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ABSTRACT (292 words)

High-throughput sequencing of full-length transcripts using long reads has paved the way for the discovery of
thousands of novel transcripts, even in very well annotated organisms as mice and humans. Nonetheless, there is a
need for studies and tools that characterize these novel isoforms. Here we present SQANTI, an automated pipeline
for the classification of long-read transcripts that computes 47 descriptors that can be used to assess the quality of
the data and of the preprocessing pipelines. We applied SQANTI to a neuronal mouse transcriptome using PacBio
long reads and illustrate how the tool is effective in readily describing the composition of and characterizing the full-
length transcriptome. We perform extensive evaluation of ToFU PacBio transcripts by PCR to reveal that an
important number of the novel transcripts are technical artifacts of the sequencing approach, and that SQANTI
quality descriptors can be used to engineer a filtering strategy to remove them. Most novel transcripts in this curated
transcriptome are novel combinations of existing splice sites, result more frequently in novel ORFs than novel UTRs
and are enriched in both general metabolic and neural specific functions. We show that these new transcripts have a
major impact in the correct quantification of transcript levels by state-of-the-art short-read based quantification

algorithms. By comparing our iso-transcriptome with public proteomics databases we find that alternative isoforms
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are elusive to proteogenomics detection and are variable in protein changes with respect to the principal isoform of
their genes. SQANTT allows the user to maximize the analytical outcome of long read technologies by providing the
tools to deliver quality-evaluated and curated full-length transcriptomes. SQANTI is available at

https://bitbucket.org/Conesal.ab/sqanti.

INTRODUCTION

Alternative Splicing (AS) and Alternative Polyadenylation (APA) are among the most fascinating and challenging
aspects of eukaryotic transcriptomes. AS and APA are considered major mechanisms to generate transcriptome
complexity and thus expand proteome diversity of higher organisms'™. These post-transcriptional mechanisms have
been reported to play critical roles in differentiation*”, speciation®® and multiple human diseases such as cancer’ ',
diabetes'*" or neurological disorders'* ', and therefore play a fundamental role in the establishment of organismal
complexity®'*?’. The genome-wide analysis of AS has been done primarily using first exon microarrays and more
recently short-read RNA-seq. These two methods are effective for the identification of AS events such as exon
skipping or intron retention and have established the involvement of AS in many biological processes. However,
both technologies have serious limitations for the reconstruction of the actual expressed transcripts, as short reads
break the continuity of the transcript sequences and fail to resolve assembly ambiguities at complex loci®'%. This

impairs any studies that would catalogue specific transcriptomes, investigate cis-acting mechanisms within

transcripts, infer open reading frames or understand functional aspects of isoform diversity.

There has been increasing interest in the application of single-molecule sequencing to obtain full-length transcripts
in animals and plants as long reads eliminate the need for short-read assembly and allow direct isoform sequencing.
Currently there exists three different long read transcriptome sequencing platforms; PacBio™ >, Moleculo® and
Nanopore®® Here, we have used the popular PacBio Iso-Seq protocol, which consists of full-length ¢cDNA
enrichment using the ClonTech SMARTer kit followed by building single molecule SMRTbell libraries with
specific PacBio linkers that are subsequently sequenced. PacBio reads are typically longer than the full-length
cDNA sequence, which means that each molecule can go through several passes of sequencing. The consensus of
these passes is called a Read of Insert (Rol), which is the current standard PacBio output. Rols where both cDNA
primers and the poly(A) can be identified are called Full-length (FL) reads, while those that miss any of these tags
are deemed non Full-length reads. PacBio sequencing suffers, however, from a relatively high raw error rate
(~15%") and a lower throughput compared to Illumina. There are several described methods for PacBio error
correction and transcript identification. Au et al®®, proposed a hybrid sequencing approach (IDP), where PacBio
Rols are first corrected with the more accurate Illumina reads using the computationally intensive LSC algorithm®
and transcripts are called by a combination of direct detection and prediction with short reads, using the reference
genome as template. The TAPIS pipeline, does not need Illumina reads, but performs several rounds of mapping and
correction of Rols on the reference genome, with apparently similar error correction efficiency as a short-read based
method®’. Finally, the ToFU PacBio pipeline’!, obtains auto-clusters of FL and nonFL Rols and then computes a
consensus transcript sequence where errors are significantly reduced. In all cases comparison to the reference gene

models serves to call known and novel transcripts.


https://doi.org/10.1101/118083
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/118083; this version posted August 21, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

O 00 N O U1 A W N B

e S S o S S
O 00 N O L1 A W N R O

20
21
22
23
24
25
26
27
28
29
30
31
32

33

34

35
36

aCC-BY-NC-ND 4.0 International license.

All PacBio transcriptome papers discover thousands of new transcripts, propose a classification scheme by
comparing to a reference annotation and find that the majority of novel transcripts appear in known genes®>>2%3%32,
However, details on the number, quality and characteristics of these new calls can vary greatly. Sequencing the
transcriptome of hESCs by long reads followed by IDP analysis identified over 2,000 novel transcripts (~30%) and
discovered new genes that were proven to be functional®®. Tilgner er al. found using PacBio sequencing of the
GM12878 cell line about 12,000 novel transcripts fully supported by previous splice site annotations or [llumina
reads, but did not study novel junctions in detail®. For the sorghum transcriptome, 11,342 (40%) novel transcripts
were found by PacBio from a total of nearly 1M reads using a filter on splice junction quality (SpliceGrapher>), and
6/6 random transcripts were confirmed by PCR. Finally, a maize multi-tissue transcriptome analysis identified over
111,151 transcripts from 3.7M Rols, most of them novel and tissue-specific*>. The authors found that between 10%
and 20% of the PacBio junctions lacked coverage by Illumina reads and < 1% were non-canonical®, but do not
report on the number of affected transcripts or validate any. In all these cases, an in-depth characterization of the
novel transcripts and junctions that would reveal potential biases and justify analysis choices was missing. We
believe that such analysis is important as a great variety of FL and nonFL Rols typically map at each genome locus
and different processing pipelines can result in significantly different final transcript calls. As an example,
sequencing the mouse neural transcriptome with PacBio, we obtained ~ 90,000, 13,000 and 16,000 different
transcripts when applying Tapis, IDP or the ToFU pipelines, respectively. Implementing a comprehensive, quality
aware analysis of PacBio reads is fundamental at a time when long read transcriptome sequencing is becoming more

popular and important conclusions on transcriptome diversity will be drawn from these data.

In this work, we present SQANTI (Structural and Quality Annotation of Novel Transcript Isoforms), a pipeline for
the analysis of long-read transcriptomics data that defines up to 47 different descriptors of transcript and junction
properties, creates a wide range of summary graphs to aid in the interpretation of the sequencing output and
implements a machine learning algorithm to remove artifact transcripts based on these descriptors. We apply
SQANTI to the analysis of the mouse neural transcriptome and illustrate its usefulness for characterizing transcript
types. The robustness of the method is demonstrated by application to several long-read pre-processing pipelines
and datasets, and by extensive validation by RT-PCR. The SQANTI analysis confirms the expression of many
novel transcripts but also reveals that an important fraction of long-read transcript sequences is presumably
alignment or retrotranscription artifacts that can be removed using SQANTI tools. We provide insights into the
biological relevance of these new transcripts by describing the biological processes they belong to, characterizing
their CDS and UTR diversity, and showing their relevance to accurate transcriptome quantification. Our work
confirms the potential of long-read sequencing for precise characterization of the transcriptome complexity provided

appropriate preprocessing steps are applied.
RESULTS
Experimental design and transcriptome sequencing

Full-length ¢cDNA from Neural Progenitor Cells (NPCs) and Oligodendrocyte Progenitor Cells (OPCs), two

biological replicates each, was obtained and split to prepare Illumina and PacBio sequencing libraries (Figure 1A).
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PacBio sequencing was performed according to the Iso-Seq protocol to generate around 0.6 M Rols per sample for a
total of 2.2M Rols. Illumina sequencing resulted in approximately 60 M reads per sample. All PacBio Rols were
joined and processed by the ToFU pipeline®' to obtain a total of 16,104 primary transcripts. Alignment of the ToFU
transcripts against the mouse reference genome (GMAP*, assembly mm10) showed an average percentage of
coverage and identity above 99.8%, suggesting that the PacBio nominal high raw read sequencing error is corrected
by the ToFU clustering approach, as reported®’. However, small indels (average size ~ 1.2 nts) were still detected in
56.2% of the transcripts. These small indels did not affect the overall long read mappability as long reads with and

without indels had no significant differences in the GMAP quality of mapping parameter and occurred with no
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particular sequence context bias (Supplementary Figure 1A), which is in agreement with the random profile of
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PacBio sequencing errors’>® We first attempted to correct indels with matching Illumina short reads using
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Proovreads®’and LSC*. Although the number of transcripts with at least one indel decreased to 16%, this was still
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unsatisfactory for ORF prediction. Instead, transcripts were corrected using the reference genome sequence (Figure
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1A). By virtue of this strategy, all indels were removed and we obtained the corrected PacBio transcriptome.
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Figure 1. Overview of the experimental model and SQANTI analysis. A) Experimental system and data processing pipeline.
RNA isolated from Neural Progenitor Cells (NPCs) and Oligodendrocyte Precursor Cells (OPCs) was retrotranscribed separately
into cDNA, and sequenced both by long-read PacBio and short-read Illumina technologies. All PacBio Rols were joined and

processed by the ToFU pipeline to obtain consensus transcripts. Residual (indel) errors were eliminated by comparison to the
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reference genome to generate a corrected transcriptome and false transcripts were removed using SQANTI filter to result in a
curated transcriptome. Illumina short reads were mapped against the RefSeq murine transcriptome annotation, the corrected and
the curated PacBio transcriptomes. B) SQANTI workflow. Two main functions are part of SQANTIL. sqanti_gc.py uses as input
files a fasta file with transcript sequences, the reference genome in fasta format, a gtf annotation file and optionally Full-Length
and short-read expression files. The function returns a reference-corrected transcriptome, transcript-level and junction-level files
with structural and quality descriptors and a QC graphical report. sqanti_filter.py takes the reference-corrected transcriptome and
the transcript-level descriptors file to return a curated transcriptome where artifacts have been removed. C) SQANTI
classification of transcripts according to their splice junctions and donor and acceptor sites. Splice donors and acceptors are
indicated in red and blue respectively. SJ=splice junction, FSM=Full Splice Match, ISM=Incomplete Splice Match, NIC=Novel
in Catalog, NNC=Novel Not in Catalog

Transcript classification based on splice junctions

The SQANTI pipeline was developed for an in-depth characterization of PacBio transcripts. SQANTI takes as input
genome and reference annotation information, and returns a reference corrected transcriptome together with a wide
set of transcript and junction descriptors which are further analyzed in several summary plots to assess the quality of
the data (Figure 1B). Supplementary Tables 1 and 2 describe in detail the set of descriptors computed by SQANTI at

the transcript and junction levels, respectively.

A hallmark of the SQANTI analysis is the classification of transcripts based on the comparison of their splice
junctions with the provided reference transcriptome to reveal the nature and magnitude of the novelty found by long-
read sequencing. For our data we used as reference a non-redundant combination of the RefSeq and Ensembl mouse
genome annotations, although other references may be provided by the user. PacBio transcripts matching a reference
transcript at all splice junctions are labeled as Full Splice Match (FSM, Figure 1C), while transcripts matching
consecutive, but not all, of the splice junctions of the reference transcripts are designated as Incomplete Splice
Match (ISM, Figure 1C). Monoexonic transcripts matching a monoexonic reference were included in the FSM
category whereas those matching a multiexonic reference were placed in the ISM group (Figure 1C). Furthermore,
SQANTI classifies novel transcripts of known genes into two categories: Novel in catalog (NIC) and Novel not in
catalog (NNC, Figure 1C). NIC transcripts contain new combinations of already annotated splice junctions or novel
splice junctions formed from already annotated donors and acceptors. NNC transcripts use novel donors and/or
acceptors. Note that this transcript classification scheme captures the intron-based definition described by*®, but
SQANTI goes one step beyond by describing and sub-classifying the type of novelties introduced by transcripts not
matching the splice pattern of annotated references. Novel genes are classified as “Intergenic” transcripts, if lying
outside the boundaries of an annotated gene, and as “Genic intron” transcripts if lying entirely within the boundaries
of an annotated intron (Figure 1C). In addition, “Genic genomic” category encompasses transcripts with partial exon
and intron/intergenic overlap in a known gene (Figure 1C). Finally, SQANTI labels Fusion transcripts (transcript
spanning two annotated loci), and Antisense transcripts (polyA containing transcripts overlapping the
complementary strand of an annotated transcript, Figure 1C). Our corrected neural PacBio transcriptome contained a
total of 16,104 transcripts resulting from the expression of 7,704 different genes. Following the SQANTI

classification, transcripts mapping a known reference (FSM, ISM) accounted for 60% of the transcriptome, novel


https://doi.org/10.1101/118083
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/118083; this version posted August 21, 2017. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

w

O 00 N O U b

10

11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

aCC-BY-NC-ND 4.0 International license.

transcripts of known genes (NIC, NNC) made up 35.6% of our sequences. Novel gene transcripts (Intergenic and
Genic intron categories) represented about 2.3% of our data while Antisense and Fusion transcripts amounted to

1.1% and 0.3% respectively (Supplementary Figure 1B).

An important advantage of full-length transcript sequencing is that the prediction of ORFs, 5’UTR and 3’UTRs is
greatly facilitated. SQANTI implements the GeneMarkS-T"* (GMST) algorithm to predict ORFs from transcript
sequences which showed highly reliable protein prediction in our data (Supplementary Methods and Supplementary
Figure 1C-E). GMST found 11,999 non-redundant ORFs within a total of 14,395 coding transcripts while 1,709
transcripts were predicted to be “ORF-less”. The great majority of FSM, ISM, NIC and NNC transcripts were
predicted to have an ORFs (97%, 90%, 87.8% and 92.8%, respectively), while the rest of transcript categories were

mostly non coding.
Descriptive analysis of transcriptome complexity and full-lengthness made easy by SQANTI

A fundamental goal of long-read transcriptome sequencing is to capture the extent of transcriptome complexity and
to obtain full-length transcripts. SQANTI includes all basic graphics to readily study these aspects. SQANTI
calculates transcript length distribution, reference transcript length, number of supporting FL reads, transcript
expression, reference coverage at both 3’ and 5° ends, number of exons and number of transcripts per gene
(Supplementary Table 1). Moreover, analyses are provided with the transcript classification breakdown, which adds
an extra layer of understanding on the quality of the sequencing results. For example, we hypothesize that ISM
transcripts are a combination of potentially real shorter versions of long reference transcripts as well as partial
fragments resulting from incomplete retrotranscription or mRNA decay. We explored the later possibility by
analyzing how many ISM transcripts where contained by 95% or more within the UTR3 sequence of their cognate
reference transcript and labeled this ISM subclass as UTR3 Fragment transcripts. Indeed, SQANTI analysis shows
that PacBio transcripts classified as ISM matched reference transcripts that were longer (Figure 2A) and had more
exons (Supplementary Figure 2A) than FSM sequences. Moreover, UTR3 Fragment transcripts matched the longest
reference transcripts (Figure 2A) suggesting their enrichment in retrotranscription fragments. All transcript classes
had similar median length, except for Genic Intron that was significantly lower (t-test p-value (p) < 1.421 x 10™),
while this class and all novel gene categories except fusion transcripts were almost entirely composed by monoexon
transcripts (Supplementary Figure 2B). In addition, SQANTTI calculates the extent of overlap between sequenced
and reference transcript at 3’ and 5’ ends as a proxy to evaluate transcript full-lengthness. This analysis makes sense
for FSM transcripts, for which a reference with an identical splice pattern exists. In order to exclude 3°/5° overlap
differences due to alternative polyadenylation or alternative use of TSS we restricted our analysis to matches within
the 100 most 5” or 3’ end nucleotides of the reference. As expected, the majority of our FSM transcripts showed a
complete or close to complete 3' end overlap with the 3’ end of the matched reference transcript: 76% had an exact
3’ end match and 16% were within 20 nts upstream of the annotated 3’ end (Figure 2C). This contrasts with the 35%
of FSM transcripts showing a complete overlap with their reference 5° ends and the 50% falling short by 40 to 100
nts (Figure 2D). This result is in agreement with the strategy used in cDNA library preparation and ToFU analysis

parameters that require identification of poly(A) tails to call FL reads, but have less control over completeness at 5’
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ends. Interestingly, 851 and 1,361 FSM transcripts had 3’end and 5’end positions further down/upstream of the
matched reference transcript, while 1,610 and 1,439 of our FSM sequences, lacked 3’ and 5° overlap, respectively,
of more than 100 nts. These cases might represent alternative polyadenylation/alternative TSS events. Regarding

novel genes, only 13.8% of them had splice junctions (Figure 2E) and most (98.2%) expressed just one transcript

Tu A W N

(Supplementary Figure 2C).

Finally, SQANTTI descriptive graphs reveal differences between transcript categories at expression features. For
example, transcript expression level and number of supporting FL reads were significantly lower in ISM, NIC and

NNC transcripts compared to FSM (Figure 2F and Supplementary Figure 2D, t-test p < 2.2 x 10™'® for all

O 00 N O

comparisons) and were significantly lower for novel genes compared to annotated genes (Supplementary Figure 2E
10 and 2F, t-test p < 2.2 x 10"® for both comparisons), which shows that novel transcripts have generally lower

11 expression levels than those already identified in reference databases.
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Termination Site, TSS=Transcription Start Site. E) Percentage of monoexonic and multiexonic transcripts for transcripts
belonging to novel genes and annotated genes. F) Transcript expression distribution across SQANTI categories.

In summary, the descriptive analysis framework provided by SQANTI readily indicates that our neural mouse
transcriptome, obtained by PacBio single molecule sequencing, is effective in recovering full-length transcripts and
shows an important level of novelty (~ 40%) with respect to the reference mouse transcriptome both because of
novel splicing events and of 3°/5” end length variation. Transcript diversity is more important than the presence of
novel genes, which represents only a small fraction of the expressed mRNAs. However, novel transcripts tend to be
less expressed than annotated transcripts indicating that, generally, less novelty is to be expected for major

transcripts.
Evaluation of transcripts according to their splice junctions

In order to better understand the sources of novel transcripts SQANTI further analyzes their splice junctions. Splice
junctions can be divided into canonical and non-canonical according to the two pairs of dinucleotides present at the
beginning and at the end of the introns encompassed by the junctions. The combination of GT at the beginning and
AG at the end of the intron is found in 98.9% of all the introns in the human genome®. We considered GT-AG as
well as GC-AG and AT-AC as canonical splicing (altogether found in more than 99.9% of all the human intron
3940) "and all the other possible combinations as non-canonical splicing. SQANTI also allows users to provide their

own set of canonical junctions. At the same time, SQANTTI subdivides splice junctions between known, if they were

present in the reference, and novel, if they were not.

In our mouse neural data, the ratio of canonical versus non-canonical splicing events fitted the expected genome
proportions when looking at known splice junctions: out of 141,332 known splice junctions, 99.9% were canonical
and 0.1% (185) were non-canonical. However, novel splice junctions showed a much different distribution: out of
3,837 novel splice junctions, 69% were canonical and 31% (1,188) were non-canonical. When analyzed across the
different SQANTT categories, non-canonical splicing was maintained at low rates in FSM (0.1%) and ISM (0.25%)
transcripts, what was expected as both are formed purely by known splicing events (Figure 3A). In NIC transcripts,
where novel combinations of known splice junctions or novel splice junctions deriving from annotated donors or
acceptors are present, the percentage of non-canonical splicing was 0.15% (Figure 3A). In all cases, these non-
canonical junctions were already known in the reference and consequently all novel junctions found in this transcript
category were canonical. However, in NNC transcripts, characterized by the introduction of alternative donors
and/or acceptors, we found 1,155 novel non-canonical junctions, which represented 4.5% of total. Moreover, Genic
Genomic, Intergenic, Genic Intron and Antisense transcripts,-despite rarely being multiexonic, showed relatively
high percentages of non-canonical splice junctions with 2.32%, 7.28%, 21.57% and 32.65% respectively (Figure
3A). This unusual high level of non-canonical junctions suggests that experimental artifacts might be accumulating
in these categories. Furthermore, when the percentage of transcripts showing at least one non-canonical splice
junction was considered, the proportion of NNC affected compared to NIC transcripts became more evident, 41.5%
vs. 1.47%, respectively (Fisher’s Exact Test (FET) p < 2.2 x 107, strongly indicating that this category of

transcripts needed deeper inspection.
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Figure 3. Splice junction’s characterization in the corrected PacBio transcriptome. A) Distribution of Splice Junction (SJ)
types across SQANTI categories. NNC, Genic genomic, Antisense, Intergenic and Genic intron are enriched in non-canonical
SJs. n=76,757 SJ for FSM, n=13,802 for ISM, n=27,368 for NIC, n=26,509 for NNC, n=51 for Genic Genomic, n=49 for
Antisense, n=494 for Fusion, n=86 for Intergenic and n=55 for Genic Intron. B) Distribution of the SJs according to their distance
to the Transcription Start Site (TSS). C) Relative coverage by short-reads of SJs as a function of their class and distance to the
TSS. a.u. = arbitrary units. D) Detection of RT switching direct repetitions by SQANTI algorithm across SJ types.

SQANTI also investigates the position of novel junctions with respect to transcript 5° ends. We found, that although
novel junctions could appear at any position in novel transcripts, there was a higher concentration of occurrences
towards 5° ends which is not observed for known - whether canonical or not - junctions (Figure 3B, FET p < 2.2
x107'%). This could either be the consequence of unannotated variability at 5° ends or higher accumulation of errors

due to lower sequence support. The ToFU pipeline is more permissive with clustering conditions at transcript ends

(E. Tseng, personal communication), which accounts for a higher probability of errors at these areas.

Coverage by Illumina has been used to support novel junctions called by PacBio?®. However, Illumina reads are not
always equally distributed along the transcript length and are often less abundant towards 5’ ends, providing less
support for junction validation. SQANTT integrates short-read coverage data and study the support level of known
and novel junctions as a function of their distance to the 5’ end of the PacBio transcript. We found that, as
suspected, splice junction support by short reads decreased towards the 5° end of the transcripts, but was

significantly higher for known junctions (Figure 3C, Wilcoxon Rank Sum test (WRS) p < 2.2 x10™'). Novel
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canonical junctions were in general less frequently covered but still significantly more supported than novel non-
canonical junctions, which had hardly any supporting reads if located within the first 120 nts of the transcript 5* end

(Figure 3C, WRS p <2.2 x10-16).

Another possible explanation for non-canonical splicing is Reverse Transcriptase template switching (RT
switching). RT switching is an intrinsic property of RTs that allows them to jump within or across template
positions without terminating DNA synthesis. Secondary structures in the RNA template have been shown to

4941 and cause gaps during cDNA synthesis. These gaps are interpreted as splicing

enhance the RT switching activity
events, which, due to their non-splicing origin, are enriched for non-canonical junctions*™*'. A hallmark of RT
switching is the presence of a direct repeat between the upstream mRNA boundary of the non-canonical intron and
the intron region adjacent to the downstream exon boundary®’. SQANTI incorporates an algorithm to locate these
direct repeats, which confirmed the enrichment of RT switching in novel splice junctions (Figure 3D, FET p < 2.2
x10-16) and in NNC compared to NIC transcripts (7.24% versus 1.98%, FET p < 2.2 x10-16). Described RT
switching events affect minor isoforms of genes co-expressed with a major isoform that serves as the template for

the intramolecular switching®. Accordingly, we found that NNC transcripts are enriched for being minor transcripts

of highly expressed genes (Supplementary Figure 2G and 2H).

Finally, SQANTI evaluates possible off priming of the oligo(dT) in A-rich regions of the mRNA template.
Annealing of the oligo(dT) primer used in the first strand synthesis of the cDNA to non polyA tail Adenine stretches
present in not yet discarded intron-lariats or (pre)-messenger RNAs results in false cDNA molecules™*. SQANTI
investigates these events by calculating the % of Adenines (A) within a window of nucleotides downstream of the
genetic coordinates corresponding to transcripts 3’ ends. A-rich genomic DNA regions downstream the TTS were
concentrated in the relatively minor SQANTI categories (Supplementary Figure 2I), and were enriched in non-
coding and monoexonic transcripts (WRS p < 2.2 x10™'® for all tests, Supplementary Figure 2J). A total of 601
transcripts were found to be intra-priming candidates, which affected specially the Antisense and Genic Intron
categories (~50% and ~ 30% of their transcripts were flagged). Remarkably, Incomplete Splice Match (ISM)
transcripts that were shortened versions of the reference transcripts by the 3” end (labeled as 3’ end fragment
transcripts) and monoexon NIC transcripts with intron retention events, were also significantly enriched in intra-

priming candidates, (WRS p < 2.2 x10™'® for all tests, Supplementary Figure 21I).

Altogether, the SQANTI framework analyses suggests that a fraction of the novel transcripts found by ToFU
pipeline could originate by technical artifacts at the step of cDNA library construction or by less confident

sequencing data at the 5° ends of transcripts.
PCR validation of PacBio transcripts

To shed light into the correct detection of transcripts by ToFU analysis we performed RT-PCR amplifications for a
total of 67 mRNAs encompassing different SQANTI categories: 23 FSM (3 with non-canonical splice sites), 12
NIC, 30 NNC canonical (11 of them containing at least one non-canonical splice junction) and 3 fusion transcripts

(Supplementary Figure 3). Importantly, we performed RT-PCRs both on the ClonTech oligo(dT) enriched full-
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length ¢cDNAs used for PacBio sequencing and, for positive NIC/NNC/Fusion and 4 FSM transcripts, on new
cDNA retrotranscribed at 42 °C and 50 °C using random hexamers rather than oligo(dT) . The rationale behind this
approach was to test whether novel transcripts could have been spuriously generated by RT switching-like
mechanisms at the retrotranscription step of the PacBio protocol. Since higher temperature and/or the use of random
hexamers would complicate the formation of secondary structures in the RNA template, retrotranscription artifacts

would be less favored in these conditions.

We validated by RT-PCR 23/23 of the FSM, including the 3 cases with non-canonical junctions, (Figure 4A1)
highlighting the high level of confidence supporting these transcripts. Novel transcripts showed lower validation
rates: 8/12 NIC, 1/3 Fusion and 6/30 NNC, highlighting the low detection rate within NNC category (Figure 4A2).
Importantly, 9 of these non-validated NNC transcripts were amplified by oligo(dT) PCR but lost when random
hexamers and higher temperatures were used (Figure 4A3), suggesting the occurrence of possible retrotranscription
artifacts. Table 1 summarizes the results of the PCR validation experiment. Details can be found in Supplementary
Table 3. These results indicated the need of applying an additional filtering strategy to remove artifact transcripts

from the ToFU transcriptome output.

oligo(dT) Random Hexamers Overall
Transcript Positive Negative Total Positive Negative Total Validation
Type
FSM 23 (3 nc) 0 23 4 (3 nc) 0 4 100%
NIC 10 1 11 8 2 10 67%
NNC 15 (3 nc) 15 (8 nc) 30 6 9 (3 nc) 15 20%
Fusion 1 2 3 1 0 1 33%

Table 1. Summary RT-PCR validation. nc: transcript with non-canonical junctions.
Using SQANTI features to build a quality control filter for ToFU artifacts

Previous work applied different criteria to discard artifacts from transcriptome sequencing, including support by
short reads®, removal of transcripts with non-canonical splicing®® or filtering based on sequence features™.
However, we found that these approaches do not fully capture the complexity of the data. For example, a few
known and some junctions in NIC transcripts lack Illumina coverage (148 out of 67,610, and 20 out of 437
respectively), while many of the novel non-canonical junctions did have supporting Illumina reads (543 out of 597).
We found that additional features such as RT switching direct repeats and low expression values accumulated in
NNC transcripts, but were not exclusive to them. Moreover, our RT-PCR analysis revealed an important number of

transcripts (16) having a full set of canonical junctions but failing validation.

We hypothesized that the set of SQANTI descriptors should be informative of transcript confidence and could be
used to define a composite filter to efficiently remove artifact transcripts, and decided to train a machine learning
(ML) classifier based on these features. To obtain a generally applicable filter we trained our classifier with a “best
guess” of true and artifact transcripts within the genome corrected ToFU output. Hence, we defined as positive the

Full Splice Match transcripts (FSM, n=7,774) and as negative the Novel Not in Catalogue transcripts with at least
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one non-canonical junction (NNC-NC, n=1,110), but trained the classifier without providing this structural
information (Methods). We used Random Forest* with a 80/20 training/test set split, random down-sampling for
class balance and 10x cross-validation, and called predicted transcripts those with a probability for positive
classification higher than 0.75. As a note, the RT-PCR instances mentioned in the previous section were excluded
from the classifier build. We obtained an Area Under the Curve (AUC) for the ROC curve of the test set of 99.54%
(Figure 4B, blue line) and of 82.41% for the set of NIC/NNC transcripts assayed by RT-PCR (Figure 4B, read line).
This result indicates that our classifier built on SQANTTI descriptors faithfully captures differences between our
ground truth set of positive and negative transcripts, which can be efficiently applied to discriminate true transcripts
from artifacts within the set of long-read defined novel sequences. Figure 4C shows the performance comparison for
the RT-PCR data of the SQANTT classifier against two previous approaches used to remove artifacts, namely the
“non-canonical splice junction” filter and SpliceGrapher. Data indicate that our approach has higher F1 score (71.7
versus 57.9 and 41.1 respectively), and lower FDR (11% versus 53.3% and 58.8% respectively) rate than alternative
methods. These notable FDR differences are mostly due to a high rate of false canonical junction transcripts that are
not discarded by the comparing approaches. Moreover, SQANTI was the only filtering strategy that succeeded in
lowering both the non-canonical SJ and the no short read coverage features in NNC transcripts to levels similar to

the high confidence FSM category (Figure 4D).

Features selected by the SQANTI classifier are shown in order of importance in Supplementary Figure 4. The
feature ranked first in order of importance (Bite) flags transcripts that skip consecutive exons and have
donor/acceptor sites inside a known exon, which we interpret as an indication of novel splice junctions caused by
secondary RNA structures. Interestingly, five out of the eight top variables were associated with transcript
expression, namely lowest Illumina coverage at junction, minimum sample coverage, number of FL reads,
expression of the gene, expression of the transcript and ratio of transcript versus gene expression, suggesting that

expression patterns are within the most definitive characteristics to call bona fide novel transcripts.

Based on this result, SQANTT incorporates a function for transcriptome curation that applies our ML strategy to the
user-provided data by learning classifier parameters on SQANTI descriptor values of each dataset, and filtering
accordingly. To compile with additional QC evaluations, the SQANTI filter also includes an option to discard
transcripts flagged as intra-priming candidates. Applied to our data, the combination of the SQANTI ML and intra-
priming filters removed 4,134 novel transcripts (2,462 NNC, 1,281 NIC, 32 Genic genomic, 36 Fusion, 116
Antisense, 25 Intergenic, 129 Genic Intron and 53 ISM). In our final curated transcriptome the adjusted percentages
of each category were: 66.3% FSM, 14.1% ISM, 15.7 % NIC, 2% NNC, 0.5% Genic genomic, 0.5% Antisense,
0.2% Fusion transcripts, 0.3% Intergenic and 1.4% Genic Intron (Figure 4E). The transcript category where our
filter has the strongest impact is NNC that went from 14% to 2%, while FSM increased consequently from 49% to
66% in the curated transcriptome (Figure 4E). In our final dataset 9,626 transcripts (80.4%) are in the known
categories, 2,344 (19.6%) are novel transcripts of which 207 (1.7%) fall within novel genes. These transcripts were

the product of 7,167 genes and resulted in 9,269 different ORFs.
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2 Figure 4. SQANTI filter performance on mouse dataset. A) Representative examples of RT-PCR validation experiments.
3 Three PCR conditions were assessed: oligo(dT) template at 42 °C and Random hexamers (RH) template at 42 °C and at 50 °C.
4 A1) Example of a FSM transcript with a non-canonical SJ successfully amplified at each PCR condition, A2) Example of a NNC
5 transcript with a non-canonical SJ that failed to be amplified in the oligo(dT) condition, A3) Example of NNC transcript with
6 non-canonical SJ amplified at oligo(dT) but not at RH conditions. B) ROC curves of the SQANTI ML filter for the test set (blue
7 line) and for the set of novel isoforms assayed by RT-PCRs (red line). C) Summary of the performances of the SQANTI filter,
8 non-canonical filter and SpliceGrapher filter for the set of novel isoforms assayed by RT-PCR. nc filter = non-canonical filter, TP
9 = True Positive, TN = True Negative, FP = False Positive, FN= False Negative, FDR = False Discovery Rate. D) Comparison of
10 quality features in the FSM and NNC categories after SQANTI, nc and SpliceGrapher filters. Statistical differences by Fisher’s
11 Exact Tests (FET), * p < 0.05, ** p <0.01, *** p < 0.001, ns = not significant. D) Composition of SQANTI transcript categories
12 in the mouse before and after SQANTI filter.
13
14
15 Generalization of the SQANTTI approach
16 To assess the general utility of SQANTI, we applied our approach to alternative analysis pipelines and datasets. We
17 processed our raw mouse PacBio reads with the IDP and TAPIS pipelines and analyzed resulting transcriptomes
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with SQANTI (Supplementary Figure 5SA-B). IDP, which relies heavily on a high quality reference annotation and
on short reads correction, returned a total of 13,525 transcripts, the great majority belonging to the FSM category
(96%). Only 509 transcripts were novel in this approach (358 NIC, 158 NNC), yet they still showed significant
enrichments in RT switching and no short read coverage in a junction (Supplementary Figure 5A). Interestingly,
IDP fails to return any of the sixteen novel transcripts validated by PCR, suggesting that this method is highly
restrictive for novel isoform calling. On the contrary TAPIS, that as ToFU works without short-read data, returned a
significantly larger set of transcripts (91,428) with an overwhelming majority of them belonging to the NNC class

(66%), which were strongly enriched in bad quality features (Supplementary Figure 5B).

We next evaluated our analysis pipeline in additional datasets, namely the maize ear’> and the human MCF-7 cells®,
both publicly available. Transcriptome composition in these datasets was substantially similar to what we observed
for our mouse transcriptome with a significant number of novel transcripts in known genes, that were enriched in
bad quality features (Supplementary Figure 5C-D). We applied the SQANTI filtering approach to these datasets by
training our ML classifier in each case with their sets of FSM and NNC-NC transcripts and using default values for
removing of intra-priming events. As with the mouse data, we obtained high ROC values in the test sets (99.3 for
maize ear and 99.7 for MCF-7) and succeeded in removing a considerable amount of low quality novel transcripts
while controlling their enrichment in bad quality features (Supplementary Figure 5 C-D). Additionally we analyzed
variable importance of SQANTI descriptors for the ML classifier in these datasets with respect to the mouse data.
Interestingly, although we observed an overall agreement in top ranked classification features (i.e. the top three
variables were shared among datasets), we also found some noticeable differences (Supplementary Figure 4). For
example, the number of FL reads was not a highly ranked feature for the maize ear data, probably due to the lower
sequencing depth of this dataset, and was absent in for the MCF-7 dataset, as the value was not available. Still, in
both cases high classification performance was achieved. We conclude that our SQANTI filtering approach based in
the composite utilization of quality descriptors is a robust but versatile approach for effectively removing artifacts in

long read transcriptome datasets that can be applied to a wide range of organisms.

Altogether, this section shows that the SQANTI quality control framework is a very useful tool to reveal the
structural composition of transcriptomes obtained from long read sequencing and to compare quality across
preprocessing pipelines and experiments. We show that our choice of ToFU read clustering plus SQANTI filtering
for transcriptome curation is a good trade-off between discovery and high quality of novel transcript calls, which can
be efficiently been applied to different PacBio long read datasets provided that a reference genome and short read

data are available.
Functional insights from novel and alternative transcripts

Most of our novel transcripts belong to existing genes. To further understand the biological relevance of these new
calls we analyzed the cellular processes where they participate. Interestingly, genes with novel isoforms were
enriched in metabolic processes, regulation of neurogenesis, oligodendroglial lineage, behavior and regulation of
potassium ion transport (Figure SA) suggesting that unannotated isoform diversity impacts both fundamental energy

utilization and specific neural biology pathways relevant to our cell type, both key processes for neural
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differentiation***®. The availability of a full-length corrected and curated transcriptome allows us to predict with
high confidence ORFs, annotate 3” and 5 UTR and study to which extent alternative splicing modifies coding and
non-coding regions of transcripts, Approximately, 36% of the genes expressed in our system were multi-isoform
genes. Of these, 1836 genes expressed the Principal Isoform® (PI) of the gene and in 592 cases of these (32%), the
PI was expressed in multiple transcripts with variable UTR regions, while for 1,429 genes (79%), an alternative
predicted ORF was expressed. In contrast, non-PI transcripts were much less variable at UTRs, with only 9% of
them showing multiple 3° or 5 UTR variants, and about 27% of the novel transcripts extended existing TSSs or
TTSs. This result suggests that in our system, multi-isoform expression mostly resulted in a change in the predicted
protein and to a lesser extent in the alternative processing of UTRs. However, alternative ORFs rarely were
expressed as more than one transcript, suggesting further transcriptional regulation of these alternative forms might

not be required to modulate their functionality.
Peptide support of novel and alternative transcripts

As most of the novel transcripts were predicted to have ORFs that contained novel amino acid stretches when
compared to PIs, we sought to investigate whether peptide data present in public proteomics databases could support
these findings. In order to do this we first created a non-redundant ORF database of public mouse proteins and the
predicted proteins in our neural data, and classified each protein as Principal Isoform ORF (PI-ORFs, n=4,579) if
annotated as such in the Principal Isoform predictor APPRIS*, Alternative ORF (Alt-ORF, n=2,127), if present in
Ensembl or RefSeq but not being PI, and Novel ORF (Novel-ORF, n=1,194), if the protein would be coded by NIC
or NNC transcripts present only in our mouse PacBio data. For each predicted protein, we performed an in-silico
trypsin digestion and selected unique peptides that would unequivocally identify each ORF. We analyzed theoretical
peptides for those genes identified in our mouse transcriptome that had more than one isoform annotated in Ensembl
(v80). The percentage of ORFs predicted to be identifiable by unique peptides was highest for the PI-ORFs (56.3%
or 2,577), followed by the Novel-ORFs (42.6% or 509) and was lowest for Alt-ORFs (30.1%, or 641). The majority
of Novel-ORFs and Alt-ORFs were predicted to have only one unique peptide, while this was only the case for
14.2% of the PI-ORFs (Supplementary Figure 6A). Conversely, most PI-ORFs were predicted to contain 6 or more
discriminating peptides and this was true for only 7% of Alt-ORFs and 9.8% of Novel-ORFs. This higher rate of
unique peptides in PI-ORFs was expected as the mouse genome contains a significant number of genes in which
alternative isoforms have only partial sequences and the APPRIS PI is often the longest ORF in a gene.
Consequently, proteins deemed as PI are expected to be easier to detect by protein digestion approaches than

alternative isoforms.

We then screened public databases for the presence of unique peptides associated to our set of ORFs. Two separate
approaches were conducted: a Neural tissue approach, comprising one proteomics study of mouse neural tissue and
another study of the mouse neural secretome, and an A/l tissue approach comprising peptides from 36 proteomics
studies carried out on a variety of murine tissues but excluding the two ones used in the first approach. Overall, we
detected at least one unique peptide for 77.9% of the PI-ORFs predicted to be identifiable, while this percentage
went down to 20.56% and 8% for Alt-ORFs and Novel-ORFs, respectively. Most Alt- and Novel-ORFs had single
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unique peptide matches, while most PI-ORFs were found with multiple peptides (Supplementary Figure 6B). In part
this is to be expected; the success of detection was significantly lower when the ORF was predicted to have only one
unique theoretical peptide, and this was the case for the majority of Alt-ORFs and Novel-ORFs (Supplementary
Figure 6C). Interestingly the agreement between the two proteomics screening approaches was much stronger for
those proteins detected with two or more peptides (Supplementary Figure 6B). When ORFs were identified by a
single peptide, the peptide was almost always present in just one of the two studies. Note that ORF detection by
single peptide matches, similarly to transcript detection by single read counts, falls into the area of unreliable protein
identification and therefore false discovery in these cases is not controlled®’. This result confirms that the lower
number of discriminating peptides in Alt and Novel ORFs versus their PI ORF counterparts impairs their detection
by proteogenomics approaches, but other factors are also contributing, as Alt/Novel ORFs had lower unique peptide

detection rates across all unique peptide ranges (Supplementary Figure 6C).

To understand if expression levels were playing a role, we evaluated the number of studies (PSM counts) supporting
each OREF to find that on average Alt- and Novel-ORFs had 5-6 supporting studies (median=2) per detected unique
peptide, while this number was nearly 10 for PI-ORFs (median=4.5), which is in agreement with the notion that PI-
ORFs are ubiquitously expressed across tissues®. Interestingly, we found that PI-ORFs detected by unique peptides
in less than 5 proteomics studies had a significantly lower expression in our system than those found in more than 10
projects, and had similar expression levels as the transcripts coding for Alt- and Novel-ORFs (Supplementary Figure
6D). Altogether, these results indicate that direct detection in public proteomics databases of predicted coding
products of novel and alternative transcripts is hampered by their lower expression pattern and an overall lower

identifiability by unique peptides.
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Figure 5. Functional diversity associated to genes with novel isoforms, variability of 3> UTR in PI-ORFs isoforms and
comparative analysis of protein differences between PI and non PI-ORFs. A) Gene Ontology enrichment analysis for genes
expressing novel isoforms. Analysis of the type of protein changes introduced by B) Alternative ORFs and C) Novel ORFs with
respect to the PI-ORF of the gene. Blue: ORFs computationally predicted in the curated transcriptome; red: ORFs predicted to be
identifiable by unique peptides; green: ORFs detected in proteomics databases with at least two Peptide Spectrum Matches
(PSMs). D) Example of 3°’UTR variability in a PI-ORF that leads to a quantification error. D1) Transcripts associated to gene
Spcs2 gene according to PacBio sequencing (green) and by RSEM quantification using RefSeq (red). The profile of mapping
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short reads at the Spcs2 locus is shown in grey. Position of transcript-specific primers are indicated by arrows. Differences at the
TTS are highlighted by a red dashed box, 0 indicates splice junctions lacking any short-read support. D2) Short-reads based
average transcript expression levels of Spcs2 isoforms using either RefSeq or PacBio-T references. D3) Validation of Spcs2
isoforms expression by RT-PCR: PB.6460.1/ NM_025668 but not XM 006508117 was amplified. E) Analysis of the Most
Expressed Transcript (MET) in genes with MET differences between PacBio-T and RefSeq quantifications. Kruskal-Wallis Test,
(K-W), *** p < 0.001, ns= not significant. E1) Lowest SJ coverage by short-reads in METs. E2) Lowest mean exon coverage by
short-reads in METs. E3) Distance between the Transcription Termination Sites (TTS) of the METs and their FSM references.
Same MET means both PacBio-T and RefSeq select the same MET, Different MET means RefSeq selects a MET that is not
manually curated and PacBio-T selects a MET that is manually curated.

Finally, we evaluated the types of protein differences between alternative and principal isoforms for which peptide
support was conclusive (minimum of 2 PSM counts per ORF, n=59 Alt-ORFs and n=14 Novel-ORFs), and
compared them to the composition of our predicted transcriptomes. While our set of curated transcripts predicted
that most alternative and novel ORFs distributed between N-terminal truncations, microexons (indels/substitutions
up to 9 amino-acids, aas) and major changes (indels/substitutions of more than 9 aas with or without N-Ter/C-Ter
truncations), the proteogenomics analysis failed to reveal most of these N-terminal differences and mostly found the
major changes both for Alt- and Novel-ORFs (Figure 5B-C), which is in agreement with a detection approach that
relies on positive detection of unique peptides. Microexons were found mostly in Alt-ORFs (Figure 5B) while
Novel-ORFs with no overlap to their PIs were found in the proteomics databases more than expected (Figure 5C),
however this finding is supported by just a few ORFs and hence cannot be conclusive. Interestingly, although there
was more than a 10-fold difference between the number of identifiable ORFs and those consistently identified in our
proteomics screenings, there was a general agreement between the relative abundance of each type of protein

differences among the two ORF sets, which suggests that the ORFs confidently identified by unique peptide matches

could represent the actual diversity range of the alternative proteome.
Novel transcripts have a major impact on accurate transcriptome quantification by short reads

Previous studies have shown that the utilization of a reduced, expressed transcriptome as reference for short-read

mapping instead of the total reference dramatically impacts transcriptome quantification®"

and improves
replicability of expression level estimates™. We sought to investigate how the new transcripts impact quantification
by short-reads. As one important aspect of transcript-resolved analysis is the identification of the transcript that
captures most of the expression in each gene (Most Expressed Transcript, MET), we concentrated our study in the
comparison of METs when using the total RefSeq (~160,000 transcripts) or the curated PacBio transcriptome
(11,970 transcripts, aka PacBio-T) as reference for short-read mapping. For 3,976 genes the MET was identical in
PacBio-T and RefSeq, meaning that the PacBio-T MET was a Full Splice Match of the RefSeq MET. Interestingly,
this was not the case for 1,433 genes, and in 996 of them the PacBio-T MET was a different FSM transcript,
therefore present in RefSeq. For example, the Signal Peptidase Complex Subunit 2 gene (Spcs2) was expressed as
one transcript in our PacBio neural transcriptome (PB.6460.1) and had two transcripts in RefSeq quantification
(NM_025668 and XM_006508117) (Figure 5D.1). PB.6460.1 is a FSM transcript of NM_025668 and both codify
for the PI-ORF of the gene but the 3’ exon of PB.6460.1 is smaller, resulting in a 3’UTR shorter by 1,340
nucleotides, (Figure 5D1, red dashed box). This shorter 3’ exon is actually the annotated exon of the RefSeq
transcript, XM_006508117, which also uses two alternative 5’ exons (Figure 5D1). XM_006508117 was the MET
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in the RefSeq quantification while NM_025668 was estimated as poorly expressed (Figure 5D2). Upon RT-PCR
amplification with transcript discriminating primers we confirmed the PacBio-T and not the RefSeq based
quantification scheme (Figure 5D3). When inspecting read coverage at this locus we observed that neither the
unique 5’ junctions of XM_ 006508117 nor the extra exonic sequence at the 3’exon of NM_025668 were covered by
Illumina short reads, while the short-read pattern nicely fits the PacBio transcript model. We speculate that this
variability at the 3’UTRs creates a conflict when resolving transcript quantification in the RefSeq gene model that
was decided in favor of transcript XM 006508117 by RSEM>**, as this transcript has a more consistent 3° end
coverage. In summary, the transcript quantification error of the Spcs2 gene when using a reference transcriptome as
mapping template was due to a discrepancy in the 3’end annotation between the reference and the actual expressed
transcripts. Similar disagreement patterns were observed for two additional genes, Dhrs7b and Bdkrb2 with similar
outcomes in terms of MET selection (Supplementary Figure 6 E and F). To estimate how general this pattern was,
for all the MET discrepant genes we investigated the RefSeq curation status. Interestingly, the majority of the
discrepant genes (47.2%, n=470 genes) corresponded to situations where the PacBio-T MET was a FSM of a
manually curated RefSeq transcript and the RefSeq MET was not manually curated, as in the Spcs2 gene.
Furthermore, in these cases the RefSeq-based MET had significantly worse lowest splice junction coverage and
lowest mean exon coverage than the MET called by the PacBio-T quantification (Figures SE1 and 5E2). Similarly to
Spes2, we found that for these 470 genes the differences in the length at the 3’ end between the MET selected at
PacBio-T quantification and their matched RefSeq transcripts were significantly higher than in genes where both
quantifications selected equivalent METs (Figure 5E3). Moreover, these differences were also observed for
transcripts codifying for the PI-ORF of the genes, indicating that the extensive variability in the 3’ ends that is not
annotated in a global reference such as RefSeq is not restricted to secondary/alternative transcripts. These results
demonstrate the relevance of using a full-length reference transcriptome updated with novel expressed transcripts for

correct quantification estimates.

DISCUSSION
SQANTI as a critical tool to analyze whole transcriptome quality

Long read sequencing technologies, such as the PacBio platforms as well as Illumina’s Moleculo and Oxford
Nanopore, have brought novel excitement into the challenge of describing the complexity of the transcriptome of
higher eukaryotes by providing new means for sequencing full-length transcript models. While early papers

23,55 .
, there is

concentrated on demonstrating the dramatic enrichment in full-length transcripts achieved by long reads
an increasing number of publications that describe thousands of new transcripts discovered by this technology.
Accordingly, we found that, when sequencing the mouse neural transcriptome using PacBio a large number of novel
transcripts could be detected. However, close inspection of these new transcripts revealed signs of potential errors
that required a thorough and systematic analysis of these sequences before making any new transcript calls. This

motivated the development of SQANTI, a new software for the structural and quality analysis of transcripts obtained

by long-read sequencing.
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The three basic aspects of the SQANTI QC pipeline are i) the classification of transcripts according to the
comparison of their junctions to a reference annotation in order to dissect the origin of transcript diversity, ii) the
computation of a wide range of descriptors to chart transcript characteristics and iii) the generation of graphs from
descriptors data, frequently with a transcript-type break-down, to facilitate interpretation of the sequencing output
and reveal potential biases in the novel sequences. Using this analysis framework we were able to show that, at least
in our mouse experiment, novel transcripts - especially those in the NNC category - are typically poorly expressed
transcripts of known genes and that novel junctions accumulate at the 5° end of transcripts, have lower coverage by
Illumina reads, and are enriched in non-canonical splicing and direct repeats typical of RT-switching. However,
none of these features are exclusive of any of the novel transcripts categories, which invites the question on “how
best to remove transcript artifacts”. This has been solved in the past by either eliminating all novel transcripts with at
least one junction not supported by short-reads™, by systematically discarding transcripts with non-canonical
splicing™ or by developing models to estimate the likelihood of a certain splicing event®’. In our case, we performed
an extensive PCR validation of transcripts belonging to different known and novel types. Surprisingly, we found a
significant number of transcripts, both with canonical and non-canonical junctions, that did have complete junction
support by Illumina and were amplified by RT-PCR of the sequenced cDNA library, but failed to be validated when
PCR conditions were adjusted to avoid secondary RNA structures. We concluded that these might be cases of
retrotranscription artifacts, which would have escaped a filtering solely based on short-read support. This result may
suggest that a revision of library preparation protocols is needed, which goes beyond the scope of this study. As an
alternative, we were able to combine our set of SQANTI descriptors with a machine learning strategy to build a
filter that discards poor quality transcripts with better performance than the methods indicated above. The SQANTI
filter is data-adaptive and can we showed that it can be successfully applied to other long read transcriptomics
datasets. Note that SQANTI is designed to leverage genome annotation data to characterize and filter the long read
transcriptome. In case no genome is available or the assembly is low quality, reference-guided correction of
transcript sequences will be compromised and hence accurate translation into ORFs. If, additionally, the gene
content annotation is poor this will impact SQANTI transcript classification, that will be enriched in novel isoforms
and genes. In these conditions it might be difficult to define robust FSM positive and NNC-NC negative training sets
for the SQANTI classifier. The first because of the low number of known transcripts and the second because of poor
correction of Pacbio sequences. Sub-sampling experiments showed that 150-200 training set transcripts would be
sufficient to obtain comparable performance to that in Figure 4B (not shown), indicating that the SQANTI filter can
be used confidently even when reduced training sets are available. Furthermore, the SQANTI set of quality
descriptors will be extremely useful in these cases, as they will provide a comprehensive characterization of the

quality of the transcript calls in situations where little additional data is available.
Novel insights in transcriptome complexity from single molecule full-length transcriptome sequencing

The fundamental advantage of single molecule long reads technologies over short reads is their direct detection of
full-length isoform diversity and of novel transcripts. The availability of a curated full-length transcriptome dataset

of our mouse neural tissue allowed us to explore these aspects confidentially. We found that genes with novel
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transcripts are enriched in metabolic processes and specific neural functions related to neurogenesis and
oligodendroglial lineage. This is remarkable because both the narrow control of metabolic programming and the
expression of genes involved in cell identity are key players of differentiation courses™, and the finding that most
novel transcripts concentrate in these categories suggests that an important untapped transcript/regulatory diversity
present here could be revealed by long read sequencing technologies. We find interesting to note that most of the
transcript diversity is concentrated in the appearance of novel ORFs but also an important fraction of the alternative
transcripts are UTR variations of the Principal Isoform of the gene. However, alternative isoforms are rarely also
expressed with variable UTRs and novel transcripts infrequently extend annotated TSSs and TTSs. This suggests
that gene expression regulation by alternative transcripts either controls the expressed protein or the transcript
stability but the interaction of the two might not be as critical. We also show how high variability at transcript ends
is a source of quantification errors that can be alleviated when an expressed full-length reference transcriptome is
used. Our data suggests that unannotated alternative polyadenylation events are frequent in mammalian genomes,
which in turn induce incorrect quantification estimates. Full-length sequencing of the expressed transcriptome
readily identifies this 3’end diversity to provide the correct templates for transcript quantification. On the other
hand, variability at the 5° end is still an issue for full-length transcriptome sequencing as biological variability
cannot be unequivocally differentiated from technical artifacts in ¢cDNA library preparation protocols. The
SMARTer protocol typically used in PacBio sequencing may not always capture the full extension of the 5’ ends
due to transcript degradation or incomplete retrotranscription. This may account for the lack of 5’ end coverage
observed in FSM and ISM transcripts. Interestingly, trapping of the 5> CAP prior to the synthesis of the secondary
cDNA strand has been shown to increase the overlap of the 5° end without seriously compromising the yield of long
reads’’ and in future may represent the preferred form of library preparation to study 5° end diversity.

Finally, we investigated whether the transcriptome diversity found by long read sequencing was mirrored by
proteogenomics data. We concluded that the low expression and identifiability by single peptides of Alt and Novel
ORFs hampered their detection by proteomics. Detection of alternative protein isoforms has proved to be difficult,
and while some authors claim that limited detection in proteomics databases indicates low translational and stability

58,59

rates®”, other studies identify a significant proportion of alternative exons associated to ribosomes as evidence of

. . 60,61
active translation”

. While it is not the scope of this work to resolve these issues, we turned our attention to the
analysis of protein differences for those cases of confident peptide detection. Interestingly, we found that the
distribution of the type of protein differences in the non PI-ORFs with respect to the main isoforms is similar to the
predictions based on the PacBio sequencing data, except for N-terminal truncations that are at a disadvantage in a
unique peptide detection approach. Most of detected alternative ORFs showed major protein changes compared to
the PI-ORF of their respective genes, which could potentially have an impact on functionality of the alternative
protein. While a detailed analysis of these functional differences requires further computational and experimental
approaches, the results presented in this paper indicate that long read technologies, provided adequate quality control

is applied, are effective tools for describing the isoform-resolved transcriptome and can aid in the study of the

biological significance of alternative splicing.
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MATERIAL AND METHODS
Differentiation of NPCs and OPCs from neonatal mice

Neonatal ¢57/BL6 mice (4 days old) were sacrificed and Neural Precursors cells (NPCs) were isolated from the
subventricular zone. Neurospheres were obtained by culturing the progenitors in media supplemented with EGF and
bFGF and Oligodendrocyte Precursor Cells (OPCs) were derived from them by adding ATRA (All Trans Retinoic

Acid) as described in the Supplementary Methods section.
RNA extraction, full-length cDNA library preparation and sequencing.

Total RNA isolation from cultured cells (two biological replicas per cell type) was done with Nucleospin RNA kit
(Macherey-Nagel) obtaining RINs (RNA Integrity Number) between 10 and 9.7 for all samples. The synthesis of
full-length cDNA was performed with SMARTer PCR ¢cDNA Synthesis kit (ClonTech, version 040114, CA, USA)
following PacBio recommendations. The cDNA synthesis protocol used 1 pg of total RNA, 42 °C for
retrotranscription and 13 PCR amplification cycles to control for over-amplification of small fragments. For each
sample, we performed two first-strand cDNA synthesis reactions and nine PCR reactions using 10 pl of first strand
cDNA (diluted 1:5 in TE-buffer) to obtain around 14-16 pg full-length ¢cDNA per sample. Each sample was
submitted to the ICBR sequencing facility (University of Florida) for PacBio sequencing (P4-C2 chemistry). Three
cDNA fractions were obtained with BluePippin and sequenced at the RSII Instruments using 2 SMRT cells for the
1-2 kb fraction, and 3 SMRT cells for 2-3 kb and 3-6 kb fractions, to a total of 8 SMRT cells per sample.
Additionally, the same samples were sequenced with the Illumina Nextseq instrument using Nextera tagmentation
and 2x50 paired end sequencing. Sequencing data has been submitted to the SRA under Submission number
SUB2459157 (PacBio reads) and SUB2466432 (Illumina reads) and will be released upon publication of this

manuscript.
Transcriptome generation and quantification

Sequenced PacBio subreads were pooled together and ToFU software was used to obtain non-redundant transcripts.
Default parameters were set to obtain Read of Insert (Rol), Full-length classification of Rols and ICE (Iterative
Clustering for Error Correction) steps. Quiver option was turned on to improve consensus accuracy of previously
generated ICE clusters by using non Full Length read information. Generated HQ polished isoforms (>99 %
accuracy after polishing) were collapsed to eliminate isoform redundancy (5' different was not considered when
collapsing isoforms). This set of 5' merged non-redundant isoforms was defined as ToFU transcriptome. TAPIS was
run with default parameters, except for the maximum intron length used by GMAP (version 2016-05-01), which was
set to 200,000. Apart of the reference genome, TAPIS requires the input of a transcriptome annotation file, in this
case the RefSeq murine transcriptome. IDP corrects long sequences through the incorporated LSC* module that
maps high quality short-reads to Iso-Seq long reads using Bowtie2 (version 2.3.2). The parameters were set to
default but for the aligner (GMAP, see command line in Supplementary Methods) and the minimum isoform
fraction value to accept a predicted transcript which was set to 5%. Transcript quantification using short-reads was

obtained using STAR® as mapper and RSEM™™* as quantification algorithm (parameters available at
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Supplementary Methods). Expression estimates were obtained as Transcript per million (TPM). Long-read
quantification was computed as the number of Full-Length reads of each transcript divided by the total number of
FLs of the sample. Most Expressed Transcript (MET) was defined as the transcript of each gene that obtained the
highest average TPM value across all the samples. The relative coverage of a splice junction was defined as the sum
of all the reads mapped to the junction divided by the sum of the expression of all the transcripts in which it is
present.”’ module that maps high quality short-reads to Iso-Seq long reads using Bowtie2 (version 2.3.2). The
parameters were set to default but for the aligner (GMAP, see command line in Supplementary Methods) and the
minimum isoform fraction value to accept a predicted transcript which was set to 5%. Transcript quantification
using short-reads was obtained using STAR as mapper and RSEM as quantification algorithm (parameters available
at Supplementary Methods). Expression estimates were obtained as Transcript per million (TPM). Long-read
quantification was computed as the number of Full-Length reads of each transcript divided by the total number of
FLs of the sample. Most Expressed Transcript (MET) was defined as the transcript of each gene that obtained the
highest average TPM value across all the samples. The relative coverage of a splice junction was defined as the sum
of all the reads mapped to the junction divided by the sum of the expression of all the transcripts in which it is

present.
Verification of transcripts by Reverse Transcription PCR (RT-PCR)

PCR amplification of selected transcripts was performed with both the sequenced full-length cDNA and newly
synthesized cDNA from the same RNA extractions. For new cDNA reactions, 1 pg of total RNA was used to
synthesize the first-strand cDNA using SuperScript III (Life Technologies) primed with random hexamers in a
reaction volume of 20 pl, according to the manufacturer’s instructions. Each random hexamer cDNA synthesis
reaction was carried out at two temperature conditions: 42 °C and 50 °C. RT-PCR reactions used 1 pl of sequenced
full-length ¢cDNA or 2 pl of random hexamers cDNA, together with Biotools DNA Polymerase (1U/ pl) in a
reaction volume of 50 pl. Primers were designed to span the predicted splicing event using Primer-BLAST®
Supplementary Table 3, http://www.ncbi.nlm.nih.gov/tools/primer-blast). PCR condition were 5 min at 94 °C
followed by 35 cycles of 94 °C 30 s, primer-specific annealing temperature for 30 s and 72 °C for 1 min or 1:30 min,

depending of predicted product size. PCR amplification was monitored on 1.5 % agarose gel.
RT switching prediction

SQANTI contains an algorithm that implements the RT switching (RTS) conditions described in Cocquet et al®.
Namely an exon skipping pattern due to a retrotranscription gap caused by secondary structures in expressed
transcripts. The algorithm looks at all the junctions for possible RTS (both canonical and non-canonical junctions)
and checks for a direct repeat pattern match at defined sequence locations: the pattern at the end of the splice
junction's 5' exon must match the pattern at the 3° end of the splice junction's intron. There are three parameters that
control pattern matching: (1) the minimum number of nts required to match (4 - 10); (2) the number of nts of wiggle
allowed from the ideal pattern location (0 - 3); (3) whether allow for a single mismatch, indels or not. SQANTI uses
as default parameters: a minimum of 8 bases long repeat sequences, a maximum wiggle of 1 and no mismatches.

FSM transcripts with the highest mean expression in each gene are assumed to serve as templates for RTS and are
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excluded from the analysis.
ORF prediction and functional annotation

The GMST algorithm'® was applied to predict ORFs in PacBio transcripts, setting parameters to only consider the
direct strand of the cDNA and AUGs as the initial codon. As GeneMarkS-T allows prediction in incomplete
transcripts lack of coverage in the 5' end caused some truncated ORF starting in codons different from Methionine.
In these instances the ORF was shortened by the N-Terminus until the first in frame Methionine was found. GMST
was benchmarked as shown in Supplementary methods. GO annotation of novel transcripts was done by Blast2GO*
with default parameters and a query-hit overlap requirement of 90% of the hit sequence® and enrichment analysis

was performed with the hypergeometric test of the goseq® R package.
Characterization of Alt-ORF and Novel-ORF with respect to PI-ORFs and UTR/OREF variability

Microexon definition was restricted to novel amino-acid (aa) stretches obtained by in-frame indels or substitutions
of no more than 27 nts (9aas) following Irimia et al®’. ORFs showing exclusively N-Ter deletions or C-Ter deletions
were labeled as N-Ter Deletion or C-Ter Deletion ORFs. ORFs showing indels and substitutions greater than 9 aas,
combined or not with N-Ter and C-Ter deletions, were labeled as Major Change ORFs. ORFs that could not be
aligned against the PI-ORF of their respective genes were deemed as No align ORFs. Two UTRs were considered to
be different if they started in different genomic coordinates or if they shared a common start point but had a length
difference of more than 30 nucleotides.”’. ORFs showing exclusively N-Ter deletions or C-Ter deletions were
labeled as N-Ter Deletion or C-Ter Deletion ORFs. ORFs showing indels and substitutions greater than 9 aas,
combined or not with N-Ter and C-Ter deletions, were labeled as Major Change ORFs. ORFs that could not be
aligned against the PI-ORF of their respective genes were deemed as No align ORFs. Two UTRs were considered to
be different if they started in different genomic coordinates or if they shared a common start point but had a length

difference of more than 30 nucleotides.
Machine Learning classifier of artifacts based on SQANTI features

A machine learning approach was developed to discriminate artifacts from true novel transcripts utilizing SQANTI
features. FSM transcripts were used to define the set of positive transcripts while NNC-non canonical transcripts
were taken as negative set. By definition, the labeled sets (FSM and NNC-NC) contain only multi-exonic transcripts,
and hence the classifier can only be applied to this type of transcripts. From the total set of SQANTI transcript
descriptors, 16 variables defined for both novel and know transcripts sequences were selected (Supplementary Table
1). SQANTI transcript descriptors that relate to reference transcripts, structural category classification and canonical
junction status were excluded as either they are irrelevant to the classification or they were used to define the
positive and negative transcript sets. Variables with near zero variance or a correlation higher than 0.9 in the labeled
sets are removed. The labeled set was divided into a training set (80%) and a test set (20%) and algorithms were run
using down-sampling to equilibrate positive and negative sets and 10 times 10 cross validation. Several machine
learning methods were tested (Adaboostﬁg, CART69, Random Forest44, SVM70, Treebag”) on the mouse data that
employed 7774 FSM, 1100 NNC-NC transcripts and 14 SQANTI descriptors (RTS_stage and coding variables were
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excluded in this dataset due to low variability). Random Forest (RF) was selected as best performing approach
(Supplementary Methods) and run using 500 trees. This RF approach was also applied to the PacBio maize ear’> and
human MCF-7% datasets. For all datasets, the quality of the predictions was assessed by ROC analysis and
evaluation of SQANTI quality descriptors on the filtered transcriptome obtained after the application of the classifier
to the novel transcripts. For our mouse dataset, SQANTI filter performance was also evaluated on 67 transcripts
tested by RT-PCR and computing ROC, Fl-score and FDR values. The F-score was calculated as
2*(Specificity*Sensitivity/(Specificity+Sensitivity)). The FDR was calculated as 100*(FP/(TP+FP)). Note that

transcripts evaluated by RT-PCR were excluded from training set used to build the classifier.
SQANTI pipeline

SQANTI is implemented in Python with calls to R for statistical analyses and generation of descriptive plots. The
SQANTI program has two major functions: sqanti_qc and sqanti_filter. The sqanti_qc function performs different
tasks: (1) corrects transcript sequences based on the provided reference and returns a corrected transcriptome; (2)
compares sequenced isoforms with current genome annotation to generate genes models and classify transcripts
according to splice junctions (a full-description of structural classification of isoforms can be found in results
section); (3) predicts ORFs using GeneMarkS-T; (4) runs our algorithm to predict RT switching; (5) returns a
transcript level and junction level descriptive file. These files contain 33 and 20 fields respectively where the three
first fields identify the transcript in the reference genome and the remaining fields describe different
transcript/junction properties, making a total of 47 SQANTI descriptors (Supplementary Tables 1 and 2).
sqanti_filter uses the SQANTI features output to perform filtering of artifacts by two different approaches. The
intra-priming filter option removes transcripts with adenine stretches in the genomic position downstream their 3’
end. The machine learning filter learns a Random Forest classifier on the user’s data following the strategy
described above. sqanti_filter returns a curated transcriptome where artifact transcripts are removed. For the
mouse, maize’> and MCF-7* datasets the reference genomes used were mm10, AGPv4 and hg38, respectively.

SQANTT is available at https://bitbucket.org/Conesal.ab/sqanti.

Analysis of Peptide Support

We performed an in silico analysis of the peptide support of the predicted ORFs of our neural transcriptome when
compared to public proteomics databases. A non-redundant database composed of predicted ORFs from our murine
transcriptome experiments and all the murine ORFs annotated in Ensembl (v80) was created. These ORFs were
subjected in silico tryptic digestion (Proteogest, complete digestion). Unique peptides were identified and ORFs
with at least one unique peptide of 7 amino acids of more were annotated as identifiable ORFs. We then used two
different approaches to detect experimental Peptide to Spectrum Matches (PSMs) that match unique peptides from
our ORFs. The first approach made use of a pipeline built on Pladipus’?, a platform that allows for distributed and
automated execution of bio-informatics related tasks and performed an all tissue search of mouse proteomic studies
(n=36). The pipeline consists of pride-asap, a tool designed to automatically extract optimal search parameters,
SearchGUI", a tool that manages the execution of several search engines and PeptideShaker’*, a tool that allows for

the merging of the results produced by the search engines. For this study, X!Tandem”, Myrimatch’® and MSGF+"’
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algorithms were applied. The input spectra were obtained from 36 murine projects in the PRIDE™ database. The

second approach was based on the Sequest algorithm” and screened large-scale mouse proteomics experiments of

brain tissue® and astrocyte secreted proteins®’. A more detailed description of these approaches is available in

Supplemental Methods.
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