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Abstract  

Background: Clinical recommendations to limit gestational weight gain (GWG) imply high 

GWG is causally related to adverse outcomes in mother or offspring, but GWG is the sum of 

several inter-related complex phenotypes (maternal fat deposition and vascular expansion, 

placenta, amniotic fluid and fetal growth). Understanding the genetic contribution to GWG 

could help clarify the potential effect of its different components on maternal and offspring 

health. Here we explore the genetic contribution to total, early and late GWG. 

Participants and Methods: A genome-wide association study was used to identify maternal 

and fetal variants contributing to GWG in up to 10,543 mothers and up to 16,317 offspring of 

European origin, with replication in 10,660 mothers and 7,561 offspring. Additional analyses 

determined the proportion of variability in GWG from maternal and fetal common genetic 

variants and the overlap of established genome-wide significant variants for phenotypes 

relevant to GWG (e.g. maternal BMI and glucose, birthweight). 

Results: We found that approximately 20% of the variability in GWG was tagged by 

common maternal genetic variants, and that the fetal genome made a surprisingly minor 

contribution to explaining variation in GWG. We were unable to identify any genetic variants 

that reached genome-wide levels of significance (P<5x10-8) and replicated. Some established 

maternal variants associated with increased BMI, fasting glucose and type 2 diabetes were 

associated with lower early, and higher later GWG. Maternal variants related to higher 

systolic blood pressure were related to lower late GWG. Established maternal and fetal 

birthweight variants were largely unrelated to GWG.  

Conclusion: We found a modest contribution of maternal common variants to GWG and 

some overlap of maternal BMI, glucose and type 2 diabetes variants with GWG. These 

findings suggest that associations between GWG and later offspring/maternal outcomes may 

be due to the relationship of maternal BMI and diabetes with GWG. 
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Introduction 

High and low levels of gestational weight gain (GWG), defined as the weight a woman gains 

during pregnancy before delivery of her infant,1 are associated with a wide range of adverse 

outcomes for mother and child in the short- (during pregnancy and the perinatal period), and 

longer-term. 2-9 As a consequence of these associations, recommendations for healthy GWG 

are increasingly used in antenatal care,1 despite a lack of evidence that any of these 

associations are causal, and if they are, what the mechanisms underlying them might be.3,10 

GWG is a complex phenotype that is influenced by maternal responses to pregnancy, such as 

gestational fat deposition and volume expansion, as well as fetal growth, placental size and 

amniotic fluid volume.3,10 Each of these are likely to be influenced both by maternal and fetal 

genes and environmental exposures. Understanding the maternal and fetal genetic 

contributions to GWG could shed light on both genetic and non-genetic contributions to 

between woman variation in GWG.11,12 For example, we have recently used maternal genetic 

instrumental variables to determine the causal effect of maternal pregnancy adiposity and 

related traits on offspring birthweight and ponderal index.13  

 

Amongst 1,159 European origin Swedish maternal twin pairs (694 pairs with data on their 

first pregnancies and 465 on their second) it has been shown that approximately 40% of 

variability in first pregnancy GWG was due to genetic factors.14 Other studies have examined 

the associations of candidate maternal and/or fetal adiposity or diabetes related genetic 

variants with GWG and yielded inconsistent results; however these studies have had small 

sample sizes, been conducted in single studies and have not sought independent replication.15-

17 To our knowledge, no previous genome-wide association study (GWAS) of GWG has been 

conducted.  
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The aim of this study was to increase understanding of the genetic and non-genetic 

determinants of GWG by (a) estimating the proportion of variation in total, early and late 

GWG tagged by maternal and fetal common genetic variants; (b) undertaking a GWAS of 

maternal and fetal genetic variants with total, early and late GWG, and attempting to replicate 

associations in independent samples, and (c) determining the associations of genetic variants 

from GWAS of phenotypes that are plausible contributors to GWG (i.e. birthweight, BMI, 

waist-hip ratio, height, blood pressure, glucose, type 2 diabetes and vitamin D) with total, 

early and late GWG. We examined associations of maternal and fetal genetic exposures with 

total, early and late GWG, because the relative contribution of maternal and fetal phenotypes 

to GWG vary across gestation. For example, maternal fat deposition contributes relatively 

more to early GWG (up to ~ 18-20 weeks of gestation), and fetal growth more to later 

GWG.3,10 We included vitamin D (25(OH)D) as a phenotype that plausibly contributes to 

GWG as maternal 25(OH)D may have a positive affect on birthweight,13 and therefore may 

have a positive association with GWG.  

 

Participants and Methods 

We included singleton pregnancies of mother-offspring pairs of European origin from 20 

pregnancy/birth cohorts, described in detail in eSupplementary material and eTable 1. 

Pregnancies that resulted in a miscarriage or stillbirth, those with a known congenital 

anomaly and those where delivery was preterm (before 37 completed weeks of gestation) 

were excluded.  

 

Total GWG was defined as the last gestational weight (as long as this was ≥ 28 weeks of 

gestation) before delivery minus pre-/early-pregnancy weight divided by the length of 

gestation in weeks at the last measurement. Pre/early-pregnancy weight was defined as 
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maternal self-reported pre-pregnancy weight (with this report collected during pregnancy), a 

research/clinical measure of weight prior to pregnancy (with that measure taken no more than 

12-weeks before predicted date of conception), or the first antenatal clinic weight (with that 

assessment ≤ 13 weeks of gestation), which ever was the earliest. Early GWG was the 

difference between pre-/early-pregnancy weight and weight measured any time between 18 

and 20 (inclusive) completed weeks of gestation divided by length of gestation in weeks at 

the time of the 18 to 20 week measurement. Late GWG was the difference between the 18 to 

20 week measurement and the last gestational weight measure at ≥ 28 weeks of gestation 

divided by the gestational age difference in completed weeks between these two 

measurements. The gestational ages used to define early and late GWG were based on 

evidence regarding the different contributions of maternal fat deposition and fetal growth, 

with the former contributing relatively more to GWG up to ~ 18-20 weeks of gestation,3,10 

and the latter more so after that point. Furthermore, applying multilevel models to the very 

detailed repeat measurements of gestational weight in the Avon Longitudinal Study of 

Parents and Children (ALSPAC), in which the median (IQR) of measurements per woman 

was 12 (9 to 13), demonstrated changes in the amount of weight gained per week of gestation 

at 19 and 28 weeks.5 In studies with repeated measurements between 18 and 20 weeks the 

one nearest to 18 weeks was used and in those with repeated later measurements the last 

weight was defined as the one nearest to (but before) delivery. Total, early and late GWG 

standard deviation (z-) scores were calculated within each study as the participant value 

minus the individual study mean then divided by the study standard deviation. 

 

Proportion of variation in total, early and late GWG, and birthweight that is due to 

maternal and fetal common genetic variants 
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We used methods that have been developed for use with genome-wide data to estimate the 

proportion of variation in total, early and late GWG, and birthweight tagged by maternal and 

fetal common genetic variants. Genetic restricted maximum likelihood (GREML)18 and 

maternal- genome-wide complex trait analysis (M-GCTA)19 were applied to maternal and 

fetal genome-wide data from ALSPAC. ALSPAC is a prospective population-based birth 

cohort study that recruited 14,541 pregnant women resident in Avon, UK with expected dates 

of delivery between 1st April 1991 and 31st December 1992 

(http://www.alspac.bris.ac.uk.).20,21 GWG was determined using data extracted from obstetric 

medical records by trained research midwives.5 Birthweight, gestational age (in completed 

weeks) and fetal sex were obtained from obstetric/perinatal records. Maternal genome-wide 

data were obtained from the genome-wide Illumina 610 Quad Array. Fetal genome-wide data 

were obtained from the genome-wide Illumina 550 Quad Array. Further details, including 

genotype imputation and QC are provided in online eSupplementary material and 

characteristics of the participants are described in eTable 1. 

 

Maternal and fetal GWAS of total, early and late GWG 

All studies in the Early Growth Genetics (EGG) consortium (http://egg-consortium.org/) with 

relevant data participated. Twenty independent pregnancy/birth cohorts contributed to at least 

one discovery and/or replication analysis (this included data from ALSPAC). Details of each 

of these studies are provided in eSupplementary Material and study participant 

characteristics, including their contribution to each GWAS, are shown in eTable 1. For total 

GWG, up to 10,543 and 16,317 participants contributed to maternal and fetal discovery 

GWAS, respectively, with numbers for early and late GWG GWAS being somewhat lower 

(Table 2). Up to an additional 10,660 and 7,561 participants contributed to maternal and fetal 
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replication samples, with the maximum total meta-analysis sample size for total GWG being 

18,420 and 21,105 for maternal and fetal GWAS, respectively. 

 

GWAS discovery and replication analyses were undertaken independently by analysts 

working with each of the contributing studies following a prior agreed analysis plan. 

Genotypic data imputed to HapMap Phase 2 (Build 36, release 22) was used (methods for 

imputing within each contributing study is described in the eSupplementary Material) in the 

analysis, assuming an additive genetic model and adjusting for fetal sex. 

 

Fixed-effects, inverse-variance weighted (IVW) meta-analyses in METAL22 were undertaken 

to combine GWAS results from the individual discovery studies. The most significant SNPs 

in regions reaching suggestive significance (P<10-5) in the discovery GWAS of any of the 

analyses (i.e. total, early or late GWG or in the maternal or fetal genome) were taken forward 

to replication. This set of SNPs were analysed against the three phenotypes in the replication 

studies and the results were combined using IVW meta-analysis in R (version 3.0.0) using the 

rmeta package.23 Additionally, to investigate whether this set of top SNPs were more likely to 

be acting in the maternal or offspring genome to influence GWG, conditional analysis was 

conducted in studies where both maternal and fetal genotype were available. Again, the 

results from these analyses were combined using IVW meta-analysis in R (version 3.0.0). 

 

Maternal and fetal genetic variants for phenotypes with plausible contributions to GWG  

We examined the associations of a set of a priori agreed genetic variants that had previously 

(in GWAS) been shown to be robustly associated with phenotypes that might plausibly 

influence GWG with our GWG phenotypes. These were genetic variants for birthweight, 

BMI, waist-hip ratio, height, blood pressure, fasting glucose, type 2 diabetes and vitamin D 
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(25(OH)D). eTable 2 lists the variants included for each of the traits. The results for each of 

the variants were extracted from the discovery GWAS, and the replication studies provided 

results for the subset of variants they had available. IVW meta-analysis was conducted in 

METAL 22 to combine the results across all the cohorts.  In these hypothesis driven analyses 

we use a two-sided p-value of < 0.05 as indicating statistical significance. 

 

Results 

Total GWG was between 0.35 and 0.45kg/week in all of the general population studies and 

somewhat lower in the two studies that combined severely obese women with lean or a 

population cohort comparison group; in all studies early GWG was considerably lower than 

late GWG (eTable 1). 

 

Proportion of variation in GWG and birthweight due to maternal and fetal common 

genetic variants 

SNPs across the genome explained broadly similar proportions of variation in late GWG and 

early GWG, but with stronger contributions of maternal compared with fetal genome, with 

SNPs in the maternal genome explaining approximately twice the amount of variation in total 

GWG than the fetal genome (Table 1). The opposite pattern was seen for birthweight, for 

example, SNPs across the maternal genome explained 24% (P = 1.94x10-6) of the variation in 

total GWG, with 12% (P = 0.008) explained by SNPs in the fetal genome, whereas the 

maternal genome explained 13% (P=0.02) and fetal genome 18% (P= 1.86x10-3) of variation 

in birthweight (Table 1). When we modelled maternal and fetal contributions together this 

pattern remained, but with the differences between maternal and fetal contributions 

increasing somewhat; for total GWG 17% and 5%, respectively for maternal and fetal 

genome and for birthweight 4% and 24%, respectively for maternal and fetal genome, with 
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relatively little covariance between the two genomes for either trait. When the covariance and 

offspring/maternal variance components were constrained to zero in the M-GCTA model, 

similar results to the GREML analysis were obtained (eTable 3). 

 

Maternal and fetal GWAS of total, early and late GWG 

There was no systematic inflation of the test statistics in the meta-analysis of approximately 

2.5 million SNPs (λmat-early=1.01, λmat-late=1.01, λmat-total=1.02, λoff-early=1.02, λoff-late=1.00, λoff-

total=1.00; eFigure 1). In discovery analyses, one variant, rs16989175 near the pregnancy 

specific beta 1-glycoprotein 5 (PSG5) gene, reached conventional GWAS significance 

(<5x10-8) for fetal genetic association with total GWG; it also showed some evidence of fetal 

association with late (p = 2.4 × 10-3) and early (p = 0.02) GWG. However, it did not replicate 

in either the maternal or fetal analysis. An additional 9 regions were identified as being 

suggestively significant (p < 10-5) for at least one phenotype in either maternal or fetal 

genome (eFigure 2). These were taken forward in replication analyses. Only one of these 10 

SNPs replicated, rs310087 near SYT4 (Table 2). This SNP was associated with total GWG in 

the fetal genome (mean difference in total GWG per allele 0.06 (95%CI: 0.04, 0.08) kg/week; 

p = 3×10-6 in discovery samples and 0.05 (95%CI: 0.01, 0.09) kg/week; p = 0.03 in 

replication samples and 0.06 (95%CI: 0.04, 0.08) kg/week; p = 1.6×10-5 in pooled discovery 

and replication). For six out of the ten top SNPs identified (rs481396, rs3924699, rs6457375, 

rs13295979, rs1702200 and rs7133083), the point estimate was larger for the maternal 

genotype on total GWG than the offspring genotype on this phenotype (Table 2). This was 

suggested in conditional analyses, whereby the point estimates for the offspring genotypes 

mostly attenuated after adjusting for maternal genotype (Table 3). The variant near SYT4 that 

in fetal genome was nominally significantly associated with total GWG in discovery analyses 

and replicated, was not notably altered with adjustment for the maternal variant. 
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Association of maternal and fetal genotypes for phenotypes with plausible contributions 

with GWG 

Seven of the 32 BMI associated SNPs showed evidence of association (p < 0.05) with early 

GWG using maternal genotype, with five of the BMI increasing alleles associated with a 

decrease in early GWG (eFigure 3). In contrast, only three of the BMI associated SNPs 

showed association with late GWG using maternal genotype, and all three increased both 

BMI and GWG. A similar pattern of association was seen with the SNPs associated with 

glucose (eFigure 4) and type 2 diabetes (eFigure 5), whereby alleles associated with 

increased glucose/risk of type 2 diabetes showed evidence of association of maternal 

genotype with decreased GWG in early gestation and with increased GWG in late gestation. 

A smaller portion of SNPs for these phenotypes using the offspring genotype were associated 

with GWG (eFigures 3 to 5).  

Surprisingly, none of the birthweight associated SNPs using the offspring genotype were 

associated with any GWG phenotype (eFigure 6). However, the SNP with the largest effect 

on birthweight (from fetal GWAS of birthweight), rs900400, using the maternal genotype 

was associated with decreased late GWG and total GWG, for each birthweight increasing 

SNP. SNPs associated with blood pressure, when using the maternal genome, showed 

stronger association with late GWG than early GWG, with the blood pressure increasing 

allele for most variants associating with decreased GWG (eFigure 7). Offspring blood 

pressure SNPs and SNPs associated with waist-hip ratio (maternal or offspring; eFigure 8), 

vitamin D (25(OH)D) (eFigure 9) or height (eFigure 10) were not notably associated with 

any GWG phenotypes. 
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Discussion 

We have shown that approximately 20% of the variability in GWG can be explained by 

common maternal genetic variants. A much smaller contribution is made by common genetic 

variants from the fetal genome. This pattern of maternal and fetal genetic contribution is 

opposite to what we see with birthweight, for which the fetal contribution is greater. Despite 

this modest genetic contribution, which is similar to the common genetic contribution to 

birthweight and many other phenotypes,24 in what we believe to be the first genome-wide 

association study of GWG, we were unable to identify any genetic variants that reached 

genome-wide levels of significance (P<5x10-8) and that replicated. Given the possible 

contribution of several adiposity related phenotypes to overall GWG, we also investigated 

whether genetic variants that are known to be associated with these traits were also associated 

with GWG. Some maternal BMI, fasting glucose and type 2 diabetes variants were nominally 

associated with GWG, such that those that were associated with increased BMI, glucose or 

type 2 diabetes, were associated with lower early and higher late GWG. Some maternal 

variants associated with higher systolic blood pressure also associated with lower late GWG. 

In general fetal variants associated with these traits were largely unrelated to GWG. Of note, 

established maternal and fetal birthweight variants were for the most part not related to 

GWG. The one exception being rs900400, a variant previously shown to be strongly related 

to birthweight in a genome-wide study of fetal genotype,25 which in our study was inversely 

associated with late and total GWG in the case of the maternal genotype. This variant has 

also been recently shown to be inversely associated with leptin in genome-wide analyses,26 

and thus the inverse association of this variant in the mother with GWG may reflect a positive 

association of maternal leptin with GWG. 
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Using a twin study, Andersson et al show that the heritability of first pregnancy GWG is 

43%;14 we were able to show that approximately half of this could be explained by common 

genetic variants or variants they tag in the maternal genome. This is similar to the proportion 

of heritability explained in other common traits such as height and BMI.24 It is perhaps not 

surprising that our results suggest that the maternal genome has a greater contribution to 

GWG than the offspring genome. On average, approximately 55% of GWG is a result of 

increased maternal tissue, 15-20% is due to the placenta and amniotic fluid, and 20-25% is a 

result of fetal tissue.27 The maternal genome will contribute to tissue expansion in the mother, 

as well as to placental size, amniotic fluid and fetal growth, whereas, it is likely that the fetal 

genome will only contribute to placenta, amniotic fluid and fetal growth. We detected some 

evidence of a negative genetic covariance in the M-GCTA analysis of late GWG. A negative 

covariance implies that a proportion of maternal genetic variants associated with increased 

GWG are associated with decreased GWG when present in the fetal genome. Although this 

was a surprising result, it is not inconceivable. For example, there is a well described 

relationship between mutations in the glucokinase gene (GCK) and offspring birthweight, 

whereby if the mutation is present in the mother and not the offspring then birthweight is 

increased, whereas if the mutation is present in the offspring but not the mother then 

birthweight is decreased.28 Given birthweight is a component of GWG, it is plausible that 

variants in GCK and other mutations involved in insulin secretion could produce similar 

effects on GWG. However, given the large standard error on the estimate, this negative 

covariance might be a chance finding and requires replication before any further 

interpretation is made. 

 

Our lack of replicated genome-wide significant findings might be due to the complexity of 

the GWG phenotype. Weight was measured by trained personnel during pregnancy in the 
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majority of studies included in this meta-analysis, however the pre-pregnancy measure was 

often self-report and the early pregnancy measure would have included some pregnancy 

weight gain. This would have increased the measurement error for GWG, making it difficult 

to identify true genetic associations. In addition, we had low statistical power to detect 

associations with genetic variants which have a small effect. With an alpha of 5x10-8 in the 

maternal GWAS of total GWG, we had 80% power to detect a genetic variant that explained 

between 0.37% and 0.4% of the variance for our range of sample sizes (N=9,832 – 10,543). 

Similarly, we had 80% power to detect a variant that explained 0.24% - 0.3% of the variance 

in the offspring GWAS of total GWG (N=12,995 – 16,317). However, for other complex 

quantitative phenotypes, such as BMI, the genetic variants discovered to date each explain 

0.003-0.325% of the variance,29 indicating that many common genetic variants each of small 

effect influence the trait. Therefore, we had adequate power to detect common genetic 

variants with modest to large effects, but we were unable to detect variants with smaller 

effects, even though we used the largest sample of individuals for exploring genetic 

associations with this phenotype to date and are unaware currently of other European origin 

studies that could have added to this effort.  

 

Despite most of our analyses suggesting a stronger contribution of maternal, than fetal 

common genetic variants to GWG, the one nominally significant variant that replicated was 

for a fetal variant that was related to total GWG. This variant on chromosome 18, is near to 

the Synaptotagmin 4 (SYT4) gene, which is a protein coding gene involved in calcium and 

syntaxin binding.30 Its relation to GWG is unclear and this association should be treated with 

caution unless further replicated, particularly as the association was only nominal and did not 

reach conventional GWAS significance of 5×10-8 even in combined meta-analysis of 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted March 14, 2017. ; https://doi.org/10.1101/116434doi: bioRxiv preprint 

https://doi.org/10.1101/116434


discovery and replication samples (the result being per allele difference in mean total GWG: 

0.06 (95%CI: 0.04, 0.08) kg/week; p = 1.6×10-5 in pooled discovery and replication). 

 

We expanded on previous studies that examined the associations of candidate maternal and/or 

fetal adiposity or diabetes related genetic variants with GWG15-17 by looking at a wider 

variety of phenotypes that are observationally related to GWG (previous studies looked only 

at BMI and type 2 diabetes), in a considerably larger sample of participants and using a 

greater number of variants for each phenotype. We are aware that for some of the phenotypes 

investigated, there are a larger number of associated SNPs in the more recent GWAS, for 

example over 90 variants have now been shown to independently relate to BMI.29 The subset 

of variants that we used for each phenotype were those with the largest effect sizes on each of 

the individual traits and that were available in the majority of replication (as well as 

discovery) samples, therefore we will have greater power to detect an effect with GWG if one 

exists.  

 

The main strength of this study was the availability of both maternal and offspring genotype 

and the three separate phenotypes for GWG allowing us to investigate whether genetic 

variants had consistent effects throughout pregnancy. The choice of 18-20 weeks to 

distinguish between early and late GWG was determined through multilevel modelling in the 

ALSPAC cohort, which was the largest contributing cohort to our study with multiple 

repeated weight measures throughout pregnancy, and availability of data from the other 

cohorts involved.5 Despite being the first large GWAS of this trait to our knowledge and our 

effort to include all studies of European origin women with relevant data we had limited 

power to detect variants with weak effects and will continue to seek additional studies to 

contribute to large GWAS in the future. 
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In summary, we have identified that a substantial proportion of the variation in GWG can be 

explained by common variants in the maternal genome, with an additional smaller proportion 

being explained by the offspring genome. In what we believe to be the first GWAS of GWG, 

using the largest collection of individuals, we were unable to identify any loci with a large 

effect on GWG, but found some further evidence that maternal variants may contribute more 

to GWG than fetal variants. These initial results suggest that the association of GWG with 

later offspring outcome may reflect intrauterine (maternal) effects. However, given the 

composite nature of GWG, including increasing maternal fat stores and plasma volume, the 

growing fetus, placenta and amniotic fluid, larger sample sizes are required to identify 

individual genetic loci for GWG. 
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Table 1: Estimates of proportion of maternal and fetal genetic contributions from common variants 
to gestational weight gain  

 GREML Resultsa M-GCTA Results 
 Maternal 

genome 
N=6,435 

Child genome 
N=6,418 

Maternal 
genome 
N=4,078 

Child genome 
N=4,078 

Covariance 
N=4,078 

Early 0.195 (0.055) 0.058 (0.053)  0.021 (0.113) 0.000 (0.115) 0.067 (0.091) 
Late 0.244 (0.054)  0.110 (0.053) 0.196 (0.113) 0.161 (0.114) -0.039 (0.091) 
Total 0.239 (0.055)  0.121 (0.053)  0.173 (0.112) 0.045 (0.113) 0.016 (0.090) 
Birthweight 0.13 (0.06) 0.18 (0.06) 0.04 (0.10) 0.24 (0.11) 0.04 (0.08) 
a P-values for the GREML results are: Maternal genome, early GWG = 1.12x10-4, Maternal genome, 
late GWG = 8.83x10-7, Maternal genome, total GWG = 1.94x10-6, Maternal genome, birth weight = 
0.02, Offspring genome, early GWG = 0.130, Offspring genome, late GWG = 0.015, Offspring 
genome, total GWG = 0.008, Offspring genome, birth weight =  1.86x10-3 
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Table 2: The most significant SNPs from each locus that reached P<10-5 from the discovery meta-analysis in all individuals. The nearest gene is used as the 
locus name. 

 Early GWG Late GWG Total GWG 

 Mat 
or 
Off 

Chr Position 
(bp) 

EA/
OA 

EAF1 N Beta2 SE P-Value N Beta2

 
SE P-Value N Beta2 SE P-Value 

rs481396 (TMEM163) 

Discovery Mat 2 134953875 T/C 0.72 7,704 0.059 0.018 9.1x10-4 7,681 0.062 0.018 4.1x10-4 10,537 0.068 0.015 6.8x10-6

Replication Mat 2 134953875 T/C 0.68 1,575 0.003 0.039 0.93 1,637 -0.077 0.038 0.04 7,883 -0.021 0.017 0.21

Discovery Off 2 134953875 T/C 0.70 8,552 0.034 0.017 0.05 8,623 0.030 0.017 0.08 15,642 0.027 0.013 0.03 

Replication Off 2 134953875 T/C 0.70 3,288 0.037 0.028 0.18 778 0.020 0.060 0.73 4,546 0.014 0.025 0.57 

rs3924699 (LCORL) 

Discovery Mat 4 18300153 G/C 0.10 7,704 0.101 0.028 3.6x10-4 7,681 0.109 0.028 1.1x10-4 10,543 0.106 0.024 9.0x10-6 

Replication Mat 4 18300153 G/C 0.11 1,570 0.041 0.059 0.49 1,633 0.003 0.057 0.96 7,321 0.031 0.027 0.25

Discovery Off 4 18300153 G/C 0.10 8,552 0.054 0.027 0.04 8,624 0.074 0.027 5.5x10-3 15,636 0.042 0.021 0.05 

Replication Off 4 18300153 G/C 0.08 3,280 0.131 0.076 0.08 771 -0.017 0.139 0.90 4,380 0.023 0.041 0.58 

rs9995522 (UGDH) 

Discovery Mat 4 39179591 A/G 0.93 7,704 0.118 0.033 4.1x10-4 7,681 0.035 0.033 0.30 10,337 0.047 0.029 0.11 

Replication Mat 4 39179591 A/G 0.94 1,303 0.153 0.091 0.09 1,365 0.030 0.089 0.74 7,074 0.070 0.035 0.05

Discovery Off 4 39179591 A/G 0.93 8,552 0.161 0.032 5.3x10-7 8,625 0.051 0.032 0.12 16,317 0.094 0.024 8.3x10-5

Replication Off 4 39179591 A/G 0.94 3,284 -0.037 0.060 0.53 774 0.019 0.122 0.88 4,492 0.020 0.040 0.62 

rs6457375 (HLA-C) 

Discovery Mat 6 31380591 G/A 0.52 7,704 0.077 0.017 3.4x10-6 7,681 0.035 0.017 0.04 9,832 0.049 0.015 9.5x10-4 

Replication Mat 6 31380591 G/A 0.53 1,294 0.002 0.036 0.96 1,346 -0.035 0.036 0.33 6,976 -0.001 0.015 0.96 

Discovery Off 6 31380591 G/A 0.52 8,552 0.036 0.016 0.03 8,625 0.038 0.016 0.02 15,166 0.029 0.012 0.02

Replication Off 6 31380591 G/A 0.51 3,209 -0.005 0.025 0.85 700 0.030 0.054 0.58 2,972 -0.007 0.024 0.76 
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 Early GWG Late GWG Total GWG

 Mat 
or 
Off 

Chr Position 
(bp) 

EA/
OA 

EAF1 N Beta2 SE P-Value N Beta2

 
SE P-Value N Beta2 SE P-Value

rs13295979 (ERCC6L2/HSD17B3) 

Discovery Mat 9 97879618 T/G 0.90 7,704 0.113 0.037 2.4x10-3 7,681 0.120 0.037 1.3x10-3 9,832 0.138 0.033 2.4x10-5 

Replication Mat 9 97879618 T/G 0.92 1,126 0.047 0.082 0.57 1,112 0.028 0.083 0.74 5,656 -0.004 0.035 0.91

Discovery Off 9 97879618 T/G 0.90 8,552 0.082 0.035 0.02 8,623 0.073 0.035 0.04 15,166 0.078 0.027 3.3x10-3

Replication Off 9 97879618 T/G 0.92 3,209 -0.031 0.046 0.50 700 -0.039 0.096 0.68 3,599 0.063 0.045 0.16 

rs1702200 (GLRX3/TCERG1L) 

Discovery Mat 10 132346882 G/T 0.50 7,704 0.035 0.017 0.03 7,681 0.060 0.017 2.9x10-4 10,475 0.064 0.014 6.6x10-6 

Replication Mat 10 132346882 G/T 0.50 1,576 -0.003 0.036 0.92 1,638 0.025 0.035 0.48 7,891 -0.024 0.016 0.14

Discovery Off 10 132346882 G/T 0.50 8,552 -0.011 0.016 0.50 8,624 0.021 0.016 0.17 13,424 0.024 0.013 0.06

Replication Off 10 132346882 G/T 0.50 3,287 0.009 0.025 0.70 777 0.081 0.051 0.12 4,527 0.014 0.022 0.54 

rs7133083 (RBM19) 

Discovery Mat 12 112942277 A/G 0.83 7,704 0.108 0.022 1.5x10-6 7,681 0.056 0.023 0.01 9,832 0.090 0.020 6.4x10-6 

Replication Mat 12 112942277 A/G 0.82 1,582 0.028 0.049 0.57 1,644 0.053 0.048 0.27 7,361 0.005 0.021 0.83 

Discovery Off 12 112942277 A/G 0.83 8,552 0.042 0.021 0.05 8,623 0.005 0.021 0.80 15,165 0.018 0.016 0.26

Replication Off 12 112942277 A/G 0.84 3,208 -0.006 0.039 0.88 699 -0.030 0.087 0.73 3,637 0.040 0.033 0.23 

rs7301563 (NTF3) 

Discovery Mat 12 5436393 T/C 0.18 7,704 0.024 0.022 0.26 7,681 0.019 0.022 0.39 10,325 0.027 0.019 0.15 

Replication Mat 12 5436393 T/C 0.19 1,576 0.042 0.047 0.38 1,644 0.073 0.043 0.11 7,355 -0.001 0.021 0.97 

Discovery Off 12 5436393 T/C 0.18 8,552 0.088 0.019 4.9x10-6 8,625 0.035 0.019 0.07 15,163 0.041 0.015 6.5x10-3

Replication Off 12 5436393 T/C 0.18 3,270 -0.060 0.032 0.06 760 -0.061 0.065 0.35 4,312 -0.005 0.029 0.87
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 Early GWG Late GWG Total GWG

 Mat 
or 
Off 

Chr Position 
(bp) 

EA/
OA 

EAF1 N Beta2 SE P-Value N Beta2

 
SE P-Value N Beta2 SE P-Value

rs310087 (SYT4) 

Discovery Mat 18 39147836 A/G 0.49 7,704 0.013 0.017 0.42 7,681 0.023 0.017 0.17 9,832 0.016 0.015 0.26 

Replication Mat 18 39147836 A/G 0.47 1,581 -0.038 0.035 0.28 1,643 -0.002 0.035 0.95 7,357 0.009 0.017 0.59

Discovery Off 18 39147836 A/G 0.48 8,552 0.041 0.016 7.8x10-3 8,623 0.055 0.016 4.6x10-4 12,995 0.060 0.013 3.0x10-6

Replication Off 18 39147836 A/G 0.50 3,285 -0.004 0.025 0.87 775 -0.003 0.051 0.95 4,452 0.050 0.022 0.03 

rs16989175 (PSG5) 

Discovery Mat 19 48337381 G/C 0.76 7,704 0.068 0.020 5.3x10-4 7,681 0.011 0.020 0.58 10,445 0.047 0.017 5.3x10-3 

Replication Mat 19 48337381 G/C 0.77 1,577 -0.076 0.044 0.09 1,639 -0.056 0.043 0.20 10,660 0.011 0.016 0.47

Discovery Off 19 48337381 G/C 0.76 8,552 0.046 0.019 0.02 8,624 0.058 0.019 2.4x10-3 15,568 0.079 0.014 1.7x10-8

Replication Off 19 48337381 G/C 0.76 3,270 -0.040 0.028 0.15 760 -0.076 0.058 0.19 7,561 -0.005 0.019 0.78 
1 Average effect allele frequency (EAF) across the cohorts in the total GWG meta-analyses. 
2 Betas are the difference in mean gestational weight gain in kg per week of gestation per additional effect allele 
Mat: maternal genome; Off: Offspring (i.e. fetal genome) 
EA/OA: Effect allele / other allele 
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Table 3: Results from the unconditional analysis and analysis conditional on offspring (row 2 of each SNP) or maternal genotype (row 4 of each SNP) for the 
most significant SNPs from each locus that reached P<10-5 from the discovery meta-analysis; results from the maternal and offspring genotypes are 
presented. The nearest gene is used as the locus name. 

 Early GWG Late GWG Total GWG1

 Genome Chr Position 
(bp) 

EA/OA N Beta1 SE P-Value N Beta1 

 
SE P-Value N Beta SE P-Value 

rs481396 (TMEM163) 

Unconditional Mat 2 134953875 T/C 6,635 0.040 0.019 0.03 6,674 0.057 0.019 2.3x10-3 12,844 0.036 0.013 7.0x10-3

Conditional Mat 2 134953875 T/C 6,103 0.041 0.022 0.06 6,165 0.050 0.022 0.03 10,079 0.031 0.017 0.07

Unconditional Off 2 134953875 T/C 6,291 0.040 0.019 0.04 6,356 0.031 0.019 0.11 11,340 0.033 0.015 0.03 

Conditional Off 2 134953875 T/C 6,103 0.012 0.022 0.59 6,165 0.011 0.023 0.64 10,079 0.019 0.018 0.28 

rs3924699 (LCORL) 

Unconditional Mat 4 18300153 G/C 6,630 0.068 0.030 0.02 6,670 0.075 0.030 0.01 12,830 0.055 0.021 7.6x10-3 

Conditional Mat 4 18300153 G/C 6,091 0.052 0.035 0.14 6,155 0.050 0.035 0.15 10,031 0.030 0.027 0.28

Unconditional Off 4 18300153 G/C 6,283 0.050 0.030 0.09 6,350 0.074 0.030 0.01 11,241 0.047 0.023 0.05

Conditional Off 4 18300153 G/C 6,091 0.025 0.035 0.47 6,155 0.045 0.035 0.20 10,031 0.027 0.028 0.33 

rs9995522 (UGDH) 

Unconditional Mat 4 39179591 A/G 6,638 0.113 0.035 1.5x10-3 6,677 -0.020 0.026 0.44 12,838 0.055 0.026 0.03 

Conditional Mat 4 39179591 A/G 6,101 0.041 0.042 0.34 6,163 0.039 0.043 0.36 10,057 0.037 0.033 0.26 

Unconditional Off 4 39179591 A/G 6,288 0.179 0.035 4.8x10-7 6,354 -0.007 0.036 0.84 11,289 0.070 0.026 6.4x10-3

Conditional Off 4 39179591 A/G 6,101 0.163 0.041 8.2x10-5 6,163 -0.024 0.042 0.56 10,057 0.060 0.031 0.05 

rs6457375 (HLA-C) 

Unconditional Mat 6 31380591 G/A 5,474 0.057 0.019 3.1x10-3 5,446 0.009 0.020 0.64 9,530 0.020 0.014 0.16 

Conditional Mat 6 31380591 G/A 5,378 0.052 0.022 0.02 5,366 0.014 0.022 0.52 8,688 0.029 0.017 0.09 

Unconditional Off 6 31380591 G/A 5,480 0.023 0.020 0.233 5,458 0.020 0.007 0.74 9,388 0.005 0.015 0.71

Conditional Off 6 31380591 G/A 5,378 -0.0005 0.022 0.98 5,366 -0.002 0.023 0.93 8,688 -0.011 0.017 0.53

 

certified by peer review
) is the author/funder. A

ll rights reserved. N
o reuse allow

ed w
ithout perm

ission. 
T

he copyright holder for this preprint (w
hich w

as not
this version posted M

arch 14, 2017. 
; 

https://doi.org/10.1101/116434
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/116434


 Early GWG Late GWG Total GWG1

 Genome Chr Position 
(bp) 

EA/OA N Beta1 SE P-Value N Beta1 

 
SE P-Value N Beta SE P-Value 

rs13295979 (ERCC6L2/HSD17B3) 

Unconditional Mat 9 97879618 T/G 5,826 0.117 0.040 3.7x10-3 5,805 0.118 0.041 3.9x10-3 11,087 0.061 0.027 0.03 

Conditional Mat 9 97879618 T/G 5,577 0.086 0.046 0.06 5,564 0.105 0.047 0.02 9,367 0.055 0.034 0.10 

Unconditional Off 9 97879618 T/G 5,668 0.095 0.041 0.02 5,643 0.103 0.042 0.01 10,051 0.094 0.030 2.1x10-3

Conditional Off 9 97879618 T/G 5,577 0.051 0.046 0.26 5,564 0.052 0.046 0.27 9,367 0.061 0.035 0.08

rs1702200 (GLRX3/TCERG1L) 

Unconditional Mat 10 132346882 G/T 6,636 0.008 0.017 0.65 6,675 0.044 0.017 0.01 12,840 0.027 0.012 0.03

Conditional Mat 10 132346882 G/T 6,105 0.003 0.021 0.90 6,167 0.054 0.021 0.01 10,082 0.032 0.016 0.05 

Unconditional Off 10 132346882 G/T 6,290 -0.011 0.018 0.54 6,356 0.022 0.018 0.23 11,328 0.021 0.014 0.13 

Conditional Off 10 132346882 G/T 6,105 0.001 0.021 0.97 6,167 -0.019 0.021 0.37 10,082 -0.001 0.016 0.97

rs7133083 (RBM19) 

Unconditional Mat 12 112942277 A/G 5,834 0.099 0.025 5.3x10-5 5,812 0.042 0.025 0.09 11,147 0.040 0.017 0.02

Conditional Mat 12 112942277 A/G 5,580 0.105 0.029 2.7x10-4 5,566 0.036 0.029 0.21 9,430 0.042 0.022 0.06 

Unconditional Off 12 112942277 A/G 5,667 0.033 0.025 0.20 5,642 0.026 0.025 0.31 10,089 0.038 0.019 0.05 

Conditional Off 12 112942277 A/G 5,580 -0.011 0.029 0.70 5,566 0.001 0.029 0.96 9,430 0.022 0.022 0.32

rs7301563 (NTF3) 

Unconditional Mat 12 5436393 T/C 6,636 0.041 0.022 0.07 6,681 0.023 0.022 0.30 12,841 0.021 0.016 0.20

Conditional Mat 12 5436393 T/C 6,084 -0.012 0.026 0.64 6,146 0.013 0.027 0.63 9,965 0.002 0.021 0.94

Unconditional Off 12 5436393 T/C 6,274 0.105 0.022 3.2x10-6 6,340 0.028 0.023 0.22 11,100 0.064 0.018 3.3x10-4 

Conditional Off 12 5436393 T/C 6,084 0.089 0.026 7.5x10-4 6,146 0.044 0.027 0.10 9,965 0.071 0.021 8.7x10-4 
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 Early GWG Late GWG Total GWG1

 Genome Chr Position 
(bp) 

EA/OA N Beta1 SE P-Value N Beta1 

 
SE P-Value N Beta SE P-Value 

rs310087 (SYT4) 

Unconditional Mat 18 39147836 A/G 6,641 0.012 0.017 0.49 6,680 0.020 0.017 0.24 12,848 0.016 0.012 0.18 

Conditional Mat 18 39147836 A/G 6,104 -0.009 0.020 0.66 6,166 -0.001 0.021 0.95 10,059 -0.014 0.016 0.39 

Unconditional Off 18 39147836 A/G 6,288 0.035 0.017 0.04 6,353 0.057 0.017 1.1x10-3 11,278 0.058 0.014 1.6x10-5

Conditional Off 18 39147836 A/G 6,104 0.041 0.020 0.04 6,166 0.057 0.021 5.3x10-3 10,059 0.067 0.016 3.1x10-5

rs16989175 (PSG5) 

Unconditional Mat 19 48337381 G/C 6,637 0.039 0.020 0.06 6,676 0.003 0.020 0.87 16,162 0.029 0.013 0.02

Conditional Mat 19 48337381 G/C 6,085 0.026 0.034 0.28 6,147 -0.024 0.024 0.32 13,143 0.004 0.017 0.82 

Unconditional Off 19 48337381 G/C 6,273 0.057 0.021 7.4x10-3 6,339 0.049 0.021 0.02 14,363 0.058 0.014 3.7x10-5 

Conditional Off 19 48337381 G/C 6,085 0.042 0.024 0.08 6,147 0.050 0.025 0.04 13,143 0.055 0.017 9.6x10-4

1 Betas are the difference in mean gestational weight gain in kg per week of gestation per additional effect allele 
Mat: maternal genome; Off: Offspring (i.e. fetal genome) 
EA/OA: Effect allele / other allele 
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