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Abstract

Mass cytometry (CyTOF) has greatly expanded the capability of cytometry. It is now
easy to generate multiple CyTOF samples in a single study, with each sample containing single-
cell measurement on 50 markers for more than hundreds of thousands of cells. Current methods
do not adequately address the issues concerning combining multiple samples for subpopulation
discovery, and these issues can be quickly and dramatically amplified with increasing number of
samples. To overcome this limitation, we developed Partition-Assisted Clustering and Multiple
Alignments of Networks (PAC-MAN) for the fast automatic identification of cell populationsin
CyTOF data closdly matching that of expert manual-discovery, and for alignments between
subpopulations across samples to define dataset-level cellular states. PAC-MAN is
computationally efficient, allowing the management of very large CyTOF datasets, which are
increasingly common in clinical studies and cancer studies that monitor various tissue samples
for each subject.

Author Summary

Recently, the cytometry field has experienced rapid advancement in the development of
mass cytometry (CyTOF). CyTOF enables a significant increase in the ability to monitor 50 or
more cellular markers for millions of cells at the single-cell level. Initial studies with CyTOF
focused on few samples, in which expert manual discovery of cell types were acceptable. As the
technology matures, it is now feasible to collect more samples, which enables systematic studies
of cell types across multiple samples. However, the statistical and computational issues
surrounding multi-sample analysis have not been previously examined in detail. Furthermore, it
was not clear how the data analysis could be scaled for hundreds of samples, such as those in
clinical studies. In this work, we present a scalable analysis pipeline that is grounded in strong
statistical foundation. Partition-Assisted Clustering (PAC) offers fast and accurate clustering and
Multiple Alignments of Networks (MAN) utilizes network structures learned from each
homogeneous cluster to organize the data into data-set level clusters. PAC-MAN thus enables the
analysis of a large CyTOF dataset that was previously too large to be analyzed systematically;
this pipeline can be extended to the analysis of similarly large or larger datasets.
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I ntroduction

Analyses of CyTOF data rely on many of the tools and ideas from flow cytometry (FC)
data analysis, as CyTOF datasets are essentially higher dimensional versions of flow cytometry
datasets. Currently, the most widely used method in FC is still human hand-gating, as other
methods often fail to extract meaningful subpopulations of cells automatically. In hand-gating,
we draw polygons or other enclosures around pockets of cell events on a two-dimensiona
scatterplot to define subpopulations and cellular states that are observed in the data. This process
is painfully time-consuming and requires advance knowledge of the marker panel design, the
quality of the staining reagents, and, most importantly, a priori what cell subpopulations to
expect to occur in the data. When presented with a new set of marker panels and biological
system, the researcher would find it difficult to delineate the cell events, especialy in high-
dimensional and multi-sample datasets.

The inefficient nature of hand-gating in flow cytometry motivated algorithmic
development in automatic gating. Perhaps the most popular is flowMeang[1], which is optimized
for FC and can learn subpopulationsin FC data[2] in an automated manner; however, it has not
been successfully applied to CyTOF data analysis. Currently, most data analysis tools created for
flow cytometry data analyses are not easily applicable for high-dimensional datasets[3]. An
exception is SPADE, which was developed and optimized specifically for the analysis of CyTOF
datasety 3]. flowMeans and SPADE constitute the leading computational methods in cytometry,
but as shown later in this work, their performance may become sub-optimal when challenged
with large and high-dimensional datasets. There are also other recent clustering-based tools that
utilize dimensionality reduction and projections of high-dimensional data, however, these tools
do not directly learn the subpopulations for al the cell events, and may be too slow to complete
dataanalysis for an increasing amount of samples.

In this study, we address the data analysis challenges in two major steps. First, we
propose the partition-assisted clustering (PAC) approach, which produces a partition of the k-
dimensional space (k=number of markers) that captures the essential characteristic of the data
digtribution. This partitioning methodology is grounded in a strong mathematical framework of
partition-based high-dimensional density estimation[4—-8]. The mathematical framework offers
the guarantee that these partitions approximate the underlying empirical data distribution; this
step is faster than the recent k-nearest neighbor-based method [9] and is essential to the
scalability of our clustering approach to analyze datasets with many samples. The clustering of
cells based on recursive partitioning is then refined by a small number of k-means style iterations
before a merging step to produce the final clustering.

Secondly, the subpopulations learned separately in multiple different but related datasets
can be aligned by marker network structures (multiple alignments of networks, or MAN),
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98 making it possible to characterize the relationships of subpopulations across different samples

99 automatically. The ability to do so is critical for monitoring changes in a subpopulation across
100 different conditions. Importantly, in every study, batch effect is present; batch effects shift
101  subpopulation signals so that the means can be different from experiment to experiment. PAC-
102 MAN naturally addresses batch effects in finding the alignments of the same or closely related
103  subpopulations from different samples.

104 PAC-MAN finds homogeneous clusters efficiently with al data points in a scalable
105  fashion and enables the matching of these clusters across different samples to discover cluster
106  relationshipsin the form of clades.

107

108 Resultsand Discussion

109
110 PAC
111 PAC has two parts. partitioning and post-processing. In the partitioning part of PAC, the

112  data space is recursively divided into smaller hyper-rectangles based on the number of data
113  points in the locality (Fig 1a). The partitioning is accomplished by either Bayesian Sequential
114  Partition (BSP) with limited look-ahead (Fig 1a and 1b) or Discrepancy Sequential Partition
115 (DSP) (Fig 1la); these are two fast variants of partition-based density estimation methods
116  previously developed by our group [4-8], with DSP being the fastest. BSP and DSP divide the
117  sample space into hyper-rectangles with uniform density value in each of them. The subsetting of
118  cdls according to the partitioning provides a principled way of clustering the cells that reflects
119  the characteristics of the underlying distribution. In particular, each significant mode is captured
120 by a number of closely located rectangles with high-density values (Fig 1c). Although this
121 method allows a fast and unbiased localization of the high-dengity regions of the data space, we
122 should not use the hyper-rectangles directly to define the final cluster boundaries for two
123 reasons. First, real clusters are likely to be shaped dliptically, therefore, the data points in the
124  corners of a hyper-rectangle are likely to be incorrectly clustered. Second, a real cluster is often
125  split into more than one closaly located high-density rectangles. We designed post-processing
126  stepsto overcome these limitations: 1) a small number of k-means iterations is used to round out
127  the corners of the hyper-rectangles, 2) a merging process is implemented to ameliorate the
128  splitting problem, which is inspired by the flowMeans algorithm. The details of post-processing
129 are given in the Materials and Methods. The resulting method is named b-PAC or d-PAC
130  depending on whether the partition is produced by BSP or DSP.

131
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132 Fig 1: PAC recursively partitions the data space to obtain rational initialization structure.
133 (&) Partition-based methods estimate data density by cutting the data space into smaller
134  rectangles. Bayesian Sequential Partition (BSP) divides the data space via binary partition in the
135  middle of the bounded region, while that of Discrepancy Sequential Partition (DSP) occur at the
136  location that balances the data point uniformly on both sides of the cut. The numbers denote
137  sequential order of partitions. Since DSP adapts to the data points, it converges on the estimated
138  dengity faster than BSP. (b) In the (one-step) look-ahead of version of partition, the algorithm
139  cuts the data space for all potential cuts plus one step more (steps 2 and 3), and it finds the
140 optimal future version (after step 3), which determines the actual cut (step 2). (c) The
141  partitioning of simulated data space containing five subpopulations, the hyper-rectangles
142 surround high-density areas, approximating the underlying distribution.

143
144  MAN
145 An approach to analyze multiple related samples of CyTOF datais to pool all samplesinto a

146  combined sample before detection of subpopulations. This is a natural approach under the
147  assumptions that there are no significant batch effects or systematic shifts in cell subpopulations
148  across the different samples. However, such assumptions may not hold due to one or more of the
149  following reasons:

150 1) Dataset size and instruments used. Large number of samples usually means the samples
151 were collected on different days with different experimental preparations. Many steps can
152 introduce significant shiftsin measurement levels.

153 2) Saining reagents. Reagents such as antibodies, purchased from different vendors and
154 batch preparations can affect the overall signal. While saturation of reagents in the
155 protocol could help eliminate the batch effects in the staining procedure, this approach is
156 costly and might not work for all antibodies, especially those with poor specificity.

157 3) Normalization beads stock. While normalization beadg10] help to control for the signal
158 level, especially within one experiment, the age of the beads stock and their preparation
159 could lead to significant batch effects. In addition, there are different types of
160 normalization beads and normalization calculations.

161 4) Human work variation. While many researchers are studying the same system (e.g.,
162 immune system), different protocols and implementation by different researchers, who
163 sometimes perform experimental steps sightly differently, can lead to batch effects.

164 5) Subpopulation dynamics. The subpopulation centers can move from sample to sample
165 due to treatments on the cells in treatment-control studies or perturbation studies. General
166 practiceisto cluster by phenotypic markers.

167 6) Sample background. If the data came from different cell lines or individuas in a clinical
168 study, the measurement levels and proportions of cell subpopulations would be expected
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169 to change from sample to sample. Without expert scrutiny, it would be difficult to make
170 sense of the data with current data analysis tools.

171

172 Could we extract shared information that allows us to interpret cross-sample similarities

173 and differences? To ameliorate these difficulties, we have designed an alternative approach that
174  iseffective in the presence of substantial systematic between-sample variation. In this approach,
175 each sample is analyzed separately (by PAC) to discover within-sample subpopulations. Over-
176  partitioning in this step is allowed in order not to miss small subpopulations in high dimension
177  dueto lack of prior knowledge. The subpopulations from all samples are then compared to each
178  other based on a pairwise dissimilarity measure designed to capture the differences in within-
179  sample distributions (among the markers) across two subpopulations. Using this dissmilarity, we
180  perform bottom-up hierarchical clustering of the subpopulations to represent the relationship
181  among the subpopulations. The resulting tree of subpopulations is then used to guide the merging
182  of subpopulations from the same sample, and to establish linkage of related subpopulations from
183  different samples. We note that the design of a dissimilarity measure (Materials and Methods)
184  that is not sensitive to systematic sample-to-sample variation is a novel aspect of our approach.
185  The merging of subpopulations from the same sample is also important, as it offers a way to
186  consolidate any over-partitioning that may have occurred during the initial PAC analysis of each
187 sample. We emphasize that, as with the usage of all statistical methods, the user must utilize
188  samples or datasets that are considered as good as possible; interpretation of the analysis results
189  rely on the researchers to collect datawith validated reagents for all samples.

190
191  Rational initialization for PAC increases clustering effectiveness

192 Appropriate initialization of clustering is very important for eventually finding the
193  optimal clustering labels; PAC works well because the implicit density estimation procedure
194  vyields rational centers to learn the modes of sample subpopulations. When tested on the hand-
195 gated CyTOF data on the bone marrow sample in (14), compared to k-means alone, PAC gives
196  lower total sums of squares and higher F-measures in the subpopulations (Fig 2a and 2b). This
197  process also helps PAC to converge in 50 iterations (Fig 3) in post-processing, whereas k-means
198  performs very poorly even after 5000 iterations (Fig 4). Through the lens of t-sne plots (Fig 4),
199 the PAC results are more similar to the hand-gating results, while the k-means, flowMeans, and
200 SPADE clustering results perform poorly. In flowMeans, several large subpopulations are
201 merged. SPADE’s separation of pointsisinconsistent and highly heterogeneous, probably due to
202  its down-sampling nature. On the other hand, by inspection, PAC obtains similar separation for
203  both the mgor and minor subpopulations as the hand-gating results.

204
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205 Fig 2. Rational initialization is better than random initialization. The hand-gated CyTOF
206  data(see S1 Fig) isused for illustration. In this case, (a) the overall sum of squares error is lower
207  and (b) the F-measureis higher for PAC.

208

209 Fig 3. Rational initialization and minimal kmeans post-processing iterations give fast
210  convergence. The convergence of PAC toward the hand-gated results, or ground truth, is fast. It
211  takes less than 50 downstream post-processing kmeans iterations for the PAC to achieve
212 convergence.

213

214  Fig 4. Visualization and comparison of clustering results by t-sne plots. Each t-sne plot
215  contains the same 10,000 cell events from the hand-gated CyTOF data with different set of
216  colored labels drawn. Note that the colors are informative only within each panel. These labels
217  are from kmeans, SPADE, flowMeans, b-PAC, and d-PAC. The subpopulation numbers for all
218 methods were set to be the same as that of hand-gated results. PAC methods achieve a
219  dignificantly better convergence to the hand-gate labels than alternative methods.

220

221 PAC is consistently better than flowMeans and SPADE for ssimulated datasets and hand-
222  gated cytometry datasets

223 In the systematic smulation study, we challenged the methods with different datasets
224  with varying number of dimensions, number of subpopulations, and separation between the
225  subpopulations. The F-measure and p-measures for the PAC methods are consistently equal or
226 higher than that of flowMeans and SPADE (Table 1 and S2a Fig). In addition, we observe that
227  flowMeans gives inconsistent F-measures for similar datasets (Table 1), which may be due to the
228  convergence of k-meansto alocal minimum without arational initialization.

229

230 Table 1. F-measure Comparisons of Methods on Simulated and Hand-gated Cytometry
231 Datasets.

Dat AnalysisMethods
aa flowM eans SPADE d-PAC b-PAC
5 10 40 100k* 0.79 0.64 0.94 0.94
5 20 40 100k 0.9 0.73 0.94 0.94
10 5 30 100k 0.74 0.93 0.93 0.97
10 10 30 100k 0.967 0.88 0.98 0.98
10 10 40 100k 0.92 0.95 0.98 0.98
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10 20 30_100k 0.88 0.76 0.9 0.91
10 20 40 _100k 0.94 0.93 0.95 0.95
10 40 30 100k 0.42 0.55 0.7 0.7
20 5 20_100k 0.75 0.71 0.91 0.9
20 5 30_100k 0.76 0.98 0.99 0.99
20 5 40_100k 0.72 0.85 1.00** 1.00**
20_10_40_ 100k 0.25 0.96 0.97 0.97
20_20_40_ 100k 0.93 0.91 0.92 0.93
35 5 40 200k 0.96 0.89 0.99 0.99
35_10_40 200k 0.93 0.79 0.96 0.96
Stem Cell
(6 dimensions, 5 0.98 041 0.98 0.91
subpopulations)
NDD
(12 dimensions, 8 0.8 0.77 0.79 0.8
subpopulations)
CyTOF
(39 dimensions, 24 0.59 0.53 0.84 0.82

subpopulations)

232

233  F-measureis calculated using the original hand-gate labels and the estimated |abels generated by
234  each analysis method. The true-positives are found if the methods assign the same labels to
235  points belonging to the same subpopulation in the hand-gated data. The more true-positives
236  found, the higher the F-measure, which ranges from 0 to 1, with 1 being the highest. Partition-
237  based methods perform consistently well on data ranging from 5 to 39 dimensions. In the
238 simulations, d-PAC and b-PAC perform just as well or better than flowMeans and SPADE.
239 flowMeans gives dradtically different F-measures for the cases 20 10 40 100k and
240 20 20 40 100k : 0.25386 vs. 0.92518; this large differenceis likely due to the random initiation
241  of cluster centers. In the hand-gated datasets, SPADE has the worst performance. Ultimately, the
242  performance of flowMeans and SPADE deteriorate for the 39-dimensional real CyTOF data,
243 while d-PAC and b-PAC perform consistently well.

244  *Simulated data have the following convention: a b ¢ d, where a denotes the number of
245 dimensongmarkers, b denotes the number of subpopulations, ¢ denotes the size of the
246 hypercube for data generation, and d denotes the number of cells.

247  **from rounding up, not originally 1.00
248

249 Next, we tested the methods based on published hand-gated cytometry datasets to see
250 how similar the estimated subpopulations are to those obtained by human experts. We applied
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251  the methods on the hematopoietic stem cell transplant and Normal Donors datasets from the
252  FHowCAP challenges[2] and on the subset of gated mouse bone marrow CyTOF dataset (Dataset
253 5) recently published[11]. The gating strategy of the CyTOF dataset is provided in Fig S1. The
254  dataset and expert gating strategy are the same as described earlier[12]. Note that in the flow
255  cytometry data, the computed F-measures are slightly lower than that reported in FlowCAP; this
256 is due to the difference in the definition of F-measures. Overall, the PAC outperforms
257 flowMeans and SPADE by consistently obtaining higher F-measures (Table 1). In particular, in
258 the CyTOF data example, PAC generated significantly higher F-measures (greater than 0.82)
259  than flowMeans and SPADE (0.59 and 0.53, respectively). In addition, PAC gives higher overall
260  subpopulation-specific purities (S2b Fig and S1 Table). These results indicate that PAC gives
261  consistently good results for both low and high-dimensional datasets. Furthermore, PAC results
262  match human hand-gating results very well. The consistency between PAC-MAN results and
263  hand-gating resultsin this large data set confirms the practical utility of the methodology.

264
265  Separate-then-combine outperforms pool approach when batch effect is present

266 It is natural to analyze samples separately then combine the subpopulation features for
267 downstream analysis in the multiple samples setting. However, we need to resolve the batch
268  effects. Two distinct subpopulations could overlap in the combined/pooled sample, such asin the
269 case when the data came from two generations of CyTOF instruments (newer instrument
270  elevates the signals). On the other hand, in cases with changing means, two subpopulations can
271  evolve together such that their means change dlightly, but enough to shadow each other when
272 samples are merged prior to clustering.

273 We introduce Multiple Alignments of Networks to resolve the management issue
274  surrounding the organization of homogeneous clusters found in the PAC step (Fig 5). First, we
275  consider the overlapping scenario (Fig 6a). When viewed together in the merged sample, the
276  right subpopulation from sample 1 overlaps with the left subpopulation in sample 2 (Fig 6b left
277 pand). There is no way to use expression level alone to delineate the two overlapping
278  subpopulations (Fig 6b right pandl). By learning more subpopulations using PAC, there are some
279  hints that multiple subpopulations are present (Fig 6¢). Despite these hints, it would not be
280 possible to say whether the shadowed subpopulations relate in any way to other distinct
281  subpopulations.

282

283  Fig 5. Schematic analogy of MAN. Consider a deck of networks (in analogy to cards), with
284  each “suit” representing a sample and each “rank” representing a unique network structure. The
285  networks are aligned by similarity and organized on a dendrogram. The tree is cut (red line) at
286  the user-specified level to output the desired k clades. Within each clade, the network structures
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287 are similar or the same. If the same sample has multiple networks in the same clade, then these
288  networks are merged (black box around same cards).

289

290 Fig 6. Simple Batch Effect Scenario. (a) Simulated data samples with two of the same
291  subpopulations. The means shifted due to measurement batch effect. (b) When the samples are
292  combined, asin the case of analyzing all samples together, two different subpopulations overlap
293  (left panel). The overlapped subpopulations cannot be distinguished by clustering (right panel).
294  (c) PAC could be used to discover more subpopulations, however, the hints of the present of
295  another subpopulation do not help to resolve the batch effect.

296

297 PAC-MAN resolves the overlapping issue by analyzing the samples separately (Fig 7). In
298  the case in which we do not know a priori the number of true subpopulations, we learn three
299  subpopulations per sample (Fig 7a). The network structures of the subpopulations discovered are
300 presented in Fig 7b-c and we see that the third subpopulations from the two samples share the
301 same network structures, while the first subpopulations of the two samples differ by only one
302  edge; these respective networks are clustered together in the dendrogram (Fig 8a right panel). By
303 utilizing the networks, the clades that represent the same and/or similar subpopulations of cells
304 can be established. Clustering by network structures alone resolves the majority of pointsin the
305 data (Fig 8a, left pand). Furthermore, as discussed next, by incorporating marker levels into the
306  alignment process, all the subpopulations can be resolved (Fig 8b).

307

308 Fig. 7. Calculation of sample clusters and their underlying network structures. (a) PAC was
309 used to discover several subpopulations per sample without advanced knowledge of the exact
310  number of subpopulations. (b-c) The networks of the subpopulations in both samples discovered
311 in (a). Networks can be grouped by similarities to organize the subpopulations across samples;
312 the alignment is based on Jaccard dissimilarity network structure characterization matrix;
313  dendrogram of the hierarchical clustering results.

314

315 Fig 8. Resolution of batch effects for simple batch effect scenario. (a) Resolution of batch
316  effect by networks of all subpopulations discovered. (b) Resolution of batch effect first by
317  network structures of larger subpopulations and then by merging smaller subpopulations into the
318  aligned clades.

319

10
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320 Next we consider the case with dynamic evolution of subpopulations that models the
321  treatment-control and perturbation studies. The interesting information is in tracking how
322  subpopulations change over the course of the experiment. In the simulation, we have generated
323  two subpopulations that nearly converge in mean expression profile over the time course (Fig 9).
324  The researcher could lose the dynamic information if they were to combine the samples for
325 clustering analysis. As in the previous case, we could use PAC to learn several subpopulations
326 per sample (Fig 10). Then, with the assumption that there are two evolving clusters from data
327 exploration, we align the subpopulations to construct clades of same and/or similar
328  subpopulations (Fig 11 left panel) based on the network structural information (S3 Fig). With
329 network and expression level information in the alignment process, the two subpopulations or
330 clades can beresolved naturally (Fig 11 right panel).

331

332 Fig9. Ground truth of simulated dynamic batch effect samples. Two subpopulations, in blue
333  color, amost converge in time by mean shifts.

334

335 Fig 10. PAC on dynamic batch effect scenario. PAC discovers severa subpopulations per
336  sample without advanced knowledge of the number of subpopulations present.

337

338 Fig 11. PAC-MAN results for dynamic batch effect scenario. Comparison of PAC-MAN
339  results between representative clades (number of clades set to 2). Using network structures (left
340 pand) or expression information (middle panel) alone does not resolve the dynamic information.
341 On the other hand, the dynamic information is resolved first by alignments of networks of larger
342  subpopulations and then by merging smaller subpopulationsinto the aligned clades (right panel).

343
344  Network and expression alignment is better than network or expression alignment alone

345 With networks in hand, we could further characterize the relationships between
346  subpopulations across samples. However, the alignment process needs to work well for true
347 linkage to be established. We could align by network alone, by expression (or marker) means, or
348  both. Figs 8 and 11 present these aternatives in comparison. By using all the subpopulation
349  networks, the results still contain subsets of misplaced cells (Figs 8a and 11 left panel). Thisis
350 because small clusters of cells have noisy underlying covariance structure; therefore, the
351  networks cannot be accurately inferred. These structural inaccuracies negatively impact the
352  network clustering. The (mean) marker level approach also does not work well (Fig 11 center
353  pane) due to the subpopulation mean shifts across samples. On the other hand, the sequential
354  approach works well (Figs 8b and 11 right pand). In the sequential approach, larger (>1500 in

11
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355  batch effect case; >1000 in dynamic case) subpopulations networks are utilized for the initial
356  alignment process. Next, the smaller subpopulations, which have noisy covariance, are merged
357  with the closest larger, aligned subpopulations. Thus, more subpopulations could be discovered
358 upstream (in PAC), and the network alignment would work similarly as the smaller
359  subpopulations, which could be fragments of a distribution, do not impact the alignment process
360 (S4a Fig and SAb Fig). Moreover, in the network inference step, unimportant edges can
361  negatively impact the alignment process ($4c Fig) in the network-alone case. Biologically, this
362  means that edges that do not constrain or define the cellular state should not be utilized in the
363 alignment of celular states. Effectively, the threshold placed on the number of edges in the
364 network inference controls for the importance of the edges. Thus, the combined alignment
365  approach works well and allows moderate over-saturation of cellular states to be discovered in
366  the PAC step so that no advance knowledge of the exact number of subpopulationsis necessary.

367

368 PAC-MAN efficiently outputs meaningful data-level subpopulations for mouse tissue
369 dataset

370 We use the recently published mouse tissue dataset[11] to illustrate the multi-sample data
371 analysis pipeline. The processed dataset contains atotal of more than 13 million cell eventsin 10
372 different tissue samples, and 39 markers per event (S2 Table). The original research results
373  centered on subpopulations discovered from hand-gating the bone marrow tissue data to find
374  ‘landmark’ subpopulations; the rest of the data points were clustered to the most smilar
375 landmark subpopulations. While this enables the exploration of the overall landscape from the
376  perspective of bone marrow cell types within an acceptable time frame, a significant amount of
377  useful information from the data remains hidden; a larger dataset would make it infeasible to
378 analyze by manual gating and existing computational tools to learn the relationships of the
379  celular states among all samples. In addition, a natural question is how well do the bone marrow
380  cell types represent the whole immune system?

381 In contrast to the one-sample perspective, using d-PAC-MAN, the fastest approach by
382 our comparison results, we can perform subpopulation discovery for each sample automatically
383  and then align the subpopulations across samples to establish dataset-level cellular states. On a
384  standard Core i7-44880 3.40GHz PC computer, the single-thread data analysis process with all
385  data points takes about one hour to complete, which is much faster than aternative methods.
386  With multi-threading and parallel processing, the data analysis procedure can be completed very
387 quickly. As mentioned earlier, PAC results for the bone marrow subsetted data from this dataset
388  matches closdly to that of the hand-gated results. This accuracy provides confidence for applying
389 PAC totherest of the dataset.

390 Figs 11-12 show the t-sne plots for subpopulation discovered (top panel of each sample)
391  and the representative subpopulation established (bottom panel of each sample) for the entire
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392 dataset. In the PAC discovery step, we learn 35 subpopulations per sample without advance
393  knowledge of how many subpopulations are present. This moderate over-partitioning of the data
394  samples leads to a moderate heterogeneity in the t-sne plots. Next, the networks are inferred for
395 the larger subpopulations (with number of cell events greater than 1000), and the networks are
396 aligned for al the tissue samples. We output 80 representative subpopulations or clades for the
397 entire dataset to account for the traditional immunological cellular states and sample-specific
398 cdlular states present. Within samples, the subpopulations that cluster together by network
399  structure are aggregated. The smaller subpopulations (not involved in network alignment) are
400 ether merged to the closest larger subpopulation or establish their own sample-specific
401  subpopulation by expression alignment; small subpopulations were clamped with larger clades
402 by grouping the subpopulationsinto 5 clusters per sample based on the means (of marker signal).
403  The representative subpopulations (90 total) follow the approximate distribution of the cell
404  events on the t-sne plots and the aggregating effect cleans up the heterogeneities due to over-
405  partitioning in the PAC step.

406

407  Fig 12. Visualization of PAC-MAN results for Blood, Bone Marrow, Colon, Inguinal
408 Lymph Node, and Liver samples. Each t-sne plot was generated using 10,000 randomly drawn
409  cdl events from each mouse tissue sample. The results from PAC (top pandl) and MAN (bottom
410 panel) steps are presented as a pair. Initial PAC discovery was set to 35 subpopulations without
411  advanced knowledge of the number of subpopulations in each sample. In MAN, 80 network
412  clades were outputted, and the cellular states are defined by expression (marker signal), network
413  structure, and dataset-level variation. This composite definition naturally aggregates the initial 35
414  subpopulationsto yield smaller number of subpopulationsin less variable samples.

415

416  Fig 13. Visualization of PAC-MAN results for Lung, Mesenteric Lymph Node, Spleen,
417  Thymus, and Small Intestine samples. The settings and descriptions are the same as those in
418  Fig 12. Continuation of visualization of PAC-MAN results for the mouse tissue data.

419

420 The cell type clades are the representative subpopulations for the entire dataset, and they
421 could either be present across samples or in one sample alone. Their distribution is visualized by
422  aheatmap (Fig 14). While the bone marrow sample contains many cell types, only a subset of
423  them are directly aligned to cell types in other samples, which means using the bone marrow data
424  as the reference point leaves much information unlocked in the dataset. Therefore, the data
425  suggests that the bone marrow cell types are not adequate in representing all cell types in the
426  immune system. The cdll types in the blood and spleen samples have more alignments with cell
427  typesin other samples. The lymph node samples share many clades; the small intestine and colon
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428  samples also share many clades, probably due to closeness in biological function. The thymus
429  sample has few clades shared with other samples, which may be due to its functional specificity.

430

431  Fig 14: Heatmap of clade proportions acr oss the tissue samples. Sample-specific clades have
432 a vaue of 1, while shared clades have proportions spread across different samples.
433  Physiologically similar samples share more clades.

434

435 PAC-MAN style analysis can be applied to align the tissue subpopulations by their means
436  instead of network similarities (S5 Fig). As done previously, representative clades (88 total) were
437  outputted. The same aggregating effect is observed (Sba Fig), and this is due to the organization
438  from dataset-level variation in the means. Comparing to the network alignment, the means
439 linkage approach has dlightly more subpopulations per sample; the subpopulation proportion
440  heatmap (S5b Fig) shows more linking. Although the bone marrow sample subpopulations co-
441  occur in the same clades dlightly more with other sample subpopulations, this sample does not
442  co-occur with many clades in the dataset. Thus, a PAC-MAN style analysis with means linkage
443  also harvests additional information from the entire dataset.

444 To compare the network and means approaches with PAC-MAN, we study the F-measure
445  and p-measure results with 88 total clades from each approach. The overall F-measure with all
446  cedl events is 0.7969 and the overall F-measure with clades assignments of PAC-discovered
447  subpopulations is 0.3143. The two F-measure values suggest that the assignment of PAC-
448  discovered subpopulationsis more consistent for larger subpopulations.

449 To illustrate the assignment purities, the p-measures are computed for the following two
450 cases. 1) Network clade assignment is the basis (network-justified), smilar to the ground truth in
451  the clustering comparisons previoudy; or 2) means clade assgnment is the basis (means-
452  judtified) ($4 Table). P-measure cutoff is set at 0.3 (to remove unreliable comparisons) to obtain
453  purer clade assignments. In the network-justified case, PAC subpopulations with more than 0.3
454 in p-measure congtitute 93.44 % of al cell events. In the meansjudified case, PAC
455  subpopulations with more than 0.3 in p-measure constitute 92.67 % of all cel events.
456  Furthermore, if the p-measure cutoff were to increase to 0.5, the percentages of cells left for the
457  network-justified and mean-justified cases are 6.25% and 75.16%, respectively. The network-
458 judtified case yields drasticaly lower numbers of cell events in the purer PAC subpopulations
459  because the means approach has more heterogeneity in the linkages (defined as PAC-
460  subpopulation participants in each shared clade with size of at least 2). In fact, the network
461  approach has 100 linkages while the means approach has 209 linkages. Therefore, the extra
462  linkages in the means approach would yield greater impurities in the network-justified case. The
463  linkage plot (S6a Fig) shows that the low linkages occur slightly more frequently for the network
464  approach. One consequence is that the network approach aggregates PAC subpopulations within
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465  sample more frequently; for instance, in the thymus sample, the network approach yields 14
466  clades while the means approach yields 21 clades.

467 After aggregating, the clade sizes (with unique participants per sample) are plotted (S6b
468  Fig). The network approach tends to find fewer linkages, as more clades have sizes of less than
469 4, while the means approach has more clades than the network approach with clade sizes greater
470 than 4. The network approach is more conservative due to the additional constraints from
471  network structures. Conventionally, in the cytometry field, only the means are considered in the
472  definition of cellular states. Assuming the absence of batch and dynamic effects, the researcher
473  could view the purer shared clade assignments in the network-justified case (general agreement
474  between constrained network approach and means approach) as more reliable candidates of
475  cross-sample relationships to investigate in future experiments (S6c¢ Fig).

476 Hence, the network alignment approach is in agreement that of the means approach, with
477  network alignment being more stringent in the establishment of linkages. The network PAC-
478  MAN approach defines cellular states with the additional information from network structures,
479 and it has the effect of constraining the number of linkages between samples while finding
480 linkages for subpopulations that are distant in their means.

481
482  Network hubs provide natural annotations

483 To further characterize the cell types, we annotate the clades within each sample using
484  thetop network hub markers, which constrain the cellular states. The full annotation, along with
485  mean average expression profiles, is presented in S3 Table. The clade information is presented in
486 the ClusterlD column. The annotations for cells across different samples but within the same
487  clades share hub markers. For example, in clade 1 for the blood and bone marrow samples, the
488  cells share the hub markers Ly6C and CD11b. In the bone marrow sample, one important set of
489  subpopulationsis the hematopoietic stem cell subpopulations. One such subpopulation is present
490  as clade 18 with the annotation CD34-CD27-cKit-Scal and is about 1.87 percent in the bone
491  marrow sample. Clade 18 is only present in the bone marrow sample, indicating that the PAC-
492  MAN pipeline defines this as a sample-specific and coherent subpopulation using dataset-level
493  variation. The thymus contains a large subpopulation (84.07 percent) that is characterized as
494  CD5-CD4-CD43-CD3, suggesting it to be the maturing T-cell subpopulation.

495
496
497

498
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499 Conclusion

500

501 We have presented the PAC-MAN data analysis pipeline. This pipeline was designed to
502 remove major roadblocks in the utilization of existing and future CyTOF datasets. First, we
503 established a quick and accurate clustering method that closely matches expert gating results;
504  second, we demonstrated the management of multiple samples by handling mean shifts and batch
505 effects across samples. The alignment allows researchers to find relationships between cells
506  across samples without resorting to pooling of all data points. PAC-MAN allows the cytometry
507 field to harvest information from the increasing amount of CyTOF data available. It is important
508 to standardize multi-sample data analysis with automation so that discoveries based on multi-
509 sample CyTOF datasets from different laboratories do not depend on the experts' manual gating
510 dtrategies and the grouping of subpopulations that is constrained by non-systematic
511  computations. Furthermore, due to PAC-MAN’s generality, this pipeline can be utilized to
512  analyzelarge datasets of high-dimension beyond the cytometry field.

513

514 Materialsand Methods

515

516  Partition-asssted clustering has two parts

517 1) Partitioning: a partition method (BSP[5] or DSP[7]) is used to learn N initial cluster centers
518 fromtheorigina data.

519  2) Post-processing: A small number (m) of k-mean iterations is applied to the rectangle-based
520 clusters from the partitioning, where m is a user-specified number. We used m=50 in our
521  examples. After this k-means refinement, we merge the N clusters hierarchically until the desired
522 number of clusters (this number is user-specified) is reached. The merging is based on a given
523  distance metric for clusters. In the current implementation, we use the same distant metric as in
524  flowMeang[1]. That is, for two clusters X and Y, their distance D(X, Y) is defined as:

525 D(X,Y) = min {(x — )"y '(x — ), (x = 7S, (x — )} D

526 where ¥,y are the sample mean of cluster X and Y, respectively. S;?! is the inverse of the
527  sample covariance matrix of cluster X. S, is defined similarly. In each step of the merging

528  process, the two clusters having the smallest pairwise distance will be merged together into one
529  cluster.

530
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531  Partition Methods

532 There are two partition methods implemented in the comparison study: d-PAC and b-
533 PAC. The results are similar, with d-PAC being the faster algorithm. Fig la illustrates this
534  recursive process.

535 d-PAC is based on the discrepancy density estimation (DSP)[7]. Discrepancy, which is
536 widely used in the analysis of Quasi-Monte Carlo methods, is a metric for the uniformity of
537  points within a rectangle. DSP partitions the density space recursively until the uniformity of
538  points within each rectangle is higher than some pre-specified threshold. The dimension and the
539  cut point of each partition are chosen to approximately maximize the gap in uniformity of two
540  adjacent rectangles.

541 BSP + LL is an approximation inference algorithm for Bayesian sequentia partitioning density
542  estimation (BSP)[5]. It borrows ideas from Limited-L ook-ahead Optional Pélya Tree (LL-OPT),
543  an approximate inference algorithm for Optional Pélya Treg[8]. The original inference algorithm
544  for BSP looks at one level ahead (i.e. looking at the possible cut points one level deeper) when
545  computing the sampling probability for the next partition. It then uses resampling to prune away
546  bad samples. Instead of looking at one level ahead, BSP + LL looks at h levels ahead (h > 1)
547  when computing the sampling probabilities for the next partition and does not do resampling (Fig
548  1Db). In other words, it compensates the loss from not performing resampling with more accurate
549  sampling probabilities. For simplicity, ‘BSP + LL’ is shortened to ‘BSP’ in therest of the article.

550
551 F-measure

552 We use the F-measure for comparison of clustering results to ground truth (known in
553  simulated data, or provided by hand-gating in real data). This measure is computed by regarding
554  a clustering result as a series of decisions, one for each pair of data points. A true positive
555  decision assigns two points that are in the same class (i.e. same class according to ground truth)
556  to the same cluster, while a true negative decision assigns two points in different classes to
557 different clusters. The F-measure is defined as the harmonic mean of the precison and
558  recall. Precision P and recall R are defined as:

559 p=_"1" )

T TP+FP

560 R=—2F (3)

" TP+FN

561 where TP isthetotal number of true positives, FP is the total number of false positivesand FN is
562  thetotal number of false negatives.
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563 F-measure ranges from 0 to 1. The higher the measure, the more similar the estimated
564 cluster result is to the ground truth. This definition of F-measure is different than that of
565 FowCAP challenge[2]. The use of co-assignment of labels in this definition is a more accurate
566  way to compute the true positives and negatives.

567
568  Purity-measure (p-measure€)

569 Most of the existing measurements for clustering accuracy aim at measuring the overall
570 accuracy of the entire datasets, i.e. comparing with the ground truth over al clusters. However,
571 weare also interested in analyzing how well a clustering result matches the ground truth within a
572  certain class. Specifically, consider a dataset D with K classes. {C,,C,,...,Cx} and a given
573  ground truth cluster labels g, we construct an index called the purity measure, or p-measure for
574  short, to measure how well our clustering result matches g for each class C;. This index is
575  computed as follows:

576 1) For each class Cy, look for the cluster that has the maximum number of overlapping points
577  withthisclass, denoted by L;, .

578 2) Define

579 S, = 'C%:jk' , = 'CTQ;ikl (4)

580 where| - | denotes the number of pointsin a set.

581  3) Thefinal P-index for class Cy is given by

582 P = % )

583 If we were to match a big cluster with a small class, even though the overlapping may be

584 large, S; would still be low since we have divided the score by the size of the cluster in S;. In
585  addition, we are interested in knowing how many points in Cy are clustered together by L; ,
586  whichismeasured by S,.

587
588  Network construction and comparison

589 After PAC, the discovered subpopulations typically have enough cells for the estimation
590 of mutual information. This enables the construction of networks as the basis for cdl type
591  characterization. Computationally, it is not good to directly use the mutual information networks
592  constructed this way to organize the subpopulations downstream. The distance measure used to
593  characterize the networks could potentialy give the same score for different network structures.
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594  Thus, it is necessary to threshold the network edges based on the strength of mutual information
595 to filter out the noisy and miscellaneous edges. In this work, these subpopulation-specific
596  networks are constructed using the MRNET network inference algorithm in the Parmigene [13]
597 R package. The agorithm is based on mutual information ranking, and outputs significant edges
598  connecting the markers. The top d edges (d is set to be 1x the number of markersin all examples)
599  are used to define a network for the subpopulation. This process enables a careful calculation of
600  thedistance measure.

601 For each pair of subpopulation networks, we calculate a network distance, which is
602  defined as follows. If G; and G, are two networks, let S be the set of shared edges and A be
603  union of the of the edges in the two networks, then we define

S|

604 Similarity(G,, Gy) = — (6)

|4]
605  where| - | denotesthe size of a set.

606 This is known as the Jaccard coefficient of the two graphs. The Jaccard distance, or 1-
607  Jaccard coefficient, is then obtained. This is a representation of the dissimilarity between each
608  pair of networks; the Jaccard dissmilarity is the measure used for the downstream hierarchical
609  clustering.

610
611  Cross-samplelinkage of subpopulations

612 We perform agglomerative clustering of the pool of subpopulations from all samples.
613  Thisclustering procedure greedily links networks that are the closest in Jaccard dissimilarity, and
614  yields a dendrogram describing the distance relationship between all the subpopulations. We cut
615  the dendrogram to obtain the k clades of subpopulations. Subpopulations from the same sample
616  and falling into the same clade are then merged into a single subpopulation (Fig 5). This merging
617 step has the effect of consolidating the over-partitioning in the PAC step. No merging is
618  performed for subpopulations from different samples sharing the same clade. In this way, we
619  obtain k clades of subpopulations, with each clade containing no more than one subpopulation
620 from each sample. We regard the subpopulations within each clade as being linked across
621  samples.

622 In the above computation, only subpopulations with enough cells to define a stable
623  covariance are used for network alignment via the Jaccard distance; the rest of the cell events
624  from very small subpopulations are then merged with the closet clade by marker profile via
625  distance of mean marker signals. If the small subpopulations are distant from the defined clades,
626  then anew sample-specific cladeis created for these small subpopulations.

627
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628  Annotation of Subpopulations

629 To annotate the celular states, we first apply PAC-MAN to learn the dataset-level
630  subpopulation/clade labels. Next, these labels are used to learn the representative/clade networks.
631  The top hubs (i.e. the most connected nodes) in these networks are used for annotation. This
632  approach has biological significance in that important markersin acellular state are often central
633  to the underlying marker network, which is analogous to important genes in gene regulatory
634  networks; these important markers have many connections with other markers. If the connections
635  were broken, the cell would be perturbed and potentially driven to other states.

636
637  Running Published Methods

638 To run t-SNE [14] a dimensionality reduction visualization tool, we utilized the scripts
639  published here (https://lvdmaaten.github.io/tsnef). Default settings were used.

640 To run SPADE, we first converted the simulated data to fcs format using Broad
641 Institute's free CSVtoFCS online tool in GenePattern[15]
642  (http://www.broadinstitute.org/cancer/software/genepatternt).

643 Next, we carried out the tests using the SPADE package in Bioconductor R[16]
644  (https://bioconductor.org/packages/rel ease/bioc/html/spade.html).

645 To run flowMeans, we carried out the tests using the flowMeans package in
646  Bioconductor R[1] (https:.//bioconductor.org/packages/rel ease/bioc/html/flowM eans.html).

647 In the comparisons, we selected only cases that work for all methods to make the tests as
648  fair aspossble.

649 To calculate the mutual information of the subpopulations, we use the infotheo R package
650  (https://cran.r-project.org/web/packages/infotheo/index.html).

651 To run network inference, we use the mrnet algorithm in the parmigne R package [13].
652  (https://cran.r-project.org/web/packages/parmigene/index.html).

653
654  Code Availability

655 The PAC R package can be accessed at: https://cran.r-project.org/web/packages/PAC/index.html

656

657
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658 Simulated Datafor Clustering Analysis

659 To compare the clustering methods, we generated simulated data from Gaussian Mixture
660 Modd varying dimension, the number of mixture components, mean, and covariance. The
661 dimensions range from 5 to 39. The number of mixture components is varied along each
662 dimension. The mean of each component was generated uniformly from a d-dimensional
663  hypercube; we generated datasets using hypercube of different sizes, but kept al the other
664  attributes the same. The covariance matrices were generated as AAT, where A is arandom matrix
665  whose elements were independently drawn from the standard normal distribution. The sizes of
666  the simulated dataset range from 100k to 200Kk.

667 The simulated data are provided as (Datasets 1-6). Datasets 1-4 are for the PAC part.
668  Dataset 1 contains data with 5 dimensions; Dataset 2 contains data with 10 dimensions; Datasets
669 3a and 3b contain data with 20 dimensions, and Datasets 4a and 4b contain data with 35
670 dimensions. The ground truth labels are included as separate sheets in each dataset.

671 When applying flowMeans, SPADE, and the PAC to the data, we preset the desired
672  number of subpopulationsto that in the datato allow for direct comparisons.

673
674  Gated Flow Cytometry Data

675 Two data files were downloaded from the FlowCAP challenges[2]. One data file is from
676  the Hematopoietic stem cell transplant (HSCT) data set; it has 9,936 cell events with 6 markers,
677 and human gating found 5 subpopulations. Another data file is from the Normal Donors (ND)
678 data set; it has 60,418 cell events with 12 markers, and human gating found 8 subpopulations.
679 Thefilesarethefirst (‘O01") of each dataset. These data files were all 1) compensated, meaning
680  that the spectral overlap is accounted for, 2) transformed into linear space, and 3) pre-gated to
681  remove irrelevant events. We used the data files without any further transformation and filtering.
682  When applying flowMeans, SPADE, and the PAC to the data, we preset the desired number of
683  subpopulations to that in the data to allow for direct comparisons.

684
685 Gated Mass Cytometry Data

686 Human gated mass cytometry data was obtained by gating for the conventional
687 immunology cell types using the mouse bone marrow data recently published[11]. The expert
688  gating strategy is provided as Fig S1. The gated sample subset contains 64,639 cdll events with
689 39 markers and 24 subpopulations and it is provided as Dataset 7.

690 To test the performance of different analysis methods, the data was first transformed
691  using the asinh(x/5) function, which is the transformation used prior to hand-gating analysis; For
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692 SPADE analysis, we utilize the asinh(x/5) option in the SPADE commands. The post-clustering
693  results from flowMeans, SPADE, b-PAC, and d-PAC were then subsetted using the indexes of
694  gated cell events. These subsetted results are compared to the hand-gated results.

695
696 Simulated Datafor MAN Analysis

697 To test the linking of subpopulations, we generated simulated data from multivariate
698  Gaussian with preset signal levels and randomly generated positive definite covariance matrices.
699 There are two cases, batch effect and dynamic. Each simulated sample file has five dimensions,
700  with two of these varying in levels, these are the dimensions that are visualized. Dataset 5
701  contains the data for general batch effects case and Dataset 6 contains the data for dynamic
702  effects case. The ground truth labels are included as separate sheets in each dataset.

703

704  General batch scenario. Sample 1 represents data from an old instrument (instrument 1) while
705  sample 2 represents data from a new instrument (instrument 2). There are two subpopulations per
706  sample. These two subpopulations are the same, but their mean marker levels shifted higher up
707  in sample 2 due to higher sensitivity of instrument 2 (Fig 6a). The subpopulations have different
708  underlying relationships between the markers. In this smulated experiment, five markers were
709  measured. Out of the five markers, two markers show significant shift, and we focus on these
710  two dimensions by 2-dimensional scatterplots. In Fig 6a, the left subpopulation in sample 1 isthe
711  same as the left subpopulation in sample 2; the same with the right subpopulation. The same
712 subpopulations were generated from multivariate Gaussian distributions with changing means
713 with fixed covariance structure.

714  Dynamic scenario. Dynamic scenario models the treatment-control and perturbation studies. In
715  the simulation, we have generated two subpopulations that nearly converge over the time course
716  (Fig 9). The researcher could lose the dynamic information if they were to combine the samples
717  for clustering analysis. The related subpopulations were generated from multivariate Gaussian
718  digtributions with changing means with fixed covariance structure.

719
720 Raw CyTOF Data Processing

721 The researcher preprocesses the data to 1) normalize the values to normalization bead
722 signals, 2) de-barcode the samples if multiple barcoded samples were stained and ran together,
723 and 3) pre-gate to remove irrelevant cells and debris to clean up the datg[10,17]. Gene
724  expressions look like log-normal distributiong 18]; given the lognormal nature of the values, the
725  hyperbolic arcsine transform is applied to the data matrix to bring the measured marker levels
726  (estimation of expression values) close to normality, while preserving al data points. Often,
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727  researchers use the asinh(x/5) transformation, and we use the same transformation for the
728  CyTOF datasets analyzed in this study.

729
730 Mouse Tissue Data

731 In the Spitzer et al., 2015 dataset[11], three mouse strains were grown, and cells were
732 collected from different tissues: thymus, spleen, small intestine, mesenteric lymph node, lung,
733 liver, inguinal lymph node, colon, bone marrow, and blood. In each experiment, 39 expression
734  markers were monitored. The authors used the C57BL6 mouse strain as the reference[11]; the
735  datawas downloaded from Cytobank, and we performed our analysis on the reference strain.

736 First, al individual samples were filtered by taking the top 95% of cells based on DNA
737  content and then the top 95% of cells based on cisplatin: DNA content allows the extraction of
738  good-quality cells and cisplatin level (low) allows the extraction of live cells. Overall, the top
739  90% of cell events were extracted. The filtered samples were then transformed by the hyperbolic
740  arcsine (x/5) function, and merged as a single file, which contains 13,236,927 cell events and 39
741  markers per event (S2 Table).

742 Using PAC-MAN, we obtained 35 subpopulations in each sample then 80 clades for the
743  entire dataset. The 80 clades account for the traditional immune subpopulations and sample-
744  specific subpopulations. Small subpopulations not used in alignment are later merged into the
745  closest clades; this is done by performing hierarchical clustering with the marker signals to
746  obtain 5 “expression” subclades per sample. Subsequently, any clade with less than 100 cdlsis
747  discarded. Subpopulation proportion heatmap was plotted to visualize the subpopulation-
748  specificities and relationships across the samples. Finally, annotation was performed using the
749  hub markers of each representative subpopulation in each sample.

750
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806

807  Supporting Information
808

809 Sl Fig. Gating strategy of CyTOF data for methods comparison. Biaxia gating hierarchy for
810 the mouse bone marrow CyTOF dataset. Gating strategy that was used to find 24 reference
811  populations in the mouse bone marrow CyTOF data. Pre-gating step involved remova of
812  doublets, dead cdlls, erythrocytes and neutrophils. Non-neutrophils population was either subject
813 to cluster analysis by computational tools or subsequent gating. Dotted boxes represent 24
814 terminal gatesthat were selected as reference populations for the comparison analysis.

815

816  S2 Fig. Subpopulation purity of smulated and real CyTOF data. () Subpopulation-specific
817  purity plot of 35-dimensional simulated data with 10 subpopulations. The blue points denote the
818  differences between the p-measures of the partition-based method (either d-PAC or b-PAC) and
819 flowMeans, while the red points denote the p-measure differences between the partition methods
820 and SPADE. The horizontal line at 0 means no difference between the methods. Most of the blue
821  and red points are above 0, indicating that the PAC generates purer subpopulations compared to
822  the ground truth. The two subplots are very similar, which means that d-PAC and b-PAC give
823  very similar p-measures. More precisdly, the sum of differences between d-PAC and flowMeans
824 and d-PAC and SPADE are 0.85 and 1.09, respectively; and the overall difference between b-
825 PAC and flowMeans and b-PAC and SPADE are 0.84 and 1.08, respectively.
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826  (b) Subpopulation-specific purity plot of the hand-gated CyTOF data. The same convention is
827 used asin (S2a Fig). Again, more blue and red points are above O, indicating that the partition-
828  based methods generate purer subpopulations compared to the ground truth. There is a cluster of
829  points below 0 occurring in the middle of the plot, suggesting that flowMeans and SPADE
830 capture the mid-size subpopulations more similar to hand-gating than the partition-based
831 methods. More specifically, flowMeans does better (p-measure difference of 0.1 or better;
832 difference of less 0.1 is considered practically no difference) with finding subpopulations of
833 GMP, CD8 T cels, MEP, CD4 T cells (compared to d-PAC), and Plasma cells, while SPADE
834  does better with CD19+IgM- B cells, NK cells (compared to d-PAC), CD8 T célls, NKT cdlls,
835  Basophils, Short-Term HSC, and Plasma cells. However, overal, PAC has a much better
836  performance, as the absolute sum of points above O is higher than that of points below 0. More
837  precisdy, the sum of differences between d-PAC and flowMeans and d-PAC and SPADE are
838 1.21 and 1.45, respectively; and the overall difference between b-PAC and flowMeans and b-
839 PAC and SPADE are 2.06 and 2.31, respectively. The difference table isprovided in S1 Table.

840

841  S3 Fig. Networksinferred from subpopulationsin the dynamic example smulated dataset.
842  Fig 9 introduced the dynamic example in which five samples each having 2 true subpopulations
843  captures the amost-convergence of means. Here the underlying network structures for the PAC
844  discovered subpopulations (three per sample) are presented.

845

846 4 Fig. Comparison between aligning cross-sample subpopulations by network, expression
847  profile, or both. (a) PAC can be used to discover more subpopulations, with the effect of more
848  partitions from the true clusters. (b) When over-partitioning is present, network or expression
849  profile alone cannot resolve the dynamic (or batch) effects due to noisy covariance for small
850 fragments of distributions. However, first aligning the larger subpopulations with more stable
851  covariance, and thus network structures, and then merge in the smaller subpopulations by
852  expression profile resolves the effects. (c) If more irrelevant edges were introduced, network
853 aignment would fail due to the negative impact of the miscellaneous edges, however,
854  eliminating small subpopulations from the alignment step alleviates the increased edge count
855  problem.

856

857 S5 Fig. PAC-MAN style linkage by means. (@) t-sne plots of mouse tissue samples colored by
858  representative subpopulations labels from linkage by means. (b) Subpopulation proportion
859  heatmap of clades of samples from linkage by means.

860
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861 S6 Fig. Comparison between network and means PAC-MAN. (a) PAC-discovered
862  subpopulations are aggregated by MAN into clades; the number of PAC subpopulations/clades
863  for the network and means PAC-MAN approaches are plotted. (b) After aggregating shared
864  clades within samples, the number of shared clades for the entire dataset is plotted for the two
865 PAC-MAN approaches. ¢) Using the network approach results as bas's, the clades with strong
866  agreement (high p-measures) with the means PAC-MAN approach are given. The shared clades
867  (present in more than one sample) are reliable candidates for future experiment to find cross-
868  sample relationships.

869

870 Sl Table. Purity (p) Measure Differencesin CyTOF Comparison. p-measure differences in
871 gated CyTOF data analysis comparison. The differences are shown for all the annotated cell
872  subpopulations, which are ordered by their sizes. Overall, the PAC methods give more positive
873  p-measures.

874

875 S2 Table. Sample Sizesin Mouse Tissue CyTOF Dataset. The numbers of cells in the samples
876  of Spitzer et al., 2015 CyTOF dataset. The data is from the C57BL6 mouse strain and a total of
877  ten tissue samples are present. The raw column shows the number of cells prior to filtering by
878  DNA and cisplatin values. Thefinal cell counts are shown in the filtered file (3") column.

879

880 S3 Table. PAC-MAN Subpopulation Characterization Output for Mouse Tissue CyTOF
881 Dataset. The full set of annotated results, along with mean expressions, subpopulation
882  proportion and counts, are reported.

883

884 A4 Table. Network-justified and means-justified p-measures for Alignments of PAC-
885  discovered Subpopulations. The PAC-discovered subpopulations were mapped as clades in
886  both the network and means PAC-MAN approaches. The p-measures were calculated for the
887 cases 1) network approach mapping as the basis and 2) means approach mapping as the basis.
888  The comparison is the same in principle to the comparison of labels for clustering methods. The
889  resultsare ordered by p-measures.
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