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 2 

Abstract 27 

 28 

Mass cytometry (CyTOF) has greatly expanded the capability of cytometry. It is now 29 

easy to generate multiple CyTOF samples in a single study, with each sample containing single-30 

cell measurement on 50 markers for more than hundreds of thousands of cells. Current methods 31 

do not adequately address the issues concerning combining multiple samples for subpopulation 32 

discovery, and these issues can be quickly and dramatically amplified with increasing number of 33 

samples. To overcome this limitation, we developed Partition-Assisted Clustering and Multiple 34 

Alignments of Networks (PAC-MAN) for the fast automatic identification of cell populations in 35 

CyTOF data closely matching that of expert manual-discovery, and for alignments between 36 

subpopulations across samples to define dataset-level cellular states. PAC-MAN is 37 

computationally efficient, allowing the management of very large CyTOF datasets, which are 38 

increasingly common in clinical studies and cancer studies that monitor various tissue samples 39 

for each subject. 40 

 41 

Author Summary 42 

 43 

 Recently, the cytometry field has experienced rapid advancement in the development of 44 

mass cytometry (CyTOF). CyTOF enables a significant increase in the ability to monitor 50 or 45 

more cellular markers for millions of cells at the single-cell level. Initial studies with CyTOF 46 

focused on few samples, in which expert manual discovery of cell types were acceptable. As the 47 

technology matures, it is now feasible to collect more samples, which enables systematic studies 48 

of cell types across multiple samples. However, the statistical and computational issues 49 

surrounding multi-sample analysis have not been previously examined in detail. Furthermore, it 50 

was not clear how the data analysis could be scaled for hundreds of samples, such as those in 51 

clinical studies. In this work, we present a scalable analysis pipeline that is grounded in strong 52 

statistical foundation. Partition-Assisted Clustering (PAC) offers fast and accurate clustering and 53 

Multiple Alignments of Networks (MAN) utilizes network structures learned from each 54 

homogeneous cluster to organize the data into data-set level clusters. PAC-MAN thus enables the 55 

analysis of a large CyTOF dataset that was previously too large to be analyzed systematically; 56 

this pipeline can be extended to the analysis of similarly large or larger datasets. 57 

 58 

 59 

 60 
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 3 

Introduction 61 

 62 

Analyses of CyTOF data rely on many of the tools and ideas from flow cytometry (FC) 63 

data analysis, as CyTOF datasets are essentially higher dimensional versions of flow cytometry 64 

datasets. Currently, the most widely used method in FC is still human hand-gating, as other 65 

methods often fail to extract meaningful subpopulations of cells automatically. In hand-gating, 66 

we draw polygons or other enclosures around pockets of cell events on a two-dimensional 67 

scatterplot to define subpopulations and cellular states that are observed in the data. This process 68 

is painfully time-consuming and requires advance knowledge of the marker panel design, the 69 

quality of the staining reagents, and, most importantly, a priori what cell subpopulations to 70 

expect to occur in the data. When presented with a new set of marker panels and biological 71 

system, the researcher would find it difficult to delineate the cell events, especially in high-72 

dimensional and multi-sample datasets. 73 

The inefficient nature of hand-gating in flow cytometry motivated algorithmic 74 

development in automatic gating. Perhaps the most popular is flowMeans[1], which is optimized 75 

for FC and can learn  subpopulations in  FC data[2] in an automated manner; however, it has not 76 

been successfully applied to CyTOF data analysis. Currently, most data analysis tools created for 77 

flow cytometry data analyses are not easily applicable for high-dimensional datasets[3]. An 78 

exception is SPADE, which was developed and optimized specifically for the analysis of CyTOF 79 

datasets[3]. flowMeans and SPADE constitute the leading computational methods in cytometry, 80 

but as shown later in this work, their performance may become sub-optimal when challenged 81 

with large and high-dimensional datasets. There are also other recent clustering-based tools that 82 

utilize dimensionality reduction and projections of high-dimensional data, however, these tools 83 

do not directly learn the subpopulations for all the cell events, and may be too slow to complete 84 

data analysis for an increasing amount of samples. 85 

In this study, we address the data analysis challenges in two major steps. First, we 86 

propose the partition-assisted clustering (PAC) approach, which produces a partition of the k-87 

dimensional space (k=number of markers) that captures the essential characteristic of the data 88 

distribution. This partitioning methodology is grounded in a strong mathematical framework of 89 

partition-based high-dimensional density estimation[4–8]. The mathematical framework offers 90 

the guarantee that these partitions approximate the underlying empirical data distribution; this 91 

step is faster than the recent k-nearest neighbor-based method [9] and is essential to the 92 

scalability of our clustering approach to analyze datasets with many samples. The clustering of 93 

cells based on recursive partitioning is then refined by a small number of k-means style iterations 94 

before a merging step to produce the final clustering.  95 

Secondly, the subpopulations learned separately in multiple different but related datasets 96 

can be aligned by marker network structures (multiple alignments of networks, or MAN), 97 
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making it possible to characterize the relationships of subpopulations across different samples 98 

automatically. The ability to do so is critical for monitoring changes in a subpopulation across 99 

different conditions. Importantly, in every study, batch effect is present; batch effects shift 100 

subpopulation signals so that the means can be different from experiment to experiment. PAC-101 

MAN naturally addresses batch effects in finding the alignments of the same or closely related 102 

subpopulations from different samples. 103 

PAC-MAN finds homogeneous clusters efficiently with all data points in a scalable 104 

fashion and enables the matching of these clusters across different samples to discover cluster 105 

relationships in the form of clades. 106 

 107 

Results and Discussion 108 

 109 

PAC 110 

PAC has two parts: partitioning and post-processing. In the partitioning part of PAC, the 111 

data space is recursively divided into smaller hyper-rectangles based on the number of data 112 

points in the locality (Fig 1a). The partitioning is accomplished by either Bayesian Sequential 113 

Partition (BSP) with limited look-ahead (Fig 1a and 1b) or Discrepancy Sequential Partition 114 

(DSP) (Fig 1a); these are two fast variants of partition-based density estimation methods 115 

previously developed by our group [4–8], with DSP being the fastest. BSP and DSP divide the 116 

sample space into hyper-rectangles with uniform density value in each of them. The subsetting of 117 

cells according to the partitioning provides a principled way of clustering the cells that reflects 118 

the characteristics of the underlying distribution. In particular, each significant mode is captured 119 

by a number of closely located rectangles with high-density values (Fig 1c). Although this 120 

method allows a fast and unbiased localization of the high-density regions of the data space, we 121 

should not use the hyper-rectangles directly to define the final cluster boundaries for two 122 

reasons. First, real clusters are likely to be shaped elliptically, therefore, the data points in the 123 

corners of a hyper-rectangle are likely to be incorrectly clustered. Second, a real cluster is often 124 

split into more than one closely located high-density rectangles. We designed post-processing 125 

steps to overcome these limitations: 1) a small number of k-means iterations is used to round out 126 

the corners of the hyper-rectangles, 2) a merging process is implemented to ameliorate the 127 

splitting problem, which is inspired by the flowMeans algorithm. The details of post-processing 128 

are given in the Materials and Methods. The resulting method is named b-PAC or d-PAC 129 

depending on whether the partition is produced by BSP or DSP. 130 

 131 
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Fig 1: PAC recursively partitions the data space to obtain rational initialization structure. 132 

(a) Partition-based methods estimate data density by cutting the data space into smaller 133 

rectangles. Bayesian Sequential Partition (BSP) divides the data space via binary partition in the 134 

middle of the bounded region, while that of Discrepancy Sequential Partition (DSP) occur at the 135 

location that balances the data point uniformly on both sides of the cut. The numbers denote 136 

sequential order of partitions. Since DSP adapts to the data points, it converges on the estimated 137 

density faster than BSP. (b) In the (one-step) look-ahead of version of partition, the algorithm 138 

cuts the data space for all potential cuts plus one step more (steps 2 and 3), and it finds the 139 

optimal future version (after step 3), which determines the actual cut (step 2). (c) The 140 

partitioning of simulated data space containing five subpopulations; the hyper-rectangles 141 

surround high-density areas, approximating the underlying distribution. 142 

 143 

MAN 144 

An approach to analyze multiple related samples of CyTOF data is to pool all samples into a 145 

combined sample before detection of subpopulations. This is a natural approach under the 146 

assumptions that there are no significant batch effects or systematic shifts in cell subpopulations 147 

across the different samples. However, such assumptions may not hold due to one or more of the 148 

following reasons: 149 

1) Dataset size and instruments used. Large number of samples usually means the samples 150 

were collected on different days with different experimental preparations. Many steps can 151 

introduce significant shifts in measurement levels. 152 

2) Staining reagents. Reagents such as antibodies, purchased from different vendors and 153 

batch preparations can affect the overall signal. While saturation of reagents in the 154 

protocol could help eliminate the batch effects in the staining procedure, this approach is 155 

costly and might not work for all antibodies, especially those with poor specificity. 156 

3) Normalization beads stock. While normalization beads[10] help to control for the signal 157 

level, especially within one experiment, the age of the beads stock and their preparation 158 

could lead to significant batch effects. In addition, there are different types of 159 

normalization beads and normalization calculations. 160 

4) Human work variation. While many researchers are studying the same system (e.g., 161 

immune system), different protocols and implementation by different researchers, who 162 

sometimes perform experimental steps slightly differently, can lead to batch effects. 163 

5) Subpopulation dynamics. The subpopulation centers can move from sample to sample 164 

due to treatments on the cells in treatment-control studies or perturbation studies. General 165 

practice is to cluster by phenotypic markers. 166 

6) Sample background. If the data came from different cell lines or individuals in a clinical 167 

study, the measurement levels and proportions of cell subpopulations would be expected 168 
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to change from sample to sample. Without expert scrutiny, it would be difficult to make 169 

sense of the data with current data analysis tools. 170 

 171 

Could we extract shared information that allows us to interpret cross-sample similarities 172 

and differences? To ameliorate these difficulties, we have designed an alternative approach that 173 

is effective in the presence of substantial systematic between-sample variation. In this approach, 174 

each sample is analyzed separately (by PAC) to discover within-sample subpopulations. Over-175 

partitioning in this step is allowed in order not to miss small subpopulations in high dimension 176 

due to lack of prior knowledge. The subpopulations from all samples are then compared to each 177 

other based on a pairwise dissimilarity measure designed to capture the differences in within-178 

sample distributions (among the markers) across two subpopulations. Using this dissimilarity, we 179 

perform bottom-up hierarchical clustering of the subpopulations to represent the relationship 180 

among the subpopulations. The resulting tree of subpopulations is then used to guide the merging 181 

of subpopulations from the same sample, and to establish linkage of related subpopulations from 182 

different samples. We note that the design of a dissimilarity measure (Materials and Methods) 183 

that is not sensitive to systematic sample-to-sample variation is a novel aspect of our approach. 184 

The merging of subpopulations from the same sample is also important, as it offers a way to 185 

consolidate any over-partitioning that may have occurred during the initial PAC analysis of each 186 

sample. We emphasize that, as with the usage of all statistical methods, the user must utilize 187 

samples or datasets that are considered as good as possible; interpretation of the analysis results 188 

rely on the researchers to collect data with validated reagents for all samples. 189 

 190 

Rational initialization for PAC increases clustering effectiveness 191 

Appropriate initialization of clustering is very important for eventually finding the 192 

optimal clustering labels; PAC works well because the implicit density estimation procedure 193 

yields rational centers to learn the modes of sample subpopulations. When tested on the hand-194 

gated CyTOF data on the bone marrow sample in (14), compared to k-means alone, PAC gives 195 

lower total sums of squares and higher F-measures in the subpopulations (Fig 2a and 2b). This 196 

process also helps PAC to converge in 50 iterations (Fig 3) in post-processing, whereas k-means 197 

performs very poorly even after 5000 iterations (Fig 4). Through the lens of t-sne plots (Fig 4), 198 

the PAC results are more similar to the hand-gating results, while the k-means, flowMeans, and 199 

SPADE clustering results perform poorly. In flowMeans, several large subpopulations are 200 

merged. SPADE’s separation of points is inconsistent and highly heterogeneous, probably due to 201 

its down-sampling nature. On the other hand, by inspection, PAC obtains similar separation for 202 

both the major and minor subpopulations as the hand-gating results. 203 

 204 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 28, 2017. ; https://doi.org/10.1101/116566doi: bioRxiv preprint 

https://doi.org/10.1101/116566
http://creativecommons.org/licenses/by-nc/4.0/


 7 

Fig 2. Rational initialization is better than random initialization. The hand-gated CyTOF 205 

data (see S1 Fig) is used for illustration. In this case, (a) the overall sum of squares error is lower 206 

and (b) the F-measure is higher for PAC.  207 

 208 

Fig 3. Rational initialization and minimal kmeans post-processing iterations give fast 209 

convergence. The convergence of PAC toward the hand-gated results, or ground truth, is fast. It 210 

takes less than 50 downstream post-processing kmeans iterations for the PAC to achieve 211 

convergence. 212 

 213 

Fig 4. Visualization and comparison of clustering results by t-sne plots. Each t-sne plot 214 

contains the same 10,000 cell events from the hand-gated CyTOF data with different set of 215 

colored labels drawn. Note that the colors are informative only within each panel. These labels 216 

are from kmeans, SPADE, flowMeans, b-PAC, and d-PAC. The subpopulation numbers for all 217 

methods were set to be the same as that of hand-gated results. PAC methods achieve a 218 

significantly better convergence to the hand-gate labels than alternative methods. 219 

 220 

PAC is consistently better than flowMeans and SPADE for simulated datasets and hand-221 

gated cytometry datasets 222 

In the systematic simulation study, we challenged the methods with different datasets 223 

with varying number of dimensions, number of subpopulations, and separation between the 224 

subpopulations. The F-measure and p-measures for the PAC methods are consistently equal or 225 

higher than that of flowMeans and SPADE (Table 1 and S2a Fig).  In addition, we observe that 226 

flowMeans gives inconsistent F-measures for similar datasets (Table 1), which may be due to the 227 

convergence of k-means to a local minimum without a rational initialization.  228 

 229 

Table 1. F-measure Comparisons of Methods on Simulated and Hand-gated Cytometry 230 

Datasets. 231 

Data 
Analysis Methods 

flowMeans SPADE d-PAC b-PAC 

5_10_40_100k* 0.79 0.64 0.94 0.94 
5_20_40_100k 0.9 0.73 0.94 0.94 
10_5_30_100k 0.74 0.93 0.93 0.97 

10_10_30_100k 0.967 0.88 0.98 0.98 
10_10_40_100k 0.92 0.95 0.98 0.98 
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10_20_30_100k 0.88 0.76 0.9 0.91 
10_20_40_100k 0.94 0.93 0.95 0.95 
10_40_30_100k 0.42 0.55 0.7 0.7 
20_5_20_100k 0.75 0.71 0.91 0.9 
20_5_30_100k 0.76 0.98 0.99 0.99 
20_5_40_100k 0.72 0.85 1.00** 1.00** 

20_10_40_100k 0.25 0.96 0.97 0.97 
20_20_40_100k 0.93 0.91 0.92 0.93 
35_5_40_200k 0.96 0.89 0.99 0.99 

35_10_40_200k 0.93 0.79 0.96 0.96 
Stem Cell 

0.98 0.41 0.98 0.91 (6 dimensions, 5 
subpopulations) 

NDD 
0.8 0.77 0.79 0.8 (12 dimensions, 8 

subpopulations) 
CyTOF 

0.59 0.53 0.84 0.82 (39 dimensions, 24 
subpopulations) 

 232 

F-measure is calculated using the original hand-gate labels and the estimated labels generated by 233 

each analysis method. The true-positives are found if the methods assign the same labels to 234 

points belonging to the same subpopulation in the hand-gated data. The more true-positives 235 

found, the higher the F-measure, which ranges from 0 to 1, with 1 being the highest. Partition-236 

based methods perform consistently well on data ranging from 5 to 39 dimensions. In the 237 

simulations, d-PAC and b-PAC perform just as well or better than flowMeans and SPADE. 238 

flowMeans gives drastically different F-measures for the cases 20_10_40_100k and 239 

20_20_40_100k :  0.25386 vs. 0.92518; this large difference is likely due to the random initiation 240 

of cluster centers. In the hand-gated datasets, SPADE has the worst performance. Ultimately, the 241 

performance of flowMeans and SPADE deteriorate for the 39-dimensional real CyTOF data, 242 

while d-PAC and b-PAC perform consistently well. 243 

*Simulated data have the following convention: a_b_c_d, where a denotes the number of 244 

dimensions/markers, b denotes the number of subpopulations, c denotes the size of the 245 

hypercube for data generation, and d denotes the number of cells.  246 

**from rounding up, not originally 1.00 247 

 248 

Next, we tested the methods based on published hand-gated cytometry datasets to see 249 

how similar the estimated subpopulations are to those obtained by human experts. We applied 250 
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the methods on the hematopoietic stem cell transplant and Normal Donors datasets from the 251 

FlowCAP challenges[2] and on the subset of gated mouse bone marrow CyTOF dataset (Dataset 252 

5) recently published[11]. The gating strategy of the CyTOF dataset is provided in Fig S1. The 253 

dataset and expert gating strategy are the same as described earlier[12]. Note that in the flow 254 

cytometry data, the computed F-measures are slightly lower than that reported in FlowCAP; this 255 

is due to the difference in the definition of F-measures. Overall, the PAC outperforms 256 

flowMeans and SPADE by consistently obtaining higher F-measures (Table 1). In particular, in 257 

the CyTOF data example, PAC generated significantly higher F-measures (greater than 0.82) 258 

than flowMeans and SPADE (0.59 and 0.53, respectively). In addition, PAC gives higher overall 259 

subpopulation-specific purities (S2b Fig and S1 Table). These results indicate that PAC gives 260 

consistently good results for both low and high-dimensional datasets. Furthermore, PAC results 261 

match human hand-gating results very well. The consistency between PAC-MAN results and 262 

hand-gating results in this large data set confirms the practical utility of the methodology. 263 

 264 

Separate-then-combine outperforms pool approach when batch effect is present 265 

It is natural to analyze samples separately then combine the subpopulation features for 266 

downstream analysis in the multiple samples setting. However, we need to resolve the batch 267 

effects. Two distinct subpopulations could overlap in the combined/pooled sample, such as in the 268 

case when the data came from two generations of CyTOF instruments (newer instrument 269 

elevates the signals). On the other hand, in cases with changing means, two subpopulations can 270 

evolve together such that their means change slightly, but enough to shadow each other when 271 

samples are merged prior to clustering.  272 

We introduce Multiple Alignments of Networks to resolve the management issue 273 

surrounding the organization of homogeneous clusters found in the PAC step (Fig 5). First, we 274 

consider the overlapping scenario (Fig 6a). When viewed together in the merged sample, the 275 

right subpopulation from sample 1 overlaps with the left subpopulation in sample 2 (Fig 6b left 276 

panel). There is no way to use expression level alone to delineate the two overlapping 277 

subpopulations (Fig 6b right panel). By learning more subpopulations using PAC, there are some 278 

hints that multiple subpopulations are present (Fig 6c). Despite these hints, it would not be 279 

possible to say whether the shadowed subpopulations relate in any way to other distinct 280 

subpopulations. 281 

 282 

Fig 5. Schematic analogy of MAN. Consider a deck of networks (in analogy to cards), with 283 

each “suit” representing a sample and each “rank” representing a unique network structure. The 284 

networks are aligned by similarity and organized on a dendrogram. The tree is cut (red line) at 285 

the user-specified level to output the desired k clades. Within each clade, the network structures 286 
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are similar or the same. If the same sample has multiple networks in the same clade, then these 287 

networks are merged (black box around same cards).  288 

 289 

Fig 6. Simple Batch Effect Scenario. (a) Simulated data samples with two of the same 290 

subpopulations. The means shifted due to measurement batch effect. (b) When the samples are 291 

combined, as in the case of analyzing all samples together, two different subpopulations overlap 292 

(left panel). The overlapped subpopulations cannot be distinguished by clustering (right panel). 293 

(c) PAC could be used to discover more subpopulations, however, the hints of the present of 294 

another subpopulation do not help to resolve the batch effect.  295 

 296 

PAC-MAN resolves the overlapping issue by analyzing the samples separately (Fig 7). In 297 

the case in which we do not know a priori the number of true subpopulations, we learn three 298 

subpopulations per sample (Fig 7a). The network structures of the subpopulations discovered are 299 

presented in Fig 7b-c and we see that the third subpopulations from the two samples share the 300 

same network structures, while the first subpopulations of the two samples differ by only one 301 

edge; these respective networks are clustered together in the dendrogram (Fig 8a right panel). By 302 

utilizing the networks, the clades that represent the same and/or similar subpopulations of cells 303 

can be established. Clustering by network structures alone resolves the majority of points in the 304 

data (Fig 8a, left panel). Furthermore, as discussed next, by incorporating marker levels into the 305 

alignment process, all the subpopulations can be resolved (Fig 8b). 306 

 307 

Fig. 7. Calculation of sample clusters and their underlying network structures. (a) PAC was 308 

used to discover several subpopulations per sample without advanced knowledge of the exact 309 

number of subpopulations. (b-c) The networks of the subpopulations in both samples discovered 310 

in (a). Networks can be grouped by similarities to organize the subpopulations across samples; 311 

the alignment is based on Jaccard dissimilarity network structure characterization matrix; 312 

dendrogram of the hierarchical clustering results.  313 

 314 

Fig 8. Resolution of batch effects for simple batch effect scenario. (a) Resolution of batch 315 

effect by networks of all subpopulations discovered. (b) Resolution of batch effect first by 316 

network structures of larger subpopulations and then by merging smaller subpopulations into the 317 

aligned clades. 318 

 319 
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Next we consider the case with dynamic evolution of subpopulations that models the 320 

treatment-control and perturbation studies. The interesting information is in tracking how 321 

subpopulations change over the course of the experiment. In the simulation, we have generated 322 

two subpopulations that nearly converge in mean expression profile over the time course (Fig 9). 323 

The researcher could lose the dynamic information if they were to combine the samples for 324 

clustering analysis. As in the previous case, we could use PAC to learn several subpopulations 325 

per sample (Fig 10). Then, with the assumption that there are two evolving clusters from data 326 

exploration, we align the subpopulations to construct clades of same and/or similar 327 

subpopulations (Fig 11 left panel) based on the network structural information (S3 Fig). With 328 

network and expression level information in the alignment process, the two subpopulations or 329 

clades can be resolved naturally (Fig 11 right panel). 330 

 331 

Fig 9. Ground truth of simulated dynamic batch effect samples. Two subpopulations, in blue 332 

color, almost converge in time by mean shifts.  333 

 334 

Fig 10. PAC on dynamic batch effect scenario. PAC discovers several subpopulations per 335 

sample without advanced knowledge of the number of subpopulations present.  336 

 337 

Fig 11. PAC-MAN results for dynamic batch effect scenario. Comparison of PAC-MAN 338 

results between representative clades (number of clades set to 2). Using network structures (left 339 

panel) or expression information (middle panel) alone does not resolve the dynamic information. 340 

On the other hand, the dynamic information is resolved first by alignments of networks of larger 341 

subpopulations and then by merging smaller subpopulations into the aligned clades (right panel). 342 

 343 

Network and expression alignment is better than network or expression alignment alone 344 

With networks in hand, we could further characterize the relationships between 345 

subpopulations across samples. However, the alignment process needs to work well for true 346 

linkage to be established. We could align by network alone, by expression (or marker) means, or 347 

both. Figs 8 and 11 present these alternatives in comparison. By using all the subpopulation 348 

networks, the results still contain subsets of misplaced cells (Figs 8a and 11 left panel). This is 349 

because small clusters of cells have noisy underlying covariance structure; therefore, the 350 

networks cannot be accurately inferred. These structural inaccuracies negatively impact the 351 

network clustering. The (mean) marker level approach also does not work well (Fig 11 center 352 

panel) due to the subpopulation mean shifts across samples. On the other hand, the sequential 353 

approach works well (Figs 8b and 11 right panel). In the sequential approach, larger (>1500 in 354 
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batch effect case; >1000 in dynamic case) subpopulations’ networks are utilized for the initial 355 

alignment process. Next, the smaller subpopulations, which have noisy covariance, are merged 356 

with the closest larger, aligned subpopulations. Thus, more subpopulations could be discovered 357 

upstream (in PAC), and the network alignment would work similarly as the smaller 358 

subpopulations, which could be fragments of a distribution, do not impact the alignment process 359 

(S4a Fig and S4b Fig). Moreover, in the network inference step, unimportant edges can 360 

negatively impact the alignment process (S4c Fig) in the network-alone case. Biologically, this 361 

means that edges that do not constrain or define the cellular state should not be utilized in the 362 

alignment of cellular states. Effectively, the threshold placed on the number of edges in the 363 

network inference controls for the importance of the edges. Thus, the combined alignment 364 

approach works well and allows moderate over-saturation of cellular states to be discovered in 365 

the PAC step so that no advance knowledge of the exact number of subpopulations is necessary. 366 

 367 

PAC-MAN efficiently outputs meaningful data-level subpopulations for mouse tissue 368 

dataset 369 

We use the recently published mouse tissue dataset[11] to illustrate the multi-sample data 370 

analysis pipeline. The processed dataset contains a total of more than 13 million cell events in 10 371 

different tissue samples, and 39 markers per event (S2 Table). The original research results 372 

centered on subpopulations discovered from hand-gating the bone marrow tissue data to find 373 

‘landmark’ subpopulations; the rest of the data points were clustered to the most similar 374 

landmark subpopulations. While this enables the exploration of the overall landscape from the 375 

perspective of bone marrow cell types within an acceptable time frame, a significant amount of 376 

useful information from the data remains hidden; a larger dataset would make it infeasible to 377 

analyze by manual gating and existing computational tools to learn the relationships of the 378 

cellular states among all samples. In addition, a natural question is how well do the bone marrow 379 

cell types represent the whole immune system? 380 

In contrast to the one-sample perspective, using d-PAC-MAN, the fastest approach by 381 

our comparison results, we can perform subpopulation discovery for each sample automatically 382 

and then align the subpopulations across samples to establish dataset-level cellular states. On a 383 

standard Core i7-44880 3.40GHz PC computer, the single-thread data analysis process with all 384 

data points takes about one hour to complete, which is much faster than alternative methods. 385 

With multi-threading and parallel processing, the data analysis procedure can be completed very 386 

quickly. As mentioned earlier, PAC results for the bone marrow subsetted data from this dataset 387 

matches closely to that of the hand-gated results. This accuracy provides confidence for applying 388 

PAC to the rest of the dataset. 389 

Figs 11-12 show the t-sne plots for subpopulation discovered (top panel of each sample) 390 

and the representative subpopulation established (bottom panel of each sample) for the entire 391 
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dataset. In the PAC discovery step, we learn 35 subpopulations per sample without advance 392 

knowledge of how many subpopulations are present. This moderate over-partitioning of the data 393 

samples leads to a moderate heterogeneity in the t-sne plots. Next, the networks are inferred for 394 

the larger subpopulations (with number of cell events greater than 1000), and the networks are 395 

aligned for all the tissue samples. We output 80 representative subpopulations or clades for the 396 

entire dataset to account for the traditional immunological cellular states and sample-specific 397 

cellular states present. Within samples, the subpopulations that cluster together by network 398 

structure are aggregated. The smaller subpopulations (not involved in network alignment) are 399 

either merged to the closest larger subpopulation or establish their own sample-specific 400 

subpopulation by expression alignment; small subpopulations were clamped with larger clades 401 

by grouping the subpopulations into 5 clusters per sample based on the means (of marker signal). 402 

The representative subpopulations (90 total) follow the approximate distribution of the cell 403 

events on the t-sne plots and the aggregating effect cleans up the heterogeneities due to over-404 

partitioning in the PAC step. 405 

 406 

Fig 12. Visualization of PAC-MAN results for Blood, Bone Marrow, Colon, Inguinal 407 

Lymph Node, and Liver samples. Each t-sne plot was generated using 10,000 randomly drawn 408 

cell events from each mouse tissue sample. The results from PAC (top panel) and MAN (bottom 409 

panel) steps are presented as a pair. Initial PAC discovery was set to 35 subpopulations without 410 

advanced knowledge of the number of subpopulations in each sample. In MAN, 80 network 411 

clades were outputted, and the cellular states are defined by expression (marker signal), network 412 

structure, and dataset-level variation. This composite definition naturally aggregates the initial 35 413 

subpopulations to yield smaller number of subpopulations in less variable samples. 414 

 415 

Fig 13. Visualization of PAC-MAN results for Lung, Mesenteric Lymph Node, Spleen, 416 

Thymus, and Small Intestine samples. The settings and descriptions are the same as those in 417 

Fig 12. Continuation of visualization of PAC-MAN results for the mouse tissue data. 418 

 419 

The cell type clades are the representative subpopulations for the entire dataset, and they 420 

could either be present across samples or in one sample alone. Their distribution is visualized by 421 

a heatmap (Fig 14). While the bone marrow sample contains many cell types, only a subset of 422 

them are directly aligned to cell types in other samples, which means using the bone marrow data 423 

as the reference point leaves much information unlocked in the dataset. Therefore, the data 424 

suggests that the bone marrow cell types are not adequate in representing all cell types in the 425 

immune system. The cell types in the blood and spleen samples have more alignments with cell 426 

types in other samples. The lymph node samples share many clades; the small intestine and colon 427 
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samples also share many clades, probably due to closeness in biological function. The thymus 428 

sample has few clades shared with other samples, which may be due to its functional specificity. 429 

 430 

Fig 14: Heatmap of clade proportions across the tissue samples. Sample-specific clades have 431 

a value of 1, while shared clades have proportions spread across different samples. 432 

Physiologically similar samples share more clades. 433 

 434 

PAC-MAN style analysis can be applied to align the tissue subpopulations by their means 435 

instead of network similarities (S5 Fig). As done previously, representative clades (88 total) were 436 

outputted. The same aggregating effect is observed (S5a Fig), and this is due to the organization 437 

from dataset-level variation in the means. Comparing to the network alignment, the means 438 

linkage approach has slightly more subpopulations per sample; the subpopulation proportion 439 

heatmap (S5b Fig) shows more linking. Although the bone marrow sample subpopulations co-440 

occur in the same clades slightly more with other sample subpopulations, this sample does not 441 

co-occur with many clades in the dataset. Thus, a PAC-MAN style analysis with means linkage 442 

also harvests additional information from the entire dataset.  443 

To compare the network and means approaches with PAC-MAN, we study the F-measure 444 

and p-measure results with 88 total clades from each approach. The overall F-measure with all 445 

cell events is 0.7969 and the overall F-measure with clades assignments of PAC-discovered 446 

subpopulations is 0.3143. The two F-measure values suggest that the assignment of PAC-447 

discovered subpopulations is more consistent for larger subpopulations.  448 

To illustrate the assignment purities, the p-measures are computed for the following two 449 

cases. 1) Network clade assignment is the basis (network-justified), similar to the ground truth in 450 

the clustering comparisons previously; or 2) means clade assignment is the basis (means-451 

justified) (S4 Table). P-measure cutoff is set at 0.3 (to remove unreliable comparisons) to obtain 452 

purer clade assignments. In the network-justified case, PAC subpopulations with more than 0.3 453 

in p-measure constitute 93.44 % of all cell events. In the means-justified case, PAC 454 

subpopulations with more than 0.3 in p-measure constitute 92.67 % of all cell events. 455 

Furthermore, if the p-measure cutoff were to increase to 0.5, the percentages of cells left for the 456 

network-justified and mean-justified cases are 6.25% and 75.16%, respectively. The network-457 

justified case yields drastically lower numbers of cell events in the purer PAC subpopulations 458 

because the means approach has more heterogeneity in the linkages (defined as PAC-459 

subpopulation participants in each shared clade with size of at least 2). In fact, the network 460 

approach has 100 linkages while the means approach has 209 linkages. Therefore, the extra 461 

linkages in the means approach would yield greater impurities in the network-justified case. The 462 

linkage plot (S6a Fig) shows that the low linkages occur slightly more frequently for the network 463 

approach. One consequence is that the network approach aggregates PAC subpopulations within 464 
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sample more frequently; for instance, in the thymus sample, the network approach yields 14 465 

clades while the means approach yields 21 clades. 466 

After aggregating, the clade sizes (with unique participants per sample) are plotted (S6b 467 

Fig). The network approach tends to find fewer linkages, as more clades have sizes of less than 468 

4, while the means approach has more clades than the network approach with clade sizes greater 469 

than 4. The network approach is more conservative due to the additional constraints from 470 

network structures. Conventionally, in the cytometry field, only the means are considered in the 471 

definition of cellular states. Assuming the absence of batch and dynamic effects, the researcher 472 

could view the purer shared clade assignments in the network-justified case (general agreement 473 

between constrained network approach and means approach) as more reliable candidates of 474 

cross-sample relationships to investigate in future experiments (S6c Fig).  475 

Hence, the network alignment approach is in agreement that of the means approach, with 476 

network alignment being more stringent in the establishment of linkages. The network PAC-477 

MAN approach defines cellular states with the additional information from network structures, 478 

and it has the effect of constraining the number of linkages between samples while finding 479 

linkages for subpopulations that are distant in their means.  480 

 481 

Network hubs provide natural annotations 482 

To further characterize the cell types, we annotate the clades within each sample using 483 

the top network hub markers, which constrain the cellular states. The full annotation, along with 484 

mean average expression profiles, is presented in S3 Table. The clade information is presented in 485 

the ClusterID column. The annotations for cells across different samples but within the same 486 

clades share hub markers. For example, in clade 1 for the blood and bone marrow samples, the 487 

cells share the hub markers Ly6C and CD11b. In the bone marrow sample, one important set of 488 

subpopulations is the hematopoietic stem cell subpopulations.  One such subpopulation is present 489 

as clade 18 with the annotation CD34-CD27-cKit-Sca1 and is about 1.87 percent in the bone 490 

marrow sample. Clade 18 is only present in the bone marrow sample, indicating that the PAC-491 

MAN pipeline defines this as a sample-specific and coherent subpopulation using dataset-level 492 

variation. The thymus contains a large subpopulation (84.07 percent) that is characterized as 493 

CD5-CD4-CD43-CD3, suggesting it to be the maturing T-cell subpopulation. 494 

 495 

 496 

 497 

 498 
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Conclusion 499 

 500 

We have presented the PAC-MAN data analysis pipeline. This pipeline was designed to 501 

remove major roadblocks in the utilization of existing and future CyTOF datasets. First, we 502 

established a quick and accurate clustering method that closely matches expert gating results; 503 

second, we demonstrated the management of multiple samples by handling mean shifts and batch 504 

effects across samples. The alignment allows researchers to find relationships between cells 505 

across samples without resorting to pooling of all data points. PAC-MAN allows the cytometry 506 

field to harvest information from the increasing amount of CyTOF data available. It is important 507 

to standardize multi-sample data analysis with automation so that discoveries based on multi-508 

sample CyTOF datasets from different laboratories do not depend on the experts’ manual gating 509 

strategies and the grouping of subpopulations that is constrained by non-systematic 510 

computations. Furthermore, due to PAC-MAN’s generality, this pipeline can be utilized to 511 

analyze large datasets of high-dimension beyond the cytometry field. 512 

 513 

Materials and Methods 514 

 515 

Partition-assisted clustering has two parts 516 

1) Partitioning: a partition method (BSP[5] or DSP[7]) is used to learn N initial cluster centers 517 

from the original data. 518 

2) Post-processing: A small number (m) of k-mean iterations is applied to the rectangle-based 519 

clusters from the partitioning, where m is a user-specified number. We used m=50 in our 520 

examples. After this k-means refinement, we merge the N clusters hierarchically until the desired 521 

number of clusters (this number is user-specified) is reached. The merging is based on a given 522 

distance metric for clusters. In the current implementation, we use the same distant metric as in 523 

flowMeans[1]. That is, for two clusters X and Y, their distance D�X, Y� is defined as: 524 

  D�X, Y� � min ��
� � ������
���
� � ���, �
� � ������

���
� � ���� (1) 525 

where  
�, �� are the sample mean of cluster X and Y, respectively. S�
�� is the inverse of the 526 

sample covariance matrix of cluster X. ��
�� is defined similarly. In each step of the merging 527 

process, the two clusters having the smallest pairwise distance will be merged together into one 528 

cluster. 529 

 530 
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Partition Methods 531 

There are two partition methods implemented in the comparison study: d-PAC and b-532 

PAC. The results are similar, with d-PAC being the faster algorithm. Fig 1a illustrates this 533 

recursive process. 534 

d-PAC is based on the discrepancy density estimation (DSP)[7]. Discrepancy, which is 535 

widely used in the analysis of Quasi-Monte Carlo methods, is a metric for the uniformity of 536 

points within a rectangle. DSP partitions the density space recursively until the uniformity of 537 

points within each rectangle is higher than some pre-specified threshold. The dimension and the 538 

cut point of each partition are chosen to approximately maximize the gap in uniformity of two 539 

adjacent rectangles.  540 

BSP + LL is an approximation inference algorithm for Bayesian sequential partitioning density 541 

estimation (BSP)[5]. It borrows ideas from Limited-Look-ahead Optional Pólya Tree (LL-OPT), 542 

an approximate inference algorithm for Optional Pólya Tree[8]. The original inference algorithm 543 

for BSP looks at one level ahead (i.e. looking at the possible cut points one level deeper) when 544 

computing the sampling probability for the next partition. It then uses resampling to prune away 545 

bad samples. Instead of looking at one level ahead, BSP + LL looks at h levels ahead (h > 1) 546 

when computing the sampling probabilities for the next partition and does not do resampling (Fig 547 

1b). In other words, it compensates the loss from not performing resampling with more accurate 548 

sampling probabilities. For simplicity, ‘BSP + LL’ is shortened to ‘BSP’ in the rest of the article. 549 

 550 

F-measure 551 

We use the F-measure for comparison of clustering results to ground truth (known in 552 

simulated data, or provided by hand-gating in real data). This measure is computed by regarding 553 

a clustering result as a series of decisions, one for each pair of data points. A true positive 554 

decision assigns two points that are in the same class (i.e. same class according to ground truth) 555 

to the same cluster, while a true negative decision assigns two points in different classes to 556 

different clusters. The F-measure is defined as the harmonic mean of the precision and 557 

recall. Precision P and recall R are defined as:  558 

     P �
��

���	�
       (2) 559 

R = 
��

���	

     (3) 560 

where TP is the total number of true positives, FP is the total number of false positives and FN is 561 

the total number of false negatives.  562 
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F-measure ranges from 0 to 1. The higher the measure, the more similar the estimated 563 

cluster result is to the ground truth. This definition of F-measure is different than that of 564 

FlowCAP challenge[2]. The use of co-assignment of labels in this definition is a more accurate 565 

way to compute the true positives and negatives. 566 

 567 

Purity-measure (p-measure) 568 

Most of the existing measurements for clustering accuracy aim at measuring the overall 569 

accuracy of the entire datasets, i.e. comparing with the ground truth over all clusters. However, 570 

we are also interested in analyzing how well a clustering result matches the ground truth within a 571 

certain class. Specifically, consider a dataset D with K classes: �C�, C�, … , C�� and a given 572 

ground truth cluster labels g, we construct an index called the purity measure, or p-measure for 573 

short, to measure how well our clustering result matches g for each class C
. This index is 574 

computed as follows: 575 

1) For each class C�, look for the cluster that has the maximum number of overlapping points 576 

with this class, denoted by L
� . 577 

2) Define 578 

      S� �  
|������

|

|���
|

, S� �  
|������

|

|��|
    (4) 579 

where | · | denotes the number of points in a set. 580 

3) The final P-index for class C� is given by 581 

     P �  
�����

�����
         (5) 582 

If we were to match a big cluster with a small class, even though the overlapping may be 583 

large, S� would still be low since we have divided the score by the size of the cluster in S�. In 584 

addition, we are interested in knowing how many points in C� are clustered together by L
� , 585 

which is measured by S�. 586 

 587 

Network construction and comparison 588 

After PAC, the discovered subpopulations typically have enough cells for the estimation 589 

of mutual information. This enables the construction of networks as the basis for cell type 590 

characterization. Computationally, it is not good to directly use the mutual information networks 591 

constructed this way to organize the subpopulations downstream. The distance measure used to 592 

characterize the networks could potentially give the same score for different network structures. 593 
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Thus, it is necessary to threshold the network edges based on the strength of mutual information 594 

to filter out the noisy and miscellaneous edges. In this work, these subpopulation-specific 595 

networks are constructed using the MRNET network inference algorithm in the Parmigene [13] 596 

R package. The algorithm is based on mutual information ranking, and outputs significant edges 597 

connecting the markers. The top d edges (d is set to be 1x the number of markers in all examples) 598 

are used to define a network for the subpopulation. This process enables a careful calculation of 599 

the distance measure. 600 

For each pair of subpopulation networks, we calculate a network distance, which is 601 

defined as follows. If G1 and G2 are two networks, let S be the set of shared edges and A be 602 

union of the of the edges in the two networks, then we define  603 

    Similarity�G�, G�� �  
|�|

|�|
      (6) 604 

where | · | denotes the size of a set. 605 

This is known as the Jaccard coefficient of the two graphs. The Jaccard distance, or 1- 606 

Jaccard coefficient, is then obtained. This is a representation of the dissimilarity between each 607 

pair of networks; the Jaccard dissimilarity is the measure used for the downstream hierarchical 608 

clustering.  609 

 610 

Cross-sample linkage of subpopulations 611 

We perform agglomerative clustering of the pool of subpopulations from all samples. 612 

This clustering procedure greedily links networks that are the closest in Jaccard dissimilarity, and 613 

yields a dendrogram describing the distance relationship between all the subpopulations. We cut 614 

the dendrogram to obtain the k clades of subpopulations. Subpopulations from the same sample 615 

and falling into the same clade are then merged into a single subpopulation (Fig 5). This merging 616 

step has the effect of consolidating the over-partitioning in the PAC step. No merging is 617 

performed for subpopulations from different samples sharing the same clade. In this way, we 618 

obtain k clades of subpopulations, with each clade containing no more than one subpopulation 619 

from each sample. We regard the subpopulations within each clade as being linked across 620 

samples. 621 

In the above computation, only subpopulations with enough cells to define a stable 622 

covariance are used for network alignment via the Jaccard distance; the rest of the cell events 623 

from very small subpopulations are then merged with the closet clade by marker profile via 624 

distance of mean marker signals. If the small subpopulations are distant from the defined clades, 625 

then a new sample-specific clade is created for these small subpopulations. 626 

 627 
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Annotation of Subpopulations 628 

To annotate the cellular states, we first apply PAC-MAN to learn the dataset-level 629 

subpopulation/clade labels. Next, these labels are used to learn the representative/clade networks. 630 

The top hubs (i.e. the most connected nodes) in these networks are used for annotation. This 631 

approach has biological significance in that important markers in a cellular state are often central 632 

to the underlying marker network, which is analogous to important genes in gene regulatory 633 

networks; these important markers have many connections with other markers. If the connections 634 

were broken, the cell would be perturbed and potentially driven to other states. 635 

 636 

Running Published Methods 637 

To run t-SNE [14] a dimensionality reduction visualization tool, we utilized the scripts 638 

published here (https://lvdmaaten.github.io/tsne/). Default settings were used. 639 

To run SPADE, we first converted the simulated data to fcs format using Broad 640 

Institute’s free CSVtoFCS online tool in GenePattern[15]  641 

(http://www.broadinstitute.org/cancer/software/genepattern#).   642 

Next, we carried out the tests using the SPADE package in Bioconductor R[16] 643 

(https://bioconductor.org/packages/release/bioc/html/spade.html).  644 

To run flowMeans, we carried out the tests using the flowMeans package in 645 

Bioconductor R[1]  (https://bioconductor.org/packages/release/bioc/html/flowMeans.html). 646 

In the comparisons, we selected only cases that work for all methods to make the tests as 647 

fair as possible. 648 

To calculate the mutual information of the subpopulations, we use the infotheo R package 649 

(https://cran.r-project.org/web/packages/infotheo/index.html). 650 

To run network inference, we use the mrnet algorithm in the parmigne R package [13]. 651 

(https://cran.r-project.org/web/packages/parmigene/index.html).  652 

 653 

Code Availability 654 

The PAC R package can be accessed at: https://cran.r-project.org/web/packages/PAC/index.html  655 

 656 

 657 
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Simulated Data for Clustering Analysis 658 

To compare the clustering methods, we generated simulated data from Gaussian Mixture 659 

Model varying dimension, the number of mixture components, mean, and covariance. The 660 

dimensions range from 5 to 39. The number of mixture components is varied along each 661 

dimension. The mean of each component was generated uniformly from a d-dimensional 662 

hypercube; we generated datasets using hypercube of different sizes, but kept all the other 663 

attributes the same. The covariance matrices were generated as !!�, where ! is a random matrix 664 

whose elements were independently drawn from the standard normal distribution. The sizes of 665 

the simulated dataset range from 100k to 200k.  666 

The simulated data are provided as (Datasets 1-6). Datasets 1-4 are for the PAC part. 667 

Dataset 1 contains data with 5 dimensions; Dataset 2 contains data with 10 dimensions; Datasets 668 

3a and 3b contain data with 20 dimensions; and Datasets 4a and 4b contain data with 35 669 

dimensions. The ground truth labels are included as separate sheets in each dataset. 670 

When applying flowMeans, SPADE, and the PAC to the data, we preset the desired 671 

number of subpopulations to that in the data to allow for direct comparisons.  672 

 673 

Gated Flow Cytometry Data 674 

Two data files were downloaded from the FlowCAP challenges[2]. One data file is from 675 

the Hematopoietic stem cell transplant (HSCT) data set; it has 9,936 cell events with 6 markers, 676 

and human gating found 5 subpopulations. Another data file is from the Normal Donors (ND) 677 

data set; it has 60,418 cell events with 12 markers, and human gating found 8 subpopulations. 678 

The files are the first (‘001’) of each dataset. These data files were all 1) compensated, meaning 679 

that the spectral overlap is accounted for, 2) transformed into linear space, and 3) pre-gated to 680 

remove irrelevant events. We used the data files without any further transformation and filtering. 681 

When applying flowMeans, SPADE, and the PAC to the data, we preset the desired number of 682 

subpopulations to that in the data to allow for direct comparisons.  683 

 684 

Gated Mass Cytometry Data 685 

Human gated mass cytometry data was obtained by gating for the conventional 686 

immunology cell types using the mouse bone marrow data recently published[11]. The expert 687 

gating strategy is provided as Fig S1. The gated sample subset contains 64,639 cell events with 688 

39 markers and 24 subpopulations and it is provided as Dataset 7. 689 

To test the performance of different analysis methods, the data was first transformed 690 

using the asinh(x/5) function, which is the transformation used prior to hand-gating analysis; For 691 
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SPADE analysis, we utilize the asinh(x/5) option in the SPADE commands. The post-clustering 692 

results from flowMeans, SPADE, b-PAC, and d-PAC were then subsetted using the indexes of 693 

gated cell events. These subsetted results are compared to the hand-gated results. 694 

 695 

Simulated Data for MAN Analysis 696 

To test the linking of subpopulations, we generated simulated data from multivariate 697 

Gaussian with preset signal levels and randomly generated positive definite covariance matrices. 698 

There are two cases, batch effect and dynamic. Each simulated sample file has five dimensions, 699 

with two of these varying in levels; these are the dimensions that are visualized. Dataset 5 700 

contains the data for general batch effects case and Dataset 6 contains the data for dynamic 701 

effects case. The ground truth labels are included as separate sheets in each dataset. 702 

 703 

General batch scenario. Sample 1 represents data from an old instrument (instrument 1) while 704 

sample 2 represents data from a new instrument (instrument 2). There are two subpopulations per 705 

sample. These two subpopulations are the same, but their mean marker levels shifted higher up 706 

in sample 2 due to higher sensitivity of instrument 2 (Fig 6a). The subpopulations have different 707 

underlying relationships between the markers. In this simulated experiment, five markers were 708 

measured. Out of the five markers, two markers show significant shift, and we focus on these 709 

two dimensions by 2-dimensional scatterplots. In Fig 6a, the left subpopulation in sample 1 is the 710 

same as the left subpopulation in sample 2; the same with the right subpopulation. The same 711 

subpopulations were generated from multivariate Gaussian distributions with changing means 712 

with fixed covariance structure. 713 

Dynamic scenario. Dynamic scenario models the treatment-control and perturbation studies. In 714 

the simulation, we have generated two subpopulations that nearly converge over the time course 715 

(Fig 9). The researcher could lose the dynamic information if they were to combine the samples 716 

for clustering analysis. The related subpopulations were generated from multivariate Gaussian 717 

distributions with changing means with fixed covariance structure. 718 

 719 

Raw CyTOF Data Processing 720 

The researcher preprocesses the data to 1) normalize the values to normalization bead 721 

signals, 2) de-barcode the samples if multiple barcoded samples were stained and ran together, 722 

and 3) pre-gate to remove irrelevant cells and debris to clean up the data[10,17]. Gene 723 

expressions look like log-normal distributions[18]; given the lognormal nature of the values, the 724 

hyperbolic arcsine transform is applied to the data matrix to bring the measured marker levels 725 

(estimation of expression values) close to normality, while preserving all data points. Often, 726 
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researchers use the asinh(x/5) transformation, and we use the same transformation for the 727 

CyTOF datasets analyzed in this study.  728 

 729 

Mouse Tissue Data 730 

In the Spitzer et al., 2015 dataset[11], three mouse strains were grown, and cells were 731 

collected from different tissues: thymus, spleen, small intestine, mesenteric lymph node, lung, 732 

liver, inguinal lymph node, colon, bone marrow, and blood. In each experiment, 39 expression 733 

markers were monitored. The authors used the C57BL6 mouse strain as the reference[11]; the 734 

data was downloaded from Cytobank, and we performed our analysis on the reference strain. 735 

First, all individual samples were filtered by taking the top 95% of cells based on DNA 736 

content and then the top 95% of cells based on cisplatin: DNA content allows the extraction of 737 

good-quality cells and cisplatin level (low) allows the extraction of live cells. Overall, the top 738 

90% of cell events were extracted. The filtered samples were then transformed by the hyperbolic 739 

arcsine (x/5) function, and merged as a single file, which contains 13,236,927 cell events and 39 740 

markers per event (S2 Table). 741 

Using PAC-MAN, we obtained 35 subpopulations in each sample then 80 clades for the 742 

entire dataset. The 80 clades account for the traditional immune subpopulations and sample-743 

specific subpopulations. Small subpopulations not used in alignment are later merged into the 744 

closest clades; this is done by performing hierarchical clustering with the marker signals to 745 

obtain 5 “expression” subclades per sample. Subsequently, any clade with less than 100 cells is 746 

discarded. Subpopulation proportion heatmap was plotted to visualize the subpopulation-747 

specificities and relationships across the samples. Finally, annotation was performed using the 748 

hub markers of each representative subpopulation in each sample. 749 
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 805 

 806 

Supporting Information 807 

 808 

S1 Fig. Gating strategy of CyTOF data for methods comparison. Biaxial gating hierarchy for 809 

the mouse bone marrow CyTOF dataset. Gating strategy that was used to find 24 reference 810 

populations in the mouse bone marrow CyTOF data. Pre-gating step involved removal of 811 

doublets, dead cells, erythrocytes and neutrophils. Non-neutrophils population was either subject 812 

to cluster analysis by computational tools or subsequent gating. Dotted boxes represent 24 813 

terminal gates that were selected as reference populations for the comparison analysis. 814 

 815 

S2 Fig. Subpopulation purity of simulated and real CyTOF data. (a) Subpopulation-specific 816 

purity plot of 35-dimensional simulated data with 10 subpopulations. The blue points denote the 817 

differences between the p-measures of the partition-based method (either d-PAC or b-PAC) and 818 

flowMeans, while the red points denote the p-measure differences between the partition methods 819 

and SPADE. The horizontal line at 0 means no difference between the methods. Most of the blue 820 

and red points are above 0, indicating that the PAC generates purer subpopulations compared to 821 

the ground truth. The two subplots are very similar, which means that d-PAC and b-PAC give 822 

very similar p-measures. More precisely, the sum of differences between d-PAC and flowMeans 823 

and d-PAC and SPADE are 0.85 and 1.09, respectively; and the overall difference between b-824 

PAC and flowMeans and b-PAC and SPADE are 0.84 and 1.08, respectively. 825 
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(b) Subpopulation-specific purity plot of the hand-gated CyTOF data. The same convention is 826 

used as in (S2a Fig). Again, more blue and red points are above 0, indicating that the partition-827 

based methods generate purer subpopulations compared to the ground truth. There is a cluster of 828 

points below 0 occurring in the middle of the plot, suggesting that flowMeans and SPADE 829 

capture the mid-size subpopulations more similar to hand-gating than the partition-based 830 

methods. More specifically, flowMeans does better (p-measure difference of 0.1 or better; 831 

difference of less 0.1 is considered practically no difference) with finding subpopulations of 832 

GMP, CD8 T cells, MEP, CD4 T cells (compared to d-PAC), and Plasma cells, while SPADE 833 

does better with CD19+IgM- B cells, NK cells (compared to d-PAC), CD8 T cells, NKT cells, 834 

Basophils, Short-Term HSC, and Plasma cells. However, overall, PAC has a much better 835 

performance, as the absolute sum of points above 0 is higher than that of points below 0. More 836 

precisely, the sum of differences between d-PAC and flowMeans and d-PAC and SPADE are 837 

1.21 and 1.45, respectively; and the overall difference between b-PAC and flowMeans and b-838 

PAC and SPADE are 2.06 and 2.31, respectively. The difference table is provided in S1 Table. 839 

 840 

S3 Fig. Networks inferred from subpopulations in the dynamic example simulated dataset. 841 

Fig 9 introduced the dynamic example in which five samples each having 2 true subpopulations 842 

captures the almost-convergence of means. Here the underlying network structures for the PAC 843 

discovered subpopulations (three per sample) are presented. 844 

 845 

S4 Fig. Comparison between aligning cross-sample subpopulations by network, expression 846 

profile, or both. (a) PAC can be used to discover more subpopulations, with the effect of more 847 

partitions from the true clusters. (b) When over-partitioning is present, network or expression 848 

profile alone cannot resolve the dynamic (or batch) effects due to noisy covariance for small 849 

fragments of distributions. However, first aligning the larger subpopulations with more stable 850 

covariance, and thus network structures, and then merge in the smaller subpopulations by 851 

expression profile resolves the effects. (c) If more irrelevant edges were introduced, network 852 

alignment would fail due to the negative impact of the miscellaneous edges; however, 853 

eliminating small subpopulations from the alignment step alleviates the increased edge count 854 

problem. 855 

 856 

S5 Fig. PAC-MAN style linkage by means. (a) t-sne plots of mouse tissue samples colored by 857 

representative subpopulations labels from linkage by means. (b) Subpopulation proportion 858 

heatmap of clades of samples from linkage by means. 859 

 860 
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S6 Fig. Comparison between network and means PAC-MAN. (a) PAC-discovered 861 

subpopulations are aggregated by MAN into clades; the number of PAC subpopulations/clades 862 

for the network and means PAC-MAN approaches are plotted. (b) After aggregating shared 863 

clades within samples, the number of shared clades for the entire dataset is plotted for the two 864 

PAC-MAN approaches. c) Using the network approach results as basis, the clades with strong 865 

agreement (high p-measures) with the means PAC-MAN approach are given. The shared clades 866 

(present in more than one sample) are reliable candidates for future experiment to find cross-867 

sample relationships. 868 

 869 

S1 Table. Purity (p) Measure Differences in CyTOF Comparison. p-measure differences in 870 

gated CyTOF data analysis comparison. The differences are shown for all the annotated cell 871 

subpopulations, which are ordered by their sizes. Overall, the PAC methods give more positive 872 

p-measures. 873 

 874 

S2 Table. Sample Sizes in Mouse Tissue CyTOF Dataset. The numbers of cells in the samples 875 

of Spitzer et al., 2015 CyTOF dataset. The data is from the C57BL6 mouse strain and a total of 876 

ten tissue samples are present. The raw column shows the number of cells prior to filtering by 877 

DNA and cisplatin values. The final cell counts are shown in the filtered file (3rd) column. 878 

 879 

S3 Table. PAC-MAN Subpopulation Characterization Output for Mouse Tissue CyTOF 880 

Dataset. The full set of annotated results, along with mean expressions, subpopulation 881 

proportion and counts, are reported. 882 

 883 

S4 Table. Network-justified and means-justified p-measures for Alignments of PAC-884 

discovered Subpopulations. The PAC-discovered subpopulations were mapped as clades in 885 

both the network and means PAC-MAN approaches. The p-measures were calculated for the 886 

cases 1) network approach mapping as the basis and 2) means approach mapping as the basis. 887 

The comparison is the same in principle to the comparison of labels for clustering methods. The 888 

results are ordered by p-measures. 889 
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