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ABSTRACT

The assembly of whole-chromosome pseudomolecules for plant genomes remains challenging due to polyploidy and high
repeat content. We developed an approach for constructing complete pseudomolecules for polyploid species using genotyping-
by-sequencing data from outcrossing mapping populations coupled with high coverage whole genome sequence data of a
reference genome. Our approach combines de novo assembly with linkage mapping to arrange scaffolds into pseudomolecules.
We show that the method is able to reconstruct simulated chromosomes for both diploid and tetraploid genomes. Comparisons
to three existing genetic mapping tools show that our method outperforms the other methods in accuracy on both grouping and
ordering, and is robust to the presence of substantial amounts of missing data and genotyping errors. We applied our method
to three real datasets including a diploid Ipomoea trifida and two tetraploid potato mapping populations. The linkage maps
show significant concordance with the reference chromosomes. We resolved seven assembly errors for the published Ipomoea
trifida genome assembly as well as anchored an unplaced scaffold in the published potato genome.

Introduction 1

High quality genome assembly plays an essential role in plant genomic and genetic analyses. The construction of a genome 2

assembly typically adopts a ’bottom-up’ architecture. Short sequencing reads are first assembled by analysing read overlaps to 3

build contigs1. Contigs are then bridged to construct scaffolds using long reads or large insert size paired reads2. This process is 4

sometimes repeated for multiple rounds by gradually introducing larger insert size libraries. Finally, long distance information 5

is integrated to order scaffolds to establish pseudomolecules3. Several tools have been proposed for genome assembly along 6

these lines4, 5. However, these tools are often limited in polyploid plant genomes due to high levels of heterozygosity, the large 7

amount of repetitive DNA, as well as increased complexity in resolving haplotypes which scales exponentially in the number of 8

homologous chromsomes. 9

Chromosome-scale scaffolding using long distance information is a crucial step in generating high quality genome 10

assemblies. A variety of mapping information could be utilised, such as physical maps6, genetic maps7, optical maps8, syntenic 11

maps9 and chromatin interactions3. Genetic mapping has been widely adopted as it generates longer range information than 12

physical mapping techniques. The most commonly used bacterial artificial chromosome (BAC) approach generally handles 13

insert sizes up to 350kb10, which could be too short to flank heterochromatin or long repetitive regions11. In comparison, 14

theoretically, genetic mapping provides linkage information as long as two contigs are located on the same chromosome. 15

Chromosome-scale linkage analysis requires high marker density in mapping population. In order to obtain the full map of 16

the chromosomes, markers should cover as much of the genome as possible. Genotyping-by-sequencing (GBS) provides a 17

cost-effective approach which enables large-scale detection of biomarkers at low coverage with high missing and genotyping 18

error rates12. Despite a reduced representation, usage of restriction enzyme ensures nearly even distribution of the markers 19

across the whole genome. Barcoding systems make GBS highly multiplexed and suitable for genotyping a mapping population. 20
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Linkage analysis for large scale marker sets requires high performance genetic mapping tools. Conventional tools such 21

as MAPMAKER13 and Map Manager QTX14, and more recent tools such as R/qtl15 and AntMap16 have been optimised for 22

relatively small but high quality marker sets thus can seldom process the tens of thousands of markers with high missing 23

and error rates generated by GBS. Moreover, these tools were designed for inbred lines and cannot be applied to outcrossing 24

mapping populations. Development of inbred lines, however, could be difficult, expensive or time-consuming, especially for 25

polyploids17. Several methods have since been proposed for outbred lines17–19. However, none of them have been designed for 26

polyploids. So far, most polyploid genetic linkage maps have been built using diploid models20. This limits markers that can be 27

used for linkage analysis to a few specific segregation patterns compatible with diploid models, such as simplex and duplex 28

markers21, 22. 29

Here we describe a novel method for constructing genetic linkage maps. The method relies on the availability of a high 30

density marker set on a F1 outcrossed population and reference contigs or scaffolds. We focus on building genetic maps for 31

marker blocks, rather than individual markers. Key features of this method include (1) it is accurate, (2) it is computationally 32

effective, (3) it uses outcrossed mapping populations, (4) it is intrinsically suitable for polyploid species, and (5) it is robust for 33

missing data and genotyping errors and (6) it detects assembly errors. Combined, these features enable us to build high quality 34

pseudomolecules covering a large proportion of polyploid plant genomes. Using both simulated and real diploid and tetraploid 35

datasets, we demonstrate substantial improvements of our approach over existing genetic mapping algorithms. 36

Results 37

Overview of method 38

We have developed a new method called PolyGembler (Polyploid Genetic-linkage assembler) for assembly of polyploid 39

genomes using genetic linkage information. Figure 1 provides an overview of PolyGembler, with details in the Online Methods. 40

The method assumes availability of genome-wide genotyping data such as GBS and array data, collected on a F1 outbred 41

family, as well as high coverage (i.e. greater than 30X) whole genome sequence data on a reference sample, or alternatively 42

the availability of a set of reference contigs or scaffolds. Our approach combines de novo assembly with linkage mapping 43

to arrange scaffolds into pseudomolecules. By mapping marker set to scaffolds we are able to infer scaffold haplotypes for 44

each sample even in the presence of substantial amounts of missing data and genotyping errors. We use these haplotypes to 45

infer linkage groups corresponding to chromosomes as well as the optimal ordering of scaffolds within these chromosomes. 46

PolyGembler consists of three major modules, namely variant detection (Fig. 1a), recombination frequency (RF) estimation 47

(Fig. 1b-d) and genetic mapping (Fig. 1e-f). The initial step is to use existing assembly graph algorithms to infer reference 48

genome scaffolds. The variant detection module aligns GBS data to reference scaffolds to call SNPs. The RF estimation module 49

infers haplotypes for each scaffold and then uses these haplotypes to detect assembly errors and calculate RFs between all 50

pairs of scaffolds. Haplotyping accuracy can be improved by combining information from nearest-neighbour scaffolds (Online 51

Methods). The genetic mapping module follows the conventional linkage map construction framework to build linkage groups 52

of scaffolds and optimise the order of these scaffolds, using a modified traveling salesman problem (TSP). The scaffold-based 53

genetic linkage maps are finally used to construct pseudomolecules. 54

Application to simulated Ipomoea trifida GBS data 55

We simulated a reference genome from the Ipomoea trifida sequencing data provided in23 to make it comparable to the real 56

genome (Online Methods). The resulted genome consists of 15 chromosomes (Supplementary Table S3.). The total size is 57

∼ 482Mb, of which, ∼ 24% are repeated sequences. Based on the reference genome, we simulated GBS data for a diploid and 58

a autotetraploid outcrossed F1 mapping population of 192 samples. In order to simulate missing data and genotyping errors, for 59

any enzyme recognition site, the depth of sequencing was sampled from the truncated normal distribution N(5,52). Under 60

this assumption, approximately 15.87% recognition sites were missed with depth ≤ 0. We simulated autotetraploid mapping 61

population twice. The resulted depth of coverage is 10.8× and 43.2× for diploid and autotetraploid simulation, respectively 62

(Supplementary Note S1., Online Methods). We simulated a genome assembly from the reference genome (Online Methods). 63

The total size is ∼ 527Mb and the N50 statistic is ∼ 106kb (Supplementary Table S5.). The genome assembly was used as the 64

reference for variant calling from the GBS data. 65

Diploid simulation. The variant calling module identified 53,194 SNPs for pseudomolecule construction. These SNPs are 66

distributed across 3,482 scaffolds. These scaffolds summed to ∼394Mb cover ∼ 82% of the genome. In order to investigate the 67

accuracy of our method, we mapped these scaffolds to reference chromosomes to decide the true linkage groups, as well as 68

physical distances between all pairs of scaffolds that belong to the same chromosome (Online Methods). 3,004 scaffolds were 69

considered successfully mapped. For scaffold pairs that located on the same chromosome, the estimated RFs correlate with 70

the physical distances very well (Fig. 2a). For scaffold pairs that mapped to different chromosomes, the RF estimations are 71

consistently large and greater than the predefined threshold used for grouping (Fig. 2b). The linkage groups constructed by 72
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Figure 1. Polyploid genetic-linkage assembler (PolyGembler) framework. (a) GBS technology is used to sequence an
outcrossed mapping population. High coverage whole genome sequence data is used to build reference contigs and scaffolds.
By mapping GBS reads to the reference assembly, we call variants for the mapping population. (b) Construction of haplotypes
for each scaffold and for each sample with a hidden Markov model (HMM). A well trained HMM for a diploid is depicted in
the top panel. Here the scaffold consists of ten markers illustrated as ellipses. The numbers within ellipses indicate the
probabilities of the parental haplotypes pass A- and B-allele. The width of the line connecting two ellipses is proportional to the
RF between parental haplotypes at that position. Recombinations are prohibited between paternal and maternal haplotypes.
The model assumes each F1 progeny inherits one haplotype from each parent’s gamete and maximises the likehood of the
marker set. This model is able to identify assembly errors. As we can see, the RF between the 5th and 6th marker is abnormally
large as described in the bottom panel. Therefore, it is highly likely an misassembly. In the middle panel, we show the positions
of ten markers along the scaffold. (c) RF estimation between each pair of scaffolds by counting the mismatches of parental
haplotypes. It should be noted here that, RFs are calculated at all four possible connection directions. Moreover, as haplotypes
are constructed independently, we consider all possible correspondences between parental haplotypes. (d) The estimated RFs
reflect the physical distances. Plots are generated from a simulated dataset. The dot plot and histogram is for scaffold pairs
from the same chromosome and different chromosomes, respectively. (e) Linkage groups construction for the reference
scaffolds. We build a graph for the scaffolds which is weighted by the estimated RFs. The linkage groups are then identified by
a graph partitioning algorithm. (f) Ordering for each linkage group by solving a modified traveling salesman problem (TSP).
The TSP treats the two ends of a scaffold as different nodes and is designed to ensure that the two ends are neighbours in the
optimal solution. The dummy node, which has equal distances to all the other nodes, is introduced to convert a Hamiltonian
circuit to a Hamiltonian path.
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Figure 2. Estimated RFs versus physical distances plots for simulated data. (a) and (c), dot plots for the physical
distances against the estimated RFs for scaffold pairs that mapped to the same reference chromosome. (b) and (d), histograms
of the estimated RFs for scaffold pairs that mapped to different chromosomes. We added density plots (range from green to red)
as well as smoothed conditional mean plots (blue) to dot plots. The smoothed conditional means were calculated using
generalized additive model (GAM).

the method perfectly recognized 15 reference chromosomes. Within each linkage group, the order of the mapped scaffolds 73

demonstrates a high correlation with the true order on the corresponding reference chromosome. Precisely the Spearman’s 74

rank correlation coefficients between them ranged from 0.82 to 0.95. The estimated RFs and LOD scores between scaffolds 75

clearly reflect the linkage information (Supplementary Figure S2.).The pseudomolecules are in concordance with the reference 76

chromosomes with a few incorrect ordering at the end (Fig. 3a). 77

Tetraploid simulation. The variant calling module identified 51,656 SNPs located on 3,435 scaffolds for pseudomolecule 78

construction. These scaffolds summed to ∼392Mb cover ∼81% of the genome. 2,968 scaffolds were considered successfully 79

mapped to the reference chromosomes. The RF estimations are similar to the diploid simulation (Fig. 2c and d, Supplementary 80

Figure S2.). 15 pseudomolecules corresponding to reference chromosomes were constructed without miss grouping of the 81

mapped scaffolds. The ordering is not as precise as that in the diploid simulation. The Spearman’s rank correlation coefficient 82

was observed in the range from 0.81 to 0.94. The pseudomolecules still correlate highly with reference chromosomes (Fig. 3b). 83

However, more incorrect ordering is observed especially in CH04, CH06, CH11 and CH14. There are two major reasons that 84

cause the loss of accuracy for the pseudomolecules. Firstly, genotype calling for tetraploid genome is difficult. The accuracy 85

of haplotype reconstruction is sacrificed to deal with the high genotyping error rates. Secondly, the haplotype accuracy was 86

compromised by low levels of genetic diversity of the marker set. As the number of SNPs on a scaffold could be small, if many 87

of them display low level of genetic diversities, the program can hardly distinguish parental haplotypes from each other, and 88

might eventually lead to incorrect assignment of parental haplotypes to F1 progeny. In order to investigate the proposed method 89

thoroughly, we also simulated GBS data at 20x. The accuracy of the RF estimations decreased. The linkage groups constructed 90

by the method are still correct. The order of scaffolds within each linkage group, however, lost some accuracy (Supplementary 91

Figure S3.). 92

Application to real Ipomoea trifida GBS data 93

The Ipomoea trifida mapping population consists of 210 F1 progeny and two parents. It was derived from the crossing 94

of two diploid (2n=2x=30) Ipomoea trifida heterozygous genotypes, called M9×M19. The population was developed by 95

the international potato center (CIP) and the DNA from the population was provided to NCSU for GBS. We used the 96

de novo genome assembly ITR r1.023 as the reference for variant detection. The ITR r1.0 genome assembly consists of 97

77,400 scaffolds. The total size is ∼512Mb and the N50 statistic is ∼43Kb. The variant detection module called 48,202 98

SNPs located on 2,282 scaffolds. These scaffolds summed to ∼226Mb cover approximately 44% of the whole genome. 99

As the coverage is small, it is difficult to estimate the gap size between the contiguous scaffolds. Therefore, instead of 100

building pseudomolecules, we only constructed genetic linkage maps from the scaffolds. We used another Ipomoea tri- 101

fida genome assembly NSP306v2 to validate the genetic linkage maps. NSP306v2 was assembled by the GT4SP project 102

(http://sweetpotato.plantbiology.msu.edu/gt4sp download.shtml). It consists of 30,377 scaffolds, and the N50 statistic is 103

∼1.5Mb. 104

We detected seven misassemblies in ITR r1.0 (Online Methods). Figure 4a depicts the RF estimations along the scaffold 105

15 based on 30 independent runs of the haplotype phasing algorithm (see Supplementary Figure S4. for the other six). As 106

we can see, there is a potential misassembly site around 177kb, where the estimated RF is 0.321±0.117. By mapping it to 107

NSP306v2 scaffolds, we found that while the first ∼166kb was mapped to scaffold 4, the last ∼138kb was mapped to scaffold 108
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Figure 3. Collinear plots between the reference chromosomes and pseudomolecules constructed by the proposed
method for simulated data. (a) diploid simulation and (b) tetraploid simulation. x- and y-axis represent the position (Mb) on
reference chromosome and pseudomolecules, respectively. Each line in the plots represents a collinear alignment between the
simulated reference chromosomes and the pseudomolecules that we built. Long collinear alignments (≥ 10Kb) are plotted with
thick lines. As we can see, long collinear alignments form a diagonal line in each plot. This indicates the high correlations
between the simulated reference chromosomes and the pseudomolecules built from the scaffolds. Two types of diagonal lines
are observed, namely from the bottom-left corner to the top-right corner and from the top-left corner to the bottom-right corner.
A diagonal line of the first type suggests that the scaffolds are arranged in the same order on the pseudomelecule as that on the
simulated reference chromosome, compared to a reverse order arrangement of scaffolds suggested by a diagonal line of the
second type.
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Figure 4. ITR r1.0 scaffold 15 is a misassembly. (a) the estimated RFs along the scaffold based on 30 independent runs.
Each gray line plot represents a independent run. x- and y- axis represent the SNP positions (Kb) on the scaffold 15 and the
estimated RFs between the adjoining SNPs, respectively. Solid dots indicate the mean RFs at that position. There is a
misassembly around 177Kb, where the estimated RFs are 0.321±0.117. (b) and (c), the first ∼166kb of scaffold 15 is
collinear with NSP306v2 scaffold 4, while the last ∼138kb is collinear with NSP306v2 scaffold 40002.
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40002 (Fig. 4b and c). This result supports the misassembly of scaffold 15 as well as the misassembly position. In fact, 5/7 109

detected misassemblies were confirmed by mapping to NSP306v2 scaffolds (Supplementary Table S6.). We split the incorrect 110

ITR r1.0 scaffolds to generate new scaffolds and excluded the original ones from linkage analysis (Supplementary Table S6.). 111

As a result, 2289 scaffolds were included in linkage map construction. The haplotype phasing algorithm failed to give any 112

feasible results for 56 scaffolds. The remaining 2,233 scaffolds were assigned to 15 linkage groups (Supplementary Figure S2.). 113

The total length of the genetic linkage maps is approximately 4058cM (Supplementary Figure S5.). Among the 2,233 scaffolds, 114

1,572 scaffolds were considered successfully mapped to NSP306v2 scaffolds thus could decide the linkage groups, order and 115

pairwise distances (Online Methods). 116

Figure 5. Estimated RFs versus physical distances plots for real data. (a) dot plots for the physical distance against the
estimated RFs for ITR r1.0 scaffold pairs that mapped to the same NSP306v2 scaffolds. (b) the discrepancies between
NSP306v2 and ITR r1.0 were removed. We added a density plot (range from green to red) as well as a smoothed conditional
mean plot (blue) calculated using generalized additive model (GAM). (c) dot plots for the physical distance against the
estimated RFs for scaffold pairs that come from the same pseudomolecule. (d) histograms of the estimated RFs for scaffold
pairs that come from different pseudomolecules.

Figure 5a illustrates RF estimations for mapped scaffolds. There is a dot cluster at the top of the plot which represents 117

overestimation of RFs. This is caused by discrepancies between assembly NSP306v2 and ITR r1.0. According to the genetic 118

linkage maps we built, 26 discrepancies were detected where ITR r1.0 scaffolds that mapped to the same NSP306v2 scaffold 119

were assigned to multiple linkage groups. For example, 119 ITR r1.0 scaffolds were mapped to the NSP306v2 scaffold 1, 120

however, were assigned to three linkage groups. We identified ten ≥ 1Mb misassemblies using BioNano maps in NSP306v2 121

(Supplementary Table S7.). All of them were identified as discrepancies by our method. The break points of the misassemblies 122

agree with the BioNano mapping results. It is difficult to tell if the remaining 16 discrepancies we detected are true or false 123

positives. Firstly, there might be genome structure variations between the two Ipomoea trifida lines that used for genome 124

assembly. Secondly, the Ipomoea trifida genome abounds with repetitive sequences23 and makes the mapping process difficult. 125

In the current study, an ITR r1.0 scaffold is regarded as mapped if no less than 50% base pairs are collinear with a NSP306v2 126

scaffold (Online Methods). The low threshold could introduce false positive mapping. Indeed, if we increased the threshold to 127

70%, the number of mapped ITR r1.0 scaffolds would decrease to 1200, and the number of discrepancies would decrease to 14. 128

The overestimations disappeared after removing the discrepancies (Fig. 5b). 129

Figure 6 illustrates the syntenic maps between the genetic linkage maps we built and the NSP306v2 scaffolds. Here we 130

only show three linkage groups that contain scaffolds mapped to NSP306v2 scaffold 1, and see Supplementary Figure S6. for 131

the remaining 12 genetic linkage maps. The break points of scaffold 1 agree with those estimated from BioNano mapping 132

(Supplementary Table S7.). In each linkage group, the order of the ITR r1.0 scaffolds is almost identical to the mapping order 133

on the scaffold 1. This is also true for the other scaffolds although with a few exceptions. NSP306v2 scaffold 48 is observed 134

twice (Fig. 6a and c). Precisely, in the first linkage group, there is only one ITR r1.0 scaffold that was mapped to scaffold 135

48, namely scaffold 167. Interestingly, this scaffold was also successfully mapped to NSP306v2 scaffold 40007. Precisely, 136

this scaffold is approximately 146Kb long. While the first 57Kp was mapped to scaffold 40007, the last 89Kp was mapped to 137

scaffold 48. As we chose the longest alignment, we considered it mapped to the later one. However, according to the linkage 138

analysis, it is closer to those scaffolds that mapped to scaffold 40007. This is either because of the misassembly of scaffold 167 139

which has not been detected or genome diversity between two Ipomoea trifida lines. 140

Application to infinium 8303 potato array data 141

B2721 is a tetraploid potato mapping population developed from the cross Atlantic×B1829-5 consists of 156 F1 progeny. The 142

mapping population was genotyped with Illumina 8,303 SNP array. We used the R package fitTetra24 to call genotypes. The 143
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(a)

(c)

(b)

(M)

(M)

(M)0 5 10 15 20 25 30 35 40 45

40007(−) 48 94 51(−) 79 91 95 1 46 10 40031(−) 34(−)

0 5 10 15 20 25 30

47 25(−) 56 77 70 22(−) 1

0 5 10 15 20 25 30

1 57(−) 15 18 48 35

Figure 6. Syntenic maps of the genetic linkage map constructed from the M9xM19 GBS data and the NSP306v2 de
novo genome assembly. (a)-(c) depict the syntenic map for three linkage groups. The scaffolds are represented by gray blocks.
NSP306v2 scaffolds are placed at the top, while the ITR r1.0 scaffolds are at the bottom. NSP306v2 scaffolds labeled with ’(-)’
are placed in reverse direction. The apparent ’banding’ pattern in the bottom scaffolds is just due to the fact that many of the
ITR r1.0 scaffolds are too small to distinguish by eye. A quadrilateral is used to depict the mapping information between an
upper and a bottom scaffold. The blocks that represent NSP306v2 scaffold 1 are shaded with slashes.
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Potato Genome Sequencing Consortium (PGSC) provides an alignment of the Infinium 8303 Potato Array SNPs to the PGSC 144

v4.03 pseudomolecules (http://solanaceae.plantbiology.msu.edu/pgsc download.shtml). This was used to anchor the SNPs to 145

PGSC DM v3 scaffolds6. The SNPs that were unaligned or aligned for multiple times were excluded from the later analysis. 146

The scaffolds containing less than five SNPs were excluded. By using the default settings, fitTetra rejected 1,751 SNPs due to 147

low p-value. The anchoring step further removed 1,080 SNPs. The remaining 5,472 SNPs are located on 435 scaffolds. These 148

scaffolds summed to ∼445Mb cover approximately 53% of the genome. We applied our method to build genetic linkage maps 149

for these scaffolds and referred to the PGSC v4.03 pseudomolecules6 for validation. 150
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Figure 7. Genetic linkage map constructed from Atlantic×B1829-5 mapping population 8303 potato array data.
x-axis represents the positions on the PGSC v4.03 pseudomolecules (Mb) and y-axis represents the positions on the genetic
linkage map (cM).

The phasing algorithm failed to give any feasible haplotype calls for 126 scaffolds. This is mainly due to the low level 151

of genetic diversity on these scaffolds. Figure 5c depicts the pairwise RF estimations against the physical distances for 152

scaffold pairs located on the same pseudomolecules. The distances between scaffolds were estimated by the locations on the 153

pseudomolecules. Even though there is bias compared to a conventional genetic mapping function, the estimated RFs highly 154

correlate with the physical distances. The bias could be due to the inaccurate estimation of the physical distances between 155

scaffolds. The gap sizes between the adjoining scaffolds on the pseudomolecules were fixed at 50Kb6, which is not always 156

precise. Moreover, the pseudomolecules cover only approximately 86% of the whole genome6, which could also make the 157

physical distance calculation biased. Figure 5d presents the histogram of the estimated RFs for the scaffolds from different 158

pseudomolecules. The values are consistently large, and most of them are greater than the predefined threshold for grouping. 159

For genetic linkage map construction, 309 scaffolds were assigned to 12 linkage groups, corresponding to the 12 PGSC v4.03 160

pseudomolecules, without miss assignment (Supplementary Figure S2.). The order of the scaffolds on the linkage map is 161

consistent with that on the pseudomolecules despite a few exceptions for scaffolds that are closed to each other (Fig. 7). 162

We applied this method to another Infinium 8303 potato array data for a outcrossed family generated by 12601ab1×Stirling25. 163

This family consists of 192 samples. The variant calling process ended up with 3,988 SNPs from 358 scaffolds for linkage 164

analysis. 240 scaffolds were reserved in the final genetic linkage maps. 12 linkage groups were constructed corresponding 165

to the 12 pseudomolecules. The results are very similar to that described for the B2721 dataset (Supplementary Figure S7., 166

Supplementary Figure S2.). 167

Comparison to well-known genetic mapping tools 168

We compared our genetic mapping method to three existing tools designed for outcrossed population including Onemap17
169

and Lep-MAP219 for diploid and TetraploidMap20 for tetraploid. The marker sets used for comparison consist of 1000 SNPs 170

sampled from a simulated outcrossed family with known linkage groups and order (Online Methods). The missing data rates 171

range from 0 to 0.9, while the genotyping error rates range from 0 to 0.5. For each configuration, we conducted 30 independent 172

experiments for PolyGembler, Onemap, and Lep-MAP2, and two experiments for TetraploidMap as only a graphical user 173

interface is provided by the author. Moreover, TetraploidMap requires one of the parents is nulliplex. SNPs that are not handled 174

by TetraploidMap were removed. This process discarded ∼%50 SNPs for each dataset. 175

The results are reported in Table 1 with details in Supplementary Table S8.. As we can see, PolyGembler is always better or 176

at least not worse than the other methods in accuracy for grouping and consistently outperformed the other methods in accuracy 177
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Table 1. Results for comparisons of PolyGembler to Onemap, Lep-MAP2 and TetraploidMap. The statistics for PolyGembler,
Lep-MAP2 and Onemap are averaged on 30 independent runs (Intel R© Xeon R© Processor E5-2667 v3 CPU, 3.20GHz), while for
TetraploidMap are averaged on 2 independent runs (Intel R© CoreTM i5-2520M CPU, 2.50GHz). Column γ and η report the
rates of missing data and genotyping errors for the dataset. Column E reports the error rates of marker order on the genetic
linkage map compared to the order on the chromosomes26. Column NMI reports the normalized mutual information of the
constructed linkage groups and true groups. NMI ranges from 0 to 1, measures the mutual dependence between two random
variables27. Larger NMI values indicate that the two groupings are more similar, and specifically NMI=1 means they are
identical. Column T reports the CPU time in seconds. Column N reports the number of SNPs in the genetic linkage map. N is
sometimes less than 1000 because SNPs are either filtered out or failed to be assigned to any linkage group. Column N is not
reported for PolyGembler, as it is always 1000. PolyGembler(2) and PolyGembler(4) columns report the results for diploid and
tetraploid respectively. NA means not applicable at corresponding settings as methods return no meaningful results.
TetraploidMap constructs genetic linkage maps for two parents separately, and therefore the statistics were averaged on two
parental linkage maps.

γ η
PolyGembler(2) OneMap Lep-MAP2 PolyGembler(4) TetraploidMap

E NMI T(s) E NMI T(s) N E NMI T(s) N E NMI T(s) E NMI T(s) N
0 0 0 1.0 2193 .222 1.0 12135 1000 .048 1.0 2984 999.9 .001 1.0 11758 .149 .856 7564 504.5

0.05 0 0 1.0 2127 .225 1.0 13407 1000 .069 1.0 3424 902.1 .001 1.0 11848 .147 .831 9526 503
0.1 0 0 1.0 2195 .221 1.0 15974 1000 .069 .999 2901 812.1 0 1.0 12309 .182 .831 11499 503
0.2 0 0 1.0 2089 .236 1.0 18709 1000 .079 .990 1966 641.8 0 1.0 13650 .162 .855 6985 500
0.3 0 0 1.0 2126 .220 1.0 24835 1000 .084 .978 1274 494.4 .001 1.0 15026 .190 .797 15848 500
0.4 0 0 1.0 2307 .243 .999 31397 1000 .097 .937 720 351.6 .003 1.0 17441 NA NA NA NA
0.5 0 0 1.0 2161 .270 .999 41574 999.3 .127 .876 274 239.2 .005 1.0 20472 NA NA NA NA
0.6 0 0 1.0 2319 .263 .826 20912 962.0 NA NA NA NA .015 1.0 23207 NA NA NA NA
0.7 0 .001 1.0 2432 .197 .583 352 351.2 NA NA NA NA .122 .785 22184 NA NA NA NA
0.8 0 .017 .996 2703 NA NA NA NA NA NA NA NA .157 .324 9770 NA NA NA NA
0.9 0 .134 .326 2149 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
0 0.01 0 1.0 2283 .245 1.0 13355 1000 .065 1.0 4155 978.2 0 1.0 11984 .133 .795 10452 515
0 0.02 0 1.0 2280 .238 1.0 18206 1000 .069 1.0 3892 954.5 .001 1.0 12159 .173 .797 7241 519.5
0 0.05 0 1.0 2146 .279 1.0 37039 1000 .065 .997 3414 837.3 .001 1.0 12716 .154 .785 5983 525.5
0 0.1 0 1.0 2171 .363 1.0 80396 1000 .080 .852 787 545.7 .001 1.0 13513 .176 .789 6124 527.5
0 0.2 .001 1.0 2243 .333 .682 11136 709.2 NA NA NA NA .003 1.0 16133 NA NA NA NA
0 0.3 .008 1.0 2191 NA NA NA NA NA NA NA NA .015 1.0 17452 NA NA NA NA
0 0.4 .063 .908 2123 NA NA NA NA NA NA NA NA .037 .993 15950 NA NA NA NA
0 0.5 .111 .748 2055 NA NA NA NA NA NA NA NA .096 .885 14601 NA NA NA NA

0.05 0.01 0 1.0 2164 .233 1.0 11963 1000 .067 1.0 3488 882.1 .001 1.0 12425 .159 .807 8083 512
0.1 0.02 0 1.0 2214 .238 1.0 19078 1000 .068 .998 2705 770.6 .001 1.0 13043 .196 .775 12183 521
0.2 0.05 0 1.0 2241 .303 .998 53778 1000 .082 .926 978 496.8 .001 1.0 15260 .194 .766 6331 526.5
0.3 0.1 .001 1.0 2303 .295 .674 4055 72.3 NA NA NA NA .006 1.0 18849 NA NA NA NA
0.4 0.2 .090 .889 2146 NA NA NA NA NA NA NA NA .099 .844 16874 NA NA NA NA
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for ordering. Moreover, PolyGembler is able to deal with dataset with much higher missing and error rates. Here, we call a 178

grouping with NMI≥0.9 acceptable. For the diploid simulation, we gain acceptable results for the dataset with 80% missing 179

genotypes from PolyGembler, while only 50% and 40% is allowed for Onemap and Lep-MAP2, respectively. The performance 180

on the genotyping errors shows a similar trend. The largest error rate that PolyGembler is able to deal with reaches 40%, while 181

for Onemap and Lep-MAP2, it drops to 10% and 5%, respectively. PolyGembler also outperforms the other two methods for 182

the data with mixtures of missing data and genotyping errors. The upper bound for PolyGembler stands (30%, 10%), while for 183

Onemap and Lep-MAP2 is (20%, 5%). Moreover, Lep-MAP2 filtered out more than half of the SNPs. Regarding the running 184

time, PolyGembler is the fastest, followed by Lep-MAP2, and both are much faster than OneMap. It should be noted here that 185

sometimes Lep-MAP2 is faster than PolyGembler as it discarded many SNPs. For tetraploid dataset, TetraploidMap never gives 186

reasonable results. In contrast, PolyGembler is able to handle data set of missing data up to 60% or genotyping errors up to 187

40% or the mixture of them up to (30%,10%). 188

Discussion 189

We described a genetic mapping method that harnesses genotyping data from outcrossing mapping populations and reference 190

genome assembly. By mapping genotyping data to assembly, we perform linkage analysis at scaffold level. Compared to 191

conventional marker-based methods, our method is more accurate, robust and efficient. The scaffold level linkage maps can be 192

easily converted to chromosome-scale pseudomolecules if they cover a large portion of the chromosomes. Even if a linkage map 193

does not represent the entire chromosome due to low quality of reference assembly or genotyping data, it provides insightful 194

information about the order of the scaffolds, which could be utilised in pseudomolecule construction or genetic analysis. 195

Haplotype phasing for scaffolds makes it possible to obtain accurate RF estimations even with abundant missing data 196

and genotyping errors. Scaffold level linkage analysis effectively reduces the computational complexity. Presumably, a 197

well-designed heuristic algorithm is required to order the markers within each linkage group as it is NP-hard. In our method, 198

however, the size of the problem is dramatically reduced because of the scaffold level design, which enables us to use the exact 199

TSP solver CONCORDE28. 200

The haplotype phasing algorithm is a modification of polyHap29, 30. Compared to the original model, the hidden state 201

space is redesigned by integration of the pedigree structure. The recombinations of parental haplotypes are restricted between 202

those haplotypes from the same parent. In contrast, recombinations are allowed between any ancestral haplotypes in polyHap. 203

Recombination restriction dramatically reduces the computational complexity, and make higher ploidy haplotype phasing 204

possible. Moreover, we extended the model to handle multipoint haplotype phasing. The multipoint analysis runs on a 205

superscaffold built from nearest neighbor joining, which is critical to guarantee accurate haplotype phasing for short scaffolds 206

and high ploidy genomes. 207

A key feature of our method is its robustness to missing data and genotyping errors. Haplotype phasing plays an important 208

role. Joint analysis of multiple markers on the same scaffold provides more linkage information. By reconstructing haplotypes 209

for scaffolds, the missing genotypes are actually being imputed though we do not have an explicit imputation step. Moreover, 210

we allow a parental haplotype to pass more than one allele at a marker locus probabilistically. This is designed to deal with 211

genotyping errors. If a genotyping error occurs, the model will choose between introducing a recombination at that position or 212

passing an allele with lower probability, whichever maximizes the overall likelihood. Alternatively, we could require a parental 213

haplotype to pass exactly one allele as what happens in reality. In this case, however, as long as a genotyping error occurs, an 214

incorrect parental haplotype recombination is introduced. It should be noted here that when the genotyping error rate is low and 215

the model converges well, the probability of passing a certain allele by a haplotype should be close to 1. 216

Haplotype phasing is a critical step in our method. The accuracy of haplotype phasing is influenced by several factors. First, 217

the size of the marker set, including the size of the mapping population and the number of the markers along a scaffold. A larger 218

sized marker set provides more correlation information between samples as well as markers, which enhances the robustness of 219

the model to missing data and genotyping errors. Secondly, the quality of the data, including the missing values, the genotyping 220

errors, and the level of genetic diversity. Higher missing and error rates place a higher burden on the analysis. A low level of 221

genetic diversity can also compromise the algorithm, especially for polyploid species. As many parental haplotypes will pass 222

the same allele at a given position, the algorithm struggles to distinguish between them, resulting in possibly biased phasing 223

results. This is especially true when the size of marker set is small. 224

The generalization of the proposed method to high ploidy genomes is straightforward. In this study, we focused on diploid 225

and tetraploid. However, this method is capable of constructing genetic linkage maps for higher ploidy genomes. Our biggest 226

challenge when dealing with higher ploidy species is computational, especially in the haplotype phasing step. For hexaploid, the 227

number of hidden states increases to 14400. This is a large number of states but remains computationally tractable. However, 228

for higher levels of ploidy, computation does become difficult. 229
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Methods 230

Simulation of Ipomoea Trifida reference chromosomes. In order to make the simulation comparable to the real genome, 231

we incorporated the sequencing data provided in23. The data consists of 709,879,448 100bp long paired-end reads with expected 232

insert size 300bp. Firstly, we built an assembly graph from the sequencing data using SOAPdenovo24. Then, we extracted all 233

the contigs and corresponding coverage from the assembly graph. We assumed the coverage represents the copy number of 234

a contig in the reference genome. In total, 1,669,780 contigs summed to 494,234,273bp were identified. The longest contig 235

is 41,310bp and the N50 statistic is 1,153bp. Contigs shorter than 100bp were filtered out. After filtering, 881,037 contigs 236

summed to 481,711,030bp were left for reference genome construction. Among which, 502,551 contigs of 365,400,227bp have 237

exactly one copy, while the remaining 378,486 contigs of 116,310,803bp have more than one copy, represents approximately 238

75.85% and 24.15% of the whole genome, respectively (Supplementary Table S1.). Here, for convenience, denote P and P̄ the 239

contig pool formed by the non-repeated and repeated contigs, respectively. In order to construct longer repeats, contigs were 240

randomly selected from P̄ and combined. We generated five categories of long repeats distinguished by size, i.e., values fall 241

into half-closed intervals [0,500), [500,1000), [1000,10000), [10000,20000), and [20000,40000), respectively. To generate a 242

long repeat for a given category, we randomly sampled a number L from the interval as the target repeat length, and randomly 243

sampled a number k from 2, 3 and 4 with probabilities 0.9, 0.09 and 0.01 respectively as the copy number of this long repeat. 244

Everytime, we randomly selected a short repeat with at least k copies from P̄ and added it to the end of the long repeat until the 245

length is equal to or greater than L, or there is no available short contig any more. Once a contig was used, the copy number it 246

presents in P̄ was subtracted by k. Once the construction of a long repeat was completed, k copies of this contig were added to 247

P (Supplementary Table S2.). It should be noted here that we started from the longest category and all the way down to the 248

shortest one to reduce the risk of running out of repeated contigs for long repeats. We assumed each of the five categories long 249

repeats represents similar portion of the whole genome, namely ∼23Mb. We recorded the total length of the long repeats in the 250

current category, and proceeded to the shorter one when it exceeds the expected value. Once the long repeat construction was 251

completed, we generated 15 chromosomes using all the sequences in P by random concatenation (Supplementary Table S3.). 252

Simulation of reference scaffolds. ART (Version 2.5.8)31 was employed to simulate Illumina HiSeq 2000 reads from the 253

reference chromosomes. Three libraries were generated including a paired-end library with insert size 300bp (standard deviation 254

10bp) at 120x and two mate-pair libraries with insert size 3000bp (standard deviation 50bp) and 10000bp (standard deviation 255

200bp) respectively at 30x. The read length was set to 100bp and all the other parameters were set as default (Supplementary 256

Table S4.). Jellyfish (version 2.2.6)32 (k = 17,23,31) was applied to calculate the k-mer frequency of the sequence data. The 257

genome size was estimated as 490,480,568bp with k = 17 (Supplementary Figure S1.). SOAPdenovo2 (Version 2.04)4 was 258

used to assemble the genome. The paired-end reads were used to build contigs and mate-pair reads were used for scaffolding. 259

The resulted genome assembly consists of 402,557 scaffolds summed to 526,864,946bp. The longest scaffold is 669,577bp and 260

the N50 statistic is 106,352bp (Supplementary Table S5.). 261

Simulation of marker sets used for comparison. First, we simulated two parental genotypes using the simulated reference 262

chromosomes (Supplementary Table S3.). We only considered SNPs. Since the SNP density varies across different regions, the 263

distances between adjacent SNPs were sampled from a mixture of K Poisson distributions, 264

p(d;w1, ...,wK ,λ1, ...,λK) = ∑
k=1,...,K

wk f (d;λk) (1)

where d is the distance need to sample, w= {w1, ...,wk} and λ = {λ1, ...,λK} are the weights and parameters of the K compo- 265

nents, respectively, and f (.) is the Poisson probability mass function. We set K = 7, w= {0.05,0.10,0.20,0.30,0.20,0.10,0.05} 266

and λ = {50,100,200,500,1000,2000,5000} and generated ∼ 565K SNPs. Next, we simulated the meiosis process of the 267

two parents with the software PedgreeSim V2.033 to produce 190 F1 progeny genotypes. Then, to generate a marker set, we 268

randomly selected 100 contigs of 11cM from the chromosomes, and sampled 10 SNPs from each contig. The total genetic 269

length of the chromosomes is 1500cM (Supplementary Table S3.), and therefore the marker set covers approximately 73% 270

(1100/1500) of the genome. Finally, we randomly introduced missing data and genotyping errors to the marker set. 271

Simulation of GBS data. We mapped the genotypes generated by the software PedgreeSim V2.033 back to the simulated 272

reference chromosomes to produce genome for each sample. To generate GBS data, we simulated the GBS protocol to produce 273

sequences with ApeKI as restriction enzyme12. Substitutions, insertions and deletions were randomly introduced as sequencing 274

errors. The overall error rate was set to 1×10−3, from which substitutions, insertions and deletions were randomly sampled 275

with equal probabilities. In order to make the simulation more comparable to the real data, we constructed a Markov model 276

(S,π,P1, ...,PL−1) to generate quality scores. S represents the state space of the Markov model consists of all possible quality 277

scores. π is a vector of size |S| indicates the initial probabilities of quality scores in the Markov chain. Pl is a |S|× |S| matrix 278
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defines the transition probabilities between quality scores at lth base, where 0 < l < L and L is the sequence length. All the 279

parameters were learned from real GBS data. The sequencing depth of coverage for each chromosome follows a truncated 280

normal distribution. The overall depth for diploid and tetraploid GBS data is 10.8× and 43.2×, respectively (Supplementary 281

Note S1.) 282

Variant detection of GBS data. Similar to the TASSEL-GBS pipeline34, we employ a tag-based design. The implementation 283

consists of five major steps: (1) generate and encode tag sequences. The input for the program includes one or more FASTQ 284

files containing GBS reads and a configuration file generated by the GBS protocol indicating the barcodes, the flowcells, the 285

pedigree structure and so on. The program takes each sequence from the FASTQ files, removes the barcode, and replaces low 286

quality bases with ’N’ according to a predefined threshold. We call the processed sequence a tag sequence. The tag sequence is 287

then encoded with a Bitset. For which, each nucleobase including ’N’ consumes three bits. The encoded tag sequence is hashed 288

and put into a hash table. For each tag, a mutable integer array is maintained to record the counts in each sample. During this 289

progress, the hash table could become large and hard to maintain. Therefore, we constantly monitor the memory consumption 290

by the program. If the usage exceeds a predefined threshold, 90% by default, the hash table is then written to the hard disk and 291

cleared. The output is a binary file where each line records an encoded tag sequence and the counts. Tag sequences are sorted 292

by hashcodes before written to hard disk. (2) merge tag sequences. There are more than one tag sequence binary files either 293

because of multiple GBS FASTQ files or multiple volumes for a GBS FASTQ file due to memory limitation. The program 294

merges them to produce a single file contains all the tag sequences. The major task is to calculate the total counts for tags 295

displayed in multiple files. As the tag sequences are sorted, this process takes linear time. (3) decode tag sequences to generate 296

FASTQ file. The encoded tag sequences in the binary file are decoded to generate a FASTQ file. The integer arrays describe the 297

counts of tag sequences in each sample are written to a separate index file. (4) align to the reference assembly. The FASTQ file 298

containing all tag sequences is mapped to the reference assembly. We use BWA-MEM35 (version 0.7.12-r1039) with default 299

parameters. According to the index file, the resulted BAM file is split to produce BAM files for each sample. It should be noted 300

here that, for tag sequences observed for multiple times, corresponding number of BAM records are written to the BAM file so 301

as to ensure correct allele depth. (5) variant calling and filtering. We run Freebayes36 (version v0.9.20) with default parameters 302

for variant calling and a customer script for filtering. We require a variant, (a) the allele number equals to two, (b) the minor 303

allele frequency is no less than 0.1, (c) the percentage of missing data is no greater than 50%, and (d) the number of markers 304

along a scaffold is no less than five. The program is multi-threaded for speed. 305

scaffold haplotype phasing. We developed a hidden Markov model (HMM) to reconstruct the underlying inheritance pattern 306

of the F1 mapping population, thus to infer the parental haplotypes, and which of these haplotypes have been inherited by each 307

F1 progeny. This is a modification of the haplotype phasing algorithm polyHap29, 30. We redesigned the state space to reduce 308

the computational complexity. 309

Notations. Assume the chromosome has ∆ copies (so ∆ = 2 for diploid genomes), and ∆ is an even number. Assume M 310

markers are observed along the scaffold we are interested in. We write a collection in the square brackets to indicate an ordered 311

list, while in the curly brackets to indicate an unordered list. The elements in an ordered list are indexed and could be accessed 312

by indices. We write π = [π1, ...,πn] a permutation of the sequential number 1 to n. Then for any unordered list o = {o1, ...,on}, 313

we write π(o) = [oπ1 , ...,oπn ] for a permutation of o, and Π(o) for the collection of all such permutations. Thus, for example, if 314

o = {1,2}, there are two permutations, namely [1,2] and [2,1], whereas if o = {1,1}, there is only one permutation. We use 315

unordered and ordered list to represent unphased and phased data, respectively. 316

Consider the mth marker on the scaffold, where m = 1, ...,M. Write Ĥm = {h1, ...,h∆} for unphased paternal haplotypes, 317

H̆m = {h∆+1, ...,h2∆} for unphased maternal haplotypes and H̄m = Ĥm∪ H̆m for all the parental haplotypes. Since we do not 318

allow haplotype transfers for parents, without loss of generality, the phased paternal and maternal haplotypes at mth marker can 319

be written as Ĥ◦m = [h1, ...,h∆] and H̆◦m = [h∆+1, ...,h2∆], ∀m = 1, ...,M, respectively. More precisely, the δ th copy of the paternal 320

and maternal chromosomes at mth marker are denoted by Ĥ◦mδ
= hδ and H̆◦mδ

= h∆+δ respectively, where δ = 1, ...,∆. The 321

phased paternal and maternal haplotypes for the whole scaffold are then denoted by Ĥ◦ = [Ĥ◦1 , ..., Ĥ
◦
M] and H̆◦ = [H̆◦1 , ..., H̆

◦
M], 322

respectively. For any given F1 progeny, note here that it inherits ∆/2 haplotypes from each parent, the unphased haplotypes at 323

mth marker can then be written as Hm = {h†
1, ...,h

†
∆
}, where h†

1, ...,h
†
∆/2 ∈ Ĥm and h†

∆/2+1, ...,h
†
∆
∈ H̆m. For example, in diploid 324

species,
⋃

Hm = {{h1,h3},{h1,h4},{h2,h3},{h2,h4}}. Write H◦m = [h†
π1 , ...,h

†
π∆
] for phased haplotypes at mth marker, where 325

H◦m ∈Π(Hm), the phased haplotypes for the F1 sample is then denoted by H◦ = [H◦1 , ...,H
◦
M]. 326

Assume Λm alleles are observed at the mth marker, namely Am = {a1, ...,aΛm}. Each allele aλ , where λ = 1, ...,Λm, is 327

assumed to be descended from at least one of the parental haplotypes. Write gm = {gm1, ...,gm∆}, for the unphased genotype of 328

a F1 sample at the mth marker, where gmδ ∈ Am and δ = 1, ...,∆. Write g◦m = [gmπ1 , ...,gmπ∆
] for the phased genotype, where 329

g◦m ∈Π(gm), the phased genotypes for the scaffold is then written as g = [g◦1, ...,g
◦
M]. 330
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Transition probability. The transitions in the HMM are designed to model the recombination events of the parental 331

haplotypes during the meiosis process. For any F1 progeny, the probability of the δ th copy of the chromosomes transfers from 332

the parental haplotype state hδ at (m−1)th marker to hτ at mth marker, where hδ ,hτ ∈ H̄m, is defined by, 333

p(H◦mδ
= hτ |H◦(m−1)δ = hδ ) =


(1− Jm)+ Jmαmhδ

if hδ = hτ

Jmαmhτ
if hδ 6= hτ ,and hδ ,hτ ∈ Ĥm or hδ ,hτ ∈ H̆m

0 otherwise.
(2)

where Jm is the probability of a jump occurring during the meiosis process between parental haplotypes at marker m−1, 334

and αmhτ
is the probability that this jump results in the haplotype hτ irrespective of the original haplotype. Jm is positively 335

related to the physical distance between (m−1)th and mth marker. When the two markers are tightly linked, Jm should be 336

extremely small to prevent haplotype states jumping frequently. Based on the haplotype model, the transition probability 337

between two phased haplotype state lists from (m−1)th to mth marker is given by, 338

p(H◦m = [h†
1, ...,h

†
∆
]|H◦m−1 = [h′1, ...,h

′
∆]) = ∏

δ=1,...,∆
p(H◦mδ

= h†
δ
|H◦(m−1)δ = h′

δ
) (3)

and between the unphased haplotype state lists is written as, 339

p(Hm = {h†
1, ...,h

†
∆
}|Hm−1 = {h′1, ...,h′∆}) = ∑

H◦m∈Π(Hm)
∏

δ=1,...,∆
p(H◦mδ

= h†
δ
|H◦(m−1)δ = h′

δ
) (4)

It should be noted here that, the transitions between paternal and maternal haplotypes are prohibited (see equation (2)). 340

Equation (4) can be rewritten as, 341

p(Hm = {h†
1, ...,h

†
∆
}|Hm−1 = {h′1, ...,h′∆}) = p(Ĥm = {h†

1, ...,h
†
∆/2}, H̆m = {h†

∆/2+1, ...,h
†
2∆
} |

Ĥm−1 = {h′1, ...,h′∆/2}, H̆m−1 = {h′∆/2+1, ...,h
′
2∆})

(5)

where Ĥm and Ĥm−1 represent the paternal meiosis process, while H̆m and H̆m−1 represent the maternal meiosis process. 342

Assume the independence of the paternal and maternal meiosis, 343

p(Hm = {h†
1, ...,h

†
∆
}|Hm−1 = {h′1, ...,h′∆}) = p(Ĥm = {h†

1, ...,h
†
∆/2}|Ĥm−1 = {h′1, ...,h′∆/2})

p(H̆m = {h†
∆/2+1, ...,h

†
2∆
}|H̆m−1 = {h′∆/2+1, ...,h

′
2∆})

(6)

Compared to equation (4), equation (6) significantly reduces the complexity of computation. 344

Emission probability. For the mth marker, the unphased genotype and haplotypes of a F1 sample is written as gm = 345

{gm1, ...,gm∆} and Hm = {h†
1, ...,h

†
∆
}, respectively. Denote θmh(a) the emission probability of the allele a from the parental 346

haplotype h at the mth marker, where m = 1, ...,M, a ∈ Am, and h ∈ H̄. We then calculate the joint emission probability of the 347

unphased genotype given the unphased haplotypes by, 348

p(gm = {gm1, ...,gm∆}|Hm = {h†
1, ...,h

†
∆
}) = ∑

g◦m∈Π(gm)
∏

δ=1,...,∆
p(g◦mδ

= gmδ |H◦mδ
= h†

δ
) (7)

or 349

p(gm = {gm1, ...,gm∆}|Hm = {h†
1, ...,h

†
∆
}) = ∑

π∈Π(gm)
∏

δ=1,...,∆
θmh†

δ

(πδ ) (8)

If gm is completely missing for an individual at marker m, we set θmh(a) to be uniformly distributed over all alleles. If gm is 350

partially missing, we set θmh(a) to be uniform over alleles that are consistent with the observed genotype at marker m. 351
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More computational details. We use Dirichlet priors on all parameters. Let θmh ∼ Dirichlet(µθ mθ ), where mθ is the 352

uniform vector with each element equal to 1/Λm, and αm.∼ Dirichlet(µα mα), where mα is the uniform vector each element 353

equal to 1/∆. Also let Jm ∼ Beta(µJ(1−e−dmr),µJe−dmr), where dm is the physical distance between consecutive marker m−1 354

and m along the scaffold, and r = 10−8 per base pair, reflecting the background recombination rate. We use µθ = µα = 1 and 355

µJ = 105 for initialisation of the EM algorithm and µθ = µα = µJ = 0.1 for the maximisation step. 356

The frequencies of the 2∆ parental haplotypes are expected to be equal in the mapping population. Occasionally, however, 357

we observed huge skew in haplotype phasing results. This could be the situation when the marker set has a low level of genetic 358

diversity. In an extreme case assume a marker set of all homozygous markers. All the parental haplotypes would then pass the 359

same allele at a given position, thus the algorithm could not distinguish them from each other and would finally end up with 360

biased haplotyping. Even though the homozygotes were filtered out, it still could be a problem if many of the markers lack 361

genetic diversity especially for polyploids. Biased haplotyping were removed to avoid inaccurate RF estimations. We counted 362

the number of each parental haplotype and require the proportion to the expected value falls into the interval [ 1
φ
,φ ],φ > 1. 363

Otherwise, we discard the result for this run. The expectation of a parental haplotype in the mapping population is calculated as 364

NM
2 , where N is the size of mapping population and M is the number of markers along the scaffold. In this study, we choose 365

φ = 2. 366

RF estimation. The RF between two markers is estimated by the proportion of the number of recombinants to the total 367

number of haplotypes in the F1 progeny. Assume a genome of ploidy ∆ and a mapping population of N F1 progeny, and n 368

recombinations are observed between the two markers in the F1 haplotypes. The RF is then calculated as, 369

r =
n

N∆
(9)

Two kinds of RFs are estimated in the proposed method, (1) in order to detect assembly errors, we calculate RFs between 370

adjoining markers along the scaffold, and (2) in order to estimate genetic distance between two scaffolds, we calculate RFs 371

between the outermost markers. The RF calculations within a scaffold are straightforward. We only need to count the number 372

of jumps from one parental haplotype to another in F1 haplotypes. The RF calculations between two scaffolds, however, need 373

to consider all four possible directions as the orientations of the scaffolds on the chromosome are unknown. Besides, as we run 374

haplotype phasing algorithm for each scaffold separately, a parental haplotype in two phased scaffolds might be represented by 375

different labels. As a result, we need to consider all possible correspondences, namely the permutations of the 2∆ parental 376

haplotypes. Moreover, we also need to consider the order of the haplotypes within each F1 progeny. Therefore, 4(2∆)!∆! 377

values need to be calculated before we can decide the RF between two markers. This could be computationally impossible 378

when the ploidy becomes large. Fortunately, we do not have to consider all these possibilities. In the HMM model, the paternal 379

and maternal haplotypes are considered to be inherited by the F1 progeny independently, which means they can be calculated 380

separately. The RF is then estimated as the sum of the RFs of two parents. In this way, only 8∆!(∆/2)! values need to be 381

calculated, and from which we choose the minimum as the final RF estimation. 382
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Figure 8. A simple example for genetic mapping. (a) the haplotype phasing results of two parents and five F1 progeny for
the two scaffolds B1 and B2, (b) table for RF estimation of B1 and B2 from the haplotype phasing results, and (c) solving TSP
for a linkage group consists of scaffolds a-h.

Figure 8 illustrates a simple example for the RF calculation. Here we assume a diploid genome and two scaffolds B1 and 383
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B2 consist of nine and seven markers, respectively. Five F1 progeny were produced from the parental cross. Figure 8a shows 384

the haplotypes of these samples called from the HMM model. Between the third and fourth marker on B1 (shaded by light 385

gray box in Fig. 8a), a jump from parental haplotype ’2’ to ’1’ is observed in the last F1 progeny (shaded by dark gray box in 386

Fig. 8a), thus the RF between the two markers is estimated as 1/10. Figure 8b demonstrates the process of RF estimation 387

between scaffolds B1 and B2. Four possible directions are calculated, namely S1-S2, S1-E2, E1-S2 and E1-E2. Paternal and 388

maternal recombinants are calculated separately. There are two possible permutations for each, and for each permutation, only 389

one possible order. Consider calculation of the RF for the direction S1-S2, i.e., RF between marker ’1’ and ’a’. Firstly, the 390

algorithm examines paternal haplotypes only, i.e., haplotypes ’1’ and ’2’. Assume the haplotypes for scaffolds B1 and B2 are 391

the same, which means no haplotype switching. Then for the first, third and fourth F1 progeny, both marker ’1’ and marker 392

’a’ are descended from the haplotype ’1’, so they are not recombinants, whereas the rest two F1 progeny are recombinants. 393

Therefore the number of recombinants is counted as two. Similarly, the numbers of recombinants for the other permutations 394

and for the maternal haplotypes are calculated. The minimum number of the sum of the paternal and maternal recombinants is 395

two, thus the RF is estimated as 2/10 = 0.2. It is worth noting here that as long as the RFs for all four possible directions are 396

calculated, we can easily tell the relative orientation of the two scaffolds along the chromosome. The S1 end of B1 and the E2 397

end of B2 is closest in this example. 398

As the Baum-Welch algorithm might be stuck in local optima, we run the haplotype phasing model multiple times with 399

different initial parameters in order to obtain better estimations. The K runs with the highest likelihoods are used for RF 400

estimation. For a pair of scaffolds, K2 RFs are calculated, and the minimum one is selected as the final estimation. 401

Assembly error detection. In order to avoid the bias on the genetic linkage maps caused by the misassembly, the pipeline 402

allows breakages of the potential incorrect scaffolds. In order to detect the misassembly positions, RFs between the contiguous 403

markers along a scaffold are calculated. RFs are averaged on multiple runs to improve the confidence. If the RF between two 404

adjoining markers is larger than a predefined threshold, we consider it a misassembly at that position. In this study, we set 405

the threshold as 0.05. Apparently, the physical distance between two markers should be taken into consideration. However, it 406

is difficult to derive a universal relationship between the physical distances and RFs, especially when the physical distance 407

becomes large. Therefore, we do not consider positions where the distance between the adjacent markers is larger than 1Mb. 408

The incorrect scaffolds detected by the algorithm are split at the misassembly positions to generate new scaffolds. After 409

breakage, we run haplotpye phasing analysis on the new scaffolds and recalculate the pairwise RFs. 410

Superscaffold construction and multipoint analysis. We introduce multipoint haplotype phasing analysis to improve the 411

accuracy of RF estimations. The multipoint analysis runs the haplotype phasing algorithm on a superscaffold, which is built 412

by joining multiple scaffolds that are close to each other according to the RFs estimated from the haplotypes. In the current 413

study we use nearest neighbor joining to build superscaffolds. More precisely, for each scaffold, we choose the scaffold that 414

represents the smallest RF with it, and combine them to form a scaffold pair. For each joined scaffold pair, we solve a modified 415

TSP to calculate the order of the scaffolds thus to build a superscaffold. The gap between the two scaffolds is measured by the 416

estimated RF. Multipoint analysis is crucial for short scaffolds as the number of markers that mapped to them could be small, 417

which makes the haplotype phasing solely based on the marker set difficult. 418

Genetic Mapping. We follow the standard framework for genetic linkage map construction. The estimated RFs are used to 419

measure the genetic distances between scaffolds. A graph partitioning algorithm is employed to cluster the scaffolds to form 420

linkage groups. The optimal order within each linkage group is calculated by solving a modified TSP. 421

Grouping using a graph partitioning algorithm. In order to construct linkage groups, we build a weighted graph from 422

the pairwise RFs estimated from the haplotype phasing. The algorithm firstly constructs a symmetric J by J distance matrix 423

denoted by A, where J is the number of scaffolds. The element at the ith row and jth column records the distance between the 424

scaffold i and j. As we need to put more weights on the edges that connect closer scaffolds, we use Ā = 1−A as the adjacency 425

matrix. Furthermore, in order to simplify the graph, we delete all the edges with weights less than 1−θ , where θ is the upper 426

bound of RF that is considered evidence for linkage. In this study, we choose θ = 0.38, representing a genetic distance of 427

approximately 50cM with Kosambi mapping function. There are a plethora of graph partitioning algorithms that can be used 428

here37 and the R package ’igraph’38 provides implementations for several of such algorithms. In the present study, we employ 429

an information theoretic approach which detects modularity structure of a graph by minimizing expected description length of 430

the trajectory of a random walk39. 431

Ordering by solving a modified TSP. We run a modified TSP to find the optimal order of the scaffolds within each 432

linkage group. The TSP model aims to minimize the sum of the RFs along the Hamiltonian path. Figure 8c shows a simple 433

example of eight scaffolds a-h. This is not a standard TSP, however, as a valid solution needs to reach a city at one end and 434
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leave from the other end. A straightforward transformation of this problem to a standard TSP is to treat the two ends of the 435

scaffolds as different cities, which ends up with a double-sized TSP, namely, a+, a-, b+, b-, etc. The algorithm should then have 436

mechanisms to guarantee that (1) the solution should be a Hamiltonian path instead of a Hamiltonian circuit as in a TSP, and (2) 437

the two ends of a scaffold should be always adjacent in the final solution. The first problem is solved by simply introducing a 438

dummy scaffold. The distances from the dummy scaffold to any other scaffolds are the same. Then we just need to cut the 439

Hamiltonian circuit at the dummy scaffold to form a feasible solution. To solve the second problem, the distance matrix for 440

the modified TSP is carefully designed. The distance matrix is initialised as (2J+1) by (2J+1) zero matrix, where J is the 441

number of scaffolds. As RFs are estimated in all four directions for each pair of scaffolds, we can fill the entries represent 442

distances between two cities from different scaffolds with the corresponding RF estimations. Now we need to fill the entries 443

that represent distances between the two ends of the same scaffold. Assume i and j are two ends of a scaffold. We proved that i 444

and j would be adjacent in the optimal solution if the following condition holds, 445

di, j +dk,l < di,k +dl, j,∀k, l (10)

where k and l are different cities from other scaffolds, and dx,y,∀x,y represents the distance between city x and y (Supple- 446

mentary Note S2.). As (i,k) and (l, j) are city pairs from different scaffolds, we have di,k,dl, j ≥ 0. Therefore, equation 10 holds 447

if, 448

di, j +dk,l < 0,∀k, l (11)

In order to guarantee equation 11, we fill all entries that represent distances between the two ends of the same scaffold with 449

−(ϕ + ε), where ϕ represents the maximum value in the distance matrix, and ε is a small positive number. As TSP does not 450

allow negative distances, we add ϕ + ε to every element in the distance matrix, which remains an equivalent transformation for 451

the TSP. 452

Optimal solutions of the TSP are required to guarantee a feasible ordering. The TSP solver COCORDE28 is employed in this 453

research. CONCORDE is an exact TSP solver which was used to obtain the optimal solution for a problem up to 85,900 cities. 454

In our experience, it is reliable in solving the problem with the model size we usually have in the genetic mapping. 455

Pseudomolecules construction. In order to improve the accuracy of the pseudomolecules, we introduce an extra step to 456

refine the genetic linkage map. We run multipoint analysis along the entire genetic map for each linkage group and recalculate 457

the RFs between each pair of scaffolds within this linkage group. The linkage group is then reordered by solving the modified 458

TSP. This process is repeated for several times. The genetic map with the minimum size among the multiple runs is selected 459

for this linkage group. This process is necessary because ordering by solving the modified TSP is very greedy, which might 460

result in incorrect order due to just a few imprecise RF estimations. We found that this process is able to solve several incorrect 461

ordering for the simulated data (Supplementary Figure S8.). In this study, we run this refinement process for 10 rounds. 462

We construct pseudomolecules according to the genetic linkage map of the scaffolds. The order of the scaffolds has been 463

decided, thus we only need to estimate the gap size between the adjoining scaffolds. As there is a near-linear relationship 464

between the physical distance and RF when two scaffolds are close, we calculate the average physical distance per cM represents 465

as, 466

µ =
S− S̄

Ḡ
(12)

where S represents the genome size, and S̄ represents total size of scaffolds been anchored in the genetic linkage maps, and 467

Ḡ represents the sum of genetic distances between all the neighboring scaffolds. The gap between two scaffolds with genetic 468

distance g is then filled with ‖ µg ‖ ’N’s, where ‖‖ represents the operation to calculate the nearest integer. 469

Reference scaffold true linkage groups, orders and distances. We mapped scaffolds to the reference chromosomes using 470

the software last (version 735)40. A scaffold is considered being mapped to a reference chromosome if at least 50% base pairs 471

are collinear with that and only that chromosome. The mapped scaffolds were grouped by different reference chromosomes 472

they mapped to. The order of the scaffolds within a linkage group as well as the pairwise distances were determined by the 473

positions on the chromosome. 474

There is no reference chromosome available for Ipomoea trifida. Instead, we used scaffolds from NSP306v2 genome 475

assembly as references. NSP306v2 contains scaffolds longer than ITR r1.0 scaffolds. Therefore, when we mapped ITR r1.0 476

scaffolds to NSP306v2 scaffolds, multiple ITR r1.0 scaffolds were found mapped to the same NSP306v2 scaffolds, and for 477
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those ITR r1.0 scaffolds, according to the mapping positions, we were able to decide the order as well as the pairwise distances 478

between them. The longest 98 NSP306v2 scaffolds (≥ 1M) were used as references. They cover approximately 58% of the 479

whole genome assembly. 480
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