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Abstract

Background: Clinical recommendations to limit gestational weight gain (GWG) imply high
GWG is causally related to adverse outcomes in mother or offspring, but GWG is the sum of
several inter-related complex phenotypes (maternal fat deposition and vascular expansion,
placenta, amniotic fluid and fetal growth). Understanding the genetic contribution to GWG
could help clarify the potential effect of its different components on maternal and offspring
health. Here we explore the genetic contribution to total, early and late GWG.

Participants and Methods: A genome-wide association study was used to identify maternal
and fetal variants contributing to GWG in up to 10,543 mothers and up to 16,317 offspring of
European origin, with replication in 10,660 mothers and 7,561 offspring. Additional analyses
determined the proportion of variability in GWG from maternal and fetal common genetic
variants and the overlap of established genome-wide significant variants for phenotypes
relevant to GWG (e.g. maternal BMI and glucose, birthweight).

Results: We found that approximately 20% of the variability in GWG was tagged by
common maternal genetic variants, and that the fetal genome made a surprisingly minor
contribution to explaining variation in GWG. We were unable to identify any genetic variants
that reached genome-wide levels of significance (P<5x10'8) and replicated. Some established
maternal variants associated with increased BMI, fasting glucose and type 2 diabetes were
associated with lower early, and higher later GWG. Maternal variants related to higher
systolic blood pressure were related to lower late GWG. Established maternal and fetal
birthweight variants were largely unrelated to GWG.

Conclusion: We found a modest contribution of maternal common variants to GWG and
some overlap of maternal BMI, glucose and type 2 diabetes variants with GWG. These
findings suggest that associations between GWG and later offspring/maternal outcomes may

be due to the relationship of maternal BMI and diabetes with GWG.
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Introduction

High and low levels of gestational weight gain (GWG), defined as the weight a woman gains
during pregnancy before delivery of her infant,' are associated with a wide range of adverse
outcomes for mother and child in the short- (during pregnancy and the perinatal period), and
longer-term. > As a consequence of these associations, recommendations for healthy GWG
are increasingly used in antenatal care,' despite a lack of evidence that any of these
associations are causal, and if they are, what the mechanisms underlying them might be.!'?
GWG is a complex phenotype that is influenced by maternal responses to pregnancy, such as
gestational fat deposition and volume expansion, as well as fetal growth, placental size and
amniotic fluid volume.>'® Each of these are likely to be influenced both by maternal and fetal
genes and environmental exposures. Understanding the maternal and fetal genetic
contributions to GWG could shed light on both genetic and non-genetic contributions to
between woman variation in GWG.'""'? For example, we have recently used maternal genetic

instrumental variables to determine the causal effect of maternal pregnancy adiposity and

related traits on offspring birthweight and ponderal index."

Amongst 1,159 European origin Swedish maternal twin pairs (694 pairs with data on their
first pregnancies and 465 on their second) it has been shown that approximately 40% of
variability in first pregnancy GWG was due to genetic factors.'* Other studies have examined
the associations of candidate maternal and/or fetal adiposity or diabetes related genetic
variants with GWG and yielded inconsistent results; however these studies have had small
sample sizes, been conducted in single studies and have not sought independent replication.'>”
" To our knowledge, no previous genome-wide association study (GWAS) of GWG has been

conducted.
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The aim of this study was to increase understanding of the genetic and non-genetic
determinants of GWG by (a) estimating the proportion of variation in total, early and late
GWG tagged by maternal and fetal common genetic variants; (b) undertaking a GWAS of
maternal and fetal genetic variants with total, early and late GWG, and attempting to replicate
associations in independent samples, and (c) determining the associations of genetic variants
from GWAS of phenotypes that are plausible contributors to GWG (i.e. birthweight, BMI,
waist-hip ratio, height, blood pressure, glucose, type 2 diabetes and vitamin D) with total,
early and late GWG. We examined associations of maternal and fetal genetic exposures with
total, early and late GWG, because the relative contribution of maternal and fetal phenotypes
to GWG vary across gestation. For example, maternal fat deposition contributes relatively
more to early GWG (up to ~ 18-20 weeks of gestation), and fetal growth more to later
GWG.>'"” We included vitamin D (25(OH)D) as a phenotype that plausibly contributes to
GWG as maternal 25(OH)D may have a positive affect on birthweight,"* and therefore may

have a positive association with GWG.

Participants and Methods

We included singleton pregnancies of mother-offspring pairs of European origin from 20
pregnancy/birth cohorts, described in detail in eSupplementary material and eTable 1.
Pregnancies that resulted in a miscarriage or stillbirth, those with a known congenital
anomaly and those where delivery was preterm (before 37 completed weeks of gestation)

were excluded.

Total GWG was defined as the last gestational weight (as long as this was > 28 weeks of
gestation) before delivery minus pre-/early-pregnancy weight divided by the length of

gestation in weeks at the last measurement. Pre/early-pregnancy weight was defined as
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maternal self-reported pre-pregnancy weight (with this report collected during pregnancy), a
research/clinical measure of weight prior to pregnancy (with that measure taken no more than
12-weeks before predicted date of conception), or the first antenatal clinic weight (with that
assessment < 13 weeks of gestation), which ever was the earliest. Early GWG was the
difference between pre-/early-pregnancy weight and weight measured any time between 18
and 20 (inclusive) completed weeks of gestation divided by length of gestation in weeks at
the time of the 18 to 20 week measurement. Late GWG was the difference between the 18 to
20 week measurement and the last gestational weight measure at > 28 weeks of gestation
divided by the gestational age difference in completed weeks between these two
measurements. The gestational ages used to define early and late GWG were based on
evidence regarding the different contributions of maternal fat deposition and fetal growth,
with the former contributing relatively more to GWG up to ~ 18-20 weeks of gestation, '’
and the latter more so after that point. Furthermore, applying multilevel models to the very
detailed repeat measurements of gestational weight in the Avon Longitudinal Study of
Parents and Children (ALSPAC), in which the median (IQR) of measurements per woman
was 12 (9 to 13), demonstrated changes in the amount of weight gained per week of gestation
at 19 and 28 weeks. In studies with repeated measurements between 18 and 20 weeks the
one nearest to 18 weeks was used and in those with repeated later measurements the last
weight was defined as the one nearest to (but before) delivery. Total, early and late GWG
standard deviation (z-) scores were calculated within each study as the participant value

minus the individual study mean then divided by the study standard deviation.

Proportion of variation in total, early and late GWG, and birthweight that is due to

maternal and fetal common genetic variants
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We used methods that have been developed for use with genome-wide data to estimate the
proportion of variation in total, early and late GWG, and birthweight tagged by maternal and
fetal common genetic variants. Genetic restricted maximum likelihood (GREML)'® and
maternal- genome-wide complex trait analysis (M-GCTA)" were applied to maternal and
fetal genome-wide data from ALSPAC. ALSPAC is a prospective population-based birth
cohort study that recruited 14,541 pregnant women resident in Avon, UK with expected dates
of delivery between 1% April 1991 and 31% December 1992

( h‘[‘[p://www.alspac.bris.ac.ul<.).20’21 GWG was determined using data extracted from obstetric

medical records by trained research midwives.” Birthweight, gestational age (in completed
weeks) and fetal sex were obtained from obstetric/perinatal records. Maternal genome-wide
data were obtained from the genome-wide Illumina 610 Quad Array. Fetal genome-wide data
were obtained from the genome-wide Illumina 550 Quad Array. Further details, including
genotype imputation and QC are provided in online eSupplementary material and

characteristics of the participants are described in €T able 1.

Maternal and fetal GWAS of total, early and late GWG

All studies in the Early Growth Genetics (EGG) consortium (http://egg-consortium.org/) with

relevant data participated. Twenty independent pregnancy/birth cohorts contributed to at least
one discovery and/or replication analysis (this included data from ALSPAC). Details of each
of these studies are provided in eSupplementary Material and study participant
characteristics, including their contribution to each GWAS, are shown in €T able 1. For total
GWG, up to 10,543 and 16,317 participants contributed to maternal and fetal discovery
GWAS, respectively, with numbers for early and late GWG GWAS being somewhat lower

(Table 2). Up to an additional 10,660 and 7,561 participants contributed to maternal and fetal
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replication samples, with the maximum total meta-analysis sample size for total GWG being

18,420 and 21,105 for maternal and fetal GWAS, respectively.

GWAS discovery and replication analyses were undertaken independently by analysts
working with each of the contributing studies following a prior agreed analysis plan.
Genotypic data imputed to HapMap Phase 2 (Build 36, release 22) was used (methods for
imputing within each contributing study is described in the eSupplementary Material) in the

analysis, assuming an additive genetic model and adjusting for fetal sex.

Fixed-effects, inverse-variance weighted (IVW) meta-analyses in METAL* were undertaken
to combine GWAS results from the individual discovery studies. The most significant SNPs
in regions reaching suggestive significance (P<107) in the discovery GWAS of any of the
analyses (i.e. total, early or late GWG or in the maternal or fetal genome) were taken forward
to replication. This set of SNPs were analysed against the three phenotypes in the replication
studies and the results were combined using IVW meta-analysis in R (version 3.0.0) using the
rmeta package.” Additionally, to investigate whether this set of top SNPs were more likely to
be acting in the maternal or offspring genome to influence GWG, conditional analysis was
conducted in studies where both maternal and fetal genotype were available. Again, the

results from these analyses were combined using [IVW meta-analysis in R (version 3.0.0).

Maternal and fetal genetic variants for phenotypes with plausible contributions to GWG
We examined the associations of a set of a priori agreed genetic variants that had previously
(in GWAS) been shown to be robustly associated with phenotypes that might plausibly
influence GWG with our GWG phenotypes. These were genetic variants for birthweight,

BMI, waist-hip ratio, height, blood pressure, fasting glucose, type 2 diabetes and vitamin D
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(25(OH)D). eTable 2 lists the variants included for each of the traits. The results for each of
the variants were extracted from the discovery GWAS, and the replication studies provided
results for the subset of variants they had available. [IVW meta-analysis was conducted in
METAL * to combine the results across all the cohorts. In these hypothesis driven analyses

we use a two-sided p-value of < 0.05 as indicating statistical significance.

Results

Total GWG was between 0.35 and 0.45kg/week in all of the general population studies and
somewhat lower in the two studies that combined severely obese women with lean or a
population cohort comparison group; in all studies early GWG was considerably lower than

late GWG (eTable 1).

Proportion of variation in GWG and birthweight due to maternal and fetal common
genetic variants

SNPs across the genome explained broadly similar proportions of variation in late GWG and
early GWG, but with stronger contributions of maternal compared with fetal genome, with
SNPs in the maternal genome explaining approximately twice the amount of variation in total
GWG than the fetal genome (Table 1). The opposite pattern was seen for birthweight, for
example, SNPs across the maternal genome explained 24% (P = 1.94x107) of the variation in
total GWG, with 12% (P = 0.008) explained by SNPs in the fetal genome, whereas the
maternal genome explained 13% (P=0.02) and fetal genome 18% (P= 1.86x107) of variation
in birthweight (Table 1). When we modelled maternal and fetal contributions together this
pattern remained, but with the differences between maternal and fetal contributions
increasing somewhat; for total GWG 17% and 5%, respectively for maternal and fetal

genome and for birthweight 4% and 24%, respectively for maternal and fetal genome, with
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relatively little covariance between the two genomes for either trait. When the covariance and
offspring/maternal variance components were constrained to zero in the M-GCTA model,

similar results to the GREML analysis were obtained (eTable 3).

Maternal and fetal GWAS of total, early and late GWG

There was no systematic inflation of the test statistics in the meta-analysis of approximately
2.5 million SNPS (Amat-carly=1.01, Amat-tate=1.01, Amat-torar=1.02, Aotf-carly=1.02, Aoft-tate=1.00, Aogt-
wta=1.00; eFigure 1). In discovery analyses, one variant, rs16989175 near the pregnancy
specific beta 1-glycoprotein 5 (PSG5) gene, reached conventional GWAS significance
(<5x10™) for fetal genetic association with total GWG; it also showed some evidence of fetal
association with late (p = 2.4 x 10”) and early (p = 0.02) GWG. However, it did not replicate
in either the maternal or fetal analysis. An additional 9 regions were identified as being
suggestively significant (p < 10) for at least one phenotype in either maternal or fetal
genome (eFigure 2). These were taken forward in replication analyses. Only one of these 10
SNPs replicated, rs310087 near SYT4 (Table 2). This SNP was associated with total GWG in
the fetal genome (mean difference in total GWG per allele 0.06 (95%CI: 0.04, 0.08) kg/week;
p=3x10" in discovery samples and 0.05 (95%CI: 0.01, 0.09) kg/week; p = 0.03 in
replication samples and 0.06 (95%CI: 0.04, 0.08) kg/week; p = 1.6x107 in pooled discovery
and replication). For six out of the ten top SNPs identified (rs481396, rs3924699, rs6457375,
rs13295979, rs1702200 and rs7133083), the point estimate was larger for the maternal
genotype on total GWG than the offspring genotype on this phenotype (Table 2). This was
suggested in conditional analyses, whereby the point estimates for the offspring genotypes
mostly attenuated after adjusting for maternal genotype (T able 3). The variant near SYT4 that
in fetal genome was nominally significantly associated with total GWG in discovery analyses

and replicated, was not notably altered with adjustment for the maternal variant.
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Association of maternal and fetal genotypes for phenotypes with plausible contributions
with GWG

Seven of the 32 BMI associated SNPs showed evidence of association (p < 0.05) with early
GWG using maternal genotype, with five of the BMI increasing alleles associated with a
decrease in early GWG (eFigure 3). In contrast, only three of the BMI associated SNPs
showed association with late GWG using maternal genotype, and all three increased both
BMI and GWG. A similar pattern of association was seen with the SNPs associated with
glucose (eFigure 4) and type 2 diabetes (eFigure 5), whereby alleles associated with
increased glucose/risk of type 2 diabetes showed evidence of association of maternal
genotype with decreased GWG in early gestation and with increased GWG in late gestation.
A smaller portion of SNPs for these phenotypes using the offspring genotype were associated
with GWG (eFigures 3to 5).

Surprisingly, none of the birthweight associated SNPs using the offspring genotype were
associated with any GWG phenotype (eFigure 6). However, the SNP with the largest effect
on birthweight (from fetal GWAS of birthweight), rs900400, using the maternal genotype
was associated with decreased late GWG and total GWG, for each birthweight increasing
SNP. SNPs associated with blood pressure, when using the maternal genome, showed
stronger association with late GWG than early GWG, with the blood pressure increasing
allele for most variants associating with decreased GWG (eFigure 7). Offspring blood
pressure SNPs and SNPs associated with waist-hip ratio (maternal or offspring; eFigure 8),
vitamin D (25(OH)D) (eFigure 9) or height (eFigure 10) were not notably associated with

any GWG phenotypes.
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Discussion

We have shown that approximately 20% of the variability in GWG can be explained by
common maternal genetic variants. A much smaller contribution is made by common genetic
variants from the fetal genome. This pattern of maternal and fetal genetic contribution is
opposite to what we see with birthweight, for which the fetal contribution is greater. Despite
this modest genetic contribution, which is similar to the common genetic contribution to
birthweight and many other phenotypes,** in what we believe to be the first genome-wide
association study of GWG, we were unable to identify any genetic variants that reached
genome-wide levels of significance (P<5x10™®) and that replicated. Given the possible
contribution of several adiposity related phenotypes to overall GWG, we also investigated
whether genetic variants that are known to be associated with these traits were also associated
with GWG. Some maternal BMI, fasting glucose and type 2 diabetes variants were nominally
associated with GWG@, such that those that were associated with increased BMI, glucose or
type 2 diabetes, were associated with lower early and higher late GWG. Some maternal
variants associated with higher systolic blood pressure also associated with lower late GWG.
In general fetal variants associated with these traits were largely unrelated to GWG. Of note,
established maternal and fetal birthweight variants were for the most part not related to
GWG. The one exception being rs900400, a variant previously shown to be strongly related
to birthweight in a genome-wide study of fetal genotype,” which in our study was inversely
associated with late and total GWG in the case of the maternal genotype. This variant has
also been recently shown to be inversely associated with leptin in genome-wide analyses,*
and thus the inverse association of this variant in the mother with GWG may reflect a positive

association of maternal leptin with GWG.
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Using a twin study, Andersson et al show that the heritability of first pregnancy GWG is
43%;"* we were able to show that approximately half of this could be explained by common
genetic variants or variants they tag in the maternal genome. This is similar to the proportion
of heritability explained in other common traits such as height and BML.** It is perhaps not
surprising that our results suggest that the maternal genome has a greater contribution to
GWG than the offspring genome. On average, approximately 55% of GWG is a result of
increased maternal tissue, 15-20% is due to the placenta and amniotic fluid, and 20-25% is a
result of fetal tissue.”” The maternal genome will contribute to tissue expansion in the mother,
as well as to placental size, amniotic fluid and fetal growth, whereas, it is likely that the fetal
genome will only contribute to placenta, amniotic fluid and fetal growth. We detected some
evidence of a negative genetic covariance in the M-GCTA analysis of late GWG. A negative
covariance implies that a proportion of maternal genetic variants associated with increased
GWG are associated with decreased GWG when present in the fetal genome. Although this
was a surprising result, it is not inconceivable. For example, there is a well described
relationship between mutations in the glucokinase gene (GCK) and offspring birthweight,
whereby if the mutation is present in the mother and not the offspring then birthweight is
increased, whereas if the mutation is present in the offspring but not the mother then
birthweight is decreased.”® Given birthweight is a component of GWG, it is plausible that
variants in GCK and other mutations involved in insulin secretion could produce similar
effects on GWG. However, given the large standard error on the estimate, this negative
covariance might be a chance finding and requires replication before any further

interpretation is made.

Our lack of replicated genome-wide significant findings might be due to the complexity of

the GWG phenotype. Weight was measured by trained personnel during pregnancy in the
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majority of studies included in this meta-analysis, however the pre-pregnancy measure was
often self-report and the early pregnancy measure would have included some pregnancy
weight gain. This would have increased the measurement error for GWG, making it difficult
to identify true genetic associations. In addition, we had low statistical power to detect
associations with genetic variants which have a small effect. With an alpha of 5x10™ in the
maternal GWAS of total GWG, we had 80% power to detect a genetic variant that explained
between 0.37% and 0.4% of the variance for our range of sample sizes (N=9,832 — 10,543).
Similarly, we had 80% power to detect a variant that explained 0.24% - 0.3% of the variance
in the offspring GWAS of total GWG (N=12,995 — 16,317). However, for other complex
quantitative phenotypes, such as BMI, the genetic variants discovered to date each explain
0.003-0.325% of the variance,” indicating that many common genetic variants each of small
effect influence the trait. Therefore, we had adequate power to detect common genetic
variants with modest to large effects, but we were unable to detect variants with smaller
effects, even though we used the largest sample of individuals for exploring genetic
associations with this phenotype to date and are unaware currently of other European origin

studies that could have added to this effort.

Despite most of our analyses suggesting a stronger contribution of maternal, than fetal
common genetic variants to GWG, the one nominally significant variant that replicated was
for a fetal variant that was related to total GWG. This variant on chromosome 18, is near to
the Synaptotagmin 4 (SYT4) gene, which is a protein coding gene involved in calcium and
syntaxin binding.* Its relation to GWG is unclear and this association should be treated with
caution unless further replicated, particularly as the association was only nominal and did not

reach conventional GWAS significance of 5x10™ even in combined meta-analysis of
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discovery and replication samples (the result being per allele difference in mean total GWG:

0.06 (95%CI: 0.04, 0.08) kg/week; p = 1.6x10" in pooled discovery and replication).

We expanded on previous studies that examined the associations of candidate maternal and/or
fetal adiposity or diabetes related genetic variants with GWG'™" by looking at a wider
variety of phenotypes that are observationally related to GWG (previous studies looked only
at BMI and type 2 diabetes), in a considerably larger sample of participants and using a
greater number of variants for each phenotype. We are aware that for some of the phenotypes
investigated, there are a larger number of associated SNPs in the more recent GWAS, for
example over 90 variants have now been shown to independently relate to BMI.* The subset
of variants that we used for each phenotype were those with the largest effect sizes on each of
the individual traits and that were available in the majority of replication (as well as
discovery) samples, therefore we will have greater power to detect an effect with GWG if one

exists.

The main strength of this study was the availability of both maternal and offspring genotype
and the three separate phenotypes for GWG allowing us to investigate whether genetic
variants had consistent effects throughout pregnancy. The choice of 18-20 weeks to
distinguish between early and late GWG was determined through multilevel modelling in the
ALSPAC cohort, which was the largest contributing cohort to our study with multiple
repeated weight measures throughout pregnancy, and availability of data from the other
cohorts involved.” Despite being the first large GWAS of this trait to our knowledge and our
effort to include all studies of European origin women with relevant data we had limited
power to detect variants with weak effects and will continue to seek additional studies to

contribute to large GWAS in the future.
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In summary, we have identified that a substantial proportion of the variation in GWG can be
explained by common variants in the maternal genome, with an additional smaller proportion
being explained by the offspring genome. In what we believe to be the first GWAS of GWG,
using the largest collection of individuals, we were unable to identify any loci with a large
effect on GWG, but found some further evidence that maternal variants may contribute more
to GWG than fetal variants. These initial results suggest that the association of GWG with
later offspring outcome may reflect intrauterine (maternal) effects. However, given the
composite nature of GWG, including increasing maternal fat stores and plasma volume, the
growing fetus, placenta and amniotic fluid, larger sample sizes are required to identify

individual genetic loci for GWG.
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Table 1: Estimates of proportion of maternal and fetal genetic contributions from common variants

to gestational weight gain

GREML Results?

M-GCTA Results

Maternal Child genome | Maternal Child genome | Covariance
genome N=6,418 genome N=4,078 N=4,078
N=6,435 N=4,078
Early 0.195 (0.055) | 0.058 (0.053) 0.021 (0.113) 0.000 (0.115) | 0.067 (0.091)
Late 0.244 (0.054) | 0.110(0.053) 0.196 (0.113) 0.161(0.114) | -0.039 (0.091)
Total 0.239 (0.055) | 0.121 (0.053) 0.173(0.112) 0.045 (0.113) | 0.016 (0.090)
Birthweight | 0.13 (0.06) 0.18 (0.06) 0.04 (0.10) 0.24 (0.11) 0.04 (0.08)

2 p-values for the GREML results are: Maternal genome, early GWG = 1.12x10®, Maternal genome,
late GWG = 8.83x107, Maternal genome, total GWG = 1.94x10°®°, Maternal genome, birth weight =
0.02, Offspring genome, early GWG = 0.130, Offspring genome, late GWG = 0.015, Offspring

genome, total GWG = 0.008, Offspring genome, birth weight = 1.86x10
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Table 2: The most significant SNPs from each locus that reached P<10® from the discovery meta-analysis in all individuals. The nearest gene is used as the

locus name.
Early GWG Late GWG Total GWG

Mat | Chr | Position EA/ | EAF' | N Beta’ | SE P-value | N Beta’ | SE P-value | N Beta’ SE P-Value

or (bp) OA

off
rs481396 (TMEM163)
Discovery Mat | 2 134953875 | T/C [ 072 [ 7,704 | 0.059 | 0.018 9.1x10" | 7,681 | 0.062 | 0.018 | 4.1x10" | 10,537 | 0.068 0.015 | 6.8x10°
Replication | Mat | 2 134953875 | 7/c | 0.68 [ 1,575 | 0.003 | 0.039 0.93 1637 | -0.077 | 0.038 | 0.04 7,883 | -0.021 | 0017 | o021
Discovery off |2 134953875 | 1/c [ 070 [ 8552 | 0.034 | 0.017 0.05 8,623 | 0.030 | 0.017 | 0.08 15,642 | 0.027 0.013 | 0.03
Replication | Off | 2 134953875 | 7/c | 0.70 |[ 3,288 [ 0.037 | 0.028 0.18 778 0.020 | 0.060 | 0.73 4,546 | 0.014 0.025 | 0.57
rs3924699 (LCORL)
Discovery Mat | 4 18300153 | G/c [ 0.10 [ 7,704 | o0.101 | 0.028 3.6x10" [ 7,681 | 0109 | 0.028 | 1.1x10" | 10,543 | 0.106 0.024 | 9.0x10°
Replication | Mat | 4 18300153 | G/ | 011 [ 1,570 [ 0.041 | 0.059 0.49 1633 | 0003 | 0057 | 096 7,321 | 0.031 0.027 | 0.25
Discovery off |4 18300153 | G/ | 0.10 [ 8552 [ 0.054 | 0.027 0.04 8,624 | 0074 | 0027 | 5.5x10° | 15636 | 0.042 0.021 | 0.05
Replication | Off | 4 18300153 | G/Cc | 0.08 [3,280 [ 0131 | 0076 0.08 771 -0.017 | 0.139 | 0.90 4,380 | 0.023 0.041 | 058
rs9995522 (UGDH)
Discovery Mat | 4 39179591 | A/G [ 093 | 7,704 |o0.118 | 0.033 4.1x10" | 7,681 | 0.035 | 0.033 | 030 10,337 | 0.047 0.029 | 0.11
Replication | Mat | 4 39179591 | A/G | 094 | 1,303 |o0.153 | 0.091 0.09 1,365 | 0.030 | 0089 |0.74 7,074 | 0.070 0.035 | 0.05
Discovery off |4 39179591 | A/G | 093 | 8552 [o0.161 | 0.032 53x107 [ 8625 | 0.051 | 0032 |o0.12 16,317 | 0.094 0.024 | 8.3x10°
Replication | Off | 4 39179591 | A/G | 094 | 3,284 | -0.037 | 0.060 0.53 774 0019 | 0122 | 0.88 4,492 | 0.020 0.040 | 0.62
rs6457375 (HLA-C)
Discovery Mat | 6 31380591 | G/A | 052 | 7,704 [ 0.077 | 0.017 3.4x10° | 7681 | 0.035 | 0.017 | 0.04 9,832 | 0.049 0.015 | 9.5x10"
Replication | Mat | 6 31380591 | G/A | 053 [ 1,294 | 0.002 | 0.036 0.96 1,346 | -0.035 | 0.036 | 0.33 6,976 |-0.001 | 0.015 | 0.96
Discovery off |6 31380591 | G/A | 052 | 8552 [ 0036 | 0016 0.03 8,625 | 0.038 | 0.016 | 0.02 15,166 | 0.029 0.012 | 0.02
Replication | Off | 6 31380591 | G/A | 051 | 3,209 | -0.005 | 0.025 0.85 700 0.030 | 0.054 | 0.58 2,972 | -0007 |o0024 |076
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Early GWG Late GWG Total GWG

Mat | Chr | Position EA/ | EAF' | N Beta’ | SE P-value [ N Beta’ | SE P-Value [ N Beta’ SE P-Value

or (bp) OA

off
rs13295979 (ERCC6L2/HSD17B3)
Discovery Mat | 9 97879618 | T/G | 0.90 | 7,704 | 0.113 | 0.037 2.4x10° | 7,681 | 0120 | 0037 | 1.3x10° | 9,832 | 0.138 0.033 | 2.4x10”
Replication Mat | 9 97879618 | T/G | 0.92 [ 1,126 | 0.047 | 0.082 0.57 1,112 | 0.028 | 0.083 | 0.74 5656 | -0.004 0.035 | 0.91
Discovery off |9 97879618 | T/G | 0.90 [ 8552 [ 0.082 | 0.035 0.02 8,623 | 0.073 | 0.035 | 0.04 15,166 | 0.078 0.027 | 3.3x10”
Replication off |9 97879618 | T/G | 0.92 | 3,209 | -0.031 | 0.046 0.50 700 -0.039 | 0.096 | 0.68 3,599 | 0.063 0.045 | 0.16
rs1702200 (GLRX3/TCERG1L)
Discovery Mat | 10 | 132346882 | G/T | 0.50 | 7,704 | 0.035 | 0.017 0.03 7,681 | 0.060 | 0.017 | 2.9x10* | 10,475 | 0.064 0.014 | 6.6x10°
Replication Mat | 10 | 132346882 | G/T | 050 | 1,576 | -0.003 | 0.036 0.92 1,638 | 0.025 | 0.035 | 0.48 7,891 | -0.024 0.016 | 0.14
Discovery off |10 | 132346882 | G/T | 0.50 [ 8552 | -0.011 | 0.016 0.50 8,624 | 0.021 | 0.016 | 017 13,424 | 0.024 0.013 | 0.06
Replication off | 10 | 132346882 | G/T | 0.50 | 3,287 | 0.009 | 0.025 0.70 777 0.081 | 0.051 | 0.12 4,527 | 0.014 0.022 | 0.54
rs7133083 (RBM19)
Discovery Mat | 12 | 112942277 | A/G | 0.83 | 7,704 | 0.108 | 0.022 1.5x10° [ 7,681 | 0.056 | 0.023 | 0.01 9,832 | 0.090 0.020 | 6.4x10°
Replication Mat | 12 | 112942277 | A/G | 082 | 1,582 | 0.028 | 0.049 0.57 1,644 | 0.053 | 0.048 | 0.27 7,361 | 0.005 0.021 | 0.83
Discovery off |12 | 112942277 | A/G | 083 | 8552 | 0.042 | 0.021 0.05 8,623 | 0.005 | 0.021 | 0.80 15,165 | 0.018 0.016 | 0.26
Replication off |12 | 112942277 | A/G | 0.84 | 3,208 | -0.006 | 0.039 0.88 699 -0.030 | 0.087 | 0.73 3,637 | 0.040 0.033 | 0.23
rs7301563 (NTF3)
Discovery Mat | 12 | 5436393 T/C | 018 | 7,704 | 0.024 | 0.022 0.26 7,681 | 0.019 | 0.022 | 0.39 10,325 | 0.027 0.019 | 0.15
Replication Mat | 12 | 5436393 T/C | 019 | 1576 | 0.042 | 0.047 0.38 1,644 | 0.073 | 0043 | 0.11 7,355 | -0.001 0.021 | 0.97
Discovery off |12 | 5436393 T/c | 018 ] 8552 | 0088 | 0019 4.9x10° [ 8,625 | 0.035 | 0.019 | 0.07 15,163 | 0.041 0.015 | 6.5x10°
Replication off |12 | 5436393 T/c | 018 [ 3,270 | -0.060 | 0.032 0.06 760 -0.061 | 0.065 | 0.35 4,312 | -0.005 0.029 | 0.87
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Early GWG Late GWG Total GWG

Mat | Chr | Position EA/ | EAF' | N Beta’ | SE P-value [ N Beta’ | SE P-Value [ N Beta’ SE P-Value

or (bp) OA

off
rs310087 (SYT4)
Discovery Mat | 18 | 39147836 | A/G | 0.49 | 7,704 | 0.013 | 0.017 0.42 7,681 | 0.023 | 0.017 | 0.17 9,832 | 0.016 0.015 | 0.26
Replication Mat | 18 | 39147836 | A/G | 0.47 | 1,581 | -0.038 | 0.035 0.28 1,643 | -0.002 | 0.035 | 0.95 7,357 | 0.009 0.017 | 0.59
Discovery off |18 | 39147836 | A/G | 0.48 [ 8552 | 0.041 | 0.016 7.8x10° | 8,623 | 0.055 | 0.016 | 4.6x10" | 12,995 | 0.060 0.013 | 3.0x10®
Replication off |18 | 39147836 | A/G | 0.50 | 3,285 | -0.004 | 0.025 0.87 775 -0.003 | 0.051 | 0.95 4,452 | 0.050 0.022 | 0.03
rs16989175 (PSG5)
Discovery Mat | 19 | 48337381 G/c | 076 | 7,704 | 0.068 | 0.020 5.3x10* | 7,681 | 0.011 | 0.020 | 0.58 10,445 | 0.047 0.017 | 5.3x10”
Replication Mat | 19 | 48337381 G/c | 077 | 1,577 | -0.076 | 0.044 0.09 1,639 | -0.056 | 0.043 | 0.20 10,660 | 0.011 0.016 | 0.47
Discovery off | 19 | 48337381 G/c | 076 | 8552 | 0.046 | 0.019 0.02 8,624 | 0.058 | 0.019 | 2.4x10° | 15,568 | 0.079 0.014 | 1.7x10°
Replication off | 19 | 48337381 G/c | 076 | 3,270 | -0.040 | 0.028 0.15 760 -0.076 | 0.058 | 0.19 7,561 | -0.005 0.019 | 0.78

! Average effect allele frequency (EAF) across the cohorts in the total GWG meta-analyses.

2 Betas are the difference in mean gestational weight gain in kg per week of gestation per additional effect allele

Mat: maternal genome; Off: Offspring (i.e. fetal genome)
EA/OA: Effect allele / other allele
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Table 3: Results from the unconditional analysis and analysis conditional on offspring (row 2 of each SNP) or maternal genotype (row 4 of each SNP) for the
most significant SNPs from each locus that reached P<10~ from the discovery meta-analysis; results from the maternal and offspring genotypes are
presented. The nearest gene is used as the locus name.

Early GWG Late GWG Total GWG"

Genome | Chr | Position EA/OA | N Beta' SE P-Value N Beta' SE P-Value N Beta SE P-Value
(bp)

rs481396 (TMEM163)

Unconditional Mat 134953875 | T/C 6,635 | 0.040 0.019 | 0.03 6,674 | 0.057 | 0.019 2.3x10” 12,844 | 0.036 0.013 | 7.0x10”

Conditional Mat 134953875 | T/C 6,103 | 0.041 0.022 | 0.06 6,165 | 0.050 | 0.022 | 0.03 10,079 | 0.031 0.017 | 0.07

Unconditional off 134953875 | T/C 6,291 | 0.040 0.019 | 0.04 6,356 | 0.031 0.019 | 0.11 11,340 | 0.033 0.015 | 0.03

N N NN

Conditional off 134953875 | T/C 6,103 | 0.012 0.022 | 0.59 6,165 | 0.011 0.023 | 0.64 10,079 | 0.019 0.018 | 0.28

rs3924699 (LCORL)

Unconditional Mat 18300153 G/C 6,630 | 0.068 0.030 | 0.02 6,670 | 0.075 0.030 | 0.01 12,830 | 0.055 0.021 | 7.6x10”

Conditional Mat 18300153 G/C 6,091 | 0.052 0.035 | 0.14 6,155 | 0.050 | 0.035 | 0.15 10,031 | 0.030 0.027 | 0.28

Unconditional off 18300153 G/C 6,283 | 0.050 0.030 | 0.09 6,350 | 0.074 | 0.030 | 0.01 11,241 | 0.047 0.023 | 0.05

R I

Conditional off 18300153 G/C 6,091 | 0.025 0.035 | 0.47 6,155 | 0.045 0.035 | 0.20 10,031 | 0.027 0.028 | 0.33

rs9995522 (UGDH)

Unconditional Mat 39179591 A/G 6,638 | 0.113 0.035 1.5x10° 6,677 | -0.020 | 0.026 | 0.44 12,838 | 0.055 0.026 | 0.03

Conditional Mat 39179591 A/G 6,101 | 0.041 0.042 | 0.34 6,163 0.039 0.043 0.36 10,057 | 0.037 0.033 | 0.26

Unconditional off 39179591 A/G 6,288 | 0.179 0.035 | 4.8x10”7 6,354 | -0.007 | 0.036 | 0.84 11,289 | 0.070 0.026 | 6.4x10°

R S N Y

Conditional off 39179591 A/G 6,101 | 0.163 0.041 | 8.2x10° 6,163 | -0.024 | 0.042 | 0.56 10,057 | 0.060 0.031 | 0.05

rs6457375 (HLA-C)

Unconditional Mat 31380591 G/A 5,474 | 0.057 0.019 | 3.1x10° 5,446 | 0.009 | 0.020 | 0.64 9,530 0.020 0.014 | 0.16

Conditional Mat 31380591 G/A 5,378 | 0.052 0.022 | 0.02 5366 | 0.014 | 0.022 | 0.52 8,688 0.029 0.017 | 0.09

Unconditional off 31380591 G/A 5,480 | 0.023 0.020 | 0.233 5,458 | 0.020 | 0.007 | 0.74 9,388 0.005 0.015 | 0.71

| O O O

Conditional off 31380591 G/A 5,378 | -0.0005 | 0.022 | 0.98 5,366 | -0.002 | 0.023 | 0.93 8,688 -0.011 | 0.017 | 0.53
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Early GWG Late GWG Total GWG'
Genome | Chr | Position EA/OA | N Beta SE P-Value N Beta' SE P-Value N Beta SE P-Value
(bp)

rs13295979 (ERCC6L2/HSD17B3)
Unconditional Mat 9 97879618 T/G 5,826 | 0.117 0.040 3.7x10° 5,805 0.118 0.041 3.9x10° 11,087 | 0.061 0.027 | 0.03
Conditional Mat 9 97879618 T/G 5,577 0.086 0.046 0.06 5,564 0.105 0.047 0.02 9,367 0.055 0.034 | 0.10
Unconditional Off 9 97879618 T/G 5,668 0.095 0.041 0.02 5,643 0.103 0.042 0.01 10,051 | 0.094 0.030 | 2.1x10°
Conditional Off 9 97879618 T/G 5,577 0.051 0.046 0.26 5,564 0.052 0.046 0.27 9,367 0.061 0.035 | 0.08
rs1702200 (GLRX3/TCERG1L)
Unconditional Mat 10 132346882 G/T 6,636 | 0.008 0.017 0.65 6,675 0.044 0.017 0.01 12,840 | 0.027 0.012 | 0.03
Conditional Mat 10 132346882 G/T 6,105 0.003 0.021 0.90 6,167 0.054 0.021 0.01 10,082 | 0.032 0.016 | 0.05
Unconditional Off 10 132346882 G/T 6,290 | -0.011 0.018 0.54 6,356 0.022 0.018 0.23 11,328 | 0.021 0.014 | 0.13
Conditional off 10 132346882 G/T 6,105 0.001 0.021 0.97 6,167 -0.019 | 0.021 0.37 10,082 | -0.001 | 0.016 | 0.97
rs7133083 (RBM19)
Unconditional Mat 12 112942277 A/G 5,834 | 0.099 0.025 5.3x10° 5,812 0.042 0.025 0.09 11,147 | 0.040 0.017 | 0.02
Conditional Mat 12 112942277 A/G 5,580 0.105 0.029 2.7x10" 5,566 0.036 0.029 0.21 9,430 0.042 0.022 | 0.06
Unconditional Off 12 112942277 A/G 5,667 0.033 0.025 0.20 5,642 0.026 0.025 0.31 10,089 | 0.038 0.019 | 0.05
Conditional Off 12 112942277 A/G 5,580 | -0.011 0.029 0.70 5,566 0.001 0.029 0.96 9,430 0.022 0.022 | 0.32
rs7301563 (NTF3)
Unconditional Mat 12 5436393 T/C 6,636 | 0.041 0.022 0.07 6,681 0.023 0.022 0.30 12,841 | 0.021 0.016 | 0.20
Conditional Mat 12 5436393 T/C 6,084 -0.012 0.026 0.64 6,146 0.013 0.027 0.63 9,965 0.002 0.021 | 0.94
Unconditional Off 12 5436393 T/C 6,274 | 0.105 0.022 3.2x10° 6,340 0.028 0.023 0.22 11,100 | 0.064 0.018 | 3.3x10™
Conditional Off 12 5436393 T/C 6,084 | 0.089 0.026 7.5x10™ 6,146 0.044 0.027 0.10 9,965 0.071 0.021 | 8.7x10™
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Early GWG Late GWG Total GWG"
Genome | Chr | Position EA/OA | N Beta SE P-Value N Beta' SE P-Value N Beta SE P-Value
(bp)

rs310087 (SYT4)
Unconditional Mat 18 39147836 A/G 6,641 0.012 0.017 0.49 6,680 0.020 0.017 0.24 12,848 | 0.016 0.012 | 0.18
Conditional Mat 18 39147836 A/G 6,104 | -0.009 0.020 0.66 6,166 -0.001 | 0.021 0.95 10,059 | -0.014 | 0.016 | 0.39
Unconditional Off 18 39147836 A/G 6,288 0.035 0.017 0.04 6,353 0.057 0.017 1.1x10° 11,278 | 0.058 0.014 | 1.6x10”
Conditional Off 18 39147836 A/G 6,104 | 0.041 0.020 0.04 6,166 0.057 0.021 5.3x10° 10,059 | 0.067 0.016 | 3.1x10”
rs16989175 (PSG5)
Unconditional Mat 19 48337381 G/C 6,637 0.039 0.020 0.06 6,676 0.003 0.020 0.87 16,162 | 0.029 0.013 | 0.02
Conditional Mat 19 48337381 G/C 6,085 0.026 0.034 0.28 6,147 -0.024 | 0.024 0.32 13,143 | 0.004 0.017 | 0.82
Unconditional Off 19 48337381 G/C 6,273 0.057 0.021 7.4x10° 6,339 0.049 0.021 0.02 14,363 | 0.058 0.014 | 3.7x10”
Conditional off 19 48337381 G/C 6,085 0.042 0.024 0.08 6,147 0.050 0.025 0.04 13,143 | 0.055 0.017 | 9.6x10™

! Betas are the difference in mean gestational weight gain in kg per week of gestation per additional effect allele

Mat: maternal genome; Off: Offspring (i.e. fetal genome)
EA/OA: Effect allele / other allele
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