

1 TITLE: Geographically structured genetic variation in the *Medicago lupulina* – *Ensifer*
2 mutualism

3 Tia L. Harrison¹, Corlett W. Wood¹, Katy D. Heath², John R. Stinchcombe^{1,3}

4 ¹Department of Ecology and Evolutionary Biology, University of Toronto, 25 Willcocks St.,
5 Toronto, Ontario, M5S 3B2, Canada

6 ²Department of Plant Biology, University of Illinois, 505 S. Goodwin Avenue, Urbana, Illinois,
7 61801, United States

8 ³Centre for Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto,
9 Ontario, M5S 3B2, Canada

10

11 RUNNING TITLE: *Medicago* and *Ensifer* mutualism evolution

12 KEYWORDS: mutualism, population genetics, genetic differentiation, gene flow, coevolution,
13 invasion

14 DATA LOCATION: We are in the process of submitting sequences to NCBI. VCF files and R
15 scripts will be uploaded to Dryad (DOI to be finalized upon acceptance).

16

17 CORRESPONDING AUTHOR:

18 Tia Harrison, tia.harrison@mail.utoronto.ca

19 Department of Ecology & Evolutionary Biology

20 University of Toronto

21 25 Willcocks Street, Room 3055

22 Toronto, ON

23 Canada M5S 3B2

24

25 **Abstract**

26 Mutualisms are interspecific interactions affecting the ecology and evolution of species. Patterns
27 of geographic variation in interacting species may play an important role in understanding how
28 variation is maintained in mutualisms, particularly in introduced ranges. One agriculturally and
29 ecologically important mutualism is the partnership between legume plants and rhizobia.
30 Through characterizing and comparing the population genomic structure of the legume
31 *Medicago lupulina* and two rhizobial species (*Ensifer medicae* and *E. meliloti*), we explored the
32 spatial scale of population differentiation between interacting partners in their introduced range
33 in North America. We found high proportions of *E. meliloti* in southeastern populations and high
34 proportions of *E. medicae* in northwestern populations. *Medicago lupulina* and the *Ensifer* genus
35 showed similar patterns of spatial genetic structure (isolation by distance). However, we detected
36 no evidence of isolation by distance or population structure within either species of bacteria.
37 Genome-wide nucleotide diversity within each of the two *Ensifer* species was low, suggesting
38 limited introduction of strains, founder events, or severe bottlenecks. Our results suggest that
39 there is potential for geographically structured coevolution between *M. lupulina* and the *Ensifer*
40 genus, but not between *M. lupulina* and either *Ensifer* species.

41

42

43 **Introduction**

44 The maintenance of variation within mutualistic interactions has been posed as a paradox
45 because strong selection is expected to erode variation in mutualism related traits (Charlesworth,
46 1987, Heath and Stinchcombe 2013). One simple mechanism that could resolve this paradox is
47 genetic differentiation between populations in mutualism traits, coupled with some gene flow
48 between populations that introduces new variants. To evaluate this possibility, it is necessary to
49 incorporate a geographic perspective into studies of mutualism to determine whether both
50 interacting partners exhibit similar patterns of genetic structure on a landscape scale. Here we
51 use whole genome sequencing and genotyping-by-sequencing to characterize patterns of genetic
52 and geographic differentiation in the annual legume *Medicago lupulina* and its mutualistic
53 rhizobial symbionts in their introduced North American range.

54 The potential for geographic structure to maintain variation in interspecific interactions is
55 a core component of the geographic mosaic perspective on coevolution. A geographic mosaic
56 describes a scenario where the structure and intensity of coevolution differs between populations,
57 and is characterized by genetic differentiation between interacting populations at loci underlying
58 coevolutionary traits, followed by gene flow that introduces new variants (Thompson, 2005).
59 Adaptive genetic divergence in coevolutionary traits can arise from interactions with genetically
60 differentiated populations of a single partner species or turnover of partner assemblages across a
61 focal species' range (Nagano et al. 2014; Newman et al. 2015). Formal theory and meta-analyses
62 suggest that gene flow between genetically differentiated populations can facilitate local
63 adaptation in host-parasite systems by increasing within-population genetic variance (Gandon *et*
64 *al.*, 1996; Greischar & Koskella, 2007; Hoeksema & Forde, 2008; Gandon & Nuismer, 2009).
65 Although theoretical models indicate that geographic structure may similarly maintain genetic

66 variance in mutualisms (Nuismer et al. 2000), empirical evidence in positive species interactions
67 is scarce.

68 Gene flow between differentiated populations has the greatest potential to maintain
69 variation in interspecific interactions when the scale of population differentiation in both partners
70 is congruent. While there is strong evidence of geographic variation in mutualist quality (Thrall
71 et al. 2000; 2007), and geographic covariation in traits mediating interactions (Anderson and
72 Johnson 2007), we lack large-scale empirical examinations of population genetic structure in
73 interacting mutualists. The few empirical studies that have examined parallel patterns of
74 geographic structured genetic variation in both partners report conflicting results. Anderson et al.
75 (2004), for example, found parallel patterns of isolation by distance between carnivorous
76 *Roridula* plants and their hemipteran mutualists, albeit at different spatial scales, and suggested
77 that these population genetic structures could facilitate co-adaptation within populations or
78 regions. Parker and Spoerke (1998), in contrast, found no evidence of genetic structure in either
79 the annual legume *Amphicarpea bracteata* or its nitrogen-fixing rhizobial symbionts. Béna et al.
80 (2005) reported suggestive evidence of cospeciation between legumes in the genus *Medicago*
81 and their rhizobial symbionts, but this genus-level analysis was not able to link phylogenetic
82 patterns to coevolutionary processes that might have generated them.

83 In this study, we characterized and compared the geographic scale of genetic
84 differentiation between the annual legume, *Medicago lupulina*, and its mutualistic nitrogen (N)-
85 fixing bacteria, *Ensifer meliloti* and *E. medicae*, to determine whether gene flow between
86 differentiated populations could maintain variation in this mutualism. Within the mutualism,
87 legumes provide carbon (C)-based rewards and shelter for the bacteria (rhizobia), while bacteria
88 fix atmospheric nitrogen (N) into plant-available forms. The *Medicago-Ensifer* mutualism is

89 characterized by considerable coevolutionary genetic variation (Heath 2010, Heath et al. 2012),
90 and several aspects of its biology suggest that there is substantial potential for geographic
91 structure in both partners. *Medicago lupulina* is primarily a selfer, which reduces gene flow via
92 pollen and promotes genetic differentiation. In addition, *M. lupulina* and *Ensifer* were introduced
93 to North America relatively recently (approximately 300 years ago) and potentially multiple
94 times (Turkington and Cavers 1979). Multiple and separate introductions of *M. lupulina* and
95 *Ensifer* to North America could have created the necessary geographic structure to maintain
96 mutualism variation in its introduced range.

97 One challenge in evaluating the potential for geographic structure to maintain genetic
98 variation in mutualistic traits is that geographic structure might only be detected at specific genes
99 involved the mutualism. Although genetic structure at genes involved in adaptation other aspects
100 of the environment will contribute to population divergence, but these differences will not result
101 in divergence in mutualism-related traits or genes, except in the case of linkage disequilibrium or
102 pleiotropy. Therefore, a rigorous test of geographic structure in mutualisms would ideally
103 quantify patterns of structure at symbiosis genes in addition to the whole genome. The
104 mutualism between legumes and nitrogen-fixing rhizobia is especially promising in this regard.
105 Genes mediating the interactions have been mapped (Werneck and Riley 1999; Barnett et al.
106 2001; Markmann and Parniske 2009; Reeve et al. 2010; Oldroyd 2013; Stanton-Geddes et al.
107 2013; Bravo et al. 2016; Klinger et al. 2016) and it is feasible to sequence entire bacterial
108 genomes with next-generation sequencing rather than just a handful of markers. Using both
109 whole genome sequences and sequences of symbiotic loci such as nitrogen fixation and
110 nodulation genes previously shown to be involved in the symbiosis between *M. lupulina* and
111 *Ensifer* (Werneck & Riley, 1999; Kimbrel et al., 2013; Kawaharada et al., 2015), we looked

112 for signals of coevolution between legumes and their rhizobia genome wide and at individual
113 symbiotic genes.

114 We asked three questions about the *M. lupulina* and *Ensifer* mutualism. First, is there
115 geographic structure in the distribution of *E. meliloti* and *E. medicae* that could facilitate
116 differentiation of *M. lupulina* populations? Second, do symbiotic genes in rhizobia indicate
117 alternative patterns of coevolution compared to the whole genome? Finally, is population genetic
118 structure in *M. lupulina* aligned with *Ensifer* genetic structure such that it could promote local- or
119 regional-scale coevolution?

120

121 **Methods**

122 *Study system*

123 *Medicago lupulina* is a clover native to eastern Europe and western Asia and was
124 introduced (potentially multiple times) to North America in the 1700s (Turkington and Cavers
125 1979). Today, *M. lupulina* is found across North America in temperate and subtropical areas,
126 including all 50 states and most Canadian provinces (Turkington and Cavers 1979). It is
127 primarily self-fertilizing and disperses seeds passively (Turkington and Cavers 1979; Yan et al.
128 2009) and consistent with this, previous studies in the native range (Europe and Asia) have found
129 significant isolation by distance (Yan et al. 2009). *Medicago lupulina* is largely considered a
130 weed, although it has been used as an inefficient fodder plant and was potentially introduced to
131 North America along with agricultural crops.

132 Two species of *Ensifer*, free-living soil bacteria native to Europe and Asia, inhabit root
133 nodules of *M. lupulina*: *E. meliloti* and *E. medicae*. Both can also associate with other *Medicago*
134 species (Prévost and Bromfield 2003). It is assumed the *Ensifer* species arrived in North America

135 with a *Medicago* species (Turkington and Cavers 1979). *Ensifer* species associate with plants at
136 the start of a growing season, and at nodule senescence they dissociate from the plant, dispersing
137 into soil, where they can be redistributed due to soil disturbance and water flow (i.e. no vertical
138 transmission). Their genomes consist of a circular chromosome (3.65 Mb) and two plasmids
139 (~1.3 Mb and ~1.6 Mb) (Galibert et al. 2001; Reeve et al. 2010). Recombination is restricted to
140 *Ensifer* plasmids and horizontal gene transfer can occur between plasmids of different species of
141 *Ensifer* (Bailly et al. 2006; Epstein et al. 2012; 2014). Many genes known to be involved in the
142 mutualism, including *nif* and *nod* genes, are found on the plasmids of *E. meliloti* and *E. medicae*
143 (Bailly et al. 2006; 2007), while housekeeping genes for general bacterial functions predominate
144 the chromosome. Past studies have failed to detect significant genetic differentiation in *E.*
145 *meliloti* and *E. medicae* populations in Mexico, suggesting high levels of gene flow in *Ensifer*
146 populations (Silva et al. 2007).

147

148 *Field Sampling*

149 We sampled *M. lupulina* individuals opportunistically from 39 populations across a wide
150 geographic range in southern Ontario and the northeastern United States, a subset of *M.*
151 *lupulina*'s introduced range (Supplemental Table 1). We randomly collected 2 to 10 plant
152 individuals (spaced approximately 0.5 to 2 m apart) in late stages of their life cycle for both
153 seeds and nodules. Seeds were collected in envelopes in the field and nodules were kept on the
154 roots and placed in plastic bags at 4°C until processed. We obtained samples from 28
155 populations in southwestern Ontario (10 km to 300 km apart). To study large-scale geographic
156 patterns, we sampled an additional 11 populations along a NW to SE transect from southern
157 Ontario to Delaware, USA, separated by up to 820 km.

158

159 *Molecular Protocols*

160 We extracted rhizobia samples from one field-collected nodule per plant, and used field-
161 collected seeds to grow plant material for DNA extraction. Full details on plant growth
162 conditions, bacterial plating and isolation procedures, and DNA extractions can be found in the
163 Supplemental Materials (Appendix A). In brief, we isolated one bacterial strain per plant for
164 whole genome sequencing using the MoBio UltraClean Microbial DNA Isolation Kit, and for the
165 plants we isolated DNA from one individual per maternal line for genotyping-by-sequencing
166 (GBS) according to the instructions of the Qiagen DNeasy Plant Tissue Mini Protocol.

167 Genotyping-by-sequencing (GBS) is a high-throughput and cost-efficient method of sequencing
168 large numbers of samples. GBS is similar to restriction site-associated sequencing (RAD-seq),
169 and uses restriction enzymes to identify single nucleotide polymorphisms across the entire
170 genome without sequencing the whole genome (Elshire et al. 2011). The GBS protocol is
171 optimized for many different plant species, including *Medicago*.

172 We submitted 89 bacterial DNA samples to the Hospital for Sick Children (Toronto, ON,
173 Canada) for library preparation and whole-genome sequencing on a HiSeq Illumina platform,
174 using one lane and 2x100bp reads. For *Medicago*, we submitted 190 DNA samples to Cornell
175 University (Ithaca, NY, United States) for GBS. The 190 DNA samples were distributed across
176 two 96-well plates with 95 samples and one blank in each plate for the 96 multiplex GBS
177 protocol. Cornell University prepared genomic libraries (Elshire et al. 2011) using a single
178 digestion with EcoT22I (sequence ATGCAT). Samples were sequenced in two Illumina flow
179 cells lanes.

180

181 *Bioinformatics and SNP discovery*

182 We aligned forward and reverse rhizobia reads to the reference genome of *E. meliloti*
183 strain 1021 (Galibert et al. 2001) (NCBI references chromosome AIL591688, plasmid a
184 AE006469, plasmid b AL591985) and the *E. medicae* strain WSM419 (Reeve et al. 2010) (NCBI
185 references chromosome 150026743 plasmid b 150030273, plasmid a 150031715, accessory
186 plasmid 150032810) using BWA (Li and Durbin 2009) and Stampy (Lunter and Goodson 2011)
187 with default parameters and the bamkeepgoodreads parameter. We assigned bacterial species
188 using a combination of the percentage of reads mapping to one reference genome, and sequences
189 at the 16S rDNA locus (NCBI gene references 1234653 and 5324158, respectively), which
190 differs between *E. medicae* and *E. meliloti* (Rome et al. 1997). We used Integrative Genomics
191 Viewer to visualize and check alignment quality (Robinson et al. 2011). In general, 69.99 –
192 94.02% (median 84.71%) of reads per sample mapped to the *E. meliloti* reference genome, and
193 69.32 – 92.48% (median 83.49%) mapped to the *E. medicae* genome.

194 In addition to creating a separate SNP file for each *Ensifer* species, we also created a
195 single SNP file containing both *E. meliloti* and *E. medicae* (hereafter referred to as the "*Ensifer*
196 genus dataset") to assess divergence between the two rhizobia. To create this file, we aligned all
197 strains from both species to the *E. meliloti* reference genome and performed the same SNP
198 discovery methods as performed on the *E. meliloti* species alignments (detailed below). We
199 found shared polymorphisms between the two species and the two species were correctly
200 identified in Structure (Supplemental Figure 1) and in Phylip (neighbour joining) (Supplemental
201 Figure 2) using this data set (Pritchard et al., 2000, Felsenstein, 1989). To determine whether the
202 reference genome we used influenced our results, we also aligned all the strains to the *E.*
203 *medicae* reference genome. This analysis produced similar qualitative results (it correctly

204 identified the two *Ensifer* species in Structure (Supplemental Figure 3)), so we used the *E.*
205 *meliloti* alignments for the combined species SNP file for the rest of our analyses.

206 In *Ensifer*, we used PICARD tools to format, sort, and remove duplicates in sequence
207 alignments. We applied GATK version 3 indel realignment and GATK Unified Genotyper SNP
208 discovery on all bacteria alignments (McKenna et al. 2010) with ploidy set to haploid. We used
209 the Select Variants parameter in GATK to select SNP variants only. We used standard hard
210 filtering parameters and variant quality score recalibration on SNP discovery according to GATK
211 Best Practices (DePristo et al. 2011; Van der Auwera et al. 2013). We filtered rhizobia SNPs for
212 a minimum read depth (DP) of 20, a maximum DP of 226 for *E. meliloti* (230 for *E. medicae*),
213 and a genotype quality (GP) of 30 using vcftools (Danecek et al. 2011). We removed indels and
214 sites with more than 10% of missing data from both *E. meliloti* and *E. medicae* data files. We
215 identified synonymous SNPs using SnpEff (Cingolani et al. 2012a) and SnpSift (Cingolani et al.
216 2012b), using reference files GCA_000017145.1.22 and GCA_000006965.1.22 (for *E. medicae*
217 and *E. meliloti*, respectively) in the pre-built database. We used the ANN annotation parameter
218 in SnpSift to identify SNPs as synonymous variants and missense variants.

219 We called *Medicago* SNPs in GBS samples by following the three-stage pipeline in the
220 program Stacks (Catchen et al. 2011; 2013): cleaning raw data, building loci, and identifying
221 SNPs. We trimmed reads to 64 bp and filtered reads by a phred score of 33, the default value for
222 GSB reads sequenced on Illumina 2000/2500 machine. We built loci for *M. lupulina* using the *de*
223 *novo* approach in Stacks (denovo_map command), setting the -m parameter at 5, the -M
224 parameter at 1, and the -n parameter at 1. In the final stage of the pipeline, we identified SNPs
225 under the populations command by setting the -m parameter at 5. We filtered SNPs by removing
226 indels, removing sites with more than 10% of missing data, and removing sites that were less

227 than 64 bps apart with vcftools (Danecek et al. 2011). We also excluded 9 SNPs with
228 heterozygosity that was higher than expected under Hardy-Weinberg.

229

230 *Analysis of M. lupulina and Ensifer genetic structure*

231 We tested whether genetic distance was correlated with geographic distance (isolation by
232 distance) in *Medicago* and *Ensifer* using Mantel tests, implemented in R (R Core Team, 2016)
233 with the ade4 package (Dray and Dufour 2007) using 100 000 randomizations. We estimated
234 pairwise genetic distances between populations in *M. lupulina* and between individual samples in
235 *Ensifer* because we sampled relatively few rhizobia from each population (1 – 3 samples). For
236 *M. lupulina*, we used SNPs to calculate pairwise F_{ST} between populations in the program
237 Genodive (Meirmans and van Tienderen 2004) using the population F_{ST} function and 1000
238 permutations, including only populations that had at least two individuals in F_{ST} estimates. We
239 converted F_{ST} values to genetic distance values using $F_{ST}/(1-F_{ST})$ (Rousset 1997). In addition to
240 calculating genetic distance between plant populations, we also used F-statistics to test for
241 genetic differentiation between individuals hosting different species of bacteria, and to estimate
242 population-level selfing rates [$s = 2F_{IS}/(1+F_{IS})$] (Hartl and Clarke 1989). For *Ensifer*, we
243 calculated Rousset's genetic distance between strains in the program Genepop using the
244 combined *E. medicae* and *E. meliloti* SNP dataset (Rousset 2008). To test for isolation by
245 distance within *Ensifer* species, we repeated this procedure separately for *E. medicae* and *E.*
246 *meliloti* data sets, and also computed separate tests of isolation by distance for the chromosome
247 and plasmid to assess structure at different components of the *Ensifer* genome.

248 Second, we tested for spatial genetic autocorrelation of allele frequencies in *M. lupulina*,
249 in the *Ensifer* genus, and separately in each *Ensifer* species using GenAIEx v.6.5 (Peakall &

250 Smouse, 2006, 2012). This analysis tests against the null hypothesis that genotypes are randomly
251 distributed in space. We binned individuals into 8 distance classes of 100km for the *M. lupulina*
252 and *Ensifer* genus analyses, and into 4 distance classes of 200km for the separate analyses of
253 each *Ensifer* species, because our sample sizes were smaller for the latter two analyses. We
254 tested for significant spatial autocorrelation by permuting individuals among geographic
255 locations ($N_{\text{permutations}} = 999$) and placed confidence limits on our estimates of spatial
256 autocorrelation using 1000 bootstrap replicates.

257 Finally, we tested for a geographic pattern in the distribution of the two *Ensifer* species.
258 Because our sampling transect ran from northwest to southeast, we created a single variable
259 representing increasing longitude and decreasing latitude by extracting the first principal
260 component ("PC1") from the latitude and longitude coordinates of our collection sites. The PC1
261 axis captured 90.79% of the variance in geographic location among our collection sites. We
262 regressed the proportion of *E. meliloti* samples in a site on PC1 to identify the relationship
263 between *Ensifer* species proportion and geographic location. (R Core Team, 2016). To assess
264 whether spatial autocorrelation of plant samples impacted the results of this analysis, we
265 randomly removed 17 Ontario populations and re-ran our analysis on the remaining 11 Ontario
266 populations and the 11 American populations. We repeated this procedure 100 times, and
267 obtained qualitatively similar results to the full dataset in all cases ($P \leq 0.0001$ in all cases),
268 indicating that the geographic pattern in the distribution of the bacteria species is robust to our
269 uneven geographic sampling.

270

271 *Analysis of rhizobial nucleotide diversity and symbiosis genes*

272 We next looked for genetic variation between strains within the same *Ensifer* species.
273 Specifically, we assessed nucleotide diversity within *Ensifer* species by calculating the average
274 pairwise nucleotide differences (π) between rhizobial samples. We extracted average pairwise
275 nucleotide differences from *Ensifer* vcf files using a custom Python script (Python Software
276 Foundation, 2010). We averaged all pairwise nucleotide differences across strains to obtain π ,
277 and divided it by the number of loci (variant and non-variant) called by GATK to obtain per site
278 values. We calculated π for the range-wide sample, and repeated this calculation including only
279 individuals collected from southern Ontario, which are in close proximity and more likely to
280 experience similar environmental (and potentially selective) conditions. We calculated π
281 separately for the *Ensifer* chromosome and two plasmids and for synonymous and
282 nonsynonymous SNPs in both species of *Ensifer*.

283 In addition to calculating nucleotide diversity at the genome-wide scale, we also
284 calculated nucleotide diversity for individual genes known to be involved in the symbiosis
285 between *M. lupulina* and *Ensifer* species (Wernegreen and Riley 1999): nodulation genes *nodA*,
286 *nodB*, and *nodC*; and nitrogen fixation genes *nifA*, *nifB*, *nifD*, *nifE*, *nifH*, *nifK*, *nifN*, and *nifX*
287 (NCBI gene reference numbers given in Supplemental Table 2). Previous research has also
288 identified pathogen type III effector genes as important genes in host infection (Kimbrel et al.
289 2013), so we calculated nucleotide diversity for two type III effector loci in *E. medicae* (Reeve et
290 al. 2010). In addition, there is evidence that bacterial exopolysaccharides are involved in nodule
291 formation and rhizobia infection (Kawaharada et al. 2015). We estimated nucleotide diversity in
292 one gene (exoU glucosyltransferase) that produces exopolysaccharides in *E. meliloti* (Finan et al.
293 2001).

294 To further characterize diversity among rhizobia samples and more specifically assess
295 how rare polymorphisms are in the rhizobia samples, we also constructed minor allele frequency
296 spectra of the *E. medicae* of *E. meliloti* data. We removed 100% of missing data from the *E.*
297 *medicae* and *E. meliloti* vcf files before calculating allele frequencies for synonymous and non-
298 synonymous SNPs using vcftools (Danecek et al. 2011). We extracted the least frequent alleles
299 from the *Ensifer* vcf files and constructed histograms of *E. medicae* and *E. meliloti* minor allele
300 frequencies in R using the plotrix package.

301

302 *Comparison of M. lupulina and Ensifer genetic structure*

303 To determine whether *M. lupulina* and *Ensifer* exhibited similar patterns of isolation by
304 distance, we tested whether pairwise genetic distances between *M. lupulina* individuals were
305 correlated with pairwise genetic distances between their rhizobia, using a Mantel test with 100
306 000 randomizations. We used *Ensifer* genus dataset (combined *E. meliloti* and *E. medicae*) to
307 estimate individual genetic distance in *Ensifer*.

308 We estimated population structure among samples in *M. lupulina* and in the *Ensifer*
309 genus using a combination of InStruct (Gao et al. 2007) and Structure (Pritchard et al. 2000). For
310 *M. lupulina*, we tested for a maximum population value (K) of 5 under the admixture and
311 population selfing rate model (v = 2) in the program InStruct (which allows for population
312 assignments in selfing organisms). We ran 2 chains for each K value with 500 000 000
313 repetitions and a burnin of 200 000 000 and included no prior information. All other InStruct
314 parameters were kept at default values. The Gelman-Rudin statistic confirmed that convergence
315 among chains was achieved. We used the Deviance Information Criteria (DIC) to select the

316 value of K that provides the best fit to the data. We post-processed Structure runs using
317 CLUMPP (Jakobsson and Rosenberg 2007) and made plots using Distruct (Rosenberg 2004).

318 Before we estimated population structure in rhizobia strains using Structure, we first
319 estimated recombination among the samples. The Structure model assumes that loci are not in
320 linkage disequilibrium within populations (Pritchard et al. 2000), which is likely to be untrue for
321 non-recombining regions like the *Ensifer* chromosome (Bailly et al. 2006). We used the program
322 ClonalFrame (Didelot and Falush 2007) to estimate ρ/θ (number of recombination events/number
323 of mutation events). We used VCFx software (Castelli et al. 2015) to convert our *Ensifer* genus
324 vcf file of combined *E. meliloti* and *E. medicae* SNPs to an aligned fasta file – the input format
325 for ClonalFrame. We performed 2 runs of ClonalFrame with 100 000 iterations and removed 50
326 000 as the burnin. We checked for convergence using Gelman and Rubin's statistic.
327 ClonalFrame identified a sufficiently high rate of recombination ($\rho/\theta = 1.0021$) among *Ensifer*
328 samples to justify Structure analysis. In Structure (Pritchard et al. 2000), we performed 5 runs
329 with 200 000 iterations and discarded 100 000 for the burnin. We tested for a maximum K of 5
330 under a model of admixture and correlated allele frequencies. We used StrAuto to automate
331 Structure processing of samples (Chhatre 2012). All summary statistics (alpha, F_{ST} , and
332 likelihood) stabilized before the end of the burnin. We then used Structure Harvester to detect the
333 inferred K in the likelihood data generated by the Structure tests (Earl 2012), using the deltaK
334 approach (Evanno et al. 2005). Structure runs were post-processed and plotted as described
335 above.

336 To assess phylogenetic congruence between *Medicago* and *Ensifer*, we estimated
337 phylogenetic relationships among individuals for the plant and the rhizobia by constructing
338 maximum likelihood trees in RAxML (Stamatakis 2014). We used the GTRGAMMA function

339 with 100 bootstraps to build our trees. Because we used SNP alignment files without invariable
340 sites included we used the ASC_ string to apply an ascertainment bias correction to our data set.
341 We built a maximum likelihood tree for *M. lupulina* samples and the *Ensifer* genus (based on
342 the combined *E. medicae* and *E. meliloti* SNP data). We then used the cophyloplot function and
343 the dist.topo function in phangorn (Schliep 2011) in R to visualize the two trees and calculate
344 topological distance between the trees. We also estimated separate neighbour joining trees for the
345 *Ensifer* chromosome and two plasmids using the ape package (Paradis et al. 2004) in R to
346 compare structure at different components of the *Ensifer* genome.

347

348 **Results**

349 *Medicago lupulina* *genetic structure*

350 The *M. lupulina* sample of 190 individuals comprised 39 populations and 2349 SNPs,
351 and exhibited a significant signal of isolation by distance (Figure 1). The positive relationship
352 between geographic distance and genetic distance indicates that populations farther apart are
353 more genetically different than populations located close together. Population-level selfing rates
354 (Supplemental Table 3) were quite high on average ($s = 0.813$), which may contribute to
355 isolation by distance in *M. lupulina*. F_{ST} between *M. lupulina* individuals hosting *E. medicae* and
356 individuals hosting *E. meliloti* was low (0.0190 ± 0.0001) but significant ($p = 0.0010$).

357 There was significant spatial autocorrelation of allele frequencies in *M. lupulina*
358 (Supplemental Table 4, Supplemental Figure 4A). We found a positive spatial autocorrelation
359 between individuals located within approximately 200km of each other ($r \geq 0.04$, $P = 0.001$),
360 indicating that geographically proximate individuals are more closely related than the null
361 expectation. We found a negative spatial autocorrelation between individuals located farther than

362 300km from each other ($r \leq -0.01$, $P = 0.001$), indicating that geographically distant individuals
363 are less closely related than the null expectation. These results are consistent with the pattern of
364 isolation-by-distance reported above.

365

366 *Ensifer* genetic structure

367 We assigned 50 rhizobia samples to *E. meliloti* and 39 samples to *E. medicae*; summary
368 statistics on sequencing can be found in Supplemental Tables 5 and 6. The 39 *E. medicae*
369 samples were distributed among 24 populations. In this dataset, we discovered 1081 SNPs, of
370 which 678 were synonymous and 209 non-synonymous. The 50 *E. meliloti* sample were
371 distributed among 28 populations, but contained approximately half the number of SNPs that *E.*
372 *medicae* did (554: 234 synonymous and 176 non-synonymous). Our *Ensifer* genus dataset
373 (combining both *E. meliloti* and *E. medicae*) contained a total of 89 samples and 476 SNPs; this
374 dataset contained fewer SNPs than either the *E. medicae* or *E. meliloti* datasets because it only
375 includes sites that were genotyped in both species.

376 Population composition of bacteria species changed significantly with longitude and
377 latitude. When we regressed the proportion of plants associated with *E. meliloti* on PC1, which
378 represented increasing longitude and decreasing latitude of our sampling locations, we found a
379 positive significant relationship ($F_{1,37} = 15.804$, $P < 0.001$). Populations in the southeast
380 contained higher proportions of *E. meliloti* while populations in the northwest contained higher
381 proportions of *E. medicae* (Figure 2).

382 We found a significant signal of isolation by distance in our *Ensifer* genus data set
383 (Figure 3a), as expected given the geographic cline in their frequencies (Figure 2). We failed to
384 detect isolation by distance within either *Ensifer* species using whole-genome data (Figure 3b

385 and c). There was also no significant isolation by distance when we performed this analysis using
386 only SNPs from the bacterial chromosome and plasmids in either *Ensifer* species (*E. medicae*:
387 $0.23 < p < 0.65$; *E. meliloti*: $0.9 < p < 0.96$).

388 There was significant spatial autocorrelation in allele frequencies in the *Ensifer* genus
389 (Supplemental Table 4, Supplemental Figure 4B). We found a positive spatial autocorrelation
390 between individuals located within approximately 300km of each other ($r \geq 0.02$, $P \leq 0.015$), and
391 a negative spatial autocorrelation between individuals located at least 600km from each other (r
392 ≤ -0.05 , $P \leq 0.004$). These results are consistent with the pattern of isolation-by-distance reported
393 above, in which geographically proximate individuals are more genetically similar (in this case,
394 of the same species) and geographically distant individuals are more genetically dissimilar (i.e.,
395 of alternate bacterial species) than expected by chance. By contrast, there was no significant
396 spatial autocorrelation of allele frequencies within either *Ensifer* species when the two species
397 were analyzed separately (Supplemental Table 4, Supplemental Figures 4C and 4D).

398

399 *Ensifer* nucleotide diversity and symbiosis genes

400 Genome wide nucleotide diversity values were extremely low within both *Ensifer* species
401 in our full range data set and reduced data set in Ontario (Table 1). Symbiosis genes were
402 particularly conserved (Table 2). We discovered only one to two SNPs in the *nodC* nodulation
403 gene in both species of *Ensifer*. *NodA* and *nodB* genes contained no SNPs in either *E. medicae* or
404 *E. meliloti*. In addition, *nifH* was the only nitrogen fixation gene that contained SNPs in both *E.*
405 *medicae* and *E. meliloti*; *nifE* in *E. medicae* was the only other nitrogen fixation gene with a
406 nucleotide diversity value greater than zero. We detected no SNPs in *E. medicae* type III effector

407 genes or exopolysaccharide genes in *E. meliloti*, which are known to be involved in nodule
408 formation and rhizobia infection (Kawaharada et al. 2015).

409 Minor allele frequency spectra showed that most minor alleles were very low in
410 frequency in *E. meliloti* and *E. medicae* (Supplemental Figure 5). Minor alleles are all quite rare
411 in *E. medicae* as almost all the alleles were below 5% in frequency. Minor allele frequencies in
412 *E. meliloti* had more variation across the different frequency bins compared to *E. medicae* but
413 still most of the alleles were low in frequency (5%).

414

415 *Comparison of M. lupulina and Ensifer genetic structure*

416 We found a significant positive relationship between *M. lupulina* genetic distance and
417 *Ensifer* genetic distance (Figure 4). The positive relationship indicates that as genetic divergence
418 between plant populations increased, so did genetic differentiation between their associated
419 rhizobia.

420 We compared population assignments in *Ensifer* samples to population assignments in
421 their specific *M. lupulina* individual hosts. We identified two genetic clusters within *M. lupulina*
422 using Instruct (Figure 5a), using the Deviance Information Criteria (DIC) to determine which
423 value of K provided the best fit to the data. There is a weak geographic trend of northern *M.*
424 *lupulina* individuals associated with the purple cluster, and southern *M. lupulina* individuals
425 associated with the yellow cluster. Similarly, Structure Harvester identified 2 clusters within the
426 *Ensifer* genus data set, corresponding to *E. medicae* and *E. meliloti* (Figure 5b). All *E. meliloti*
427 samples were assigned to the red population and all *E. medicae* samples were assigned to the
428 blue population.

429 The maximum likelihood trees of *M. lupulina* and *Ensifer* show extensive mismatching
430 between tree tips (Figure 6). Plants hosting *E. medicae* and plants hosting *E. meliloti* did not
431 group together on the *M. lupulina* tree. In addition, topological distance (the number of partitions
432 that differ between the two trees) between the two trees was high (topological distance = 140,
433 total partitions = 140, percent differences in bipartitions between trees = 100 %). It is important
434 to note that both trees had low bootstrap support at internal nodes. The *Ensifer* tree had
435 particularly low bootstrap at nodes within *Ensifer* species (which could be a result of the low
436 genetic diversity within *Ensifer* species). Therefore, mismatches between *M. lupulina* and
437 *Ensifer* at the tree tips is likely due in part to error associated with clade assignments.

438 Groupings in the maximum likelihood tree of *M. lupulina* samples did not necessarily
439 correspond to groupings of geographic populations. The tree topology also showed large
440 genetic distance between individuals. The tree topology for the *Ensifer* genus showed *E. medicae*
441 and *E. meliloti* clearly separated into two groups (Figure 6). Groupings of *Ensifer* samples in the
442 tree did not necessarily associate with geographic location, even when we constructed separate
443 trees for the *Ensifer* chromosome and two plasmids. The chromosome and plasmid trees differed
444 appreciably (Supplemental Figures 5 and 6). In general, the *Ensifer* tree had lower genetic
445 distance between individuals when compared to the *M. lupulina* tree.

446

447 **Discussion**

448 Our primary goal was to characterize and compare the spatial scale of genetic differentiation in
449 the *M. lupulina* and *Ensifer* mutualism in a portion of its introduced range in eastern North
450 America. The dominant picture that emerges from these analyses is that there is geographic
451 structure in the *Ensifer* genus but very little genetic variation within each *Ensifer* species.

452 Therefore, the geographically structure of genetic variation, and potential for coevolution in this
453 mutualism, appears mainly to be due to *M. lupulina* interacting with different bacterial species
454 across its range, rather than genetically variable strains within a single bacterial species. Three
455 major results emerged from our analyses, which we discuss in turn below: (1) The geographic
456 turnover of *Ensifer* species composition in eastern North America, (2) The overall paucity of
457 genetic variation within both *Ensifer* species, despite an extensive collection across a wide
458 geographic range, and (3) Somewhat concordant geographic patterns of genetic variation in *M.*
459 *lupulina* and the *Ensifer* genus.

460

461 *Geographic turnover of Ensifer assemblages and low genetic variation within Ensifer species*

462 We showed that there is strong geographic structure in *Ensifer* mutualism assemblages in
463 eastern North America. The rhizobia species *E. medicae* is more common in southern Ontario,
464 with *E. meliloti* more common in northeastern and mid-Atlantic regions in the United States. Our
465 results corroborate previous work, which found that *E. medicae* is more abundant in southern
466 Ontario than other *Ensifer* species (Prévost and E.S.P. Bromfield 2003). Surprisingly, although
467 we sampled across a wide geographic range, there was no evidence of population structure
468 within each *Ensifer* species. When we assessed isolation by distance separately in *E. medicae*
469 and *E. meliloti*, we failed to detect spatial genetic structure within either rhizobia species in the
470 chromosome or plasmids.

471 A previous study, which also failed to detect population genetic structure within *Ensifer*
472 species on a large geographic scale, attributed their result to high gene flow among *Ensifer*
473 populations (Silva et al. 2007). High gene flow may explain the lack of genetic structure within
474 *Ensifer* species that we observed as well. The absence of structure across large geographic

475 distances in both studies suggests that dispersal over distances of tens or hundreds of kilometers
476 may frequently occur in *Ensifer*. In addition to this possibility, our data suggest that an absence
477 of genetic structure within *Ensifer* species may be due to limited genetic variation within each
478 species. Nucleotide diversity within each species was at least one order of magnitude lower in its
479 introduced range in North America than in its native range (Epstein et al. 2012). Moreover, we
480 found a near total lack of variation at symbiosis loci within *Ensifer* species, indicating that the
481 absence of genetic structure within each *Ensifer* species does not obscure a significant signal of
482 population differentiation at mutualism-associated loci.

483 A combination of founder effects, genetic bottlenecks, or recent and limited introduction
484 of bacterial strains likely explains the lack of variation within *Ensifer* species in North America.
485 First, the *Ensifer* samples we collected could be clones of a single strain present in North
486 America. Perhaps a single strain of each *Ensifer* species established in North America when
487 *Ensifer* was introduced in the 1700s (Turkington and Cavers 1979). Alternatively, the strains we
488 sampled could be recent immigrants from *Ensifer*'s native range that have recently displaced
489 older strains. Third, the facultative nature of the *Ensifer-Medicago* interaction may lead to
490 periodic bottlenecks due to strong over-winter selection in the soil that leaves behind limited
491 strains that are capable of associating with plants the following spring. Finally, because we
492 sampled nodules, we only sequenced rhizobium strains that are compatible with *M. lupulina*.
493 Knowing whether the host-compatible rhizobia are only a subset of the diversity of the entire
494 community, as in *Bradyrhizobium* (Sachs et al. 2009), would require a much larger sample of
495 soil diversity. Nevertheless, such a pattern would simply shift the question to why there is such
496 little nucleotide variation among just the compatible strains.

497 Variation in performance among partner genotypes is important for driving the evolution
498 of partner choice, host sanctions, and cheating in mutualisms, an area that has been explored
499 extensively in the legume-rhizobia symbiosis (Sachs and Simms 2008; Frederickson 2013;
500 Simonsen and Stinchcombe 2014b; Jones et al. 2015). Much of the legume-rhizobia literature
501 assumes that legume plants have a plethora of genetically distinct rhizobia strains to choose
502 from, and that bacterial variation is abundant due to their generation time, numerical abundance,
503 and the number of progeny produced. The relative lack of nucleotide variation within *Ensifer*
504 species — either genome-wide, or in genes implicated in the symbiosis pathway — suggests that
505 in North America the only genetic variation available for plants to select upon is between the two
506 *Ensifer* species. It is possible that recent host-mediated selection reduced diversity within
507 bacteria species, but it is unlikely that such selection would be strong enough to eliminate 99.8%
508 of sequence variation (π values suggests a maximum of 0.1-0.2% sequence variation; Table 1)
509 across a geographic range of ~ 800 km. Nucleotide variation may also be a poor proxy for the
510 quantitative trait variation upon which selection acts. Experimental manipulation of the *Ensifer*
511 symbionts is necessary to explore whether there are differences in the nitrogen fixation
512 efficiency of the two species that might drive local adaptation in the plant host, and evaluate
513 whether genetically divergent *M. lupulina* populations are adapted to different species of
514 rhizobia.

515 Many classic coevolutionary geographic mosaics comprise only two interacting species
516 (e.g., Brodie et al. 2002). However, geographic mosaics can also involve multispecies
517 assemblages that change in composition across a focal species' range, a pattern documented
518 repeatedly in plant-pollinator mutualisms (e.g., Nagano et al. 2014, Newman et al. 2015). In
519 these systems, spatial variation in pollinator community composition drives corresponding

520 geographic variation in selection on floral phenotypes. The turnover in *Ensifer* assemblages that
521 we observed in the *Medicago*-rhizobia mutualism fits a multispecies view of geographic
522 mosaics. Our data highlight why it is crucial that studies exploring geographic variation in
523 species interactions accurately capture the species assemblages involved. Although most *M.*
524 *lupulina* plants in Ontario are associated with a different *Ensifer* species than plants in the
525 southeastern United States, we would have concluded that there is no variation in *M. lupulina*'s
526 rhizobial partners if we had analyzed each *Ensifer* species independently.

527

528 *Concordant spatial genetic structure in the M. lupulina and Ensifer mutualism*

529 A combination of population genetic analyses – isolation by distance, maximum
530 likelihood trees, and population structure analysis – showed strong evidence of genetic
531 differentiation in *M. lupulina* that is somewhat concordant with geographic turnover in *Ensifer*
532 species. We found that *E. meliloti* and *E. medicae* generally occupy different portions of *M.*
533 *lupulina*'s introduced range. The two *M. lupulina* InStruct clusters weakly correspond to the two
534 *Ensifer* Structure clusters representing the two rhizobia species (Figure 5), and our F_{ST} analysis
535 showed significant genetic differentiation in plants hosting alternative bacterial species. Partially
536 concordant patterns of spatial genetic variation between *Medicago* and the *Ensifer* genus indicate
537 that gene flow could contribute to the maintenance of variation in this mutualism.

538 In interactions between two partners, gene flow between divergent populations can
539 maintain variation in traits mediating the interaction in both species. In multispecies
540 assemblages—like the *Ensifer* assemblages we documented here—the implications for the
541 maintenance of variation are somewhat different. Gene flow between rhizobia populations is
542 unlikely to introduce new genetic variants within each *Ensifer* species because there is no

543 geographic structure and no genetic variation in either *E. medicae* or *E. meliloti*. Instead,
544 dispersal of *Ensifer* species between populations may maintain variation in rhizobial species
545 diversity in North America. Turnover in *Ensifer* assemblages could contribute to the
546 maintenance of variation in *M. lupulina*. Because *M. lupulina* interacts with two different
547 rhizobia species in eastern North America, gene flow between plant populations partnered with
548 alternate *Ensifer* species has the potential to introduce novel variation in plant mutualism traits.
549 While turnover in *Ensifer* community assemblages may contribute to the maintenance of
550 variation in *M. lupulina* on a continental scale, it is unlikely to be the main source of genetic
551 variation within populations because neighboring populations tend to have the same species of
552 *Ensifer*.

553 There is suggestive evidence that genetic differentiation among *Medicago* populations
554 may arise in part from geographically structured coevolution with *Ensifer* assemblages. Béna et
555 al. (2005) found evidence that geographically structured diversity in rhizobia potentially
556 influenced geographically structured diversity in the *Medicago* genus in its native Eurasian
557 range. Population genetic differentiation in *Medicago* could result from adaptation to local
558 strains that differ in nitrogen fixation effectiveness. The *E. medicae* lab strain WSM419 is a
559 more effective mutualist than the lab strain *E. meliloti* 1021 (Terpolilli et al. 2008), which if
560 generally true of these species, suggests that the *Ensifer* species common in southern Ontario
561 populations is more effective than the *Ensifer* species common in the southeastern United States.
562 However, it is not necessarily appropriate to extrapolate these lab results to genetically
563 heterogeneous natural populations, given that Béna et al. (2005) showed that rhizobia
564 effectiveness is contingent on the specific legume host, and Terpolilli et al. (2008) evaluated the
565 *Ensifer* species with a single *M. truncatula* genotype.

566 Concordant genetic structure in interacting species may not arise from coevolutionary
567 processes that maintain genetic variation and facilitate future coevolution. The genetic
568 differences between *M. lupulina* populations and geographic turnover in *Ensifer* assemblages
569 could be due to several other processes, including multiple introductions to North America,
570 adaptation to other aspects of the environment, or neutral forces. Local adaptation to the
571 substantial climatic differences between southern Ontario and the southeastern United States
572 (e.g., temperature, precipitation) could contribute to geographic structure in both *Medicago* and
573 *Ensifer*. In addition, *Ensifer* associations with other *Medicago* species in North America, such as
574 *M. sativa* and *M. polymorpha* (Béna et al. 2005; Rome et al. 1996), could be driving large-scale
575 patterns in *Ensifer* species distribution. Genetic structure in *M. lupulina* in its native range has
576 been attributed to self-fertilization (Yan et al. 2009), and likely contributes to the isolation by
577 distance we observed as well. Evaluating the mechanisms behind the geographic trends that we
578 observed is a separate question from the maintenance of genetic variation that ultimately requires
579 manipulative field experiments that are logistically challenging to perform with bacteria (but see
580 Simonsen and Stinchcombe, 2014a). Despite these alternative explanations for the somewhat
581 concordant patterns of geographic structure in *M. lupulina* and its rhizobial mutualist *Ensifer*, the
582 significant potential for coevolution between *M. lupulina* and *Ensifer* assemblages we discovered
583 in this study is worth further investigation. Future work involving experiments testing local
584 adaptation of *M. lupulina* plants to its local *Ensifer* species could reveal additional evidence of
585 coevolution in this system in the its introduced range in North America.

586

587 *Conclusions and Prospects*

588 Comparing spatial genetic structure and genome-wide variation in mutualist partners is
589 an effective approach to determine the potential scale of coevolution between interacting species.
590 Given the relative lack of genome-wide variation within *E. medicae* and *E. meliloti*, differences
591 between *Ensifer* species are the only potential source of coevolutionary selection acting on *M.*
592 *lupulina*. Our study shows how comparing geographic variation in two mutualists is important to
593 understand how variation may be maintained in mutualisms, especially in introduced ranges
594 where processes like gene flow, bottlenecks, and multiple introductions can complicate mutualist
595 interactions.

596

597 **Acknowledgements**

598 We thank Stephen Wright, Nicole Mideo, Benjamin Gilbert, and Megan Frederickson for
599 comments and discussion, Andrew Hall and Bruce Petrie for plant growth assistance, and
600 Maggie Bartkowsksa, Adriana Salcedo, and Billie Gould for bioinformatics advice. Our work is
601 supported by NSERC Discovery Grants and Graduate Scholarships (JRS, TLH), an EEB
602 Departmental Post-Doc Fellowship (CWW), and the National Science Foundation (KDH). We
603 are grateful to Mohamed Noor, Maurine Neiman, and two anonymous reviewers for comments
604 that greatly improved this manuscript.

605

606 **Data accessibility**

607 Sequence data will be made available on NCBI. Input VCF files, Python script, and R scripts
608 will be made available on Dryad (DOI number will be finalized upon acceptance). Sampling
609 locations are available in Table 1 of the Supplemental Materials.

610

611 **References**

612 Anderson, B. and S. D. Johnson. 2007. The geographic mosaic of coevolution in a plant-
613 pollinator mutualism. *Evolution* 62:220–225.

614 Anderson, B., I. Olivier, M. Lourmas and B. A. Stewart. 2004. Comparative population genetic
615 structures and local adaptation of two mutualists. *Evolution* 58:1730–1747.

616 Bailly, X., I. Olivier, B. Brunel, J.C. Cleyet-Marel and G. Béna. 2007. Horizontal gene transfer
617 and homologous recombination drive the evolution of the nitrogen-fixing symbionts of
618 *Medicago* species. *J. Bacteriol.* 189:5223–5236.

619 Bailly, X., I. Olivier, S. De Mita, J.C. Cleyet-Marel and G. Béna. 2006. Recombination and
620 selection shape the molecular diversity pattern of nitrogen-fixing *Sinorhizobium* sp. associated to
621 *Medicago*. *Mol Ecol* 15:2719–2734.

622 Barnett, M. J., R. F. Fisher, T. Jones, C. Komp, A. P. Abola, F. Barloy-Hubler, L. Bowser, D.
623 Capela, F. Galibert, J. Gouzy, M. Gurjal, A. Hong, L. Huizar, R. W. Hyman, D. Kahn, M. L.
624 Kahn, S. Kalman, D. H. Keating, C. Palm, M. C. Peck, R. Surzycki, D. H. Wells, K. C. Yeh, R.
625 W. Davis, N. A. Federspiel and S. R. Long. 2001. Nucleotide sequence and predicted functions
626 of the entire *Sinorhizobium meliloti* pSymA megaplasmid. *Proc. Natl. Acad. Sci. U.S.A.*
627 98:9883–9888.

628 Béna, G., A. Lyet, T. Huguet and I. Olivier. 2005. *Medicago* - *Sinorhizobium* symbiotic
629 specificity evolution and the geographic expansion of *Medicago*. *J. Evol. Biol.* 18:1547–1558.

630 Bravo, A., T. York, N. Pumplin, L. A. Mueller and M. J. Harrison. 2016. Genes conserved for
631 arbuscular mycorrhizal symbiosis identified through phylogenomics. *Nat Plants* 2:15208.

632 Brodie, E.D.J., B.J. Ridenhour, and E.D.III. Brodie. 2002. The evolutionary response of
633 predators to dangerous prey: hotspots and coldspots in the geographic mosaic of coevolution
634 between garter snakes and newts. *Evolution* 56: 2067–82.

635 Castelli, E. C., C. T. Mendes-Junior, A. Sabbagh, I. O. P. Porto, A. Garcia, J. Ramalho, T. H. A.
636 Lima, J. D. Massaro, F. C. Dias, C. V. A. Collares, V. Jamonneau, B. Bucheton, M. Camara and
637 E. A. Donadi. 2015. HLA-E coding and 3' untranslated region variability determined by next-
638 generation sequencing in two West-African population samples. *Hum. Immunol.* 76:945–953.

639 Catchen, J. M., A. Amores, P. Hohenlohe, W. Cresko and J. H. Postlethwait. 2011. Stacks:
640 building and genotyping Loci de novo from short-read sequences. *G3 (Bethesda)* 1:171–182.

641 Catchen, J., P. A. Hohenlohe, S. Bassham, A. Amores and W. A. Cresko. 2013. Stacks: an
642 analysis tool set for population genomics. *Mol Ecol* 22:3124–3140.

643 Charlesworth, B. 1987. The heritability of fitness. Pp. 21-40 in J. Bradbury and M.B. Anderson,
644 eds. *Sexual selection: testing the alternatives*. John Wiley & Sons, London, U.K.

645 Chhatre, V. E. 2012. StrAuto: A Python Program.

646 Cingolani, P., A. Platts, L. L. Wang, M. Coon, T. Nguyen, L. Wang, S. J. Land, X. Lu and D. M.
647 Ruden. 2012a. A program for annotating and predicting the effects of single nucleotide
648 polymorphisms, SnpEff: SNPs in the genome of *Drosophila melanogaster* strain w1118; iso-2;
649 iso-3. Fly (Austin) 6:80–92.

650 Cingolani, P., V. M. Patel, M. Coon, T. Nguyen, S. J. Land, D. M. Ruden and X. Lu. 2012b.
651 Using *Drosophila melanogaster* as a Model for Genotoxic Chemical Mutational Studies with a
652 New Program, SnpSift. Front Genet 3:35.

653 Danecek, P., A. Auton, G. Abecasis, C. A. Albers, E. Banks, M. A. DePristo, R. E. Handsaker,
654 G. Lunter, G. T. Marth, S. T. Sherry, G. McVean, R. Durbin1000 Genomes Project Analysis
655 Group. 2011. The variant call format and VCFtools. Bioinformatics 27:2156–2158.

656 DePristo, M. A., E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire, C. Hartl, A. A.
657 Philippakis, G. del Angel, M. A. Rivas, M. Hanna, A. McKenna, T. J. Fennell, A. M. Kurnytsky,
658 A. Y. Sivachenko, K. Cibulskis, S. B. Gabriel, D. Altshuler and M. J. Daly. 2011. A framework
659 for variation discovery and genotyping using next-generation DNA sequencing data. nature
660 genetics 43:491–498.

661 Didelot, X. and D. Falush. 2007. Inference of bacterial microevolution using multilocus
662 sequence data. Genetics 175:1251–1266.

663 Dray, S. and A. B. Dufour. 2007. The ade4 package: implementing the duality diagram for
664 ecologists. Journal of statistical software.

665 Earl, D. A. 2012. STRUCTURE HARVESTER: a website and program for visualizing
666 STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources
667 4:359–361.

668 Elshire, R. J., J. C. Glaubitz, Q. Sun, J. A. Poland, K. Kawamoto, E. S. Buckler and S. E.
669 Mitchell. 2011. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High
670 Diversity Species. PLoS ONE 6:e19379.

671 Epstein, B., A. Branca, J. Mudge, A. K. Bharti, R. Briskine, A. D. Farmer, M. Sugawara, N. D.
672 Young, M. J. Sadowsky and P. Tiffin. 2012. Population genomics of the facultatively mutualistic
673 bacteria *Sinorhizobium meliloti* and *S. medicae*. PLoS Genet 8:e1002868.

674 Epstein, B., M. J. Sadowsky and P. Tiffin. 2014. Selection on horizontally transferred and
675 duplicated genes in *sinorhizobium (ensifer)*, the root-nodule symbionts of *Medicago*. Genome
676 Biol Evol 6:1199–1209.

677 Evanno, G., S. Regnaut and J. Goudet. 2005. Detecting the number of clusters of individuals
678 using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620.

679 Felsenstein J. 1989. PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5:164–
680 166.

681 Finan, T. M., S. Weidner, K. Wong, J. Buhrmester, P. Chain, F. J. Vorholter, I. Hernandez-

682 Lucas, A. Becker, A. Cowie, J. Gouzy, B. Golding and A. Puhler. 2001. The complete sequence
683 of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont *Sinorhizobium meliloti*.
684 Proc. Natl. Acad. Sci. U.S.A. 98:9889–9894.

685 Frederickson, M. E. 2013. Rethinking mutualism stability: cheaters and the evolution of
686 sanctions. Q Rev Biol 88:269–295.

687 Galibert, F., T. M. Finan, S. R. Long, A. Puhler, P. Abola, F. Ampe, F. Barloy-Hubler, M. J.
688 Barnett, A. Becker, P. Boistard, G. Bothe, M. Boutry, L. Bowser, J. Buhrmester, E. Cadieu, D.
689 Capela, P. Chain, A. Cowie, R. W. Davis, S. Dreano, N. A. Federspiel, R. F. Fisher, S. Gloux, T.
690 Godrie, A. Goffeau, B. Golding, J. Gouzy, M. Gurjal, I. Hernandez-Lucas, A. Hong, L. Huizar,
691 R. W. Hyman, T. Jones, D. Kahn, M. L. Kahn, S. Kalman, D. H. Keating, E. Kiss, C. Komp, V.
692 Lelaure, D. Masuy, C. Palm, M. C. Peck, T. M. Pohl, D. Portetelle, B. Purnelle, U. Ramsperger,
693 R. Surzycki, P. Thebault, M. Vandenbol, F. J. Vorholter, S. Weidner, D. H. Wells, K. Wong, K.
694 C. Yeh and J. Batut. 2001. The composite genome of the legume symbiont *Sinorhizobium*
695 *meliloti*. Science 293:668–672.

696 Gandon, S. and S. L. Nuismer. 2009. Interactions between genetic drift, gene flow, and selection
697 mosaics drive parasite local adaptation. The American Naturalist 173:212–224.

698 Gandon, S., Y. Capowiez, Y. Dubois, Y. Michalakis and I. Olivieri. 1996. Local Adaptation and
699 Gene-For-Gene Coevolution in a Metapopulation Model. Proc. Biol. Sci. 263:1003–1009.

700 Gao, H., S. Williamson and C. D. Bustamante. 2007. A Markov Chain Monte Carlo Approach
701 for Joint Inference of Population Structure and Inbreeding Rates From Multilocus Genotype
702 Data. Genetics 176:1635–1651.

703 Greischar, M. A. and B. Koskella. 2007. A synthesis of experimental work on parasite local
704 adaptation. Ecol. Lett. 10:418–434.

705 Hartl, D.L., and A.G. Clarke. 1989. Principles of Population Genetics. Sinauer Associates,
706 Sunderland, MA.

707 Heath, K. D. and J. R. Stinchcombe. 2013. Explaining mutualism variation: a new evolutionary
708 paradox? Evolution 68:309–317.

709 Hoeksema, J. D. and S. E. Forde. 2008. A meta-analysis of factors affecting local adaptation
710 between interacting species. The American Naturalist 171:275–290.

711 Jakobsson, M. and N. A. Rosenberg. 2007. CLUMPP: a cluster matching and permutation
712 program for dealing with label switching and multimodality in analysis of population structure.
713 Bioinformatics 23:1801–1806.

714 Jones, E. I., M. E. Afkhami, E. Akçay, J. L. Bronstein, R. Bshary, M. E. Frederickson, K. D.
715 Heath, J. D. Hoeksema, J. H. Ness, M. S. Pankey, S. S. Porter, J. L. Sachs, K. Scharnagl and M.
716 L. Friesen. 2015. Cheaters must prosper: reconciling theoretical and empirical perspectives on
717 cheating in mutualism. Ecol. Lett. 18:1270-1284.

718 Kawaharada, Y., S. Kelly, M. W. Nielsen, C. T. Hjuler, K. Gysel, A. Muszyński, R. W. Carlson,
719 M. B. Thygesen, N. Sandal, M. H. Asmussen, M. Vinther, S. U. Andersen, L. Krusell, S. Thirup,
720 K. J. Jensen, C. W. Ronson, M. Blaise, S. Radutoiu and J. Stougaard. 2015. Receptor-mediated
721 exopolysaccharide perception controls bacterial infection. *Nature* 523:308–312.

722 Kimbrel, J. A., W. J. Thomas, Y. Jiang, A. L. Creason, C. A. Thireault, J. L. Sachs and J. H.
723 Chang. 2013. Mutualistic co-evolution of type III effector genes in *Sinorhizobium fredii* and
724 *Bradyrhizobium japonicum*. *PLoS Pathog.* 9:e1003204.

725 Klinger, C. R., J. A. Lau and K. D. Heath. 2016. Ecological genomics of mutualism decline in
726 nitrogen-fixing bacteria. *Proc. Biol. Sci.* 283:20152563.

727 Li, H. and R. Durbin. 2009. Fast and accurate short read alignment with Burrows-Wheeler
728 transform. *Bioinformatics* 25:1754–1760.

729 Lunter, G. and M. Goodson. 2011. Stampy: a statistical algorithm for sensitive and fast mapping
730 of Illumina sequence reads. *Genome Research* 21:936–939.

731 Markmann, K. and M. Parniske. 2009. Evolution of root endosymbiosis with bacteria: How
732 novel are nodules? *Trends Plant Sci.* 14:77–86.

733 McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D.
734 Altshuler, S. Gabriel, M. Daly and M. A. DePristo. 2010. The Genome Analysis Toolkit: a
735 MapReduce framework for analyzing next-generation DNA sequencing data. *Genome Research*
736 20:1297–1303.

737 Meirmans, P. G. and P. H. van Tienderen. 2004. genotype and genodive: two programs for the
738 analysis of genetic diversity of asexual organisms. *Mol Ecol Notes* 4:792–794.

739 Nagano, Y., K. Abe, T. Kitazawa, M. Hattori, A. S. Hirao and T. Itino. 2014. Changes in
740 pollinator fauna affect altitudinal variation of floral size in a bumblebee-pollinated herb. *Ecology*
741 and Evolution 4:3395–3407.

742 Newman, E., J. Manning and B. Anderson. 2015. Local adaptation: Mechanical fit between floral
743 ecotypes of *Nerine humilis* (Amaryllidaceae) and pollinator communities. *Evolution* 69:2262–
744 2275.

745 Nuismer, S. L., J. N. Thompson and R. Gomulkiewicz. 2000. Coevolutionary clines across
746 selection mosaics. *Evolution* 54:1102–1115.

747 Oldroyd, G. E. D. 2013. Speak, friend, and enter: signalling systems that promote beneficial
748 symbiotic associations in plants. *Nat Rev Micro* 11:252–263.

749 Paradis, E., J. Claude and K. Strimmer. 2004. APE: Analyses of Phylogenetics and Evolution in
750 R language. *Bioinformatics* 20:289–290.

751 Parker, M. A. and J. M. Spoerke. 1998. Geographic structure of lineage associations in a plant-
752 bacterial mutualism. *J. Evol. Biol.* 11:549–562.

753 Prévost and E.S.P. Bromfield, D. 2003. Diversity of symbiotic rhizobia resident in Canadian
754 soils. *Can. J. Soil. Sci.* 83:311–319.

755 Pritchard, J. K., M. Stephens and P. Donnelly. 2000. Inference of population structure using
756 multilocus genotype data. *Genetics* 155:945–959.

757 Python Software Foundation. 2010. Python Language Reference, version 2.7.

758 R Core Team. 2016. R: A language and environment for statistical computing. Vienna, Austria.

759 Reeve, W., P. Chain, G. O'Hara, J. Ardley, K. Nandesena, L. Bräu, R. Tiwari, S. Malfatti, H.
760 Kiss, A. Lapidus, A. Copeland, M. Nolan, M. Land, L. Hauser, Y.-J. Chang, N. Ivanova, K.
761 Mavromatis, V. Markowitz, N. Kyrpides, M. Gollagher, R. Yates, M. Dilworth and J. Howieson.
762 2010. Complete genome sequence of the *Medicago* microsymbiont *Ensifer (Sinorhizobium)*
763 *medicae* strain WSM419. *Stand Genomic Sci* 2:77–86.

764 Robinson, J. T., H. Thorvaldsdóttir, W. Winckler, M. Guttman, E. S. Lander, G. Getz and J. P.
765 Mesirov. 2011. Integrative genomics viewer. *Nat. Biotechnol.* 29:24–26.

766 Rome, S., J. C. Cleyet-Marel, L. A. Matheron, P. Normand and B. Brunel. 1997. Rapid
767 identification of *Medicago* nodulating strains by using two oligonucleotide probes
768 complementary to 16S rDNA sequences. *Can. J. Microbiol.* 43:854–861.

769 Rome, S., M. P. Fernandez, B. Brunel, P. Normand and J. C. Cleyet-Marel. 1996. *Sinorhizobium*
770 *medicae* sp. nov., Isolated from Annual *Medicago* spp. *International Journal of Systematic*
771 *Bacteriology* 46:972–980.

772 Rosenberg, N. A. 2004. DISTRUCT: a program for the graphical display of population structure.
773 *Mol Ecol Notes* 4:137–138.

774 Rousset, F. 2008. GENEPOP'007: a complete re-implementation of the genepop software for
775 Windows and Linux. *Mol Ecol Resour* 8:103–106.

776 Rousset, F. 1997. Genetic differentiation and estimation of gene flow from F-statistics under
777 isolation by distance. *Genetics* 145:1219–1228.

778 Sachs, J. L. and E. L. Simms. 2008. The origins of uncooperative rhizobia. *Oikos* 117:961–966.

779 Sachs, J. L., S. W. Kembel, A. H. Lau and E. L. Simms. 2009. In situ phylogenetic structure and
780 diversity of wild *Bradyrhizobium* communities. *Appl. Environ. Microbiol.* 75:4727–4735.

781 Schliep, K. P. 2011. phangorn: phylogenetic analysis in R. *Bioinformatics* 27:592–593.

782 Silva, C., F. L. Kan and E. Martínez-Romero. 2007. Population genetic structure of
783 *Sinorhizobium meliloti* and *S. medicae* isolated from nodules of *Medicago* spp. in Mexico. *FEMS*
784 *Microbiol. Ecol.* 60:477–489.

785 Simonsen, A. K. and J. R. Stinchcombe. 2014a. Herbivory eliminates fitness costs of mutualism

786 exploiters. *New Phytol.* 202:651–661.

787 Simonsen, A. K. and J. R. Stinchcombe. 2014b. Standing genetic variation in host preference for
788 mutualist microbial symbionts. *Proc. Biol. Sci.* 281.

789 Stamatakis, A. 2014. RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of
790 Large Phylogenies. *Bioinformatics* 30:1312-1313.

791

792 Stanton-Geddes, J., T. Paape, B. Epstein, R. Briskine, J. Yoder, J. Mudge, A. K. Bharti, A. D.
793 Farmer, P. Zhou, R. Denny, G. D. May, S. Erlandson, M. Yakub, M. Sugawara, M. J. Sadowsky,
794 N. D. Young and P. Tiffin. 2013. Candidate genes and genetic architecture of symbiotic and
795 agronomic traits revealed by whole-genome, sequence-based association genetics in *Medicago*
796 *truncatula*. *PLoS ONE* 8:e65688.

797 Terpolilli, J. J., G. W. O'Hara, R. P. Tiwari, M. J. Dilworth and J. G. Howieson. 2008. The
798 model legume *Medicago truncatula* A17 is poorly matched for N2 fixation with the sequenced
799 microsymbiont *Sinorhizobium meliloti* 1021. *New Phytol.* 179:62–66.

800 Thompson J.N. 2005. The geographic mosaic of coevolution. 1st ed. University of Chicago
801 Press, Chicago, IL.

802 Thrall, P. H., J. J. Burdon and M. J. Woods. 2000. Variation in the effectiveness of symbiotic
803 associations between native rhizobia and temperate Australian legumes: interactions within and
804 between genera. *Journal of Applied Ecology* 37:52–65.

805 Thrall, P. H., M. E. Hochberg, J. J. Burdon and J. D. Bever. 2007. Coevolution of symbiotic
806 mutualists and parasites in a community context. *Trends in Ecology & Evolution* 22:120–126.

807 Turkington, R. and P. B. Cavers. 1979. The Biology of Canadian Weeds. *Medicago lupulina*.
808 *Can. J. Plant Sci.* 59:99–110.

809 Van der Auwera, G. A., M. O. Carneiro, C. Hartl, R. Poplin, G. del Angel, A. Levy-Moonshine,
810 T. Jordan, K. Shakir, D. Roazen, J. Thibault, E. Banks, K. V. Garimella, D. Altshuler, S. Gabriel
811 and M. A. DePristo. 2013. From FastQ data to high confidence variant calls: the Genome
812 Analysis Toolkit best practices pipeline. *Curr Protoc Bioinformatics* 11:11.10.1–11.10.33.

813 Wernegreen, J. J. and M. A. Riley. 1999. Comparison of the evolutionary dynamics of symbiotic
814 and housekeeping loci: a case for the genetic coherence of rhizobial lineages. *Molecular Biology
815 and Evolution* 1:98–113.

816 Yan, J., H.J. Chu, H.C. Wang, J.-Q. Li and T. Sang. 2009. Population genetic structure of two
817 *Medicago* species shaped by distinct life form, mating system and seed dispersal. *Ann. Bot.*
818 103:825–834.

819

820

821 **Figure Captions**

822 Figures are attached in pdf document named Harrison_figures.pdf

823

824 **Figure 1.** Relationship between geographic distance and genetic distance in *Medicago lupulina*
825 populations. Each point represents a pairwise population comparison. One population was
826 removed from the *M. lupulina* data set because it produced an abnormally high genetic
827 distance value when compared pairwise with other populations (population 11).

828

829 **Figure 2.** Population composition of *E. meliloti* and *E. medicae* in *M. lupulina* populations in
830 North America. Radius of circle corresponds to the number of *M. lupulina* samples collected
831 in the population. Pie charts represent the proportion of plants from each population that
832 were hosting *E. meliloti* (red), *E. medicae* (blue), and an unidentified rhizobia species (grey).
833 Populations are numbered from south to north.

834

835 **Figure 3.** Relationship between geographic distance and Rousset's individual genetic distance in
836 a) total *Ensifer* genus data set (*E. meliloti* and *E. medicae*), b) *E. meliloti*, and c) *E. medicae*.
837 Each point represents a pairwise individual comparison.

838

839 **Figure 4.** Relationship between *M. lupulina* individual genetic distance and *Ensifer* individual
840 genetic distance. Each point represents a pairwise comparison between the genetic distance
841 between two *M. lupulina* individuals and the genetic distance between their two
842 corresponding rhizobia strains.

843

844 **Figure 5.** Population structure of a) *M. lupulina* and b) *Ensifer* genus. Black lines represent
845 population divisions in the sample. Geographic population numbers are listed on the x-axis
846 and are ordered from south populations to north populations.

847

848 **Figure 6.** Phylogenetic analysis of *M. lupulina* (left) and *Ensifer* (right) estimated using genome
849 wide SNPs. Maximum likelihood trees with posterior support given at each node. Circles at
850 nodes indicate varying bootstrap support with the colours white (< 75%), grey (75 < 90%),
851 and black (>90%). Scale bar represents the genetic distance between individuals. Number
852 codes represent populations and individuals within populations. Individuals are also labeled
853 for which rhizobia species they were associated with in the sample (left tree) or which
854 rhizobia species (right tree) they were identified as (red = *E. meliloti* and blue = *E. medicae*).

855

856

857 **Tables**

858

859 **Table 1.** Nucleotide diversity (mean π) of *E. medicae* and *E. meliloti* for different structures of
860 the *Ensifer* genome.

861

	π synonymous	π non-synonymous
Full range sample		
<i>E. medicae</i>		
Chromosome	0.0006108	0.0001117
pSMED01	0.0010950	0.0002371
pSMED02	0.0025284	0.0010754
<i>E. meliloti</i>		
Chromosome	0.0001349	0.0000312
pSymA	0.0005108	0.0003873
pSymB	0.0001449	0.0000362
Southern Ontario sample		
<i>E. medicae</i>		
Chromosome	0.0004844	0.0000931
pSMED01	0.0021592	0.0008977
pSMED02	0.0009104	0.0002091
<i>E. meliloti</i>		
Chromosome	0.0001324	0.0000283
pSymA	0.0005056	0.0003586
pSymB	0.0001338	0.0000383

862

863

864 **Table 2.** Nucleotide diversity (mean π) on nodulation genes and nitrogen fixation genes located
865 on *E. medicae* and *E. meliloti* plasmids.
866

	Number of SNPs	π
<i>E. medicae</i>		
nodA	0	0
nodB	0	0
nodC	2	0.0000761
nifA	0	0
nifB	0	0
nifD	0	0
nifE	1	0.0000359
nifH	3	0.0004896
nifK	0	0
nifN	0	0
nifX	0	0
type III effector 4319	0	0
type III effector 1279	0	0
<i>E. meliloti</i>		
nodA	0	0
nodB	0	0
nodC	1	0.0002755
nifA	0	0
nifB	0	0
nifD	0	0
nifE	0	0
nifH	1	0.0001262
nifK	0	0
nifN	0	0
nifX	0	0
exoU glucosyltransferase	0	0

867
868
869
870
871

Figure 1

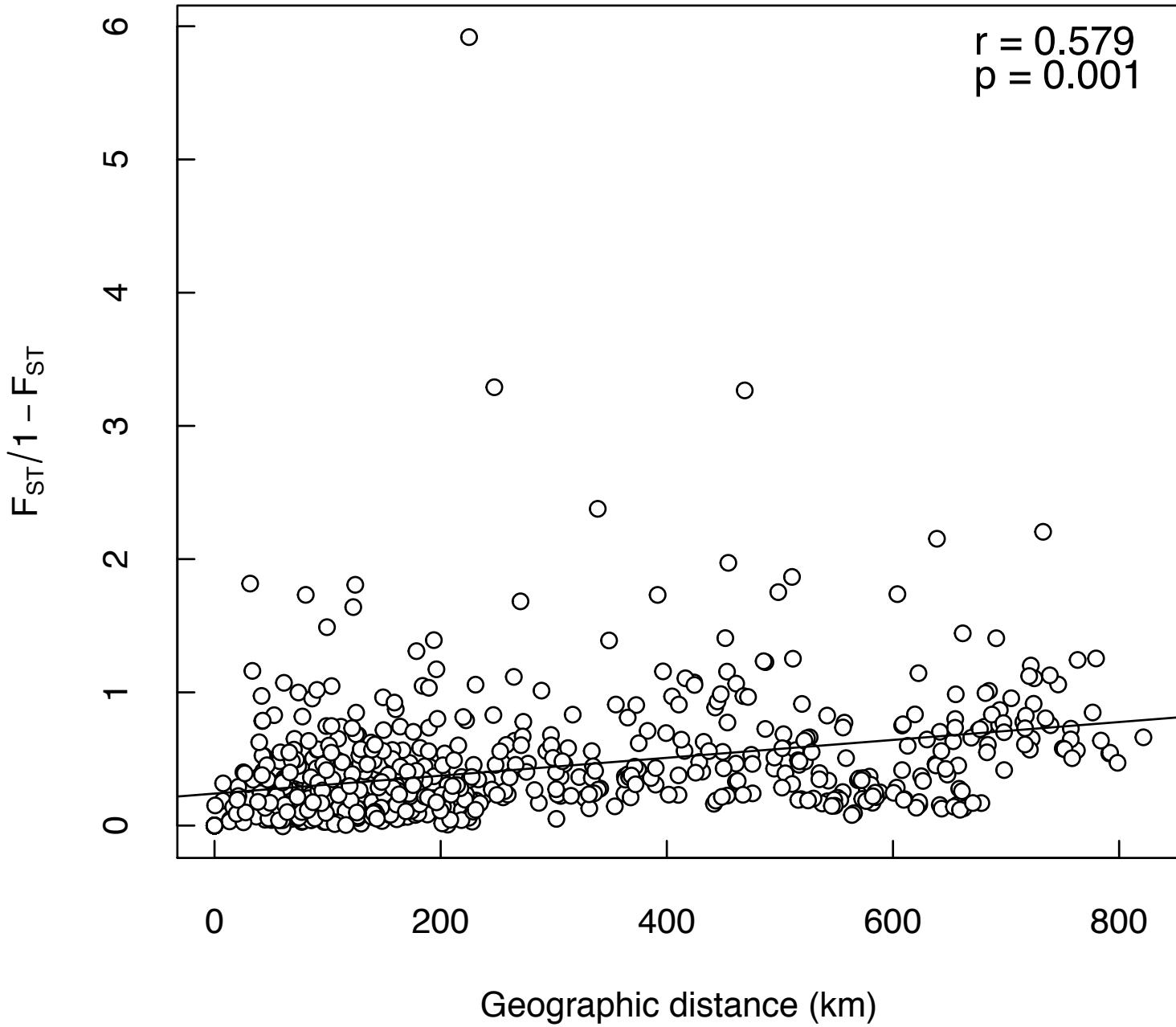


Figure 2

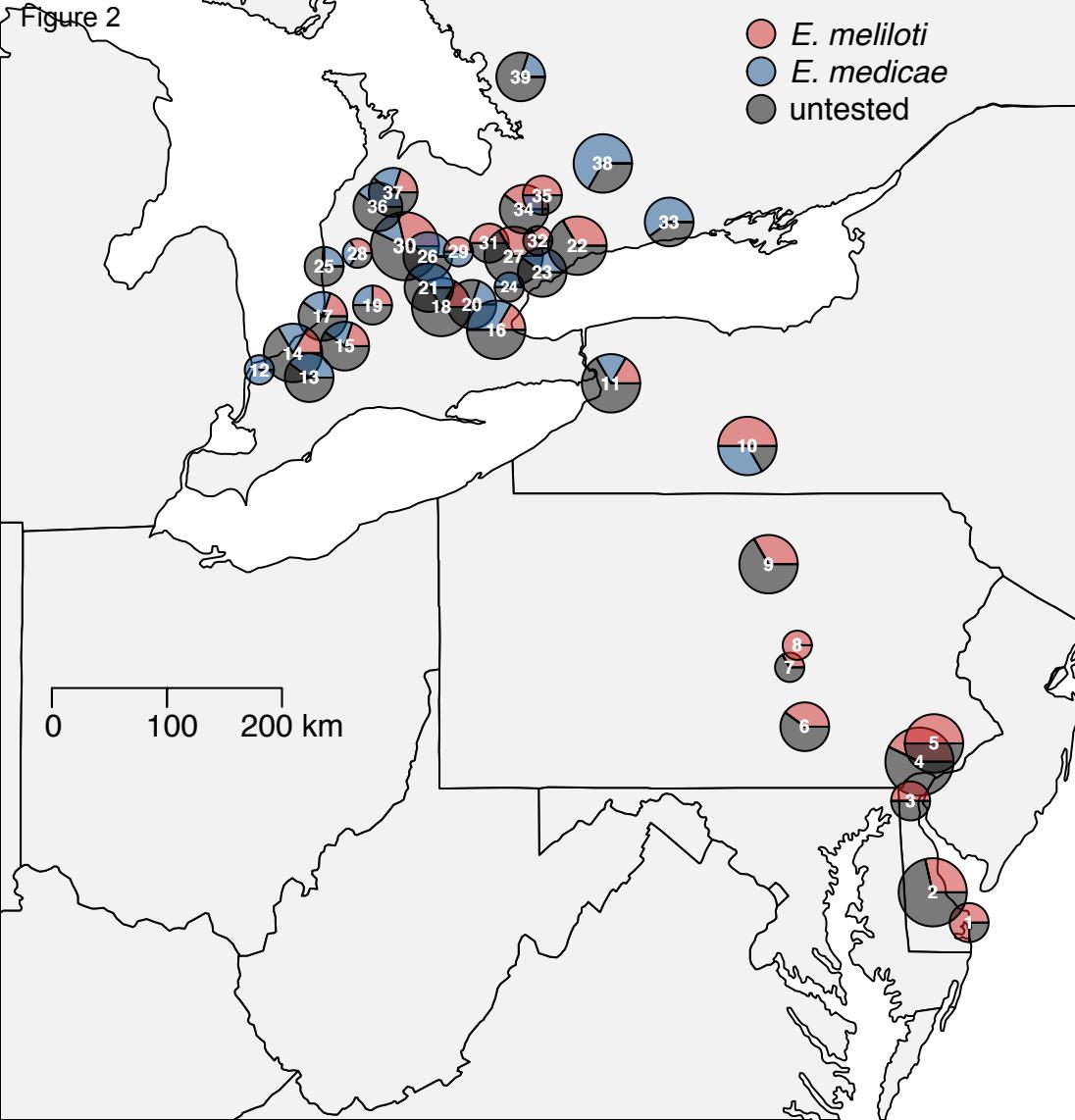


Figure 3

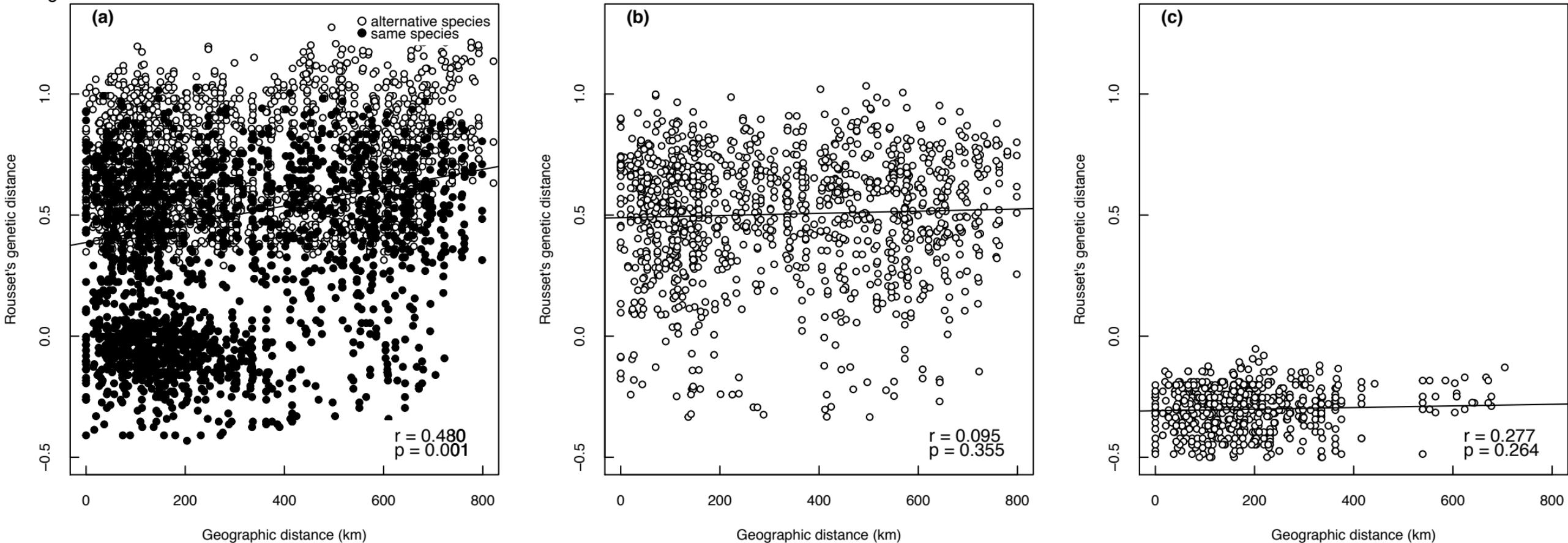


Figure 4

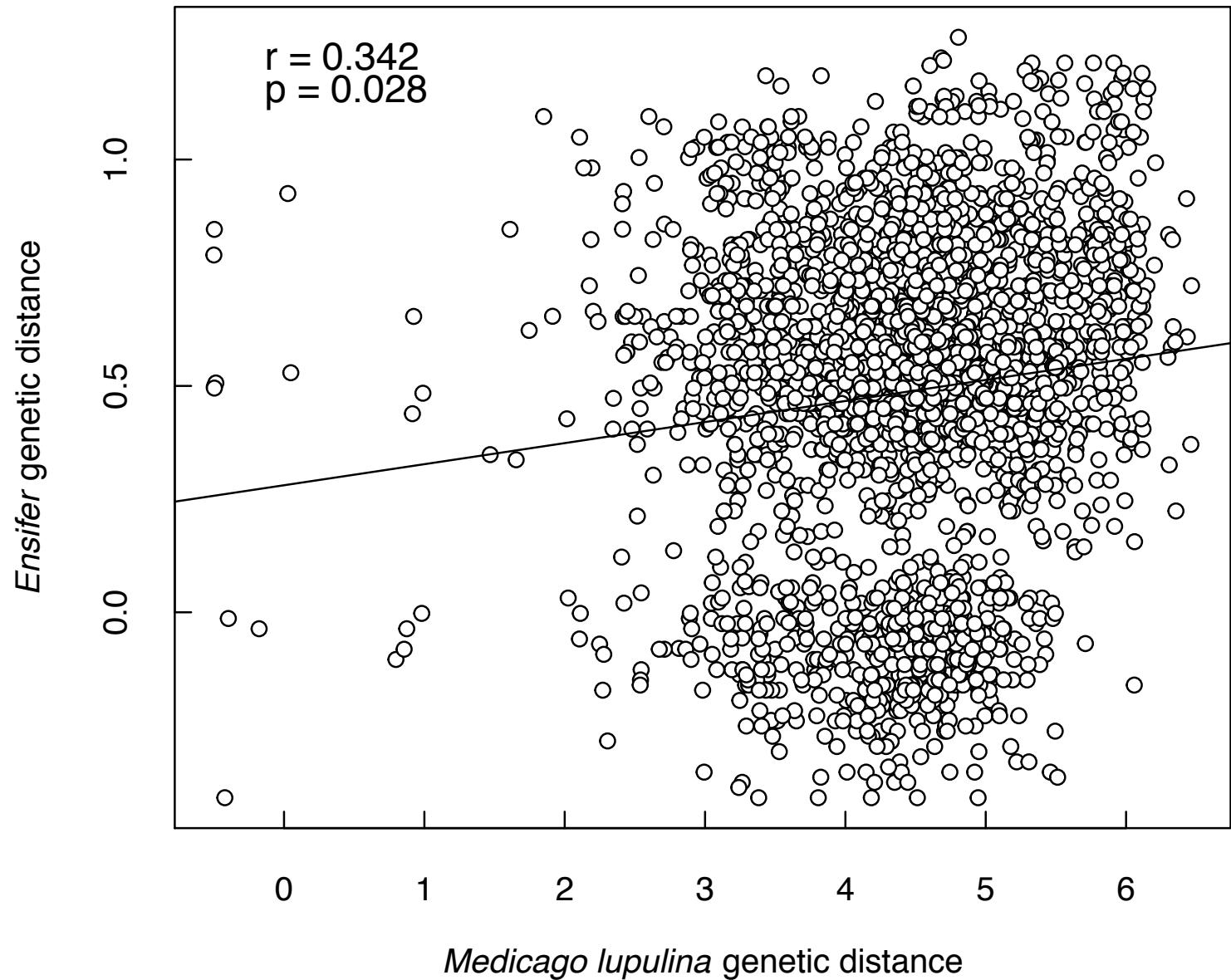


Figure 5

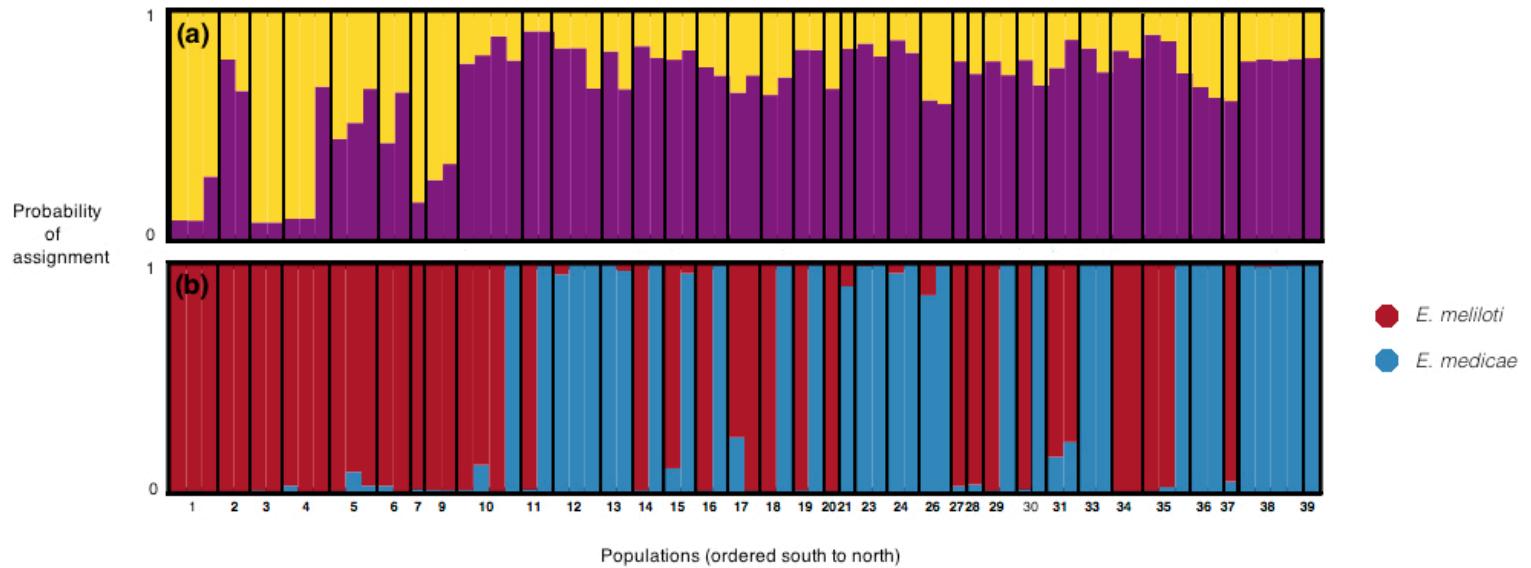
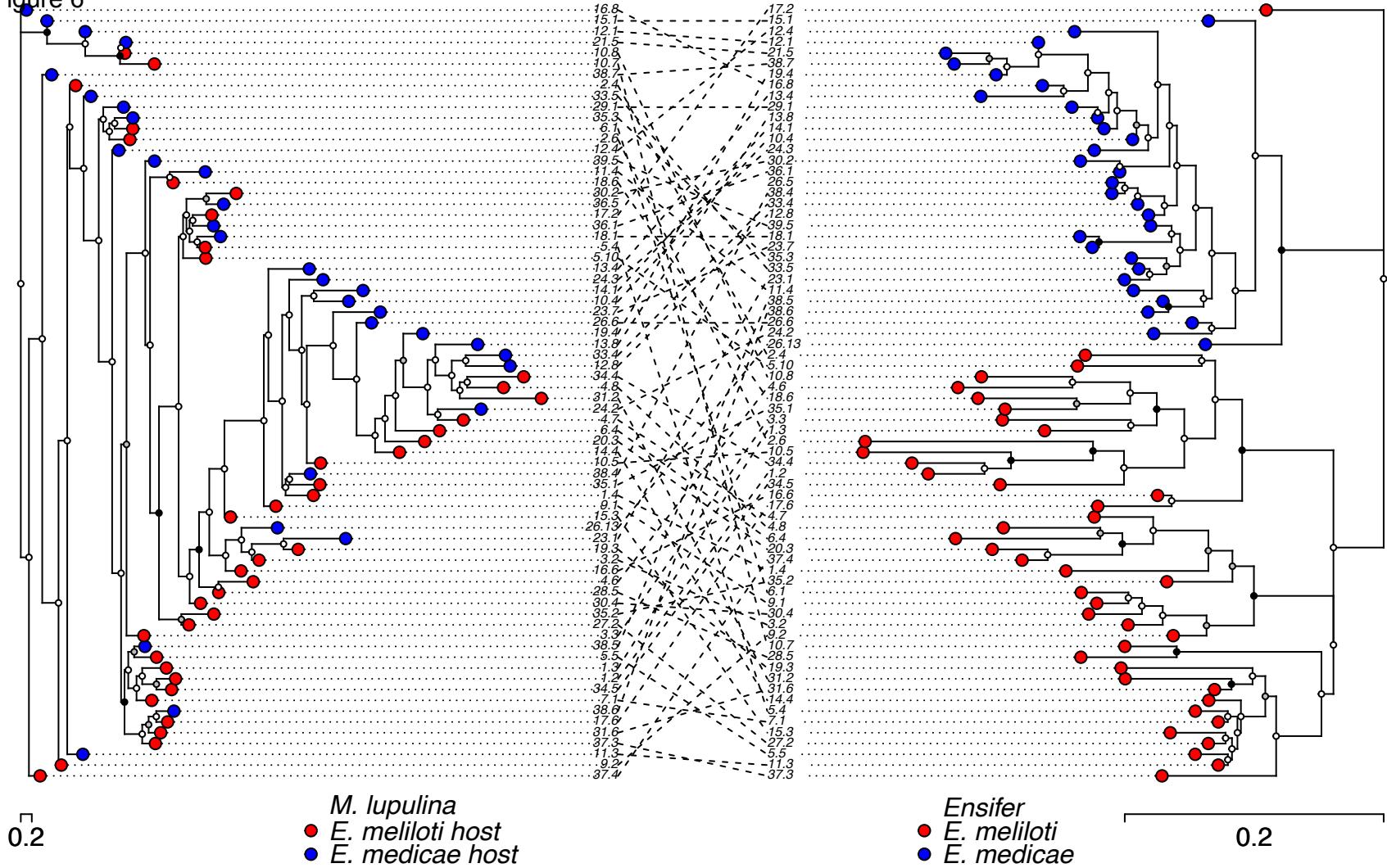



Figure 6

