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ABSTRACT 
The Roadmap Epigenomics consortium has published whole-genome functional annotation maps in 127 human 
cell types and cancer cell lines by integrating data from multiple epigenetic marks. These maps have thereby 
been widely used by the community for studying gene regulation in cell type specific contexts and predicting 
functional impacts of DNA mutations on disease. Here, we present a new map of functional elements produced 
by a recently published method called IDEAS on the same data set. The IDEAS method has several unique 
advantages and was shown to outperform existing methods, including the one used by the Roadmap 
Epigenomics consortium. We further introduce a simple but highly effective pipeline to greatly improve the 
reproducibility of functional annotation. Using five categories of independent experimental results, we 
extensively compared the annotation produced by IDEAS and the Roadmap Epigenomics consortium. While the 
overall concordance between the two maps was high, we observed many differences in the details and in the 
position-wise consistency of annotation across cell types. We show that the IDEAS annotation was uniformly 
and often substantially more accurate than the Roadmap Epigenomics result. This study therefore reports on the 
quality of an existing functional map in 127 human genomes and provides an alternative and better map to be 
used by the community. The annotation result can be visualized in the UCSC genome browser via the hub at 
http://bx.psu.edu/~yuzhang/Roadmap_ideas/ideas_hub.txt 
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INTRODUCTION 
 
Thousands of epigenetics data sets have been released in hundreds of human cell types (ENCODE Project 
Consortium, 2012; Roadmap Epigenomics Consortium, 2015; Stunnenberg et al. 2016), which is an incredibly rich 
resource of information for studying epigenetic events towards understanding gene regulation in the human 
genome. The raw data generated by high-throughput sequencing technologies are however difficult to interpret, 
as not only the signals are noisy, but also different epigenetic marks may represent distinct regulatory functions 
in a combinatorial fashion. To facilitate the discovery and interpretation of functional elements in human 
genomes, computational algorithms such as genome segmentation (Ernst and Kellis, 2012; Hoffman et al., 
2012) have been developed to annotate the human genome based on multiple epigenetic data sets. The principle 
is to identify de novo combinatorial patterns of multiple epigenetic marks, which are called epigenetic states, 
within intervals across the genome. The epigenetic states inferred by genome segmentation methods have been 
experimentally shown to correspond to unique functional elements and have impacts on phenotypes (Hardison, 
2012). Epigenetic states are a low-dimensional de-noised representation of the high-dimensional raw data, and 
thus are more convenient for visualization, interpretation and testing in downstream analyses.  
 
Currently the Roadmap Epigenomics project has published its own genome segmentation results in 111 human 
cell types and 16 cell types from the ENCODE project including a few cancer cell lines (Roadmap Epigenomics 
Consortium, 2015). These results have thereby been widely used by recent studies to facilitate the discovery and 
interpretation of new biological insights, especially for interpreting and prioritizing non-coding variants in 
human complex diseases (Pickrell, 2014; Chung et al., 2014; Kichaev et al., 2014; Kichaev and Pasaniuc, 2015; 
Farh et al., 2015; Li and Kellis, 2016; Lu et al., 2016). The Roadmap segmentations were produced from a 
popular algorithm called ChromHMM (Ernst and Kellis, 2012), which employs a Hidden Markov model with 
binary emission probability to identify epigenetic states. The algorithm works by first converting the raw signals 
in 200bp windows to binary values based on a significance cutoff in each data set, and then concatenating the 
epigenomes of all cell types together in a linear fashion for joint segmentation. An advantage of their approach 
is the computational speed and simple interpretation of the result, as the method deals with binary outcomes and 
only models 1-dim data dependence across the genome. The disadvantage of ChromHMM is however 
significant. First, by converting quantitative data to binary values, magnitude of the signals will be lost and the 
results will be subject to threshold choices. Secondly, the number of epigenetic states must be predetermined, 
which is error prone and may miss important epigenetic states. Thirdly and more importantly, ChromHMM 
does not account for the fact that all cell types share the same underlying DNA sequences and hence the 
regulatory events across cell types are not independent. ChromHMM is thus a “1D” segmentation method not 
optimally designed for joint segmentation of multiple epigenomes. 
 
We recently introduced a new genome segmentation algorithm called IDEAS (Zhang et al., 2016) that tackled 
the above issues. IDEAS works on quantitative data without binarization, although binary data can always be 
used as a special case. IDEAS employs Bayesian non-parametric techniques to automatically choose the 
number of states from the data instead of requiring user input. However the user can still fix the number of 
states whenever desired. Importantly, IDEAS is a “2D” segmentation method that, in addition to modeling data 
dependence along the genome, further accounts for the position-wise correlation between regulatory events 
across different cell types. Inference of the IDEAS model has a linear time complexity with respect to the 
genome size and the number of cell types involved. The method is thus computationally efficient even for 
analyzing hundreds of cell types simultaneously. Our previous studies have shown that IDEAS could run as fast 
as ChromHMM.  
 
In light of the advantages of the IDEAS method over existing genome segmentation tools, we introduce a new 
map of regulatory elements in the 127 Roadmap epigenomes generated by the IDEAS method. We used the 
same five histone marks as used by ChromHMM to produce the map, because they are available in all of the 
127 cell types. Here, we present a comprehensive evaluation of the results produced by IDEAS and 
ChromHMM by using fived independent sources of experimental data sets, including the RNA-seq data in 56 
cell types from the Roadmap Epigenomics project, the expression quantitative trait loci (eQTL) in 44 tissues 
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from the GTEx project (GTEx consortium, 2015), the enhancer usage data in 808 human CAGE libraries from 
the FANTOM5 project (Andersson et al. 2014), four sequence-based scores for functional impact of DNA 
mutations (Davydov et al., 2010; Kircher et al., 2014; Gulko et al., 2015; Maurato et al., 2015), and the 
promoter capture Hi-C data in 17 blood cell types from the IHEC project (Javierre et al., 2016). These data sets 
are independent of the data sets used for generating the functional maps. Correlation with these experimental 
results could therefore reflect the accuracy of the two methods with respect to predicting both functional 
potentials and chromatin structural information using epigenetic states. 
 
 
RESULTS 
 
Joint segmentation in 127 epigenomes 
We ran IDEAS on the uniformly processed p-value tracks of five histone marks (H3K4me3, H3K4me1, 
H3K36me3, H3K27me3, H3K9me3) commonly available in the 127 epigenomes. Our program automatically 
identified 20 epigenetic states from the quantitative signals. Comparing the mean signals of our epigenetic states 
with those of the 15 states by ChromHMM on the same data, we found most of the fundamental states were 
commonly identified with similar proportions between the two results, such as active transcription start sites 
(TssA), enhancers (Enh), bivalent TSS (TssBiv) and bivalent enhancers (Enh Biv), heterochromatin (Het), 
repressed polycomb (ReprPC) and quiescent regions (Quies) (Figure 1a). For consistency, we adopted the 
mnemonics used by Roadmap Epigenomics consortium on the 15-state model to assign labels to our states. A 
brief interpretation of our mnemonics assignment is given in Table S1. In addition, our states captured some 
novel patterns in the quantitative signals of epigenetic marks and their combinations, as shown by several novel 
states carrying combinatorial patterns of moderate enhancers, heterochromatin and repressive marks.  
 
While we do not know if these computationally predicted de novo states denote unique biological functions, 
they were consistently recaptured in different runs of IDEAS. Here, we developed a novel training pipeline (see 
Methods) of IDEAS that guaranteed to generate reproducible epigenetic states. Briefly, we first performed mini-
batch training of the IDEAS model to generate a collection of epigenetic states. We then used these states to 
evaluate reproducibility and consolidate the states into a set of reproducible states. This simple pipeline 
empirically generated highly reproducible results between independent runs (Figure 1b), and hence the novel 
states we identified in this study were largely robust.  
 
By visualizing our 20-state model in the UCSC genome browser and comparing with the Roadmap 
Epigenomics 15-state model, we observed, as expected, substantial agreement between the two maps at a large 
scale but with some substantial differences in the details. For example, at the CIITA and CLEC16A genes 
(Figure 1c), our map was more fine-grained, and at most positions, the state assignments matched across cell 
types more than in the ChromHMM map. On the other hand, notably different state assignments were observed 
between the two methods for enhancer, TSS and transcription states. For instance, ChromHMM had many more 
TSS states (red color) assigned to positions away from known TSS than IDEAS did. ChromHMM annotated 
transcription states (green color) in liver, pancreas, lung and spleen both within the CIITA gene and its upstream 
non-coding regions. In contrast, IDEAS only annotated transcription states and enhancer states with 
transcription marks in lung and spleen within the CIITA gene, whereas liver and pancreas only had transcription 
states assigned towards the end. This greater cell type-specificity in expression inferred from the IDEAS 
segmentation was confirmed by examining independent gene expression data from both Roadmap Epigenomics 
and GTEx projects, as both showed that CIITA was expressed in lung and spleen, but little in liver and pancreas. 
 
Correlation with RNA-seq 
We used RNA-seq data from Roadmap Epigenomics in 56 cell types to evaluate the accuracy of the annotations 
by IDEAS to predict RNA levels across cell types. We used a functional regression model (Ramsay and 
Silverman, 1997) to include all epigenetics states within ±110kb of each gene as predictors, where we assumed 
that the effects of epigenetic states on expression is a smooth curve with respect to their distances to genes. As 
shown in Figure 2a, while the epigenetic states by both methods were highly predictive of gene expression, the 
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states by IDEAS had a consistently and significantly better power in all cell types (p-value 7.6e-8). 
Investigating the contribution of individual states to expression, as a function of distance to genes, showed that 
the main difference in prediction power between the two methods occurred towards and beyond transcription 
termination sites (TTS) of genes (Figure 2b). As expected, we observed predominant contributions of promoter-
like states (TssA, TssAFlnk) near the TSS of genes, and transcription states (Tx, TxWk) throughout (Figure 2b). 
We observed stronger contributions of the genic enhancers (EnhG) within genes and other enhancer states (Enh, 
EnhBiv) before TSS and after TTS by the IDEAS annotation. The effects of epigenetic states on expression 
were consistently positive or negative at all distances to genes for both methods, but the effect sizes varied 
(Figure S1).  
 
Orthogonal to the within-cell type prediction, we next compared the power for predicting differential expression 
across cell types between the two methods. Within all groups of genes stratified by the levels of differential 
expression, IDEAS consistently outperformed ChromHMM (Figure 2c). We observed three peaks of adjusted r2 
values, within genes near TSS, 50kb upstream of TSS and 50kb downstream of TTS. These three peaks were 
produced by both methods. The peaks could be attributed to the annotated promoter and enhancer states near the 
genes, and they also could reflect, in part, the activities of regulatory elements in neighboring genes. 
 
Prediction of FANTOM5 enhancers 
We evaluated the power of epigenetic states for predicting enhancers. We calculated the correlation between the 
epigenetic states and the FANTOM5 enhancer usage data by a linear regression model. In the FANTOM5 
project, enhancer RNA data derived from CAGE libraries from a series of 808 normal tissues, cell types and 
cancer cell lines was used to estimate enhancer usage in each cell type. We calculated the correlation between 
each pair of CAGE library and Roadmap cell type separately. As shown in Figure 3a, in comparisons with the 
ChromHMM annotations, the annotations from IDEAS were significantly better correlated with the FANTOM5 
enhancer usage data in almost all CAGE libraries. On average, our map had 25% more power (in terms of 
adjusted r2) than the ChromHMM map for predicting enhancer usage. Further investigation of the relative 
patterns of prediction in all pairs of CAGE library and Roadmap cell type revealed cell type-specific prediction 
(Figure 3b), such as enhancers in blood, brain, and epithelial cell types. These results confirmed the power of 
epigenetic states for predicting cell type-specific enhancers.  
 
The state compositions within the significant FANTOM5 enhancer peaks (averaged over 808 CAGE libraries 
and 127 Roadmap Epigenomes) were notably different between the two methods (Figure 3c). About 68% of the 
enhancer peak regions were annotated as either enhancer or promoter related states by IDEAS, whereas 
ChromHMM assigned only 54% of the regions to similar states, with an additional proportion of the regions 
annotated as weak transcription (TxWk). Notably, the enhancer states with transcription marks (EnhG, EnhGA) 
by IDEAS had a substantially larger proportion than ChromHMM. Further calculation of fold enrichments 
showed that the epigenetic states were similarly enriched in the enhancer peak regions by both methods. Taken 
together, the results of these comparisons showed that annotations generated by the IDEAS segmentations were 
better predictors of FANTOM5 enhancers.  
 
The FANTOM5 Consortium has identified ~56,000 significant enhancer-TSS pairs showing correlated 
regulatory activities across the CAGE libraries. We investigated whether the epigenetic states and their pairing 
were enriched within and between the enhancer-TSS regions. The states generated by both IDEAS and 
ChromHMM showed a substantial enrichment of enhancer and TSS states assigned in the enhancer-TSS regions 
(Figure 3d). However, IDEAS annotated more enhancer states in the enhancer side of the paired regions, and 
more TSS states in the TSS side of the paired regions. By accounting for the marginal enrichment of states in 
these regions, we further identified some pairwise combinations of states that were enriched or depleted 
between the enhancer-TSS regions (Figure S2). Consistent with expectations, enhancer states were frequently 
paired with TSS states, repressed states tended to pair with low or repressed states, and the enrichment pattern 
of state pairs depended on gene expression (Figure S3). These results demonstrated that the pairing of the 
epigenetic states between functionally correlated remote regions were predictive of potential trans-regulations. 
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Prediction of eQTLs 
Several studies have shown that eQTLs are significantly enriched in regulatory elements (Nicolae et al., 2010; 
Zhong et al., 2010; GTEx Consortium, 2015). Correlation between epigenetic states and eQTLs therefore could 
be used to assess annotation accuracy. We analyzed the significant eQTLs (nominal p-val <1e-5) in the 44 
tissues from the GTEx project for their correlations with epigenetic states. Due to linkage disequilibrium, most 
of the eQTLs are likely non-causal, but rather linked to causal single nucleotide polymorphisms (SNP). We 
therefore clustered nearby eQTLs together as an eQTL interval, and calculated a weighted composition of 
epigenetic states within each eQTL interval, where the weights are positively correlated with the significance of 
eQTLs and negatively correlated with the distance to eQTLs within the interval. We further calculated an 
inversely weighted composition of epigenetic states within the same eQTL intervals as controls. In this way, the 
genomic background was the same in both cases and controls. We then used logistic regression to predict 
eQTLs intervals against controls in each GTEx tissue by each Roadmap cell type. As shown in Figure 4a, the 
epigenetic states by both IDEAS and ChromHMM are predictive of eQTLs, but IDEAS significantly 
outperformed ChromHMM in all tissues. Further analysis of state enrichment in the eQTL intervals relative to 
the controls showed that the Tss-related states were most strongly enriched in eQTLs, followed by transcription 
and enhancer related states, and the heterochromatin states and repressed polycomb states were depleted in 
eQTLs (Figure 4b, Figure S4). 
 
Correlation with sequence-based functional scores 
Numerous sequence-based scores for predicting function of nucleotides or polymorphisms have been computed 
in the human genome. We included four scores in this study: 1) the Genomic Evolutionary Rate Profiling 
(GERP) score (Davydov et al., 2010), which identifies functionally constrained elements in multiple 
alignments; 2) the Combined Annotation Dependent Depletion (CADD) score (Kircher et al., 2014), which 
predicts deleterious effects of DNA mutations; 3) the fitness consequence of functional annotation (FitCons) 
score (Gulko et al., 2015), which integrates functional assays with selective pressure to score fraction of 
genomic positions evincing a pattern of functional assays that are under selection; and 4) the Contextual 
Analysis of TF Occupancy (CATO) score (Maurano et al., 2015), which quantifies effects of point mutations on 
transcription factor binding in vivo. Using these pre-computed scores for genome-wide mutations, we could 
assess how useful epigenetic state annotations will be for predicting and interpreting functional impacts of non-
coding variants. These scores could also be used to evaluate the positional precision of our annotations, as the 
scores were calculated at higher resolutions than our annotation maps. Using linear regression on the log-
transformed scores, we observed that the states generated by IDEAS significantly and substantially better 
predicted all scores than did the states generated by ChromHMM (Figure 5a). As we shifted the scores away 
from their original positions, the prediction by both methods dropped quickly. These results thereby 
demonstrated that the IDEAS annotation has a better positional precision for predicting functional elements than 
ChromHMM.  

The enrichment patterns of epigenetic states with respect to the scores were different for the four scores 
(Figure 5b), but were relatively consistent between the two methods (Figure S5). In general, the active 
epigenetic states such as enhancer-, Tss- and transcription-related states were enriched in higher scores, and the 
inactive epigenetic states such as heterochromatin and quiescent states were enriched in lower scores. 
Interestingly, the repressed polycomb states (ReprPC, ReprPCWk) were also slightly but consistently enriched 
in higher scores. This likely resulted from the fact that we calculated the state enrichment using all cell types 
combined, and the repressed polycomb states often co-occurred with the bivalent TSS and enhancer states 
(TssBiv, EnhBiv) at the same loci in different cell types.  
 
Evaluation by promoter-capture HiC 
We finally used the promoter-capture HiC data in 17 blood cell types from the IHEC project (Javierre, et al., 
2016) to evaluate the ability of our annotations for predicting chromatin structures. We used the states within 
both the bait and the captured regions to predict the CHiCAGO (Capture HiC Analysis of Genomic 
Organisation) interaction scores (Cairns et al., 2016). As we have shown in the FANTOM5 data, the state co-
occurrence between the two interacting regions were nonrandom. This was also true in the promoter-capture 
HiC data. We found that including pairwise interaction terms between the states in the bait and the target 
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regions in regression consistently outperformed the corresponding additive models (Figure S6). As a result, we 
used the interaction model to predict the CHiCAGO interaction scores in each of the 17 IHEC blood cell types 
using epigenetic states in each of the 127 Roadmap cell types. As shown in Figure 6a, IDEAS uniformly better 
predicted the CHiCAGO scores in all of the 127 Roadmap cell types, and in general, the Roadmap blood cell 
types (Blood & T cells and HSC & B cells) had the best prediction power. Also, within each of the 17 IHEC 
blood cell types, the epigenetic states by IDEAS in the Blood & T and HSC & B cells consistently 
outperformed ChromHMM (Figure 6b).  
 
Finally, we used RNA-seq data to evaluate if the promoter-captured regions carry functional elements that may 
impact gene expression. As shown in Figure 6c, the epigenetic states by both methods within individual 
promoter-captured regions were in general correlated with the expression of the bait genes. The correlation 
however was not strong. After we added the states in all promoter-captured regions together for the same bait, 
we observed a much stronger correlation with expression. In addition, the epigenetic states of both methods at 
the bait regions were also strongly correlated with the expression of the bait gene. In all cases, the correlation 
was stronger for genes up or down regulated specifically in blood cell types. Comparing between the two 
methods, the IDEAS states showed an overall greater correlation with expression than the ChromHMM states.  
 
 
DISCUSSION 
 
We have presented a new functional annotation map jointly produced in the 127 human cell types. Using 
various independent experimental results, we observed that the epigenetic states of both IDEAS and 
ChromHMM were useful for predicting functional and structural information of the genome. Our comparative 
results further showed that the IDEAS map had notable and significant improvement over the ChromHMM map 
for predicting regulatory events both within and across cell types. At each genomic position, the IDEAS map 
shows more consistency in epigenetic state annotation across cell types. Simultaneously, it better captured 
epigenetic variation across cell types as reflected by correlation with differential gene expression.  
 
An important issue in genome segmentation that we attempted to tackle in this study is reproducibility. 
Annotations produced by the same method under the same parameter settings must be concordant between 
independent runs in order to be useful. This is a notoriously challenging problem, as no global optimum is 
guaranteed. Our experience with running existing genome segmentation tools showed that the maps could vary 
substantially between runs simply by chance. We therefore developed an intuitive, simple and effective 
approach that substantially improved the reproducibility of our maps. The IDEAS map presented here thus 
offers an alternative, reliable and more accurate annotation of functional elements in a wealth of human cell 
types for the community. 
 
The functional map presented in this study has some limitations. First, we only used five core histone marks 
available in all Roadmap cell types to produce the map, which are ideal for detecting basic functional elements 
such as enhancers, promoters and repressive states. They do not however have sufficient power to capture more 
specific regulatory elements such as insulators or occupancy by transcription factors. The Roadmap 
Epigenomics project has released additional maps using more epigenetic marks either in subsets of cell types or 
in all cell types via data imputation (Roadmap Epigenomics Consortium, 2015). We have yet to include those 
additional marks in this study. Secondly, the models used in this study for correlating epigenetic states with the 
independent validation data were mostly linear. While the maps could possibly be related with other data in 
non-linear ways, linear models offer simple interpretation of the results. Thirdly, interpreting the inferred 
epigenetic states, assignment of mnemonics, and state visualization remain challenging problems, particularly 
when the number of states grows large. In this study we adopted the mnemonics used in Roadmap Epigenomics, 
which could introduce errors and bias. It would be more desirable to develop learning algorithms for de novo 
interpretation and visualization of the epigenetic states automatically.  
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Beyond generating functional maps, there are several potential applications uniquely enabled by our 2D 
segmentation approach. First, the method can naturally leverage information from existing annotations in 
published cell types to detect functional elements in new cell types and experimental conditions. Our modeling 
of data dependence across cell types is unsupervised and local in the genome, such that even heterogeneous cell 
types may be annotated using existing results without cell type matching. Secondly, our joint modeling 
approach can easily accommodate missing epigenetic marks. New cell types with just one or two epigenetic 
mark can still be annotated and benefit from the full spectrum of information provided by all epigenetic marks 
in the published results. This strategy does not require data imputation, and hence is devoid of imputation bias 
and can save substantially on computing time and disk storage. Thirdly, functional maps produced in the 
genome of one species may be lifted over to other species in the conserved DNA sequences. Data sets generated 
in different species may also be integrated and compared via 2D modeling. Towards this end, we have lifted 
over the map in this study to the mouse genome in mm10 
(http://bx.psu.edu/~yuzhang/Roadmap_ideas/mm10_hub.txt), which will be useful as functional elements are 
largely conserved between human and mouse at the conserved DNA sequences (Xiao et al., 2012). Finally, we 
note that our method can in general be used to annotate any entities of subjects in a broader scope of gene 
regulation studies, such as different cell types, experimental conditions, individuals, species and time points. 
 
 
MATERIALS AND METHODS 
 
Roadmap epigenetic data sets 
We downloaded the log p-value tracks of a core set of 5 chromatin marks (H3K4me3, H3K4me1, H3K36me3, 
H3K27me3, H3K9me3) assayed in all of the 127 epigenomes from 
http://egg2.wustl.edu/roadmap/data/byFileType/signal/consolidated/macs2signal/pval/. We processed the signal 
tracks of each mark by taking the mean per 200bp window across the genome in hg19. We removed regions 
associated with repeats and blacklisted regions as given in 
(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncodeDukeMapabilityRegionsE
xcludable.bed.gz) and 
(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/wgEncodeDacMapabilityConsensus
Excludable.bed.gz). The processed data set contained 635 data tracks in 13.8 million windows, containing 8.8 billion 
observations in total. We then took log(x+0.1) transformation of the data as input to IDEAS.  
 
Robust 2D segmentation by IDEAS 
Independent runs of genome segmentation may produce different results depending on the initial values of 
model parameters. We developed a simple but effective approach to substantially improve the reproducibility of 
genome segmentations between independent runs. First, we randomly selected K regions of 20Mb each in the 
genome, and ran IDEAS in each region independently. Secondly, we collected the inferred epigenetic states 
from the K runs and performed hierarchical clustering of all states based on state mean parameters. Thirdly, we 
identified a largest number G and cut the hierarchical tree of the epigenetic states into G or more sub trees, such 
that exactly G sub trees contained epigenetic states from at least x% of the K runs. Finally, we generated G 
consolidated epigenetic states by averaging the state parameters in each of the G sub trees. This approach is 
motivated by the following rationale: we want to identify an unknown number (G) of states and their parameters 
from multiple independent training of IDEAS; if we merge all states produced by the K runs together by cutting 
the tree at the root, we would obtain perfect reproducibility of states between runs, but with no power; on the 
other hand, if we treat each state from all runs as a distinct state by cutting the tree at the leaves, we would have 
poor reproducibility and obtain too many states; as we move down the tree from the root to the leaves, the 
number of sub trees will increase, so that we can find a maximum number of sub trees, within G of which we 
have states clustered together by their similarity (and hence reproducibility) from at least x% of the K runs; as 
we move further down the tree towards the leaves, the number of sub trees satisfying this criterion will 
decrease, as the total number of sub trees will increase, with fewer states in each sub tree. Using this approach, 
we will find a maximum number of states that satisfies the criterion that the state is reproducible in at least x% 
of the K runs. To improve robustness of this approach, we determined the number of states (G) by leave-one-out 
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experiment, i.e., by leaving the states from each of the K runs out, respectively. We calculated an average 
number of G from those obtained in each leave-one-out experiment, which is then robust to outliers. Given G, 
we finally used the full tree on all states from K runs to obtain the consolidated states. The full tree may have 
more than G sub trees satisfying the criterion, and we simply used the results from the first feasible solution 
nearest to the root of the tree. 
 
Our approach for generating reproducible states only requires the user to specify one parameter, x% 
reproducibility. If x is too small, we may obtain a large number of less reproducible epigenetic states. If x is too 
large, we may obtain a small number of highly reproducible states, but miss some important states. In this study, 
we let x=90, i.e., 90% reproducibility. Another parameter may be determined by the user is K, the number of 
independent trainings. Our procedure was not sensitive to the choice of K for K>=10, and hence we used K=15.  
 
Finally, given the reproducible states identified by the above procedure, we ran IDEAS to segment the whole 
genome of 127 epigenomes using those state parameters as priors. To improve computational efficiency, we 
used parallelization. For both training and whole genome segmentation, we ran IDEAS in 20 iterations. We 
tried running IDEAS in 100 iterations, but the results were not significantly better than using just 20 iterations. 
That is, our training pipeline not only improved reproducibility but also enabled shorter runs of IDEAS. 
 
ChromHMM result 
We downloaded the 15-state model by ChromHMM from the Roadmap Epigenomics project website 
(http://egg2.wustl.edu/roadmap/web_portal/chr_state_learning.html#core_15state). We mapped the 
ChromHMM states to the same set of windows used by IDEAS.  
 
RNA-seq data analysis 
We downloaded RNA-seq RPKM data in 56 cell types (excluding E000) from the Roadmap Epigenomics 
Project (http://www.roadmapproject.org/). For each gene (Gencode.v10, Harrow et al., 2012) in each cell type, 
we calculated the proportions of epigenetic states in the regions from 110kb upstream (relative to the strand of 
the gene) of the gene’s TSS to 110kb downstream of the gene’s TTS. The proportions of states were calculated 
by weighted average, where weights were given by B-splines. We defined B-splines at degree 5 using 30 knots 
evenly spread over an [0,1] interval, which yielded 36 B-splines. The position 110kb upstream of TSS of a gene 
corresponded to 0. The position 110kb downstream of TTS of a gene corresponded to 1, and the TSS and TTS 
corresponded to 0.4 and 0.6 in the interval, respectively. The positions upstream of TSS were mapped to the 
interval [0,0.4) in log10 scale, i.e., the positions 10k relative to TSS were mapped evenly between [0,0.4) with 
respect to k. Similarly, the positions downstream of TTS were mapped to the interval (0.6,1]. Finally, the 
positions within a gene were evenly mapped to the interval [0.4,0.6]. The weighted average of state proportions 
were calculated by using each B-spline as weights separately, followed by log(x+1e-5) transformation. The 
resulted values from all B-splines were used as predictors, and the RPKM values of each gene were used as 
responses. 
 
We used linear regression to calculate adjusted r2, which accounted for the different degrees of freedom in the 
model. An overall model including the predictors from all B-splines were used to evaluate the overall prediction 
power of epigenetic states on expression. We also used the predictors calculated from each B-spline separately 
to evaluate the prediction power of epigenetic states in each region relative to TSS and TTS. To further evaluate 
the contribution of each epigenetic state to expression at each location relative to the gene, we calculated partial 
r2, i.e., by leaving each epigenetic state out, respectively. We then calculated the ratio between the partial r2 of 
each epigenetic state and the sum of partial r2 of all epigenetic states, which reflected how much each state 
contributed to the expression relative to the contribution by all states. 
 
GTEx data analysis 
We downloaded the GTEx eQTLs in 44 tissues (v6p) from the GTEx Portal (http://www.gtexportal.org/home/). 
Within each tissue, we grouped significant eQTLs (p-val < 1e-5) within 50kb to each other together, where 
overlapping groups of eQTLs were further merged. We then extended the interval of each group of eQTLs to 
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the sides by 2kb. Within each eQTL interval, we calculated a weighted state proportion, where the weight at 
each position was given by Σi{–log(pi)exp(-di)}, where i denotes the ith eQTL in the interval, pi and di denote 
the nominal p-value of the ith eQTL and its distance to the current position. In this way, all epigenetic states 
within an eQTL interval were integrated, with more weights given to the positions closer to eQTLs. Since 
eQTLs are enriched in genic regions, instead of using genomic background, we used the same eQTL interval as 
controls by calculating a inversely-weighted state proportion, i.e., using inverse weights. We finally took 
log(x+1e-5) transformation of the weighted state proportions and used the values as predictors. The response 
variable was binary indicating cases and controls. We used logistic regression to predict eQTL intervals in each 
tissue by the epigenetic states in each Roadmap Epigenomics cell type respectively.  
 
FANTOM5 data analysis 
We downloaded the CAGE based enhancer data (phase 1 and phase 2 combined) from FANTOM5 website 
(http://fantom.gsc.riken.jp/5/data/). There are two types of data: the tag counts of expression data normalized as 
tags per million mapped reads (TPM), and the binary peaks called at a significance threshold by contrasting to 
control data, both available in 808 human CAGE libraries. For the regression analysis, we calculated the log 
transformed proportions of states in each enhancer region as the predictors, regardless of whether the enhancers 
are active or repressed in each CAGE library, and we used the TPM values in each CAGE library as the 
response variable. To match between CAGE libraries and Roadmap cell types, we manually assigned each of 
the 808 CAGE libraries to one of the cell type categories defined by the Roadmap Epigenomics consortium. For 
the state composition analysis, we calculated the state proportions only within the expression peaks in each 
CAGE library. Finally, we downloaded the pre-calculated enhancer-TSS association data from 
http://enhancer.binf.ku.dk/presets/enhancer_tss_associations.bed and calculated the proportions of states within 
the paired enhancer-TSS regions. 
 
Sequence-based functional score analysis 
We downloaded the GERP elements on hg19 from http://mendel.stanford.edu/SidowLab/downloads/gerp/. We 
downloaded the CADD score pre-calculated on 1000 Genome phase 3 variants from 
http://cadd.gs.washington.edu/download/, and we used the scaled score (PHRED-like score) in this study. We 
downloaded the FitCons score from http://compgen.cshl.edu/fitCons/0downloads/tracks/current/i6/scores/, 
where we used the highly significant scores (p<0.003) integrated across the three ENCODE cell types. We 
obtained the pre-calculated CATO scores in 13.4 million SNPs overlapping with DHS from 
http://www.uwencode.org/proj/CATO/. We mapped all four scores to the 200bp windows used in this study by 
obtaining the maximum score within each 200bp window, and we assigned 0 to the windows without scores. 
We transformed the scores by log((x+1e-4)/(1-x+1e-4)), which was used as the response variable. The 
epigenetic states in the corresponding windows were used as dummy predictors. We further shifted the window 
to the left and right by up to 25 windows (corresponding to 5kb) to evaluate the location precision of epigenetic 
states. Except for FitCons, all other scores were calculated without using cell type specific information. We thus 
performed regression analysis in each of the 127 Roadmap cell types separately. We further performed state 
enrichment analysis with respect to 50 equal-size partitions of scores, i.e., each partition has the same number of 
scores. 
 
Promoter-capture HiC data analysis 
We obtained the significant promoter-interacting regions (PIR) (CHiCAGO interaction scores >5) from Data S1 
of Javierre et al. (2016). We used the log(x+1) transformation of the CHiCAGO interaction scores in all PIRs 
from the 17 IHEC blood cell types as the response variable, and we used the log(x+1e-5) transformed state 
proportions in the corresponding PIRs as predictors. For each PIR, the state proportions were calculated in both 
the bait and the target regions, which were used as predictors in either an additive or a multiplicative way. In the 
latter case, the state proportions between the bait and the target regions were multiplied between all state pairs. 
We performed regression analysis on the PIRs in each IHEC blood cell type using states in each Roadmap cell 
type separately. 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 20, 2017. ; https://doi.org/10.1101/118752doi: bioRxiv preprint 

https://doi.org/10.1101/118752
http://creativecommons.org/licenses/by-nc-nd/4.0/


Blood cell type specificity was calculated based on RPKM values from the Roadmap RNA-seq data. The 
Roadmap blood cell types we used were E037 BLD.CD4.MPC, E038 BLD.CD4.NPC, E047 BLD.CD8.NPC, 
E050 BLD.MOB.CD34.PC.F, E062 BLD.PER.MONUC.PC, E123 BLD.K562.CNCR. At each gene, we 
calculated the mean and the variance of RPKM values in the blood cell types, as well as in non-blood cell types, 
all in log(x+1) transformed scale. The variance for each gene in each cell type group was calculated by first 
applying a loess smooth regression to fit the variance on the mean of genes. The variance for each gene was 
then taken as the value on the loess curve, or 0.25, whichever is greater, at the mean of the gene, within blood 
and non-blood cell types respectively. We finally calculated a two-sample t-statistic between the blood and non-
blood cell types for each gene and used it as z-scores. 
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FIGURE LEGENDS 
 
Figure 1. Annotation of functional elements in the 127 Roadmap cell types. (a) Mean epigenetic signal in 
the IDEAS inferred states (red labeled) and the ChromHMM inferred states (black labeled in brackets). Color 
key for each epigenetic state is shown below the heatmap. (b) Reproducibility of segmentation by IDEAS 
between three independent runs using the original program (blue) and the proposed training pipeline (yellow). 
Each box shows the agreement measured by adjusted rand index between all pairs of cell types between runs. 
(c) Example of annotation results by IDEAS and ChromHMM in the 127 cell types at genes CIITA and 
CLEC16A. Blue boxes highlight some differences between the two maps. Color keys of epigenetic states are 
given in (a). 
 
Figure 2. Gene expression explained by epigenetic states. (a) Within-cell type prediction of gene expression 
in 56 Roadmap cell types. Each point shows the result of one cell type, color-coded by those defined by the 
Roadmap Epigenomics consortium. (b) Epigenetic state contribution to gene expression as a function of 
distance to genes. The barplots show the individual state contribution to expression. Color keys for states are 
shown at the bottom. (c) Prediction of differential gene expression across the 56 cell types. The genes are 
stratified into five groups by their expression standard deviation. Each panel shows the expression prediction by 
epigenetic states as a function of distance to gene (x-axis, in the same scale as in (b), and the two vertical 
dashed lines in each panel show the TSS and TTS locations, respectively). Red: IDEAS; green: ChromHMM.  
 
Figure 3. Accuracy for predicting FANTOM5 enhancers. (a) Prediction of tissue specific enhancers in 808 
FANTOM5 CAGE libraries. The dark lines show the mean adjusted r2 of predictions by the 127 Roadmap cell 
types, and the shaded area shows the 95% confidence intervals of means. (b) Z-scores of the adjusted r2 values 
of tissue-specific enhancer predictions, calculated by removing row and column means and dividing by the 
overall standard deviation. Cell type specific predictions (similar cell types between Roadmap and FANTOM5) 
are highlighted in boxes, such as blood cell types (the two boxes on the left), brain tissues (the box in the 
middle) and epithelial cells (the box on the right). (c) State composition and enrichment within the significant 
FANTOM5 enhancers, averaged over all Roadmap cell types and CAGE libraries. The enrichment was 
calculated against genome average. (d) Composition of enhancer and TSS related states in the FANTOM5 
significant enhancer-TSS interacting regions.  
 
Figure 4. Prediction of eQTLs and state enrichment. (a) Adjusted r2 for predicting eQTLs in 44 GTEx 
tissues. Each box contains the adjusted r2 values fitted by the epigenetic states in each of the 127 cell types. (b) 
Enrichment of epigenetic states in eQTLs relative to controls by the IDEAS method. Each box shows the 
enrichments of the state in the 127 cell types. The color key of epigenetic states is the same as those used in 
previous figures. 
 
Figure 5. Correlation with sequence-based functional scores and positional precision. (a) Score prediction 
comparison by the epigenetic states of IDEAS (red) and ChromHMM (green). The positions of scores are 
shifted to evaluate positional precision of annotations. (b) Cumulative enrichment of epigenetic states by 
IDEAS as a function of scores. The enrichment was calculated against the genome-wide state distribution. State 
depletions (negative values) and state enrichments (positive values) are shown in log2 scale. The color key of 
epigenetic states is the same as those used in previous figures. 
 
Figure 6. Prediction of chromatin contact in blood cell types. (a) State correlation with CHiCAGO 
interaction scores in the 127 cell types. Bars show the result by ChromHMM states, and dots show the results 
by IDEAS states. Cell type colors are assigned by the Roadmap Epigenomics Consortium, where green and 
dark green indicates Blood & T cells and HSC & B cells, respectively. (b) Comparison of adjusted r2 values in 
each of the 17 IHEC blood cell types. Red: IDEAS; green: ChromHMM. (c) Prediction of bait gene expression 
by the epigenetic states in the bait and the captured regions as a function of blood cell type specificity (z-scores, 
x-axis). Dashed lines: mean adjusted r2 of bait gene expression explained by the states within individual 
captured regions. Solid lines: mean adjusted r2 of bait expression explained by the sum of states in all captured 
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regions for the same bait. Dotted lines: mean adjusted r2 of bait expression explained by the states within bait 
regions. Shaded areas show the 95% confidence interval of means. 
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