detecting cooperatively bound
TF pairs across different datasets, even though STAP can better detect cooperatively bound target
TF peaks that have high intensities (A) The auROCs of CPI-EM and STAP are shown in orange and sky blue,
respectively. The auROC of the chance detector, which is always 0.5 is shown by a dashed line. The datasets marked
with an asterisk (*) are those where STAP was numerically unstable (see section 4.6.1 in Methods). The complete
ROC curves for STAP and CPI-EM are shown in Supplementary Figure S11B and that of the peak distance detector
in Supplementary Figure S9. (B) CPI-EM detects more cooperative interactions amongst low intensity target
TF peaks but STAP detects more such interactions amongst higher intensity target TF peaks. On the x—axis,
cooperatively bound FOXA1-HNF4A and RTG3-GCN4 peak pairs are divided into ten bins based on the intensity of
the target TF, with the 10th bin having the highest intensity target TF peaks. The y—axis represents the percentage
of cooperative peak pairs actually detected by CPI-EM (orange) or STAP (sky blue) in each bin at a false positive
rate of 40%.
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