

Mathew et al.

Stress-induced aggregation of Hsh155

1

2 Genotoxin-induced transcriptional repression regulates selective protein aggregation

3

4 Veena Mathew¹, Annie S. Tam¹, Karissa L. Milbury¹, Analise K. Hofmann², Christopher S.
5 Hughes³, Gregg B. Morin^{3, 4}, Christopher J. R. Loewen², Peter C. Stirling^{1, 4}.

6

7 ¹Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada

8 ²Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British
9 Columbia, Vancouver, Canada

³Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, Canada

10 ⁴Department of Medical Genetics, University of British Columbia, Vancouver, Canada

11 Correspondence to Peter C. Stirling – pstirling@bccrc.ca

12

13 RUNNING TITLE- Stress induced-aggregation of Hsh155

14

15 **Abstract**

16 Upon genotoxic stress, dynamic relocalization events control DNA repair, and alterations of the
17 transcriptome and proteome enabling stress recovery. How these events may influence one
18 another is only partly known. Beginning with a cytological screen for genome maintenance
19 proteins that move under stress, we find that, upon alkylation stress, the splicing factor Hsh155
20 localizes to both intranuclear and cytoplasmic protein quality control aggregates. Under stress, an
21 ordered sequestration of Hsh155 occurs at nuclear and then cytoplasmic aggregates in a manner
22 that is regulated by molecular chaperones. This dynamic behavior is preceded by a decrease in
23 splicing efficiency. While DNA replication stress signaling is not required for Hsh155
24 sequestration, Hsh155 aggregation is cell cycle and TOR pathway dependent. Indeed, loss of a
25 TORC1 regulated ribosomal protein gene transcription factor Sfp1 allows general aggregate
26 formation but prevents Hsh155 recruitment. Together, our analyses suggest a model in which
27 some proteins evicted from chromatin undergoing transcriptional remodeling during stress are
28 targeted to protein quality control sites.

29

30 KEY WORDS – Genotoxic stress / Molecular chaperones / Protein quality control / Splicing /
31 TORC1

32

33 **Introduction**

34 In order to survive chemical or environmental challenges, organisms have evolved a robust
35 network of stress responses that remodel the transcriptome and proteome to enable recovery and,
36 in some cases, future tolerance (Guan et al, 2012). While damaged proteins and RNAs can be
37 turned over, damaged DNA must be repaired in order for cells to continue dividing. However,
38 these DNA repair reactions take place in the context of global changes to the transcriptome and
39 translatome, which help to arrest the cell cycle, and promote survival (Begley et al, 2007; Gasch
40 et al, 2001; Tkach et al, 2012). In *Saccharomyces cerevisiae* (budding yeast), one of the
41 hallmarks of transcriptome remodeling under stress is the suppression of ribosome production
42 which occurs under various conditions and is regulated by TOR-dependant modulation of
43 transcription factors such as Sfp1 (Gasch et al, 2000; Jorgensen et al, 2004; Marion et al, 2004).
44 The ways in which transcriptome alterations impact proteome dynamics under any given stress
45 condition are only partly understood.

46

47 Recent genome-wide cytological screens of yeast strains expressing GFP fusions to most
48 proteins have revealed that genotoxin-induced protein relocalization events effect hundreds of
49 proteins, many of which are not directly involved in DNA repair (Chong et al, 2015; Mazumder
50 et al, 2013; Tkach et al, 2012). For instance, in addition to canonical DNA repair foci, treatment
51 of yeast cells with methyl methanesulfonate (MMS) induced novel peri-nuclear foci containing
52 the proteins Cmr1, Hos2, Apj1 and Pph21 (Tkach et al, 2012). These foci were subsequently
53 recognized to be sites of molecular-chaperone regulated protein quality control (PQC) and
54 renamed intranuclear quality control sites (INQ) (Gallina et al, 2015; Miller et al, 2015). Dozens
55 of proteins have now been localized to the INQ, some of which, such as Mrc1, play a role in
56 recovery from genotoxic stress. Subsequent work on Cmr1 and Hos2 found evidence of roles for

57 these proteins in regulating global transcription in unstressed cells, but failed to make
58 connections of their transcriptional roles to their localization at INQ (Jones et al, 2016).
59 The localization and composition of PQC sites in yeast depend upon many factors including the
60 specific type of stress, growth phase, cellular age, and the substrate under study (Saarikangas &
61 Barral, 2016). Studies of both endogenous proteins and aggregation prone model substrates in
62 actively growing cells have identified at least three classes of yeast PQC compartments:
63 INQ/JUNQ (juxtanuclear quality control); CytoQ (cytoplasmic quality control) and the insoluble
64 protein deposit (IPOD). The key players mediating creation and dissolution of these structures
65 are molecular chaperones, in particular small heat shock proteins such as Hsp42 which promote
66 aggregation, and the disaggregation machinery, including Hsp104 and Hsp70 family members
67 (Reviewed in (Saarikangas & Barral, 2016)).

68
69 Beginning with a focused screen of >600 yeast chromosome instability proteins, here we uncover
70 INQ localization of a core-splicing factor, Hsh155, upon MMS treatment. We establish the
71 dynamics of Hsh155 sequestration and define a regulatory network of proteins controlling its
72 relocalization. Furthermore, we link Hsh155 aggregation to transcriptional repression of
73 ribosomal protein (RP) genes in MMS conditions, which dramatically alter the need for splicing
74 in yeast. These observations suggest unappreciated influence of transcriptome changes on the
75 composition of PQC sites under stress. We propose a model where repression of RP genes, and
76 the concomitant drop in the need for splicing, liberates Hsh155 and other factors for
77 sequestration at PQC sites in a TORC1 dependent manner. Together our data provide new links
78 between transcriptome regulators and PQC site composition under stress, where stress activated
79 TORC1 regulated transcriptional program is controlling the composition of PQC sites.

80 **Results**

81 *A screen for genome stability factors that relocalize after DNA damage identifies Hsh155*

82 To explore dynamic responses of proteins with known roles in genome integrity to genotoxic
83 stresses, we screened a biased mini-array of GFP-fusion proteins comprised entirely of proteins
84 whose mutation is linked to an increase in genome instability (Stirling et al, 2011; Stirling et al,
85 2014). The 632 GFP-tagged genome maintenance proteins were imaged at high resolution after
86 no treatment or exposure to the alkylating agent MMS, ultraviolet (UV) irradiation, or H₂O₂.

87 Candidate relocalization behaviors from the primary screen were validated in triplicate leading to
88 a final list of 41 relocalization events after genotoxic stress (**Supplementary Table S1**). Most
89 relocalization events occurred in all three stresses, and a large majority occurred in at least two
90 conditions, with only 8 appearing under a single stress condition (**Fig.1A**). Comparison of our
91 data to three previously published genome-wide MMS and H₂O₂-induced relocalization screens
92 show a high degree of overlap (i.e. 5/41, 19/41 and 10/41 respectively) (**Fig. 1B**) (Breker et al,
93 2013; Mazumder et al, 2013; Tkach et al, 2012). Most movements occur into or out of the
94 nucleus, or into nuclear or cytoplasmic foci (**Fig.1C, Supplementary Fig. S1**), which, based on
95 their annotation (www.yeastgenome.org), we can ascribe to the formation of aggregates, P-
96 bodies, or DNA repair centers. One unexpected observation was the relocalization of Hsh155-
97 GFP into nuclear and cytoplasmic foci in response to MMS or H₂O₂ (**Fig.1D and E**). Hsh155 is
98 part of the SF3B subcomplex in the U2-small nuclear ribonucleoprotein (snRNP) of the
99 spliceosome. To assess the specificity of Hsh155 relocalization, we tested the relocalization
100 behavior of Hsh155 binding partners within the spliceosome, Cus1 and Hsh49, after MMS
101 treatment but did not observe any change in their localization (**Fig.1F**). Nuclear Hsh155 foci did
102 not colocalize with canonical DNA damage repair proteins making a direct role in DNA repair

Mathew et al.

Stress-induced aggregation of Hsh155

103 unlikely (**Supplementary Fig. S2A**). Our data thus defines a previously unrecognized and
104 selective relocalization of Hsh155 to foci after alkylating and oxidative genotoxic stress.

105

106 *Hsh155 foci are protein aggregates*

107 The formation of a single focus peripheral to the nucleus by Hsh155 was similar to the recently
108 described intranuclear quality control (INQ) compartment, which contains Cmr1, Hos2 and
109 many other proteins (Gallina et al, 2015; Miller et al, 2015; Tkach et al, 2012). Indeed, Hsh155-
110 GFP colocalized with Hos2-mCherry at both cytoplasmic and nuclear foci after MMS (**Fig.2A**).

111 To confirm that these were indeed sites of protein aggregation, we also co-localized Hsh155-
112 GFP with VHL-mCherry, a protein that cannot fold in yeast and is targeted to aggregates under
113 various stresses (McClellan et al, 2005). Hsh155 and VHL were significantly co-localized in
114 MMS (**Fig.2B**), although Hsh155-GFP did not join VHL foci at high temperature alone

115 (**Supplementary Fig. S2B**). The aggregates of both Hos2 and VHL have been shown clearly to
116 localize in both nucleus and cytoplasm (Miller et al, 2015). To differentiate and confirm the
117 compartmental sequestration of Hsh155, we further used Hta2 (histone H2A) and Nic96 (nuclear
118 pore protein) as markers of nuclear area (**Supplementary Fig. S2C**). Consistent with localizing
119 in an aggregated state, fluorescence recovery after photobleaching (FRAP) analysis of nuclear
120 Hsh155-GFP or Hos2-GFP foci confirmed a large immobile fraction for each protein (~ 50%)
121 similar to known aggregates of PQC (Saarikangas & Barral, 2015), and a recovery time ($t_{1/2}$)
122 ~25s) much slower than freely diffusing proteins (**Fig. 2C**). These results thus identify the core-
123 splicing factor Hsh155 as a new constituent of the INQ protein aggregate compartment following
124 genotoxic stress.

125

Mathew et al.

Stress-induced aggregation of Hsh155

126 To examine the effects of new protein synthesis or degradation on the Hsh155 foci formation, we
127 treated cells with the proteasome inhibitor MG132 or the translation inhibitor cycloheximide
128 (CHX) alone or in combination with MMS. Similar to earlier studies on other INQ components
129 (Gallina et al, 2015), MG132 treatment alone induced Hsh155 sequestration to INQ sites while
130 CHX alone had no effect on Hsh155 localization (**Fig. 2D and E**). Consistently, MG132 in
131 combination with MMS significantly increased the number of cells with foci suggesting that
132 protein degradation works in opposition to aggregate formation or to reduce aggregate lifetime
133 (**Fig. 2D**). Remarkably, combined treatment of cells with MMS and CHX completely abolished
134 Hsh155 foci (**Fig. 2E**). New protein synthesis has been shown to be essential for heat-stress
135 aggregates (Zhou et al, 2014) and it is possible that the same is true for INQ foci aggregation
136 with MMS. In addition, the stability of Hsh155 in cells did not appear to change significantly
137 following MMS treatment suggesting that the influence of MG132 on foci formation may be due
138 to other factors rather than Hsh155 itself being a target of degradation (**Fig. 2F; Supplementary**
139 **Fig. S2D**).

140

141 *Dynamic behaviour of Hsh155 at PQC sites*

142 Stress-induced formation of the INQ compartment was reported relatively recently and its
143 dynamics and relationship with other sites of PQC are not well understood. To explore the
144 dynamics of Hsh155 localization to both nuclear and cytoplasmic PQC sites, we first followed
145 Hsh155 foci formation over time. Hsh155 rapidly accumulates at nuclear foci, followed by
146 gradual increases in the frequency of additional cytoplasmic foci (**Fig. 3A**), while washout of
147 MMS led to a gradual decrease of foci and recovery of normal Hsh155 nuclear localization (**Fig.**
148 **3B**). Not only does the frequency of foci increase, but the fluorescence intensities of Hsh155 in
149 nuclear and cytoplasmic foci gradually increased over time until three hours, with cytoplasmic

Mathew et al.

Stress-induced aggregation of Hsh155

150 foci starting dimmer at early timepoints but matching INQ intensities by 3 hours (**Fig. 3C**;
151 **Supplementary Fig. S3A**). These results indicate that the clearance of INQ structures proceeds
152 rapidly after stress removal and that, during prolonged stress, the triage pathway shifts from
153 immediate nuclear deposition to a delayed cytoplasmic aggregate deposition.

154
155 To assess the aggregation behaviour of Hsh155 over its protein lifetime, we applied a fluorescent
156 reporter tandem fusion approach in which both a fast folding GFP and a slowly maturing
157 mCherry are fused in tandem and the fluorescence ratio of each fluorophore is an indicator of
158 protein turnover rate (Gallina et al, 2015; Khmelinskii et al, 2012). C-terminally tagged Hsh155-
159 GFP: mCherry protein fluorescence ratios in the nuclear or cytoplasmic aggregates were
160 measured after 2 hours in MMS. This experiment revealed that a significantly older pool of
161 Hsh155 (i.e. lower GFP: mCherry ratio) appears in INQ compared to cytoplasmic aggregates
162 (**Fig. 3D**), confirming the sequestration of Hsh155 to INQ first then to cytoplasmic aggregates.
163 The protein turnover rates of the untreated nucleoplasmic signal remain comparable to those
164 after MMS treatment (**Supplementary Fig. S3B**). Together these data reveal the dynamics of
165 Hsh155 under stress and suggest it is first sequestered at INQ sites for refolding and reactivation
166 until stress recovery and only later triaged to cytoplasmic aggregates, possibly more so for
167 nascent Hsh155 since a ‘younger’ pool of protein appears to populate cytoplasmic aggregates.

168
169 *INQ resident proteins regulate Hsh155 sequestration*
170 A previous study of INQ aggregates identified several poorly characterized marker proteins that
171 exhibited foci formation under MMS treatment, namely, Cmr1, Hos2, Apj1 and Pph21 (Tkach et
172 al, 2012). Cmr1 has been implicated in the recovery from DNA damage stress and has been
173 recently linked, together with Hos2, in global transcriptional regulation (Gallina et al, 2015;

174 Jones et al, 2016). Pph21 is one of two protein phosphatase 2A catalytic subunits with
175 pleiotropic functions in the cell, including opposing TOR functions in nutrient signaling (Duvel
176 et al, 2003; Jiang & Broach, 1999). Apj1 is a poorly characterized Hsp40 molecular chaperone
177 family member. To shed light into their functions at INQ, we measured the effects of deleting
178 their encoding genes on Hsh155 foci formation. Deletion of any of these genes significantly
179 increased the number of cells with MMS-induced Hsh155 foci, and shifted the distribution to
180 create more cytoplasmic foci (**Fig. 4A and B**). How each of these INQ markers regulate Hsh155
181 sequestration may differ and depend on their specific functions in cell (see Discussion).
182 Reciprocally, an *HSH155*-DAmP (Breslow et al, 2008) allele increased the frequency of Hos2-
183 GFP and Apj1-GFP foci in both INQ and cytoplasmic sites after MMS treatment (**Fig. 4C**).
184 Given the core role of Hsh155 in splicing, and the fact that a DAmP allele would simply reduce
185 the amount of wild type protein, suggests that defective splicing may influence the formation of
186 protein aggregates upon MMS treatment.

187

188 *A network of molecular chaperones regulates Hsh155 PQC site deposition*

189 Apj1 is a molecular chaperone of the Hsp40/DnaJ family, which our data suggest opposes
190 Hsh155 localization to both nuclear and cytoplasmic foci (**Fig. 4A**). Indeed, chaperones regulate
191 INQ localization of Cmr1 (Gallina et al, 2015). Previous work has implicated compartment
192 specific aggregases Hsp42 and Btn2 in driving substrates to cytoplasmic and nuclear PQC sites
193 respectively (Miller et al, 2015). Surprisingly, deletion of either *HSP42* or *BTN2* almost
194 completely abrogated Hsh155 localization to both INQ and cytoplasmic PQC sites (**Fig. 5A and**
195 **C**). Although the distribution of foci between INQ and cytoplasm in *btn2Δ* was similar to WT a
196 slight increase in cytoplasmic foci was seen (**Supplementary Fig. S4A**). While this conflict with
197 reports of compartment specific functions of Hsp42 and Btn2 when analyzing model aggregating

Mathew et al.

Stress-induced aggregation of Hsh155

198 substrate proteins (Miller et al, 2015), it is consistent with redundant effects of Hsp42 and Btn2
199 on Cmr1-YFP foci (Gallina et al, 2015). Therefore, at least for some endogenous protein
200 substrates of INQ, both Hsp42 and Btn2 promote aggregate localization in the nucleus and
201 cytoplasm. Our MMS washout results (**Fig. 3B**) suggest refolding and reactivation of Hsh155 to
202 its native form after stress removal, indicating participation of disaggregases in the process. This
203 led us to interrogate loss of disaggregases Hsp104 and Sse1, which work together in prion
204 destabilization (O'Driscoll et al, 2015). Deletion of *HSP104* and *SSE1* dramatically increased the
205 frequency of PQC sites marked by Hsh155 in MMS, increasing the number of cells with
206 predominantly more cytoplasmic aggregates (**Fig 5B, Supplementary Fig. S4B**). Deletion of
207 *SSE1* led to formation of Hsh155 foci even without MMS (**Fig. 5B**) and shifted the foci to more
208 cytoplasmic aggregates (**Supplementary Fig. S4B**) indicating that Sse1 may be involved in *de*
209 *novo* folding of Hsh155 or that *sse1Δ* yeast experience ongoing stress that affects spliceosome
210 integrity. Together our data show how a network of chaperones acting as disaggregases
211 (Hsp42/Btn2) or disaggregases (Apj1/Hsp104/Sse1) regulate Hsh155 localization to INQ and
212 cytoplasmic PQC sites after stress (**Fig. 5C**).
213

214 *Hsh155 foci formation is cell cycle dependent*

215 One of the major responses to MMS treatment is DNA replication stress and subsequent
216 signaling propagated through the kinases ATM/Tel1 and ATR/Mec1 (Gasch et al, 2001; Tkach et
217 al, 2012). We wondered whether Hsh155 itself could be required for survival in response to
218 genotoxins, however *hsh155*-temperature sensitive mutants (*hsh155-ts*) did not show a growth
219 defect in MMS, making a direct role in DNA repair unlikely (**Fig. 6A**). Likewise, though we saw
220 an overall increase in signal intensities with hydroxyurea (HU), which induces replication stress
221 without the chemical DNA lesions induced by MMS, consistent with a recent report (Chong et

Mathew et al.

Stress-induced aggregation of Hsh155

222 al, 2015), we failed to observe any significant foci formation, suggesting that stalling DNA
223 replication alone is insufficient for Hsh155 foci formation (**Fig. 6B**). To interrogate the function
224 of DNA damage signaling in Hsh155 PQC site localization, we measured PQC foci formation in
225 a strain lacking both yeast ATM (*tel1Δ*) and ATR (*mec1Δ*). Hsh155 foci formed normally in the
226 *mec1Δtel1Δ* mutant compared to wildtype or to *sml1Δ* (*SML1* deletion permits viability of *mec1Δ*
227 strains) cells, suggesting that DNA damage signaling is not required for aggregation (**Fig. 6C**).
228 Interestingly, a significant number of cells exhibited Hos2-GFP aggregates in the
229 *mec1Δtel1Δ* mutant even in unstressed cells and this was further enhanced in MMS (**Fig. 6C**,
230 **Supplementary Fig. S5A**). This shows that Hos2 foci formation also does not require DNA
231 damage signaling but suggests that stress in the *mec1Δtel1Δ* mutant is sufficient to promote Hos2
232 but not Hsh155 aggregation. These data support the idea that while INQ components like Hos2
233 and Hsh155 can have co-dependent relationships at PQC sites, they can be governed by
234 independent upstream signals driving sequestration to PQC sites. Furthermore, since MMS is
235 known to arrest cells in S-phase (Shirahige et al, 1998), we synchronized cells either in G1 or
236 G2/M prior to MMS treatment to determine whether passage into S-phase was required for foci
237 formation. While α-factor arrested G1 cells formed Hsh155 foci readily upon MMS treatment,
238 nocodazole arrested G2/M cells formed very few foci (**Fig. 6D** and **Supplementary Fig. S5B**).
239 This shows that MMS-induced replication stress is not the trigger for Hsh155 foci since cells
240 need not enter S-phase in MMS to cause Hsh155 foci, consistent with our data showing
241 *mec1Δtel1Δ* has no effect on Hsh155 foci. Together these data show that neither MMS-induced
242 DNA replication stress nor canonical DNA damage signaling is necessary for Hsh155
243 sequestration at PQC sites and the aggregates are likely formed predominately in G1/S cells.
244

245 *Ribosomal protein gene transcriptional regulation and TORC1 influences Hsh155 sequestration*

246 Since Hsh155 is an essential splicing factor we wondered whether the relocalization behavior

247 was linked to the stress-induced remodeling of the transcriptome occurring in MMS. We first

248 analyzed splicing efficiency using a LacZ reporter construct (Palancade et al, 2005) and found

249 that, while MMS treatment reduced LacZ production from both an intronless and intron-

250 containing construct, the intron-containing construct was further repressed, suggesting an

251 additional post-transcriptional splicing defect (**Fig. 7A**). Measuring splicing in strains bearing the

252 *hsh155-ts* allele confirmed that loss of Hsh155 function leads to a dramatic splicing defect

253 (**Supplementary Fig. S6A**). Interestingly, the splicing defect was evident within 30 minutes,

254 well before most cells show detectable INQ foci (**Supplementary Fig. S6B**). This is consistent

255 with the idea that spliceosomes must disassemble in response to MMS treatment prior to Hsh155

256 aggregation and is supported by observations that other splicing factors tested, including binding

257 partners of Hsh155, did not relocalize in MMS conditions (**Fig. 1F**).

258

259 Splicing flux in yeast is dominated by the production of ribosomal proteins (RPs), the majority of

260 which encode an intron and whose transcripts account for ~90% of splicing reactions (Parenteau

261 et al, 2011). It has long been known that RP genes are specifically repressed upon stress as part

262 of a transcriptional program dubbed the Environmental Stress Response (ESR) (Gasch et al,

263 2000). Recent studies indicate that RP expression can also be regulated post-transcriptionally by

264 selective splicing under stresses, including MMS (Gabunilas & Chanfreau, 2016; Parenteau et al,

265 2011). Our own whole proteome analysis revealed this bias to gene repression as 418 proteins

266 were repressed and only 75 were more abundant after MMS treatment (**Fig. 7B; Supplementary**

267 **Table S2**). Gene Ontology analysis of the cellular functions impacted highlights strong

268 repression of transcription and translational processes (**Supplementary Table S3**). Specifically,

Mathew et al.

Stress-induced aggregation of Hsh155

269 our analysis confirmed a dramatic decrease in RP levels (**Fig. 7B; Supplementary Fig. S6C** and
270 **Supplementary Table S2**); 9% of the down regulated proteins are encoded by intron-containing
271 genes and this is driven by RP gene repression since all but four depleted and spliced proteins
272 encode RPs (96%) (**Fig. 7B; Supplementary Fig. S6C**). Our results indicate that Hsh155
273 localizes to PQC sites precisely under conditions when its needed splicing function in the cell,
274 RP production, is repressed. Indeed, our cell cycle analysis (**Fig. 6D**) showing foci in G1 but not
275 G2/M is consistent with this model since ribosome production is required to progress through G1
276 (Bernstein & Baserga, 2004) while rRNA production at least is transiently decreased during
277 mitosis (Clemente-Blanco et al, 2009). TOR signaling is known to regulate ribosome biogenesis
278 normally and coordinate its repression under stress (Martin et al, 2004). Remarkably, co-
279 treatment of cells with the TORC1 inhibitor rapamycin strongly suppressed MMS-induced
280 Hsh155-GFP foci formation (**Fig. 7C**). Genetic perturbation of the TORC1 pathway through
281 mutation of a Tor1/2 stabilizing chaperone *ASA1* (Stirling et al, 2011), or the essential TORC1
282 cofactor *KOG1* (Loewith et al, 2002), also significantly reduced the frequency of Hsh155-GFP
283 foci (**Fig. 7D**). Overall, this suggested that RP repression, mediated by TORC1 signaling, could
284 be influencing the dynamic behavior of Hsh155 in MMS.

285

286 *TORC1 influences sequestration of transcription regulators to PQC through Sfp1*

287 The effects of TORC1 on RP gene expression are mediated through downstream effects on a
288 group of transcriptional activators, including Hmo1, Ifh1, and Sfp1 (Reja et al, 2015; Schawalder
289 et al, 2004; Xiao et al, 2011). Mutation of constitutive TORC1-regulated, RP gene transcriptional
290 activators such as Hmo1 or Ifh1 either had no effect or caused a subtle decrease in the frequency
291 of Hsh155-GFP foci (**Supplementary Fig. S6D**). Hmo1 and Ifh1 directly regulate RP gene
292 expression but do not have an established role in the ESR. On the contrary, Sfp1 is a RP gene

Mathew et al.

Stress-induced aggregation of Hsh155

293 transcription factor that interacts with and is regulated by TORC1 signaling specifically under
294 stress (Lempainen et al, 2009). Normally, Sfp1 is displaced from RP gene promoters under
295 stress and is localized to the cytosol to effect rapid adaptation of RP genes to stress (Jorgensen et
296 al, 2004; Marion et al, 2004). In the absence of the Sfp1, RP genes are still transcribed but are
297 not repressed under stress (Marion et al, 2004). To test the effects of removing this dynamic RP
298 gene repression we assessed INQ formation in *sfp1* Δ cells. Remarkably, while INQ protein
299 aggregates marked by Apj1-GFP still formed normally in MMS-treated *sfp1* Δ cells, Hsh155-GFP
300 foci were completely abrogated and Hos2-GFP and Cmr1-GFP foci were also significantly
301 reduced in frequency (**Fig. 8A and B**). Thus, loss of Sfp1 does not preclude the formation of
302 aggregates; rather it controls the specific endogenous proteins that are recruited to the aggregates
303 under stress.

304

305 Interestingly, like the spliceosome, Cmr1 and Hos2 have been linked to RP gene expression and
306 bind to RP gene promoters (Jones et al, 2016). Together with our data, this suggests that a
307 precipitous drop in RP gene expression might be involved in evicting Hsh155, Hos2, and Cmr1
308 from the chromatin and enabling their sequestration at PQC sites. To assess this possibility, we
309 combined published microarray data on *sfp1* Δ cells (Marion et al, 2004) with Cmr1 occupancy
310 data in wild type cells by chromatin immunoprecipitation (ChIP) (Jones et al, 2016). This
311 analysis showed that Cmr1-occupied genes are significantly down regulated in *sfp1* Δ cells,
312 supporting the idea that the two factors have common targets (**Fig. 8C and D; Supplementary**
313 **Table S4**). Interestingly, analysis of the Cmr1 ChIP occupancy data also indicates that there is
314 significantly more Cmr1 occupancy at spliced genes (average Cmr1 occupancy for 274 spliced
315 genes -0.13 and average occupancy for all genes- 0.046) in wild type cells (**Supplementary Fig.**

316 **S6E and Supplementary Table S4).** Thus, genes regulated by Cmr1 and Sfp1 overlap and are
317 enriched for spliced genes where Hsh155 will act. Together these data support a model where
318 stress-induced transcriptional changes at RP genes and a precipitous drop in RP gene expression
319 regulated by Sfp1 liberate spliceosomes and transcriptional regulators such as Hos2 and Cmr1.
320 These factors can then be captured in protein aggregates in the nucleus, and eventually the
321 cytoplasm, and sequestered until stress passes (**Fig. 8E**, see Discussion below).

322

323 **Discussion**

324 *Hsh155 - a new INQ localizing protein*

325 The INQ is a relatively poorly characterized PQC site for nuclear proteins. Our data establishes
326 several new principles governing INQ formation and substrate protein recruitment. We show that
327 INQ substrates can fall into at least two categories, those like Cmr1 that are wholly restricted to
328 nuclear aggregates (Gallina et al, 2015), and those like Hsh155, Hos2 or Apj1 that, over time,
329 accumulate in cytoplasmic foci. This could suggest that the capacity of INQ is regulated and
330 proteins exceeding its ability to sequester are shunted to cytoplasmic aggregates sequentially
331 making the latter an overflow compartment, or that both nuclear and cytoplasmic pool of
332 proteins aggregate independently with different kinetics. A previous study (Miller et al, 2015)
333 has indicated a simultaneous accumulation of substrates in both INQ and cytoplasmic PQC's
334 regulated by chaperones like Sis1 and nuclear import factors. Moreover, our tandem-fluorescent
335 fusion data suggest that nascent Hsh155 accumulates in cytoplasmic aggregates compared with
336 INQ and therefore we favor a model in which Hsh155 is not actively transported from INQ to
337 cytoplasmic aggregates. In addition, since we show that INQ residents like Apj1 or Hos2 still
338 localize to aggregates under conditions where Hsh155 does not (i.e. in MMS-treated *sfp1Δ* cells

Mathew et al.

Stress-induced aggregation of Hsh155

339 for Apj1; spontaneously in *mec1Δtel1Δ* cells for Hos2), there must be separate upstream signals
340 for the formation of aggregates and the recruitment of specific endogenous proteins. Thus, the
341 formation of the aggregate itself is insufficient to recruit a labile protein; rather signals which
342 perturb Hsh155 structure or interactions must occur prior to its recruitment.

343

344 We also found that INQ markers Cmr1, Hos2, Apj1 and Pph21 affect the frequency of Hsh155
345 foci. However, based on the annotated functions of these proteins we propose that there may be
346 different mechanisms by which this occurs. Apj1 is homologous to Hsp40, a molecular
347 chaperone, and we predict that it plays a role in stabilizing soluble Hsh155 in the nucleus and
348 cytoplasm. Cmr1 and Hos2 are now known to affect transcription and ribosomal protein gene
349 expression (Jones et al, 2016) and thus deletions would disrupt the levels of spliced transcripts,
350 potentially sensitizing cells to sequester Hsh155 in PQC's under stress. Finally, Pph21 opposes
351 TORC1 dependant phosphorylation of Tap42 (Jiang & Broach, 1999), which would be partly
352 alleviated in *pph21Δ* cells and associated with a stronger TORC1 signal to Sfp1 under stress.

353 This potentially explains why rapamycin treatment blocked Hsh155 foci formation, while
354 *pph21Δ* cells were sensitized to accumulate Hsh155 foci. Thus, while each of these INQ proteins
355 fits into a model of stress-signaling induced transcriptional changes leading to protein
356 aggregation, there are many remaining questions about how and why this subset of proteins are
357 sequestered at the INQ and whether they are inactive aggregated substrates or are exerting their
358 enzymatic activities (i.e. lysine deacetylation by Hos2, or S/T dephosphorylation by Pph21)
359 within the INQ.

360

Mathew et al.

Stress-induced aggregation of Hsh155

361 The role of molecular chaperones at protein aggregates is clearer and we identify well known
362 disaggregase and aggregases affecting Hsh155 deposition at aggregates. Interestingly, as with
363 Cmr1, Hsh155 localization is regulated by both Btn2 and Hsp42. Unlike Cmr1, Hsh155 is also
364 deposited at cytoplasmic aggregates and this behavior is also abolished in cells lacking *BTN2* or
365 *HSP42*. This supports a common function for Btn2 and Hsp42 in aggregation processes,
366 although whether they are functionally redundant, work in a complex, or act through their
367 influence on another protein is unknown. Deletion of the disaggregase *HSP104* dramatically
368 increased the frequency of Hsh155 foci in the presence of MMS indicating possible role in
369 refolding and reactivation of Hsh155 after stress recovery. *SSE1* deletion led to spontaneous
370 Hsh155 foci suggesting a constitutive role for Sse1 in spliceosomal integrity.

371

372 *Linking transcriptome remodeling and protein quality control*
373
374 The coordination of changes in the transcriptome and proteome are essential to reestablish
375 cellular homeostasis after stress. Temporary protein sequestration or turnover in aggregate
376 structures is one way that such homeostasis is achieved (Saarikangas & Barral, 2016; Wallace et
377 al, 2015). The degree to which the DNA damage response to MMS treatment affects these
378 peripheral stress responses is unknown. Here we find that neither entry into S-phase nor
379 signaling through Tel1 or Mec1 are required to form Hsh155 INQ foci, suggesting that Hsh155
380 aggregation is largely independent of canonical DNA damage signaling emanating from the
381 recognition of MMS-damaged DNA.

382

383 Instead, we propose that the transcriptional response to MMS is the ultimate driver of Hsh155
384 aggregation. Spliced transcripts are dramatically affected by MMS treatment because RP
385 production is shut-down and RP genes encode the majority of spliced transcripts in yeast. Thus,

Mathew et al.

Stress-induced aggregation of Hsh155

386 Hsh155 is no longer engaged in bulk splicing at RP genes under stress. This situation may also
387 apply to Cmr1 and Hos2, which bind to RP genes during transcription and may be evicted during
388 transcriptional repression (Jones et al, 2016). These dynamics at RP genes are initiated by
389 TORC1-dependant relocalization of Sfp1 (Jorgensen et al, 2004; Marion et al, 2004) and we
390 show that either TORC1 inhibition by rapamycin or *kog1-ts*, *asa1-ts*, and *SFP1* deletion strongly
391 repress Hsh155 or Hos2 or Cmr1 aggregation in MMS. We also show complete abrogation of
392 Hsh155 foci formation by inhibiting new translation using CHX with MMS. Since it is known
393 that CHX can also affect ribosome biogenesis (Reiter et al, 2011), we suspect that the repression
394 of RP synthesis by CHX along with whole protein synthesis shut off, might have significantly
395 contributed to Hsh155 aggregate suppression under stress. Importantly, INQ protein aggregates
396 still form when Sfp1 is absent, as marked by Apj1-GFP. Thus, only specific substrates of INQ
397 are impacted by changing the transcriptional dynamics of the stress response. This is important
398 since it may suggest that Hsh155 and Hos2 are not simply aggregation prone in MMS but instead
399 move to INQ, or not, based on the transcriptional needs of the cell.

400

401 Previous groups have recognized that INQ structures localize adjacent to the nucleolus (Miller et
402 al, 2015; Tkach et al, 2012) and our data directly links the constituents of INQ to ribosome
403 production (i.e. through the cell cycle, Sfp1, TORC1). While the peri-nucleolar localization of
404 INQ may therefore be significant, the relationship of these structures to ribosome assembly is
405 currently unknown. Recent identification of quality control mechanisms for unassembled
406 ribosome subunits (Sung et al, 2016) and that ribosomal stalling of nascent proteins induces
407 selective aggregation (Yonashiro et al, 2016) raises the hope that this can be explored in the near
408 future. Another outstanding question relates to the signal that causes Hsh155 to localize to
409 aggregates while its interacting partners in the spliceosome do not. Whether this is an inherent

410 chemically sensitive property of Hsh155 protein or it is a regulated disassembly reaction aimed
411 at suppressing splicing is currently unknown. Our study highlights INQ as an immediate
412 repository for factors perturbed by RP gene repression and, by linking dynamic transcriptional
413 changes to PQC, raises important questions about how cells coordinate the assembly and
414 disassembly of chromatin-associated protein complexes during stress and recovery.

415

416 **Materials and Methods**

417 *Yeast growth, manipulation and analysis*

418 Yeast strains were grown in standard rich media YPD or synthetic complete (SC) medium unless
419 otherwise indicated. Serial dilution assays were performed as described (Stirling et al, 2011).
420 Standard MMS treatments (unless indicated), were at 0.05% for 2hr (~99% Sigma). All other
421 chemical concentrations and treatment times are indicated in each figure or legend.

422 **Supplementary Table S5** contains a list of yeast strains, primers and plasmids used.

423

424 *Live cell imaging and CIN-GFP screen*

425 Genes with reported genome instability (Stirling et al, 2011; Stirling et al, 2014) were obtained
426 as GFP fusions (Huh et al, 2003). Actively growing cells were exposed to H₂O₂ (2mM) or MMS
427 (0.05%) for 2 hours in batches of 12 strains in well plates before mounting on concanavalin A
428 (ConA) treated (Stirling et al, 2012), Teflon masked 12-well slides. For UV exposure, untreated
429 cells were mounted in 12-well slides and the droplets were irradiated (500 J/m²) in a stratalinker.
430 Irradiated slides were stored in a humid chamber until imaging. The imaging screen was
431 conducted on a Zeiss axioscop at 100x magnification and candidate relocalizations were retested
432 in triplicate. Imaging of the treated strains after the screen was performed live on a Leica DMi8
433 microscope at 100x magnification using ConA treated slides. VHL-mCherry aggregate induction

Mathew et al.

Stress-induced aggregation of Hsh155

434 was done as described (Miller et al, 2015).

435

436 *Cell cycle analysis*

437 Logarithmic cultures of GFP tagged Hsh155 cells were grown at 30°C and treated with α -factor
438 (1mg/ml, 1hr) for G1/S arrest and with nocodazole (15 μ g/ml, 1hr) for G2/M arrest before MMS
439 treatment (0.05%, 2hr). Arrested and MMS treated cells were then imaged as described above.

440

441 *Image analysis and statistical methods*

442 The images were acquired on Leica DMi8 microscope using MetaMorph Premier acquisition
443 software and post processed using ImageJ. For all microscopy experiments, the significance of
444 the differences was determined using Prism5 (Graphpad) or R. For intensity measurements
445 samples were compared with t-tests or ANOVA; graphpad performs F-tests for variance as part
446 of this analysis. For comparisons of proportions, Fisher tests were used and p-values were Holm-
447 Bonferroni corrected in the event of multiple comparisons. Sample sizes were determined *post*
448 *hoc* and are listed in the figure legends.

449

450 *FRAP analysis*

451 FRAP experiments were done using an Olympus FV1000 confocal imaging exactly as
452 described (Chao et al, 2014). Hsh155 and Hos2- GFP tagged cells were grown to log-phase and
453 treated with MMS (0.05%) for 2hrs. Cells with foci in the nucleus were selected for imaging.
454 FRAP images were collected on an Olympus FV1000 microscope with Olympus Fluoview
455 version 3.0. Hsh155 and Hos2-GFP INQ foci were bleached, and the recovery of fluorescence in
456 the bleached region of interest (ROI) was monitored every 5 seconds (s). The bleaching

457 experiment was performed using a 488-nm laser using 40% bleach laser power and 1 frame
458 bleach time. All fluorescence normalization was automated using R and R Studio3 (RStudio
459 Team (2015). RStudio: Integrated Development for R. RStudio, Inc., Boston, MA URL
460 <http://www.rstudio.com/>). Background fluorescence was monitored in three ROIs, averaged, and
461 removed from the bleached ROI. Three control ROIs in the nuclei of neighbouring cells were
462 monitored, averaged, and normalized to the prebleach ROI (T_0) and the fluorescence loss over
463 time was calculated and added back to the bleached ROI. Normalized bleached ROI fluorescence
464 data was transformed by setting the prebleached ROI to 100 %, and the post-bleached ROI to 0
465 % to allow for all FRAP curves to be combined. Data was fit using Prism6 (GraphPad) by one
466 phase association nonlinear regression. Mobile fraction and $t_{1/2}$ values were calculated and
467 obtained from the values output by Prism6.

468

469 *Western blotting*

470 For western blots, whole cell extracts were prepared by tricholoroacetic acid extraction and
471 blotted with anti-GFP (ThermoFisher) or anti-PGK1 (Abcam) essentially as described (Gallina et
472 al, 2015).

473

474 *Splicing efficiency assay*

475 Splicing assay protocol was adapted and performed as previously described (Galy et al, 2004).
476 All measurements were taken with individual transformants in triplicate. Cells were struck as a
477 patch on SC medium without leucine, then replica plated to glycerol-lactate-containing synthetic
478 complete medium without leucine (GGL-leu). Cells from each patch were inoculated in liquid
479 GGL-leu media for 2 hours at 30°, then induced with final 2% galactose for 1.5 hours before
480 treatment with final 0.05% methyl methanesulfonate (MMS). Time points were taken at 30, 60,

481 and 120 minutes post-MMS treatment. Cells carrying reporters were lysed and assayed for β -
482 galactosidase assay using Gal-ScreenTM β -Galactosidase Reporter Gene Assay System for Yeast
483 or Mammalian Cells (Applied Biosystems) as per manufacturer's instructions, and read with a
484 SpectraMax i3 (Molecular Devices). Relative light units were normalized to cell concentration as
485 estimated by measuring OD600.

486

487 *Whole proteome analysis by mass spectrometry (MS)*

488 Logarithmic cultures of BY4741 wildtype (WT) strain grown at 30°C with or without MMS
489 (0.05% for 2hr) treatment were pelleted and frozen. Frozen pellets were lysed, reduced,
490 alkylated, trypsin digested, and purified using the SP3 method (Hughes et al, 2014) with
491 modifications (Hughes et al, 2016). Samples were analyzed as detailed in (Hughes et al, 2016);
492 briefly, prepared peptide samples were labeled with individual tandem mass tags (TMT, Pierce),
493 combined in sets of 10, and subjected to offline high pH fractionation/concatenation, then
494 fractions (12) were analyzed by reverse phase nano-electrospray liquid chromatography on a
495 Orbitrap Fusion Tribrid MS platform (Thermo Scientific) using MS3 scanning.

496 Mass Spectrometry Data Analysis: Data from the Orbitrap Fusion were processed using
497 Proteome Discoverer Software (ver. 2.1.0.62). MS2 spectra were searched using Sequest HT
498 against the UniProt *Saccharomyces cerevisiae* proteome database appended to a list of common
499 contaminants (6,752 total sequences). Data were filtered at the peptide spectral match-level to
500 control for false discoveries using a q-value cut off of 0.05 as determined by Percolator. This
501 less-stringent filter was applied to maximize sensitivity, relying on the statistical analyses during
502 peptide quantification to further control for the potential generation of false conclusions within
503 the final data set. As a result, the final quantitative set of hits that displays significant variance
504 between sample types is enriched in multi-peptide identified, high confidence proteins. A total

505 of 4357 proteins were reproducibly quantified, the proteins with significant depletion or
506 enrichment are list in **Supplementary Table S2**.

507

508 Bioinformatic and Statistical Analyses: Data sets generated in Proteome Discoverer were
509 exported and analyzed with a combination of scripts built in R designed in-house. Contaminant
510 and decoy proteins were removed from all data sets prior to analysis. Unless stated otherwise,
511 quantification was performed at the peptide level as discussed previously(Suomi et al, 2015).

512 Data Availability: The mass spectrometry proteomics data have been deposited to the
513 ProteomeXchange Consortium via the PRIDE partner repository (Vizcaino et al, 2016; Vizcaino
514 et al, 2014) with the dataset identifier PXD004459 (Username: reviewer68484@ebi.ac.uk,
515 Password: Udzf7jqI).

516

517 **Acknowledgements**

518 We acknowledge Grant Brown, Shay Ben-Aroya, Philip Hieter, Benoit Palancade, Daniel
519 Kaganovich for yeast strains and plasmids, Chhabi Govind for help accessing the Cmr1 ChIP
520 data and members of the Stirling lab for helpful discussions. P.C.S. is a Canadian Institutes of
521 Health Research (CIHR) New Investigator, and a Michael Smith Foundation for Health Research
522 Scholar. C.S.H and G.B.M. acknowledge support from the British Columbia Cancer Foundation.
523 This work is supported by operating grants from CIHR (MOP-136982) and the Natural Sciences
524 and Engineering Research Council of Canada to P.C.S (RGPIN 2014-04490).

525

526 **Author contributions**

Mathew et al.

Stress-induced aggregation of Hsh155

527 V.M. and P.C.S designed the project and wrote the manuscript. V.M., A.S.T., K.L.M., A.K.H.,
528 C.S.H., and P.C.S. generated the data. V.M., A.S.T., K.L.M., A.K.H., C.S.H., G.B.M., C.J.R.L.,
529 and P.C.S. analyzed the data.

530

531 **Conflict of Interest**

532 The authors declare no conflicts of interest.

533 **References**

534 Begley U, Dyavaiah M, Patil A, Rooney JP, DiRenzo D, Young CM, Conklin DS, Zitomer RS, Begley TJ
535 (2007) Trm9-catalyzed tRNA modifications link translation to the DNA damage response. *Molecular cell*
536 **28**: 860-870

537

538 Ben-Aroya S, Coombes C, Kwok T, O'Donnell KA, Boeke JD, Hieter P (2008) Toward a comprehensive
539 temperature-sensitive mutant repository of the essential genes of *Saccharomyces cerevisiae*. *Molecular*
540 *cell* **30**: 248-258

541

542 Bernstein KA, Baserga SJ (2004) The small subunit processome is required for cell cycle progression at
543 G1. *Mol Biol Cell* **15**: 5038-5046

544

545 Breker M, Gymrek M, Schuldiner M (2013) A novel single-cell screening platform reveals proteome
546 plasticity during yeast stress responses. *J Cell Biol* **200**: 839-850

547

548 Breslow DK, Cameron DM, Collins SR, Schuldiner M, Stewart-Ornstein J, Newman HW, Braun S, Madhani
549 HD, Krogan NJ, Weissman JS (2008) A comprehensive strategy enabling high-resolution functional
550 analysis of the yeast genome. *Nature methods* **5**: 711-718

551

552 Chao JT, Wong AK, Tavassoli S, Young BP, Chruscicki A, Fang NN, Howe LJ, Mayor T, Foster LJ, Loewen CJ
553 (2014) Polarization of the endoplasmic reticulum by ER-septin tethering. *Cell* **158**: 620-632

554

555 Chong YT, Koh JL, Friesen H, Duffy SK, Cox MJ, Moses A, Moffat J, Boone C, Andrews BJ (2015) Yeast
556 Proteome Dynamics from Single Cell Imaging and Automated Analysis. *Cell* **161**: 1413-1424

557

558 Clemente-Blanco A, Mayan-Santos M, Schneider DA, Machin F, Jarmuz A, Tschochner H, Aragon L (2009)
559 Cdc14 inhibits transcription by RNA polymerase I during anaphase. *Nature* **458**: 219-222

560

561 Duvel K, Santhanam A, Garrett S, Schneper L, Broach JR (2003) Multiple roles of Tap42 in mediating
562 rapamycin-induced transcriptional changes in yeast. *Molecular cell* **11**: 1467-1478

563

564 Gabunilas J, Chanfreau G (2016) Splicing-Mediated Autoregulation Modulates Rpl22p Expression in
565 *Saccharomyces cerevisiae*. *PLoS Genet* **12**: e1005999

566

567 Gallina I, Colding C, Henriksen P, Beli P, Nakamura K, Offman J, Mathiasen DP, Silva S, Hoffmann E, Groth
568 A, Choudhary C, Lisby M (2015) Cmr1/WDR76 defines a nuclear genotoxic stress body linking genome
569 integrity and protein quality control. *Nature communications* **6**: 6533

571 Galy V, Gadal O, Fromont-Racine M, Romano A, Jacquier A, Nehrbass U (2004) Nuclear retention of
572 unspliced mRNAs in yeast is mediated by perinuclear Mlp1. *Cell* **116**: 63-73

573

574 Gasch AP, Huang M, Metzner S, Botstein D, Elledge SJ, Brown PO (2001) Genomic expression responses
575 to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p. *Mol Biol Cell* **12**:
576 2987-3003

577

578 Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000)
579 Genomic expression programs in the response of yeast cells to environmental changes. *Mol Biol Cell* **11**:
580 4241-4257

581

582 Guan Q, Haroon S, Bravo DG, Will JL, Gasch AP (2012) Cellular memory of acquired stress resistance in
583 *Saccharomyces cerevisiae*. *Genetics* **192**: 495-505

584

585 Hughes CS, Foehr S, Garfield DA, Furlong EE, Steinmetz LM, Krijgsveld J (2014) Ultrasensitive proteome
586 analysis using paramagnetic bead technology. *Molecular systems biology* **10**: 757

587

588 Hughes CS, McConechy MK, Cochrane DR, Nazeran T, Karnezis AN, Huntsman DG, Morin GB (2016)
589 Quantitative Profiling of Single Formalin Fixed Tumour Sections: proteomics for translational research.
590 *Scientific reports* **6**: 34949

591

592 Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O'Shea EK (2003) Global analysis of
593 protein localization in budding yeast. *Nature* **425**: 686-691

594

595 Jiang Y, Broach JR (1999) Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in
596 controlling cell growth in yeast. *EMBO J* **18**: 2782-2792

597

598 Jones JW, Singh P, Govind CK (2016) Recruitment of *Saccharomyces cerevisiae* Cmr1/Ydl156w to Coding
599 Regions Promotes Transcription Genome Wide. *PLoS One* **11**: e0148897

600

601 Jorgensen P, Rupes I, Sharom JR, Schneper L, Broach JR, Tyers M (2004) A dynamic transcriptional
602 network communicates growth potential to ribosome synthesis and critical cell size. *Genes Dev* **18**:
603 2491-2505

604

605 Khmelinskii A, Keller PJ, Bartosik A, Meurer M, Barry JD, Mardin BR, Kaufmann A, Trautmann S,
606 Wachsmuth M, Pereira G, Huber W, Schiebel E, Knop M (2012) Tandem fluorescent protein timers for in
607 vivo analysis of protein dynamics. *Nat Biotechnol* **30**: 708-714

608

609 Lempainen H, Uotila A, Urban J, Dohnal I, Ammerer G, Loewith R, Shore D (2009) Sfp1 interaction with
610 TORC1 and Mrs6 reveals feedback regulation on TOR signaling. *Molecular cell* **33**: 704-716

611
612 Loewith R, Jacinto E, Wullschleger S, Lorberg A, Crespo JL, Bonenfant D, Oppliger W, Jenoe P, Hall MN
613 (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth
614 control. *Molecular cell* **10**: 457-468

615
616 Marion RM, Regev A, Segal E, Barash Y, Koller D, Friedman N, O'Shea EK (2004) Sfp1 is a stress- and
617 nutrient-sensitive regulator of ribosomal protein gene expression. *Proceedings of the National Academy
618 of Sciences of the United States of America* **101**: 14315-14322

619
620 Martin DE, Soulard A, Hall MN (2004) TOR regulates ribosomal protein gene expression via PKA and the
621 Forkhead transcription factor FHL1. *Cell* **119**: 969-979

622
623 Mazumder A, Pesudo LQ, McRee S, Bathe M, Samson LD (2013) Genome-wide single-cell-level screen for
624 protein abundance and localization changes in response to DNA damage in *S. cerevisiae*. *Nucleic Acids
625 Res* **41**: 9310-9324

626
627 McClellan AJ, Scott MD, Frydman J (2005) Folding and quality control of the VHL tumor suppressor
628 proceed through distinct chaperone pathways. *Cell* **121**: 739-748

629
630 Miller SB, Ho CT, Winkler J, Khokhrina M, Neuner A, Mohamed MY, Guilbride DL, Richter K, Lisby M,
631 Schiebel E, Mogk A, Bukau B (2015) Compartment-specific aggregases direct distinct nuclear and
632 cytoplasmic aggregate deposition. *EMBO J* **34**: 778-797

633
634 O'Driscoll J, Clare D, Saibil H (2015) Prion aggregate structure in yeast cells is determined by the Hsp104-
635 Hsp110 disaggregase machinery. *J Cell Biol* **211**: 145-158

636
637 Palancade B, Zuccolo M, Loeillet S, Nicolas A, Doye V (2005) Pml39, a novel protein of the nuclear
638 periphery required for nuclear retention of improper messenger ribonucleoparticles. *Mol Biol Cell* **16**:
639 5258-5268

640
641 Parenteau J, Durand M, Morin G, Gagnon J, Lucier JF, Wellinger RJ, Chabot B, Elela SA (2011) Introns
642 within ribosomal protein genes regulate the production and function of yeast ribosomes. *Cell* **147**: 320-
643 331

644
645 Reiter A, Steinbauer R, Philippi A, Gerber J, Tschochner H, Milkereit P, Griesenbeck J (2011) Reduction in
646 ribosomal protein synthesis is sufficient to explain major effects on ribosome production after short-
647 term TOR inactivation in *Saccharomyces cerevisiae*. *Mol Cell Biol* **31**: 803-817

648
649 Reja R, Vinayachandran V, Ghosh S, Pugh BF (2015) Molecular mechanisms of ribosomal protein gene
650 coregulation. *Genes Dev* **29**: 1942-1954

651
652 Saarikangas J, Barral Y (2015) Protein aggregates are associated with replicative aging without
653 compromising protein quality control. *Elife* **4**

654
655 Saarikangas J, Barral Y (2016) Protein aggregation as a mechanism of adaptive cellular responses.
656 *Current genetics* **62**: 711-724

657
658 Schawalder SB, Kabani M, Howald I, Choudhury U, Werner M, Shore D (2004) Growth-regulated
659 recruitment of the essential yeast ribosomal protein gene activator Ifh1. *Nature* **432**: 1058-1061

660
661 Shirahige K, Hori Y, Shiraishi K, Yamashita M, Takahashi K, Obuse C, Tsurimoto T, Yoshikawa H (1998)
662 Regulation of DNA-replication origins during cell-cycle progression. *Nature* **395**: 618-621

663
664 Stirling PC, Bloom MS, Solanki-Patil T, Smith S, Sipahimalani P, Li Z, Kofoed M, Ben-Aroya S, Myung K,
665 Hieter P (2011) The Complete Spectrum of Yeast Chromosome Instability Genes Identifies Candidate CIN
666 Cancer Genes and Functional Roles for ASTRA Complex Components. *PLoS genetics* **7**: e1002057

667
668 Stirling PC, Chan YA, Minaker SW, Aristizabal MJ, Barrett I, Sipahimalani P, Kobor MS, Hieter P (2012) R-
669 loop-mediated genome instability in mRNA cleavage and polyadenylation mutants. *Genes &*
670 *development* **26**: 163-175

671
672 Stirling PC, Shen Y, Corbett R, Jones SJ, Hieter P (2014) Genome destabilizing mutator alleles drive
673 specific mutational trajectories in *Saccharomyces cerevisiae*. *Genetics* **196**: 403-412

674
675 Sung MK, Porras-Yakushi TR, Reitsma JM, Huber FM, Sweredoski MJ, Hoelz A, Hess S, Deshaies RJ (2016)
676 A conserved quality-control pathway that mediates degradation of unassembled ribosomal proteins.
677 *Elife* **5**

678
679 Suomi T, Corthals GL, Nevalainen OS, Elo LL (2015) Using Peptide-Level Proteomics Data for Detecting
680 Differentially Expressed Proteins. *J Proteome Res* **14**: 4564-4570

681
682 Tkach JM, Yimit A, Lee AY, Riffle M, Costanzo M, Jaschob D, Hendry JA, Ou J, Moffat J, Boone C, Davis TN,
683 Nislow C, Brown GW (2012) Dissecting DNA damage response pathways by analysing protein localization
684 and abundance changes during DNA replication stress. *Nature cell biology* **14**: 966-976

685
686 Vizcaino JA, Csordas A, del-Toro N, Dianes JA, Griss J, Lavidas I, Mayer G, Perez-Riverol Y, Reisinger F,
687 Ternent T, Xu QW, Wang R, Hermjakob H (2016) 2016 update of the PRIDE database and its related
688 tools. *Nucleic Acids Res* **44**: D447-456

689

Mathew et al.

Stress-induced aggregation of Hsh155

690 Vizcaino JA, Deutsch EW, Wang R, Csordas A, Reisinger F, Rios D, Dianes JA, Sun Z, Farrah T, Bandeira N,
691 Binz PA, Xenarios I, Eisenacher M, Mayer G, Gatto L, Campos A, Chalkley RJ, Kraus HJ, Albar JP, Martinez-
692 Bartolome S, Apweiler R, Omenn GS, Martens L, Jones AR, Hermjakob H (2014) ProteomeXchange
693 provides globally coordinated proteomics data submission and dissemination. *Nat Biotechnol* **32**: 223-
694 226

695
696 Wallace EW, Kear-Scott JL, Pilipenko EV, Schwartz MH, Laskowski PR, Rojek AE, Katanski CD, Riback JA,
697 Dion MF, Franks AM, Airoldi EM, Pan T, Budnik BA, Drummond DA (2015) Reversible, Specific, Active
698 Aggregates of Endogenous Proteins Assemble upon Heat Stress. *Cell* **162**: 1286-1298

699
700 Xiao L, Kamau E, Donze D, Grove A (2011) Expression of yeast high mobility group protein HMO1 is
701 regulated by TOR signaling. *Gene* **489**: 55-62

702
703 Yonashiro R, Tahara EB, Bengtson MH, Khokhrina M, Lorenz H, Chen KC, Kigoshi-Tansho Y, Savas JN,
704 Yates JR, Kay SA, Craig EA, Mogk A, Bukau B, Joazeiro CA (2016) The Rqc2/Tae2 subunit of the ribosome-
705 associated quality control (RQC) complex marks ribosome-stalled nascent polypeptide chains for
706 aggregation. *Elife* **5**: e11794

707
708 Zhou C, Slaughter BD, Unruh JR, Guo F, Yu Z, Mickey K, Narkar A, Ross RT, McClain M, Li R (2014)
709 Organelle-based aggregation and retention of damaged proteins in asymmetrically dividing cells. *Cell*
710 **159**: 530-542

711

712

713

714

715 **Figure Legends**

716 **Figure 1.** DNA damage relocalization screen of the chromosome instability (CIN) proteome
717 identifies Hsh155. (A) Overall screen results. A Venn diagram of overlapping protein
718 relocalization behaviors upon MMS, H₂O₂ or UV treatment. List of proteins relocalized in each
719 treatment detailed in **Supplementary Table S1**. (B) Comparison of screen results with published
720 whole proteome relocalization screens. The stress is indicated above and the reference below.
721 (C) Yeast cell schematic summarizing relocalizations by destination under stress (see also
722 **Supplementary Fig. S1** for sample images of novel localization, and **Supplementary Table**
723 **S1**). (D) MMS induced relocalization of Hsh155 into nuclear (white arrowhead) and cytoplasmic
724 foci (yellow arrowhead). A schematic (left) summarizes the movements. (E) H₂O₂ induced
725 relocalization of Hsh155. (F) U2-snRNP spliceosome complex partners of Hsh155, Cus1 and
726 Hsh49 do not form foci after MMS treatment. Scale bar is 5μm for all subsequent figures.

727

728 **Figure 2.** Hsh155 relocalizes to nuclear (INQ) and cytoplasmic protein quality control (PQC)
729 sites. (A) Co-localization (white arrowheads in merge) of Hsh155-GFP with Hos2-mCherry
730 (mChe) in MMS. Insets show percentage overlap of foci in each to one another. (B) Co-
731 localization of Hsh155-GFP with VHL-mCherry at both 30°C and 37°C with MMS. (C)
732 Quantitative FRAP analysis of GFP tagged Hsh155 or Hos2 in nuclear foci. Top: The best line of
733 fit curve of relative fluorescence intensities over time for both Hsh155 (blue) and Hos2 (red);
734 bottom: percentage of Hsh155 and Hos2 in the immobile fraction and diffusion time (t_{1/2}).
735 Values are mean± SD of Hsh155 (8 cells) and Hos2 (5 cells) analysed over three independent
736 experiments. (D) Effect of proteasome inhibition by MG132, inducing Hsh155 aggregation at
737 INQ. MG132 treatment induced foci and is quantified below with or without MMS addition.
738 Shown are the mean values from three independent experiments ± SEM with >100 cells each.

Mathew et al.

Stress-induced aggregation of Hsh155

739 (Asterisks show *p*-value (****) $p<0.0001$, Fisher test). (E) Cycloheximide blocks Hsh155 foci
740 formation. Representative image of Hsh155-GFP tagged cells treated with translation inhibitor,
741 cycloheximide (CHX, 200 μ g/mL) and MMS (0.05%) with no foci formation compared to MMS
742 treatment alone. (F) Hsh155 protein levels by anti-GFP western blotting relative to Pgk1 levels
743 (as indicated) in cells treated with MMS and/or CHX. Shown is the representative blot from at
744 least three independent experiments.

745

746 **Figure 3.** Dynamic behavior of Hsh155 at PQC sites. (A) Time course imaging of Hsh155-GFP
747 foci accumulation shows increase in number of cells with foci over time, predominantly
748 cytoplasmic foci (yellow arrowhead) and (B) disappearance after MMS washout. Representative
749 image are shown (left) and quantification of percentage of cells with Hsh155 foci (right). For (B)
750 dotted inlets represent time-lapse images of foci disappearance over time in the same set of cells.
751 (C) Fluorescence intensity of foci over time show increasing relative GFP in cytoplasmic foci
752 until 2 hr of MMS treatment. (D) Tandem fluorescent fusion intensities of Hsh155 in aggregates.
753 Ratios of GFP (fast maturing) and mCherry (slow maturing) fluorescence in nuclear or
754 cytoplasmic foci are shown (top). A schematic of protein lifetime of Hsh155 fusion to a
755 fluorescent timer in PQC (bottom), showing older (GFP>mCherry) protein in INQ and newer
756 (GFP>>mCherry) in cytoplasmic foci. Quantification of fluorescent timer indicates aggregation
757 of older proteins in INQ compared to cytoplasm. For A-C, bars are color-coded to denote INQ
758 (red) and cytoplasmic (blue) foci and both (black). For C quantifications: Mean \pm SEM, three
759 replicates, $n>100$, Student t-test, asterisks show *p*-value (****) $p<0.0001$; (ns) non-significant.
760 For D quantifications: three replicates, $n\geq28$ per replicate, Mann-Whitney test, asterisks show
761 *p*-value threshold **** $p<0.0001$.

762

Mathew et al.

Stress-induced aggregation of Hsh155

763 **Figure 4.** Regulation of Hsh155 foci formation by INQ resident proteins. (A) Representative
764 images showing foci in MMS treated cells in *CMR1*, *HOS2*, *APJ1* or *PPH21* deletion strains
765 compared to WT (left). Quantification of percentage of cells with Hsh155 foci in indicated
766 strains (right). (B) Effect of deleting *CMR1*, *HOS2*, *APJ1* or *PPH21* on INQ and cytoplasmic
767 foci distribution. Percentage of cells with cytoplasmic foci (black bar) increased significantly in
768 respective mutants compared to WT. (C) Representative images shows effect of depleting
769 *HSH155* on INQ formation (left). Percentage of cells with Hos2 (black) and Apj1 (red) foci in
770 *hsh155-DAmP* or WT cells (right). For A-C quantifications: Mean \pm SEM, Fisher test, Asterisks
771 show *p*-value thresholds (**** *p*<0.0001; *** *p*<0.001; ** *p*<0.01; * *p*<0.05).

772

773 **Figure 5.** Regulation of Hsh155 foci formation by molecular chaperones. (A) Effect of
774 aggregases Hsp42 and Btn2 and (B) disaggregases Hsp104 and Sse1 on Hsh155 relocalization.
775 Representative images shows decrease (A) and increase (B) in number of cells with foci in the
776 indicated strains relative to WT. (C) Summary of chaperone regulation of Hsh155 relocalization.
777 Schematic (above) and quantification of percentage of cells with foci from A and B (below).
778 Mean \pm SEM, Fisher test. Asterisks show *p*-value thresholds in comparison to WT under the
779 same condition (** *p*<0.01; **** *p*<0.0001).

780

781 **Figure 6.** Hsh155 foci are formed predominately in G1 cells. (A) *hsh155-ts* alleles are
782 temperature sensitive but not additionally MMS sensitive compared to WT and *rad52Δ* (sensitive
783 control) strains. Equal ODs of the indicated strains were serially diluted and spotted on YPD \pm
784 0.01% MMS at 25°C, 30°C and 37°C. (B) Representative images showing no foci formation but
785 increase in Hsh155 intensities in HU treated (120mM, 2hr treatment) cell compared to untreated.
786 Single cell quantification of mean intensity of Hsh155 protein per cell as depicted in the image.

787 Three replicates, n>100, Mean \pm SEM, Student t- test, (****) p<0.0001. (C) Loss of *MEC1* and
788 *TEL1* does not influence Hsh155 localization but Hos2 aggregate formation. Bar graph (right)
789 and representative image (left) shows no significant difference in Hsh155 localisation in
790 *mec1Δtel1Δsml1Δ* in either untreated (green bar) or MMS treated (red bar) compared to *sml1Δ*.
791 Three replicates, n> 100, Mean \pm SEM, Fisher test, p-value (ns) non-significant. (D) Cell cycle
792 dependence of Hsh155 sequestration. Quantification of cells with Hsh155 foci in asynchronous
793 (Asyn, black), G1 (α-factor, white) and G2/M (nocodazole (NOC), grey) cells. Three replicates,
794 n> 100, Mean \pm SEM, Fisher test, ****p <0.0001.

795

796 **Figure 7.** RP gene repression and TORC1 signaling influences Hsh155 sequestration. (A)
797 Splicing efficiency in MMS over time. Quantification of relative LacZ splicing in untreated and
798 MMS treated normalized to ‘no intron’ control, showing decrease in splicing activity within 30
799 minutes of MMS treatment. Mean \pm SEM, Student t-test, Asterisks show p-value (*** p<0.001.
800 (B) Whole proteome analysis by mass spectrometry after MMS treatment. Pie chart of proteins
801 quantified (4357 total, 3864 (89%) no change, 75 (2%) enriched, 418 (9%) depleted) (left)
802 showing 9% (39) of the depleted proteins (green region of the zoomed red inset) are encoded
803 from intron containing genes, which are predominantly ribosomal proteins (96%, 35) (Right pie
804 chart). Depleted and enriched proteins are listed in **Supplementary Table S2**. (C) TOR
805 signaling regulates Hsh155 foci formation. Treatment of cells with rapamycin (200nM, 2hr)
806 reduces Hsh155 aggregate formation in MMS treated cells. Scale bar, 5μm. (D) Effect of
807 temperature sensitive mutants of TORC1 subunit Kog1 and regulator Asa1 on Hsh155
808 relocalization at 25°C, 30°C. For C and D, three replicates, n>100, Mean \pm SEM, Fisher test p-
809 value threshold **** p<0.0001.

Mathew et al.

Stress-induced aggregation of Hsh155

810 **Figure 8.** TORC1 influences sequestration of transcription regulators to PQC through Sfp1. (A)
811 Sfp1 is required for Hsh155, Hos2, and Cmr1 relocalization but not for INQ formation.
812 Representative images (left) showing effect of Sfp1 deletion on Hsh155, Hos2, Cmr1, and Apj1
813 localization. (B) Quantification of percentage of cells with Hsh155, Hos2, Cmr1, and Apj1 foci
814 in WT (black bar) and *sfp1* Δ (red bar). For B, three replicates, n>100, Mean \pm SEM, Fisher test p-
815 value threshold *** p<0.0001. (C) Cmr1-occupied genes are significantly down regulated in
816 *sfp1* Δ . Scatter plot using microarray expression data in *sfp1* Δ (Marion et al, 2004) and the Cmr1
817 ChIP occupancy data (All genes, n= 5549, listed in **Supplementary Table S4**) in wild type
818 cells(Jones et al, 2016) and linear regression showing anticorrelation (marked by red line, $R^2=$
819 0.0054; p< 0.0001) between expression changes in *sfp1* Δ and Cmr1 occupancy in WT cells. (D)
820 Quartiles were generated based on (C) presented as dot plots. The plots splits the *sfp1* Δ
821 expression changes into quartiles and shows that the lowest expression (Q1) in *sfp1* Δ correlates
822 with increased Cmr1 occupancy (ANOVA with Tukey's test, p< 0.0001). Genes in each quartile
823 listed in **Supplementary Table S4**. (E) Model illustrating stress-induced transcriptional changes
824 at RP genes liberates transcriptional regulators such as Sfp1 regulated by TORC1 signaling,
825 Cmr1, and spliceosomes leading to splicing defects. Subsequently, Hsh155 is sequestered in INQ
826 and eventually cytoplasmic aggregates, which are regulated by chaperones until stress recovery
827 (see main text).

828

829

830

831

832 **Supporting Information**

833 **Figures**

834 **Fig. S1. Novel protein relocation behaviors in the CIN mini array screen.**

835 Movement types are grouped as indicated, (A) MMS induced foci (red box), (B) UV induced
836 foci (blue box), and (C) H₂O₂ induced foci (green box). (D) Non-foci movements as shown
837 (yellow box). Only those not reported in Tkach et al., 2012 and a single condition is shown for
838 clarity, however proteins may move in response to multiple stresses – for a complete list, see
839 **Supplementary Table S1.** In each case, the untreated localization is the left panel, and the
840 indicated treatment is shown at right. Hsh155-GFP relocation is not shown (see **Fig 1**). The
841 asterisks indicate that this is a representative of multiple members of a protein complex. In the
842 case of Rfa3-GFP, its partners Rfa2 and Rfa1 also showed more foci in MMS (see **Table S1**). In
843 the case of Rpa12-GFP, its partners Rpa14 and Rpa34 also showed observed increases in
844 nucleoplasm versus nucleolar fluorescence in MMS. The Rpa12-GFP observation was confirmed
845 by measuring nucleoplasmic fluorescence by colocalizing with HTA2-mCherry and quantifying
846 the GFP signal in the non-nucleolar nuclear area (n = 17, t-test p = 0.016). Scale Bar, 5 μ m.

847

848 **Fig. S2. Characterization of Hsh155 relocation.**

849 (A) Hsh155-GFP foci (white arrowhead) do not colocalize with Rad52-mCherry foci (yellow
850 arrowhead) after 2hr of MMS treatment. (B) Hsh155 do not form foci with heat stress at 37°C,
851 while a VHL control does (arrowheads). (C) Localization (white arrowheads in merge) of
852 Hsh155-GFP in nucleus and cytoplasm, nuclear periphery marked with Nic96-mCherry (mChe)
853 (top) and chromatin marked with Hta2-mCherry (bottom) in MMS. Bar, 5 μ m. (D) Hsh155
854 protein levels relative to Pgk1 levels (as indicated) in cells treated with MMS (0.05%) and/or

Mathew et al.

Stress-induced aggregation of Hsh155

855 CHX (200 μ g/ml), MG132 (80 μ M) alone or together for 2hrs. Hsh155 protein levels appear to be
856 comparable to untreated in all treatments.

857

858 **Fig. S3. Dynamics of Hsh155 relocalization under stress.**

859 (A) Line scan plots of Hsh155-GFP intensities in INQ and cytoplasmic foci (depicted by dotted
860 red line in representative images) at two (above) and three (below) hours of MMS treatment.
861 Bar, 2 μ m. Representative graphs shown in **Fig. 3C**. (B) Quantification of fold differences in
862 Hsh155 tandem fusion to a fluorescent timer shows non-significant (ns) differences in lifetime
863 between untreated and MMS treated nucleoplasm.

864

865 **Fig. S4. INQ and Cytoplasmic site foci distribution of Hsh155 in chaperone mutants.**

866 (A) Effect of deleting *BTN2* on INQ and cytoplasmic foci distribution. No significant difference
867 in both nuclear and cytoplasmic foci distribution in *btn2* mutants compared to WT. Shown are
868 the mean values from three independent experiments \pm SEM with at least 100 cells each. Fisher
869 test *p*-value thresholds, ns = non-significant and * *p*<0.05. (B) Effect of deleting *HSP104*, *SSE1*
870 on INQ and cytoplasmic foci distribution. Percentage of cells with cytoplasmic foci (black bar)
871 increased in *hsp104* mutants in MMS and in both untreated and MMS treated cells in *sse1*
872 mutants. Mean values from three independent experiments \pm SEM with at least 100 cells each.

873

874 **Fig. S5. Cell cycle dependency of Hsh155 relocalization.**

875 (A) Loss of *MEC1* and *TEL1* influences Hos2 aggregate formation. Bar graph (left) shows
876 significant difference in Hos2 localization in *mec1* Δ *tel1* Δ in both untreated (green bar) and MMS
877 treated (red bar). Representative image shown in **Fig. 6C**. Bar graph (right) showing no

878 significant difference in localization of either Hsh155 or Hos2 in *sml1Δ* control for
879 *mec1Δtel1Δsml1Δ* mutants. All quantifications: three replicates, n> 100, Mean± SEM, Fisher
880 test, Asterisks show *p*-value thresholds, ns = non-significant; *** *p*<0.0001. (B) Percentage of
881 cells arrested in G1/S (white) and G2/M (grey) in α -factor and nocodazole (NOC) treated cells as
882 judged by budding index. Three replicates, n> 100.

883

884 **Fig. S6. Transcriptional remodeling under stress linking to PQC site targets.**

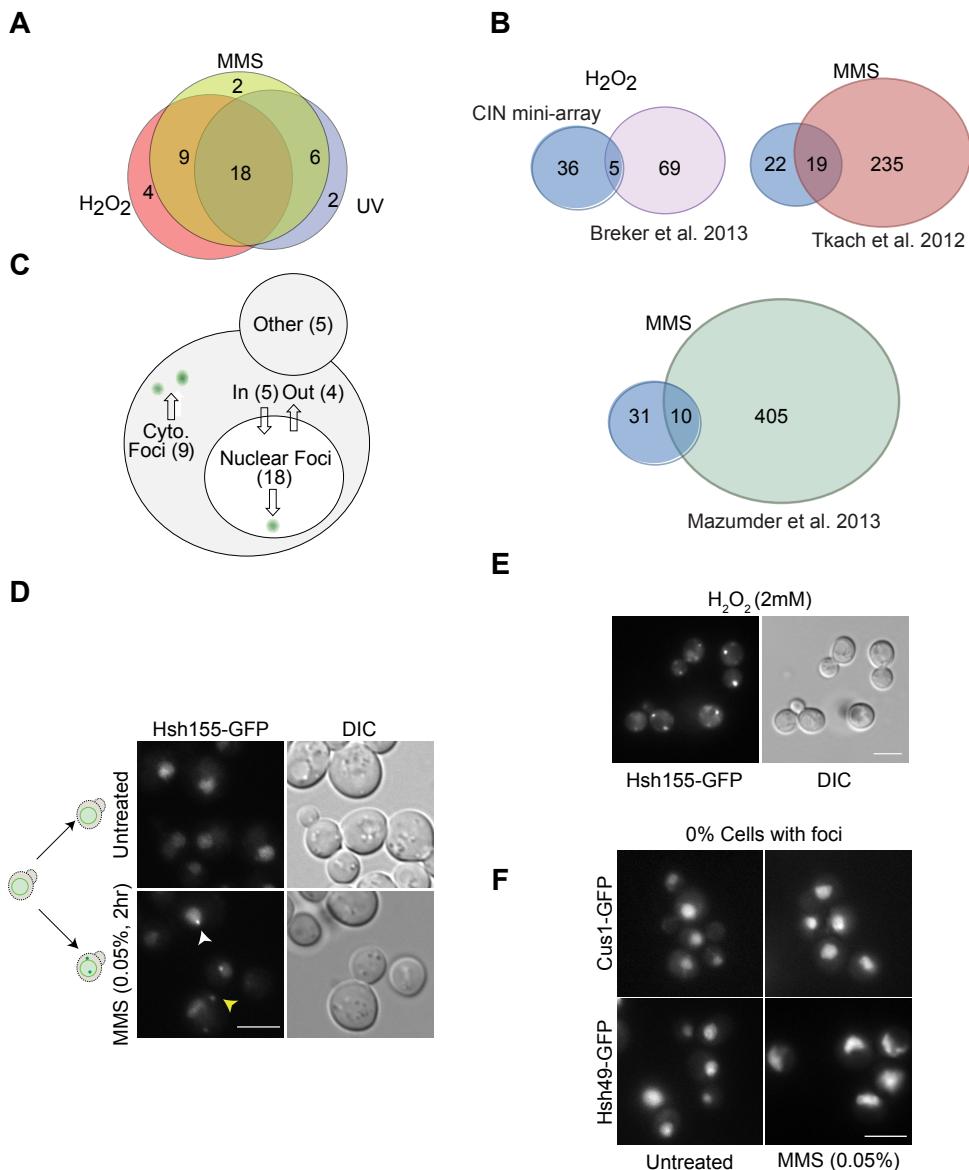
885 (A) Splicing efficiency in *hsh155-ts* (used as a positive control) at 30°C compared to wild type is
886 significantly reduced with and without MMS treatment. Quantification of relative splicing in
887 untreated (blue bar) and MMS treated (black bar) normalized to ‘no intron’ control. Results were
888 compared with a t-test, ****p*<0.0001. (B) Hsh155 protein aggregates at PQC sites are not
889 formed until one hour of MMS treatment. Percentage of cells with foci in INQ (white bar),
890 cytoplasm (grey bar) or both (black bar) after MMS treatment at different times as indicated. (C)
891 List of MMS induced down regulated proteins encoded by intron containing genes in the whole
892 proteome enrichment analysis by mass spectrometry, which majorly includes all ribosomal
893 proteins. (D) Effect of RP gene transcription regulators Hmo1 and Ifh1 on Hsh155 relocalization
894 after MMS treatment. Shown is the mean± SEM of three replicates, n>100, Fisher test *p*-value
895 thresholds, ns= non-significant, ***p*<0.01. (E) Scatter plot showing distribution of 274 spliced
896 genes (X axis) with their corresponding Cmr1 ChIP occupancy (Y axis- log₂ ratio ChIP/Input).
897 The plot indicates a highly significant and larger Cmr1 occupancy in WT cells (Jones et al, 2016)
898 at spliced genes. Average Cmr1 occupancy for 274 spliced genes -0.13 and average occupancy
899 for all genes- 0.046. Two-tailed Student t-test, *p*<0.0001 (All the genes n= 5549, and spliced
900 genes n=274 compared listed in **Supplementary Table S4**).

901

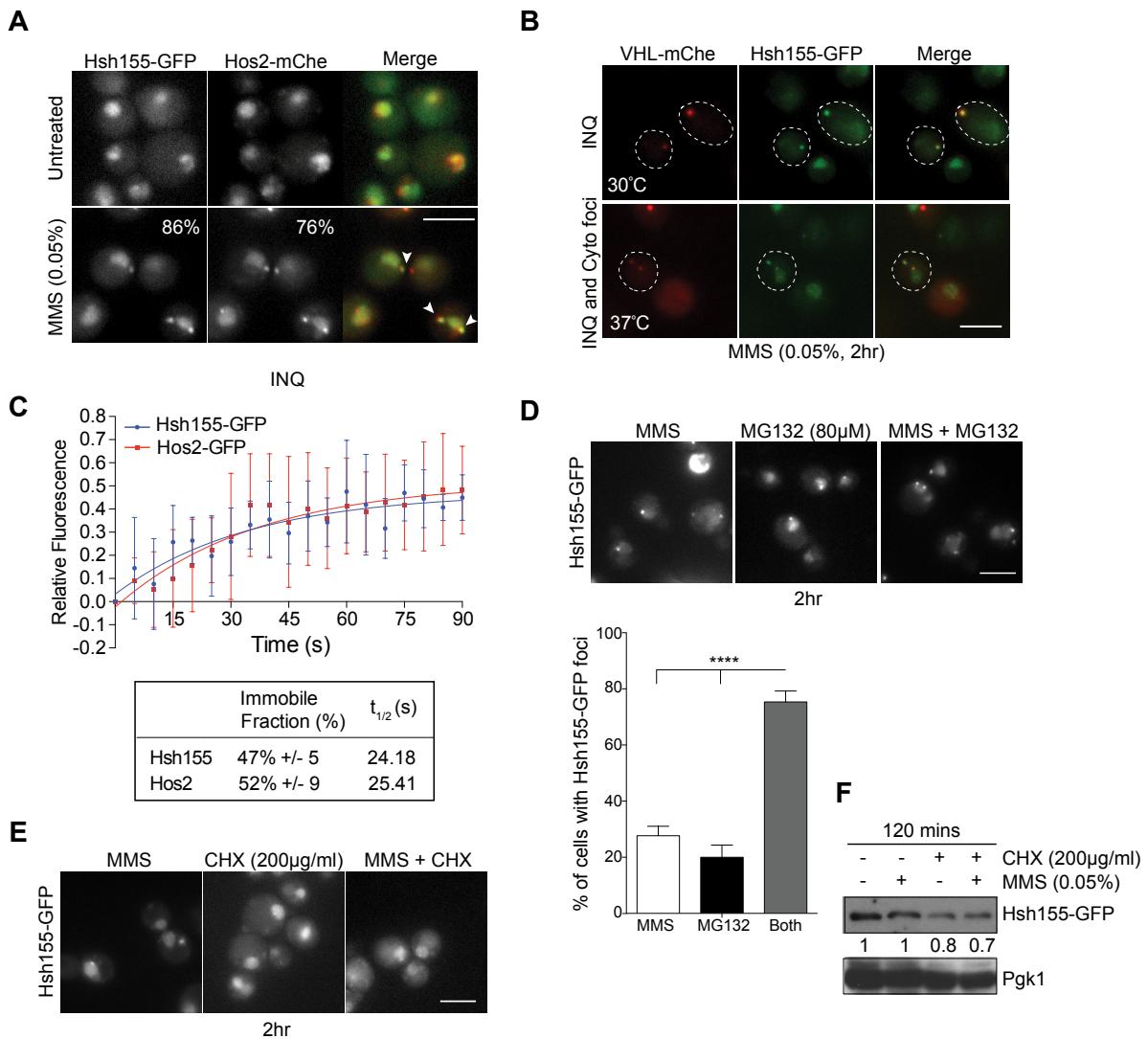
902 **Supplementary Tables**

903 **Table S1.** List of GFP tagged CIN gene mini array screen proteins showing localization changes
904 after MMS, H₂O₂ or UV treatment.

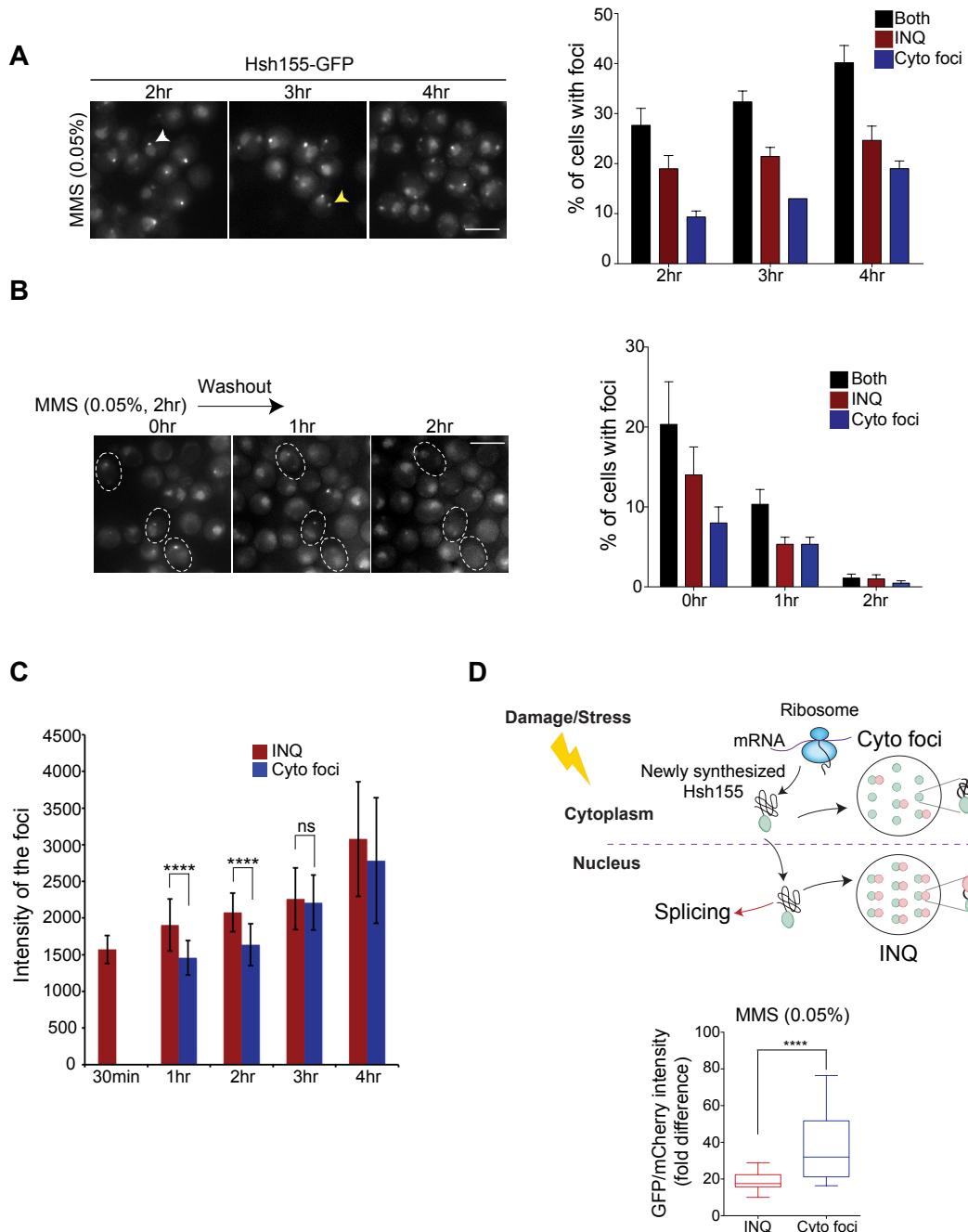
905 **Table S2.** Whole proteome abundance data after MMS treatment.


906 **Table S3.** Gene Ontology enrichment for depleted proteins upon MMS treatment

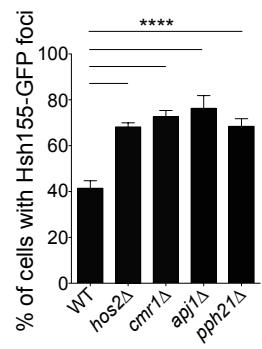
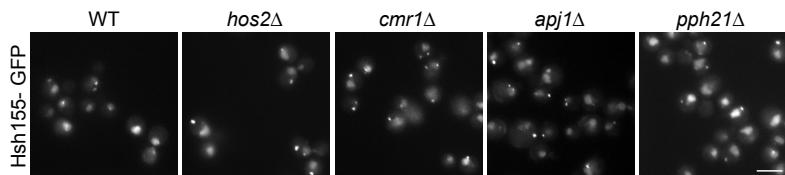
907 **Table S4.** Comparison of the Cmr1 ChIP occupancy data in WT cells (Jones et al, 2016) and
908 complete microarray expression data in *sfp1Δ* strain (Marion et al, 2004).


909 **Table S5.** Yeast strains used in this study

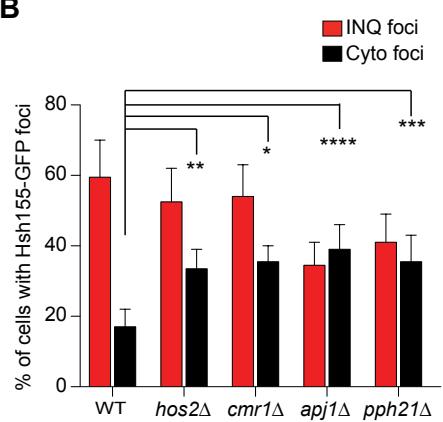
910


Mathew_Fig1

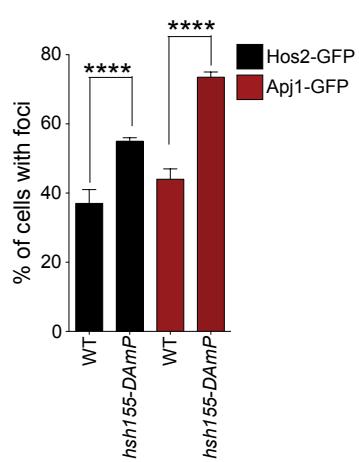
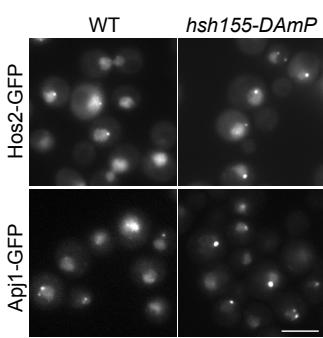
Mathew_Fig2

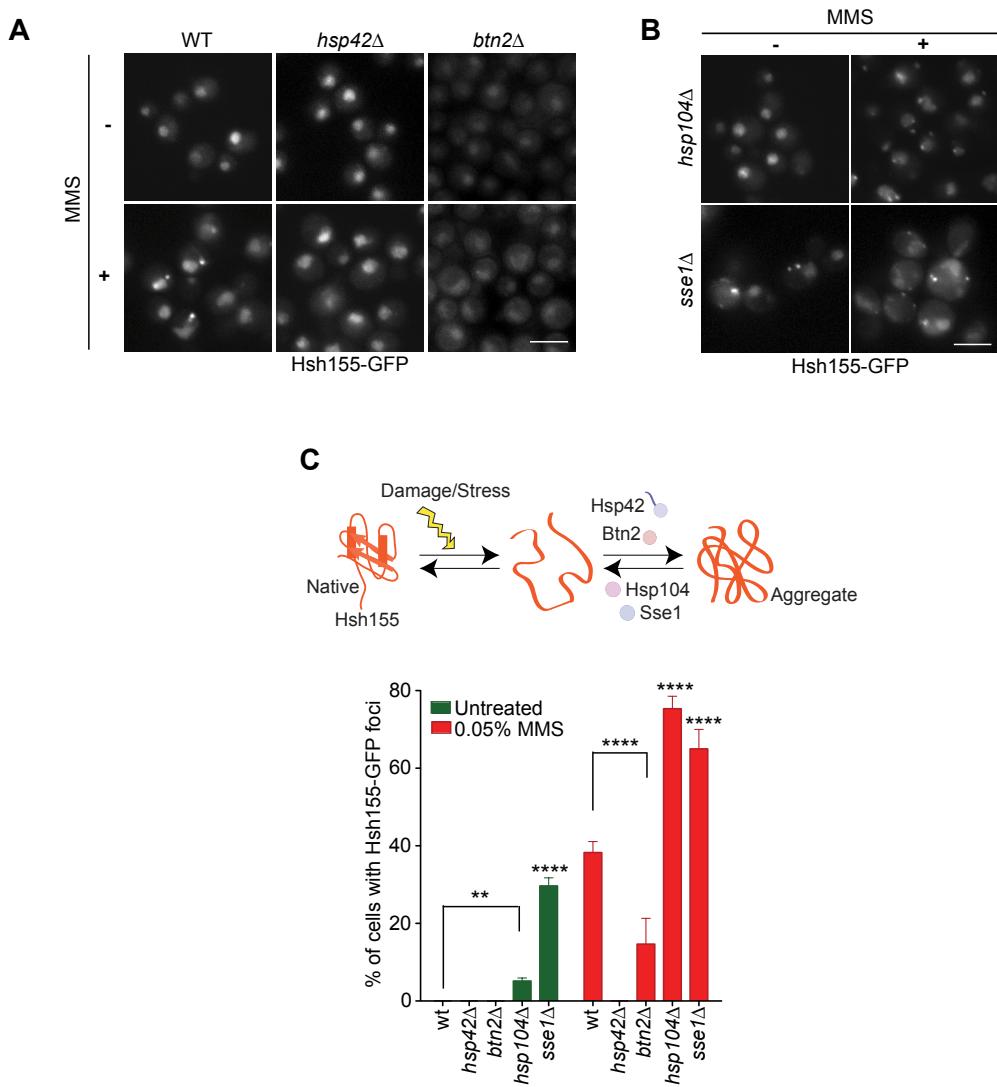



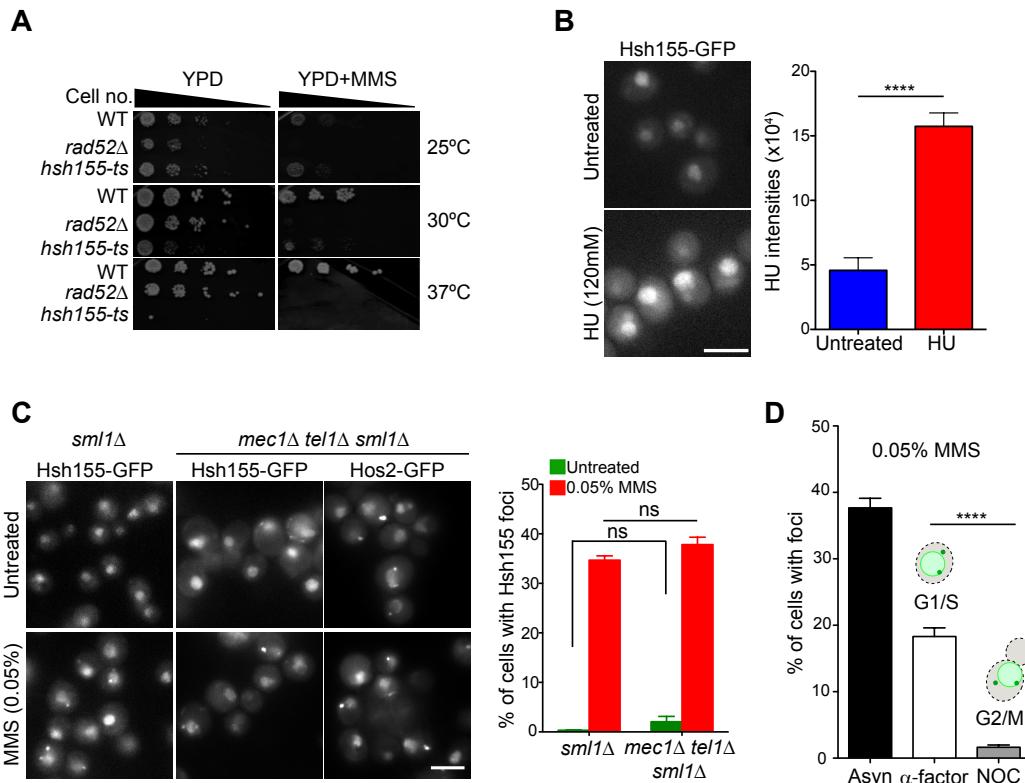
Mathew_Fig3

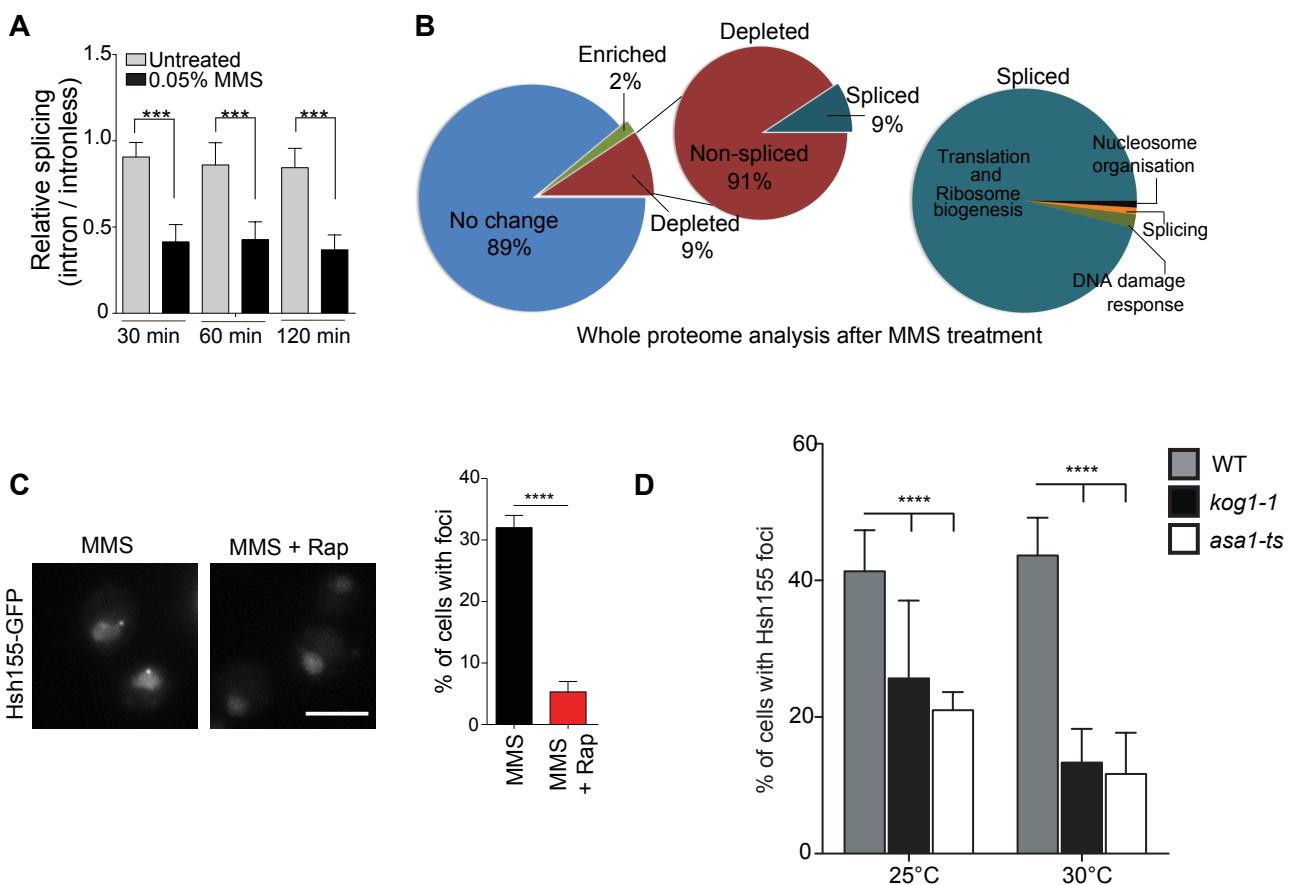


Mathew_ Fig4

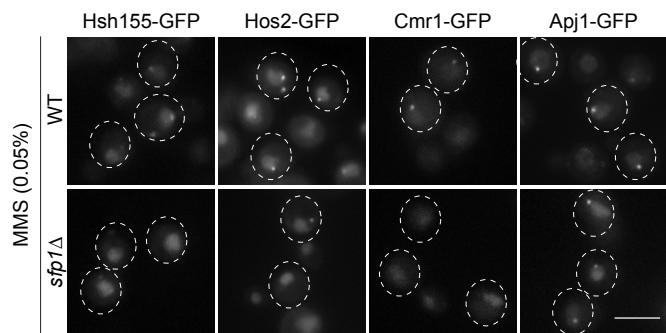


A


B

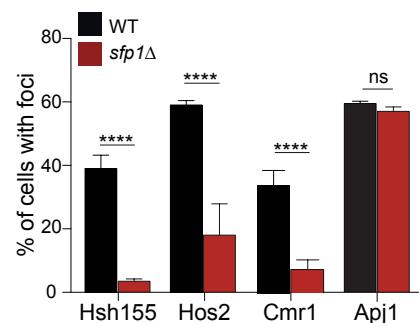

C


Mathew_ Fig5

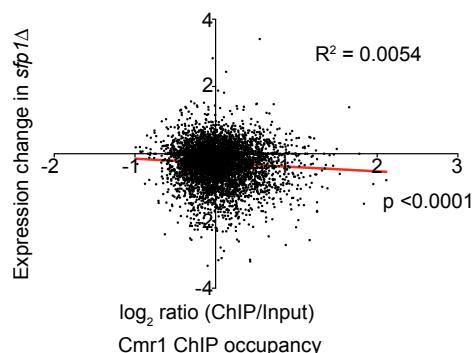
Mathew_ Fig6

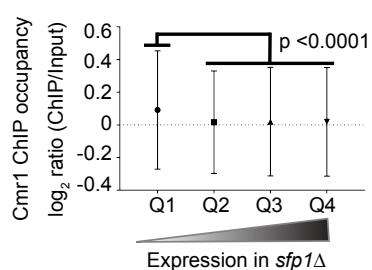


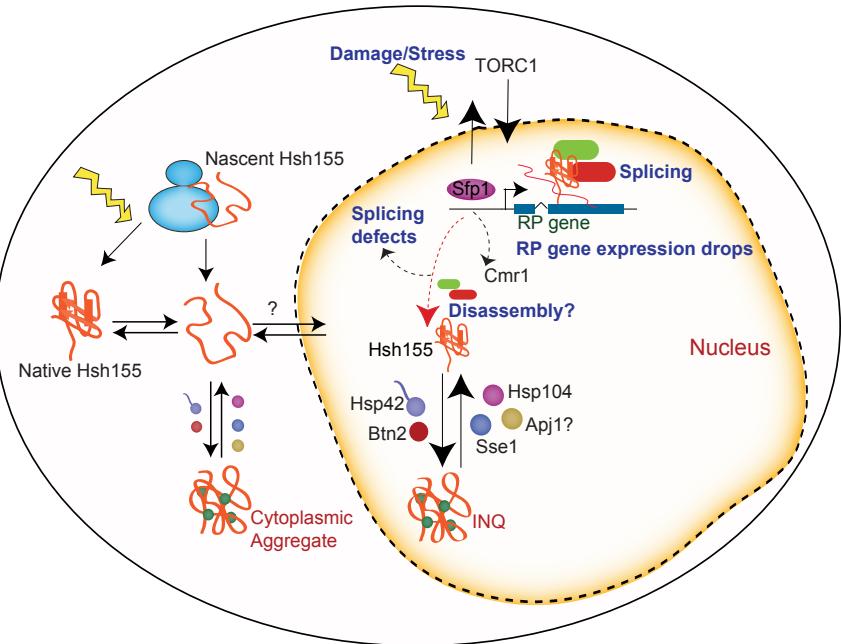
Mathew_Fig7

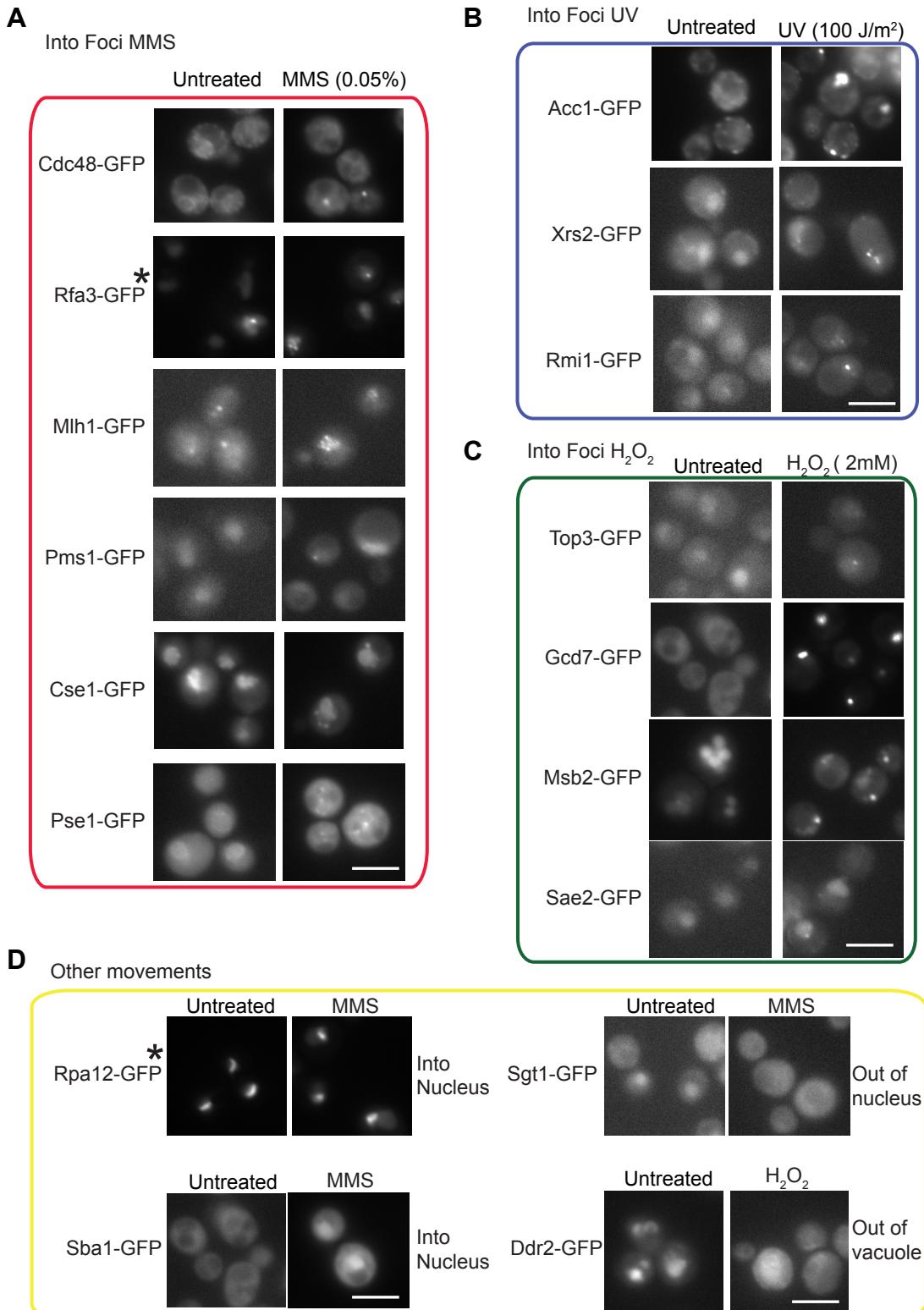


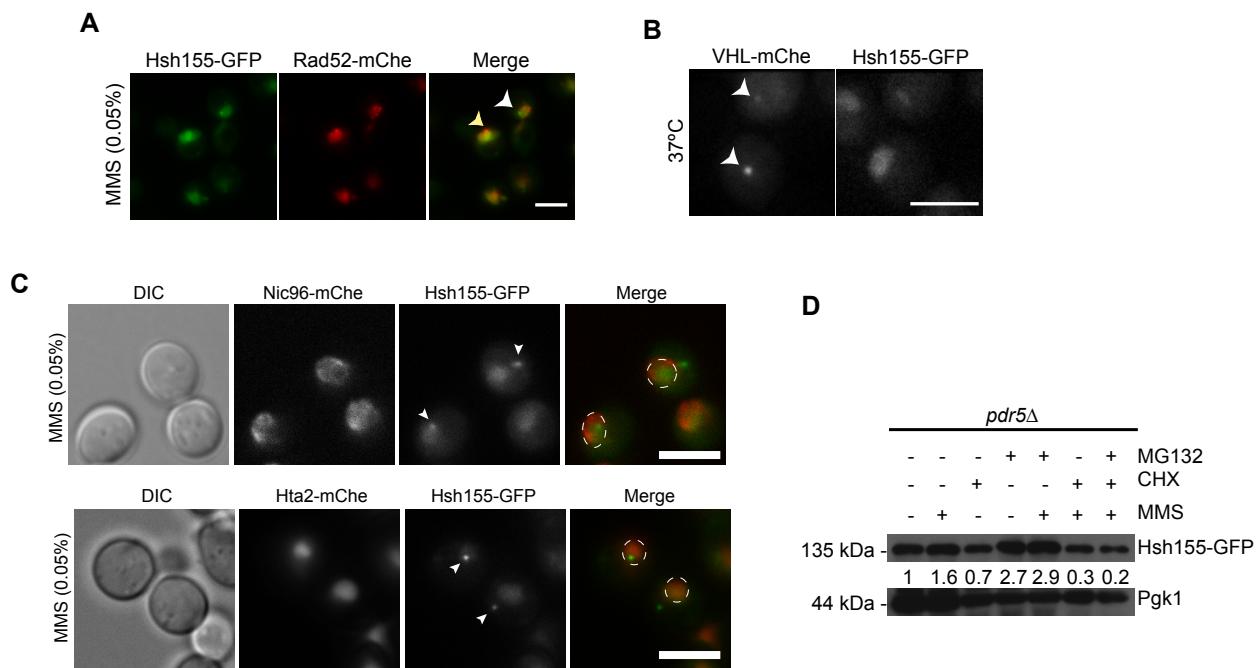
Mathew_Fig8

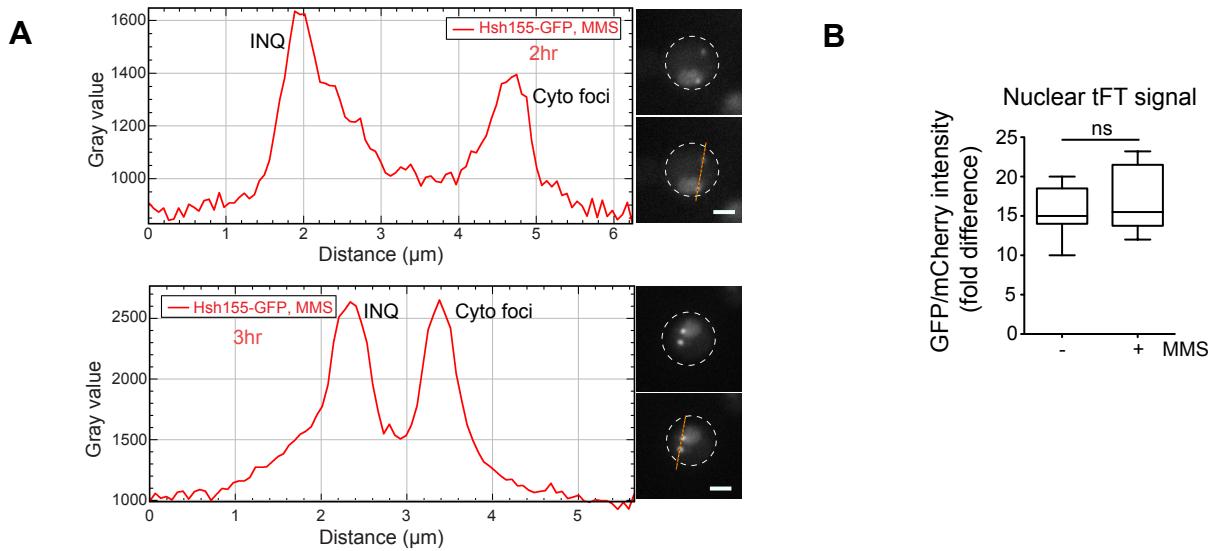

A

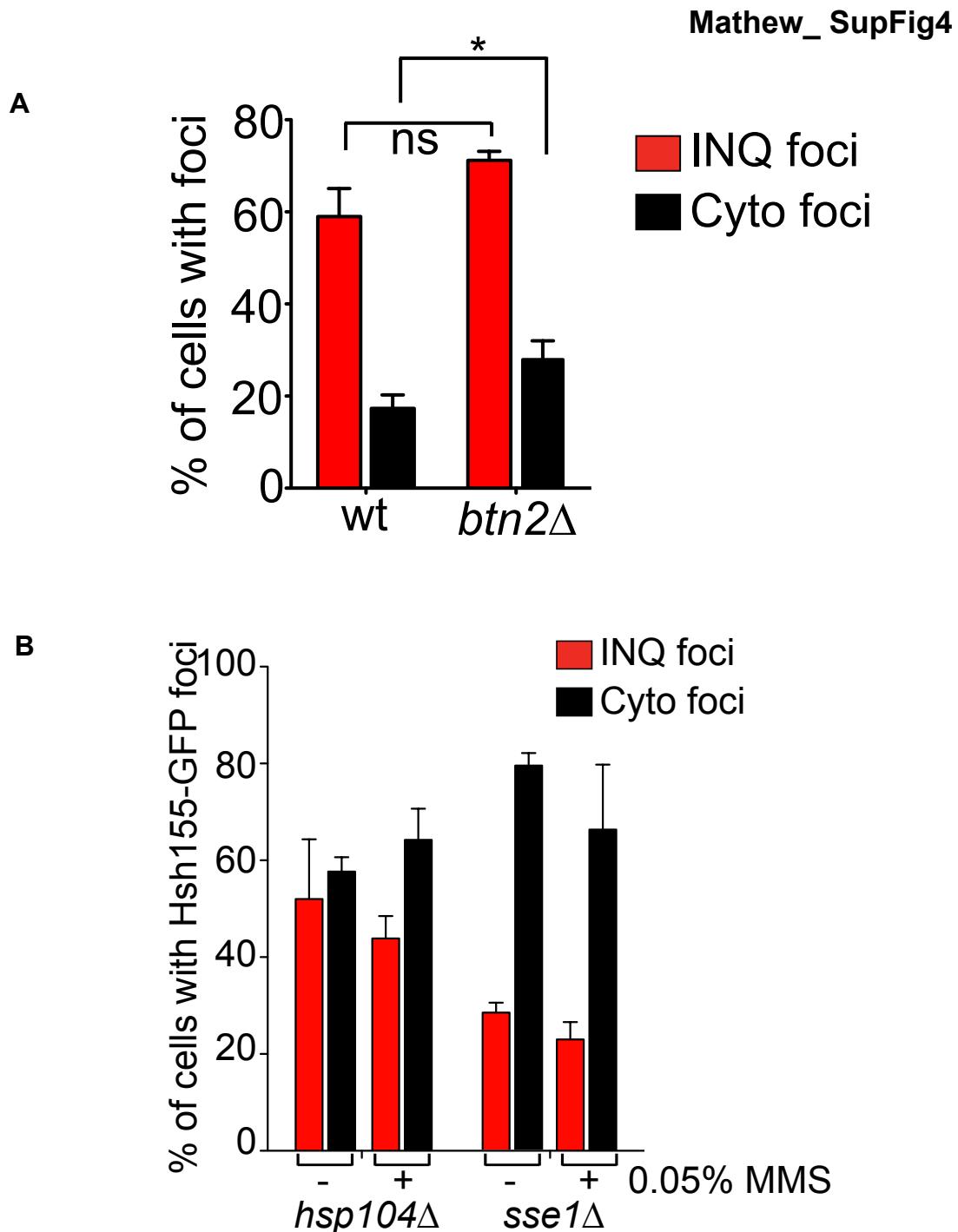

B


C

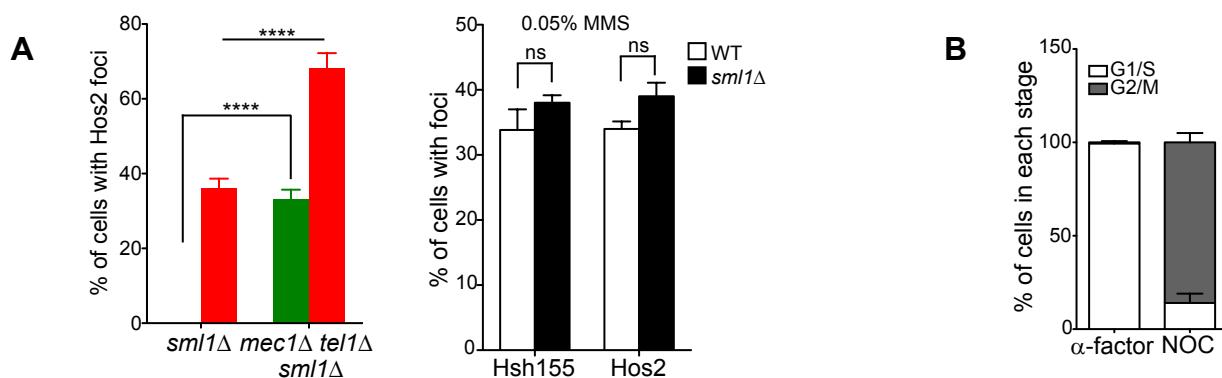

D


E

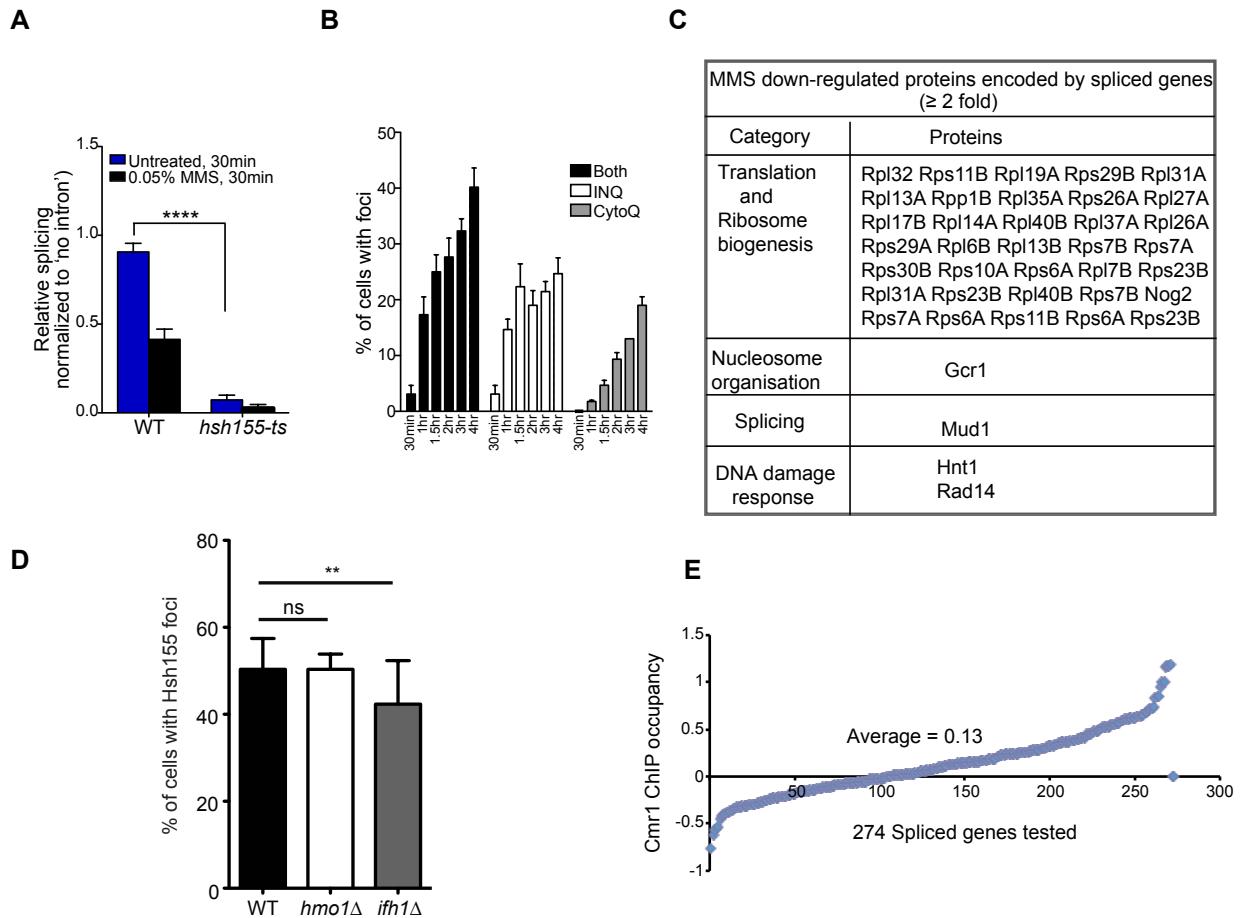

Mathew_ SupFig1



Mathew_SupFig2



Mathew_ SupFig3



Mathew_ SupFig5

Mathew_ SupFig6

