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 2 

Abstract 30 

 31 

Proposals to increase research reproducibility frequently call for focusing on effect sizes 32 

instead of p values, as well as for increasing the statistical power of experiments. 33 

However, it is unclear to what extent these two concepts are indeed taken into account 34 

in basic biomedical science. To study this in a real-case scenario, we performed a 35 

systematic review of effect sizes and statistical power in studies on learning of rodent 36 

fear conditioning, a widely used behavioral task to evaluate memory. Our search criteria 37 

yielded 410 experiments comparing control and treated groups in 122 articles. 38 

Interventions had a mean effect size of 29.5%, and amnesia caused by memory-39 

impairing interventions was nearly always partial. Mean statistical power to detect the 40 

average effect size observed in well-powered experiments with significant differences 41 

(37.2%) was 65%, and was lower among studies with non-significant results. Only one 42 

article reported a sample size calculation, and our estimated sample size to achieve 80% 43 

power considering typical effect sizes and variances (15 animals per group) was reached 44 

in only 12.2% of experiments. Actual effect sizes correlated with effect size inferences 45 

made by readers on the basis of textual descriptions of results only when findings were 46 

non-significant, and neither effect size nor power correlated with study quality 47 

indicators, number of citations or impact factor of the publishing journal. In summary, 48 

effect sizes and statistical power have a wide distribution in the rodent fear conditioning 49 

literature, but do not seem to have a large influence on how results are described or 50 

cited. Failure to take these concepts into consideration might limit attempts to improve 51 

reproducibility in this field of science. 52 

 53 

 54 

 55 
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 56 

Introduction 57 

 Biomedical research over the last decades has relied heavily on the concept of 58 

statistical significance – i.e. the probability that an effect equal to or larger than that 59 

observed experimentally would occur by chance under the null hypothesis – and 60 

classifying results as “significant” or “non-significant” on the basis of an arbitrary 61 

threshold (usually set at p < 0.05) has become standard practice in most fields. This 62 

approach, however, has well-described limitations that can lead to erroneous 63 

conclusions when researchers rely on p values alone to judge results [1–6]. First of all, p 64 

values do not measure the magnitude of an effect, and thus cannot be used by 65 

themselves to evaluate its biological significance [7]. Moreover, the predictive value of 66 

a significance test is heavily influenced by factors such as the prior probability of the 67 

tested hypothesis, the number of tests performed and their statistical power [8]; thus, 68 

similar p values can lead to very different conclusions in distinct scenarios [1]. 69 

 Recent calls for improving research reproducibility have focused on reporting 70 

effect sizes and confidence intervals alongside or instead of p values [6–9] and for the 71 

use of both informal Bayesian inference [10] and formal data synthesis methods [11] 72 

when aggregating data from multiple studies. The concepts of effect size and statistical 73 

power are central for such approaches, as how much a given experiment will change a 74 

conclusion or an effect estimate will depend on both. However, it is unclear whether 75 

they receive much attention from authors in basic science publications. Discussion of 76 

effect sizes seems to be scarce, and recent data has shown that sample size and power 77 

calculations are very rare in the preclinical literature [12,13]. The potential impact of 78 

these omissions is large, as reliance on the results of significance tests without 79 

consideration of statistical power can decrease the reliability of study conclusions [14]. 80 
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 Another issue is that, if effect size is not taken into account, it is difficult to 81 

adequately assess the biological significance of a given finding. As p values will be low 82 

even for small effect sizes if sample size is large, biologically trivial effects can be 83 

found to be statistically significant. In preclinical studies, overlooking effect sizes will 84 

thus lead to inadequate assessment of therapeutic potential, whereas in basic research it 85 

will cause difficulties in dissecting essential biological mechanisms from peripheral 86 

modulatory influences [15]. The wealth of findings in the literature will thus translate 87 

poorly into better comprehension of phenomena, and the abundance of statistically 88 

significant findings with small effect sizes can eventually do more harm than good. This 89 

problem is made much worse when many of these studies have low positive predictive 90 

values due to insufficient power, leading a large fraction of them to be false positives 91 

[8,14,16–18]. 92 

To analyze how effect sizes and statistical power are taken into account in the 93 

description and publication of findings in a real-case scenario of basic biomedical 94 

science, we chose to perform a systematic review of articles on learning of rodent fear 95 

conditioning, probably the most widely used behavioral task to study memory in 96 

animals [19]. Focusing on this task provides a major advantage in the fact that the vast 97 

majority of articles use the same measure to describe results (i.e. percentage of time 98 

spent in freezing behavior during a test session). As effect sizes are comparable across 99 

studies, studying their distribution allows one to estimate the statistical power of 100 

individual experiments to detect typical differences.  101 

Our first objective in this study is to analyze the distribution of effect sizes and 102 

statistical power in a large sample of articles using different interventions, showing how 103 

they are related to the outcome of statistical significance tests. Next, we will study 104 

whether these two measures are correlated, in order to look for evidence of publication 105 
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bias and effect size inflation. We will also correlate effect sizes and variances with 106 

different aspects of experimental design, such as species, sex and type of conditioning, 107 

as well as with indicators of risk of bias. To inquire whether effect size and power are 108 

taken into consideration by authors when interpreting findings, we will evaluate 109 

whether they correlate with effect size inferences made by readers based on textual 110 

descriptions of results in the articles. Finally, we will analyze whether mean effect size 111 

and power correlate with article-level metrics, such as number of citations and impact 112 

factor of the publishing journal, to explore how they influence the publication of results. 113 

 114 

Results 115 

Article search and inclusion 116 

 As previously described in a protocol published in advance of full data 117 

collection [20], we performed a PubMed search for fear conditioning articles published 118 

online in 2013. The search process (Fig. 1) yielded 400 search hits, of which 386 were 119 

original articles that were included if they fulfilled pre-established criteria (see 120 

Methods). Two investigators examined all included articles, and agreement for 121 

exclusions measured on a double-screened sample of 40 articles was 95%. This led to a 122 

final sample of 122 articles and 410 experiments, used to build the database provided as 123 

Supplementary Data.  124 
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 125 

Figure 1. Study flow diagram. Our PubMed search yielded 400 results, of which 14 126 

were excluded based on initial screening of titles and abstracts and 386 were selected 127 

for full-text analysis. This led to the inclusion of 122 articles, containing a total of 410 128 

comparisons (i.e. individual experiments). The main reasons for exclusion are listed in 129 

the figure, in compliance with the PRISMA statement [21]. 130 

 131 

Distribution of effect sizes among experiments  132 

For each experiment, we initially calculated effect size as the relative difference 133 

(i.e. percentage of change) in the freezing levels of treated groups when compared to 134 

controls. As shown in Fig. 2A, this leads interventions that enhance memory acquisition 135 
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(i.e. those in which freezing is significantly higher in the treated group) to have larger 136 

effect sizes than those that impair it (i.e. those in which freezing is significantly lower in 137 

the treated group) due to an asymmetry that is inherent to ratios. To account for this and 138 

make effect sizes comparable between both types of interventions, we used a 139 

normalized effect size, with difference expressed as a percentage of the highest freezing 140 

value between groups (Fig. 2B) [11]. 141 

Use of absolute differences in freezing instead of relative ones led to similar, but 142 

more constrained distributions (S1 Fig.) due to mathematical limits on absolute 143 

differences. Freezing levels in the reference group correlated negatively with relative 144 

effect size and pooled coefficient of variation (i.e. the ratio between the sample size-145 

weighted pooled SD and the pooled mean); however, normalization by the highest-146 

freezing group reduced this effect (S2 Fig. A-C). Absolute effect size, on the contrary, 147 

showed a positive correlation with freezing levels in the control or highest-freezing 148 

group (S2 Fig. D-F). We also calculated effect sizes as standardized mean differences 149 

(i.e Cohen’s d, S3 Fig.), but chose to use relative percentages throughout the study, as 150 

they are more closely related to the way results are expressed in articles. 151 
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 152 

Figure 2. Distribution of effect sizes. (A) Distribution of effect sizes, calculated as % 153 

of control group freezing. Interventions were divided into memory-impairing (-48.6 ± 154 

18.1%, n=146), memory-enhancing (71.6 ± 53.2%, n=53) or non-effective (-1.8 ± 155 

26.2%, n=211) for visualization purposes, according to the statistical significance of the 156 

comparison performed in the article. Additionally, the whole sample of experiments is 157 

shown in grey (-9.0 ± 47.5% [-13.6 to -4.4], n=410). Values are expressed as mean ± 158 

SD [95% confidence interval]. Lines and whiskers in the inset express median and 159 

interquartile interval. (B) Distribution of normalized effect sizes, calculated as % of the 160 

group with the highest mean (i.e. control group for memory-impairing interventions, or 161 

treated group for memory-enhancing interventions). 162 
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All 410 experiments combined had a mean normalized effect size of 29.5 ± 163 

22.4% (mean ± SD; 95% CI [27.4 to 31.7]). When results were divided according to the 164 

statistical comparison originally performed in the article, mean normalized effect size 165 

was 48.6 ± 18.1% for memory-impairing interventions, 37.6 ± 14.2% for memory-166 

enhancing interventions and 14.4 ± 14.2%  for non-effective interventions – i.e. those in 167 

which a significant difference between groups was not found. This does not imply that 168 

data in each of these groups represents effects coming from a different distribution, or 169 

that significant and non-significant results correspond to true positive or true negative 170 

effects. On the contrary, each group likely represents a mixture of heterogeneous effect 171 

size distributions, as sampling error and lack of statistical power can directly impact the 172 

chances of a result achieving statistical significance. Distribution of mean effect sizes at 173 

the article level showed similar results to those found at the level of experiments (S4 174 

Fig.).  175 

The distribution of effect sizes shows that the vast majority of memory-176 

impairing interventions cause partial reductions in learning, leaving the treated group 177 

with residual freezing levels that are higher than those of a non-conditioned animal. In 178 

fact, in all 35 memory-impairing experiments in which pre-conditioning freezing levels 179 

were shown for the treated group, these were lower than those observed in the test 180 

session – with p values below 0.05 in 25 (78%) out of the 32 cases in which there was 181 

enough information for us to perform an unpaired t test between sessions (S5 Fig.). It is 182 

also worth noting that 26.5% of non-significant experiments had an effect size greater 183 

than 20%, suggesting that these experiments might have been underpowered. With this 184 

in mind, we went on to evaluate the distribution of statistical power among studies. 185 

Distribution of statistical power among experiments 186 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 8, 2018. ; https://doi.org/10.1101/116202doi: bioRxiv preprint 

https://doi.org/10.1101/116202
http://creativecommons.org/licenses/by-nc/4.0/


 
 

 10 

For analyzing statistical power, we first sought to evaluate the distribution of 187 

sample sizes and coefficients of variation (both of which are determinants of power). As 188 

shown in Fig. 3A, most experiments had mean sample sizes between 8 and 12 189 

animals/group, and this distribution did not vary between enhancing, impairing and non-190 

effective interventions. On the other hand, higher coefficients of variation were more 191 

frequent among non-effective interventions (Fig. 3B). This difference was partly 192 

explained by freezing levels in the reference group – which correlated negatively with 193 

coefficients of variation (S2 Fig. G-I) and were lower on average for non-significant 194 

experiments (49.3% vs. 52.9% in memory-impairing and 61.3% in memory-enhancing 195 

experiments).  196 

 197 
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Figure 3. Distribution of sample size, variation and statistical power. (A) 198 

Distribution of mean sample size between groups. Gray bars show the distribution of 199 

the whole sample, while colored lines show distributions of impairing (n=120), 200 

enhancing (n=39) and non-significant (n=177) experiments separately for visualization 201 

purposes. (B) Distribution of coefficients of variation (pooled standard deviation/pooled 202 

mean) for each type of experiment. (C) Distribution of statistical power for memory-203 

impairing interventions: based on each experiment’s variance and sample size, power 204 

varies according to the difference to be detected for α=0.05. Dashed lines show the three 205 

effect sizes used for point estimates of power in F, G and H. (D) Distribution of 206 

statistical power for memory-enhancing interventions. (E) Distribution of statistical 207 

power for non-effective interventions. (F) Distribution of statistical power to detect the 208 

upper-bound effect size of 45.6% (right dashed line on C, D and E) for impairing (red), 209 

enhancing (blue), non-significant (yellow) and all (grey) experiments. Lines and 210 

whiskers express median and interquartile interval. (G) Distribution of statistical power 211 

to detect the intermediate effect size of 37.2% (middle dashed line on C, D and E). (H) 212 

Distribution of statistical power to detect the lower-bound effect size of 29.5% (left 213 

dashed line on C, D and E). (I) Sample size vs. statistical power to detect the upper-214 

bound effect size of 45.6%. Continuous lines use the 50th percentile of coefficients of 215 

variation for calculations, while dotted lines use the 25th and 75th percentiles. (J) Sample 216 

size vs. statistical power to detect the intermediate effect size of 37.2%. (K) Sample size 217 

vs. statistical power to detect the lower-bound effect size of 29.5%.  218 

 219 

 Based on each experiment’s variance and sample size, we built power curves to 220 

show how power varies according to the difference to be detected at α=0.05 for each 221 

individual experiment (Fig. 3C-E). To detect the mean effect size of 45.6% found for 222 
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nominally effective interventions (i.e. those leading to statistically significant 223 

differences between groups), mean statistical power in our sample was 0.75 ± 0.26; 95% 224 

CI [0.72 - 0.78] (Fig. 3F). This estimate, however, is an optimistic, upper-bound 225 

calculation of the typical effect size of biologically effective interventions (from here on 226 

referred to as “upper-bound ES”): as only large effects will be detected by 227 

underpowered studies, basing calculations only on significant results leads to effect size 228 

inflation [14]. A more realistic estimate of effect size was obtained based only on 229 

experiments that achieved statistical power above 0.95 (n=60) in the first analysis (and 230 

are thus less subject to effect size inflation), leading to a mean effect size of 37.2%. 231 

Predictably, mean statistical power to detect this difference (“intermediate ES”, Fig. 232 

3G) fell to 0.65 ± 0.28 [0.62 - 0.68].  Using the mean effect size of all experiments 233 

(“lower-bound ES”, 29.5%) led to an even lower power of 0.52 ± 0.29 [0.49 - 0.56] 234 

(Fig. 3H), although this estimate of a typical effect size is likely pessimistic, as it 235 

probably includes many true negative effects. 236 

Interestingly, using mean absolute differences instead of relative ones to 237 

calculate statistical power led to a smaller number of experiments with very low power 238 

(S6 Fig.). This suggests that some of the underpowered experiments in the first analysis 239 

had low freezing levels in the reference group, as in this case even large relative 240 

differences will still be small when expressed in absolute terms for statistical analysis. 241 

Also of note is that, if one uses Cohen’s traditional definitions of small (d=0.2), medium 242 

(d=0.5) and large (d=0.8) effect sizes [22] as the basis for calculations, mean power is 243 

0.07 ± 0.01, 0.21 ± 0.07 and 0.44 ± 0.13, respectively (S7 Fig.). These much lower 244 

estimates reflect the fact that effect sizes are typically much larger in rodent fear 245 

conditioning than in psychology experiments, for which this arbitrary classification was 246 

originally devised, and suggests that it might not be applicable to other fields of science.  247 
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 A practical application of these power curves is that we were able to calculate 248 

the necessary sample size to achieve desired power for each effect size estimate, 249 

considering the median coefficient of variation (as well as the 25th and 75th quartiles) of 250 

experiments in our sample (Fig. 3I-K). Thus, for an experiment with typical variation, 251 

around 15 animals per group are needed to achieve 80% power to detect our 252 

‘intermediate effect size’ of 37.2%, which we consider our more realistic estimate for a 253 

typical effect size in the field. Nevertheless, only 12.2% of comparisons in our sample 254 

had a sample size of 15 or above in each experimental group, suggesting that such 255 

calculations are seldom performed.  256 

We also analyzed the distributions of statistical power at the level of articles 257 

instead of individual experiments. Results for these analyses are shown in S8 Fig., and 258 

are generally similar to those obtained for the experiment-level analysis, except that the 259 

long tail of non-significant experiments with large coefficients of variation is not 260 

observed. This suggests that experiments with large variation and low power are 261 

frequently found alongside others with adequate power within the same articles. It is 262 

unclear, however, whether this means that the low power of some experiments is a 263 

consequence of random fluctuations of experimental variance, or if these experiments 264 

use protocols that lead to larger coefficients of variation – for example, by generating 265 

lower mean levels of freezing (see S2 Fig.).  266 

Correlation between effect sizes and statistical power/sample size 267 

We next sought to correlate normalized effect size with sample size and 268 

statistical power for each experiment. The presence of a negative correlation between 269 

these variables has been considered an indirect measure of publication bias [23], as 270 

articles with low power or sample size will be subject to effect size inflation caused by 271 

selective reporting of significant findings [24]. In our analysis, no correlation was found 272 
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between effect size and sample size (Fig. 4A, r=0.0007, p=0.99); on the other hand, a 273 

positive correlation between effect size and coefficient of variation was observed (Fig. 274 

4B, r=0.37, p<0.0001). Part of this correlation was mediated by the association of both 275 

variables with freezing levels (S2 Fig.), but the correlation remained significant after 276 

adjustment for this variable (r=0.32, p<0.001). 277 

Because of this, negative correlations between effect size and power were 278 

observed for the three effect size estimates used (Figs. 4C-E), although they were larger 279 

for the lower-bound estimate (Fig. 4E, r=-0.21, p<0.0001) than for the intermediate 280 

(Fig. 4D, r=-0.16, p=0.003) and upper-bound (Fig. 4C, r=-0.12, p=0.03) ones due to a 281 

ceiling effect on power. This negative correlation is observed even when power is 282 

calculated based on absolute differences (S9 Fig.), for which the correlation between 283 

coefficients of variation and reference freezing levels is in the opposite direction of that 284 

observed with relative differences (see S2 Fig.). This strongly suggests that the 285 

correlation represents a real phenomenon related to publication bias and/or effect size 286 

inflation, and is not merely due to the correlation of both variables with freezing levels. 287 

A correlation between effect size and power is also observed when both are calculated 288 

on the basis of standardized mean differences (i.e. Cohen’s d) (S10 Fig.). In this case, 289 

the line separating significant and non-significant results for a given sample size is 290 

clearer, as significance is more directly related to standardized mean differences. 291 

Expressing effect sizes in Cohen’s d also makes effect size inflation in experiments with 292 

low sample size and power more obvious.  293 
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 294 

Figure 4. Correlations between effect size, variation and statistical power. (A) 295 

Correlation between normalized effect size and mean sample size. No correlation is 296 

found (r=0.0007, p=0.99; r=-0.26, p=0.64 after adjustment), although sample size 297 

variation is limited. (B) Correlation between normalized effect size and coefficient of 298 

variation. Correlation of the whole sample of experiments yields r=0.37, p<0.0001* 299 

(n=336; r=0.32, p<0.001 after adjustment for freezing levels). (C) Correlation between 300 

normalized effect size and statistical power based on upper-bound effect size of 45.6%. 301 

Correlation of the whole sample of experiments yields r=-0.12, p=0.03 (r=0.11, p=0.84 302 

after adjustment for freezing levels), but distribution is skewed due to a ceiling effect on 303 

power. (D) Correlation between normalized effect size and statistical power based on 304 

intermediate effect size of 37.2%; r=-0.16, p=0.003* (r=-0.16, p=0.48 after adjustment). 305 

(E) Correlation between normalized effect size and statistical power based on lower-306 

bound effect size of 29.5%; r=-0.21, p<0.0001* (r=-0.1, p=0.06 after adjustment). 307 

Asterisks indicate significant results according to Holm-Sidak correction for 28 308 

experiment-level correlations. 309 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 8, 2018. ; https://doi.org/10.1101/116202doi: bioRxiv preprint 

https://doi.org/10.1101/116202
http://creativecommons.org/licenses/by-nc/4.0/


 
 

 16 

Interestingly, the correlation between effect size and power was driven by a 310 

scarcity of experiments with large effect size and high power. This raises the possibility 311 

that truly large effects are unusual in fear conditioning, and that some of the large effect 312 

sizes among low-powered experiments in our sample are inflated. On the other hand, a 313 

pattern classically suggesting publication bias – i.e. a scarcity of low-powered 314 

experiments with small effects [23] – is not observed. It should be noted, however, that 315 

our analysis focused on individual experiments within articles, meaning that non-316 

significant results were usually presented alongside other experiments with significant 317 

differences; thus, this analysis does not allow us to assess publication bias at the level of 318 

articles. 319 

Effects of methodological variables on the distributions of effect sizes and 320 

coefficients of variation. 321 

We next examined whether the distributions of effect sizes and coefficients of 322 

variation were influenced by type of conditioning, species or sex of the animals (Fig. 5). 323 

Mean normalized effect size was slightly larger in contextual than in cued fear 324 

conditioning (33.2% vs. 24.4%, Student’s t test p<0.0001) and markedly larger in males 325 

than in females (30.3% vs. 18.9% vs. 34.2% for experiments using both, one-way 326 

ANOVA, p=0.004), but roughly equivalent between mice and rats (29.8% vs. 29.1%, 327 

p=0.76). Coefficients of variation were higher in contextual conditioning (0.51 vs. 0.41, 328 

Student’s t test p=0.001), in experiments using animals of both sexes (0.62 vs. 0.44 in 329 

males and 0.41 in females, one-way ANOVA, p <0.0001), and in those using mice (0.50 330 

vs. 0.42, Student’s t test, p=0.008), although the latter difference was not statistically 331 

significant after correction for multiple comparisons. All of these associations should be 332 

considered correlational and not causal, as specific types of conditioning or animals of a 333 

particular species or sex might be more frequently used for testing interventions with 334 
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particularly high or low effect sizes. Also of note is the fact that experiments on males 335 

were 7.7 times more common than those on females in our sample (277 vs. 36), 336 

indicating a strong preference of researchers for using male animals. 337 

 338 

Figure 5. Effect sizes and coefficients of variation across different protocols, 339 

species and sexes. Colors indicate memory-enhancing (red), memory-impairing (blue) 340 

or non-effective (yellow) experiments, all of which are pooled for analysis. Lines and 341 

whiskers express median and interquartile interval. (A) Distribution of effect sizes 342 

across cued (n=171) and contextual (n=239) conditioning protocols. Student’s t test, 343 
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p<0.0001*. (B) Coefficients of variation across cued (n=145) and contextual (n=191) 344 

conditioning protocols. Student’s t test, p=0.001*. (C) Distribution of effect sizes across 345 

experiments using mice (n=237) or rats (n=173). Student’s t test, p=0.76. (D) 346 

Coefficients of variation across experiments using mice (n=193) or rats (n=143). 347 

Student’s t test, p=0.008. (E) Distribution of effect sizes across experiments using male 348 

(n=277), female (n=36) or both (n=67) sexes. One-way ANOVA, p=0.004*; Tukey’s 349 

post-hoc test, male vs. female p=0.01, male vs. both p=0.40, female vs. both p=0.003. 350 

30 experiments were excluded from this analysis for not stating the sex of animals. (F) 351 

Coefficients of variation across experiments using male (n=233), female (n=28) or both 352 

(n=60) sexes. One-way ANOVA, p<0.0001*; Tukey’s test, male vs. female p=0.85, 353 

male vs. both p<0.0001, female vs. both p=0.0006. For coefficient of variation analyses, 354 

74 experiments were excluded due to lack of information on sample size for individual 355 

groups. Asterisks indicate significant results according to Holm-Sidak correction for 14 356 

experiment-level comparisons. 357 

 358 

We also examined whether effect sizes and coefficients of variation differed 359 

systematically according to the type, timing or anatomical site of intervention (S11 360 

Fig.). Effect sizes did not differ significantly between surgical, pharmacological, genetic 361 

and behavioral interventions (38.7% vs. 28.1% vs. 30.5% vs. 25.8% one-way ANOVA, 362 

p=0.12), although there was a trend for greater effects with surgical interventions 363 

(which were uncommon in our sample). No differences were found between the mean 364 

effect sizes of systemic and intracerebral interventions (28.7% vs. 30.3%, Student’s t 365 

test, p=0.45) or between those of pre- and post-training interventions (30.5% vs. 25.4%, 366 

Student’s t test, p=0.07), although pre-training interventions had slightly higher 367 

coefficients of variation (0.49 vs 0.37, Student’s t test p=0.0015). Coefficients of 368 
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variation did not differ significantly between surgical, pharmacological, genetic and 369 

behavioral interventions (0.41 vs. 0.43 vs. 0.50 vs. 0.50, one-way ANOVA p=0.08) or 370 

between systemic and intracerebral interventions (0.49 vs. 0.45, Student’s t test p=0.15). 371 

Once again, these differences can only be considered correlational and not causal.  372 

Risk of bias indicators and their relationship with effect size and power 373 

As previous studies have shown that measures to reduce risk of bias are not 374 

widely reported in animal research [12,13], we investigated the prevalence of these 375 

measures in our sample of fear conditioning articles, and evaluated whether they were 376 

correlated with effect sizes or power. Table 1 shows the percentage of articles reporting 377 

7 items thought to reduce risk of bias in animal studies, adapted and expanded from the 378 

CAMARADES checklist [25]. Although some items were reported in most articles 379 

(statement of compliance with animal regulations, adequate description of sample size, 380 

blinding), others were virtually inexistent, such as the presence of a sample size 381 

calculation (1 article) and compliance with the ARRIVE guidelines [26] (0 articles). 382 

Contrary to previous reports in other areas [27–30], however, no significant association 383 

was found between reporting of these indicators and either the percentage of significant 384 

experiments, the mean effect size of effective interventions or the mean statistical power 385 

of experiments in our sample (S12 Fig.). The region of origin of the article also had no 386 

correlation with either of these variables (S13 Fig.). Nevertheless, it should be noted 387 

that this analysis used only experiments on fear conditioning acquisition or 388 

consolidation, which were not necessarily the only results or the main findings 389 

presented in these articles. Thus, it is possible that other results in the article might have 390 

shown higher correlation with risk of bias indicators. 391 

Quality 

assessment 

Randomization 

of allocation 

Blinded or 

automated 

Sample size 

calculation 

Exact sample 

size description 

Statement of 

compliance with 

regulatory 

Statement 

on conflict 

Statement of 

compliance 
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Table 1. Number of articles including quality assessment items. Percentages were 392 

calculated using all 122 articles, except in the case of randomization, which was 393 

calculated based on 77 articles, as it is not applicable to genetic interventions. In the 394 

case of blinding, 68 articles used automated analysis and 24 used blinded observers, 395 

totaling 92 articles scored for this item.  396 

 397 

Correlation between effect sizes/statistical power and description of results 398 

Given the wide distribution of effect sizes and statistical power in the literature 399 

on fear conditioning learning, we tried to determine whether these were taken into 400 

account by authors when describing results in the text. For each included comparison, 401 

we extracted the words or phrases describing the results of that experiment in the text or 402 

figure legends, and asked 14 behavioral neuroscience researchers to classify them 403 

according to the implicit information they contained about effect size. For comparisons 404 

with significant differences, terms were to be classified as implying strong (i.e. large 405 

effect size) or weak (i.e. small effect size) effects, or as neutral terms (i.e. those from 406 

which effect size could not be deduced). For non-significant differences, terms were to 407 

be classified as implying similarity between groups, as suggesting a trend towards 408 

difference, or as neutral terms (i.e. those from which the presence or absence of a trend 409 

could not be deduced). From the average of these classifications, we defined a score for 410 

each term (S1 and S2 Tables) and correlated these scores with the actual effect size and 411 

statistical power of experiments. 412 

item assessment  requirements of interest with ARRIVE  

Number of 

articles (%) 

18/77 

(23.4%) 

92/122 

(75.4%) 

1/122 

(0.8%) 

98/122 

(80.3%) 

118/122 

(96.7%) 

66/122 

(54.1%) 

0/122 

(0%) 
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Agreement between researchers over classification was low, especially for terms 413 

describing significant differences: single measures intraclass correlation coefficients 414 

(reflecting the reliability of individual researchers when compared to the whole sample) 415 

were 0.234 for significant interventions and 0.597 for non-significant ones, while 416 

average measures coefficients (reflecting the aggregated reliability of the sample) were 417 

0.839 and 0.962, respectively. This, along with a trend for the use of terms with little 418 

effect size information (“increase”, “decrease”, “significantly more”, “significantly 419 

less”, etc.), led most terms describing effective interventions to receive intermediate 420 

scores approaching 1 (i.e. neutral). For these interventions, no correlations were 421 

observed between this score and either effect size (r=-0.05, p=0.48) or statistical power 422 

(r=0.03, p=0.73) (Fig. 6A and 6B). For non-effective interventions, a significant 423 

correlation between description score and effect size was observed (Fig 6C, r=0.28, 424 

p=0.0002), as larger effect sizes were associated with terms indicating a trend for 425 

difference. Still, no correlation was observed between textual descriptions of results and 426 

power (Fig 6D, r=0.03, p=0.74). Moreover, statistical power was rarely mentioned in 427 

the textual description of results – the term “power” was used in this context in only 4 428 

articles– suggesting that it is largely ignored when discussing findings, as shown in 429 

other areas of research [31]. 430 
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 431 

Figure 6. Correlation between description of results and effect size/statistical 432 

power. Description scores refer to the mean score given by 14 neuroscience researchers 433 

who rated terms as “weak” (0), “neutral” (1) or “strong” (2) in the case of those 434 

describing significant differences, or as “similar” (0), “neutral” (1) or “trend” (2) in the 435 

case of those describing non-significant ones. (A) Correlation between normalized 436 

effect size and description score for significant results. r=-0.05, p=0.48 (n=195). (B) 437 

Correlation between statistical power and description score for significant results. 438 

r=0.03, p=0.73 (n=155). (C) Correlation between normalized effect size and description 439 

score for non-significant results. r=0.28, p=0.0002* (n=174). (D) Correlation between 440 

upper-bound estimate of statistical power and description score for non-significant 441 

results. r=0.03, p=0.74 (n=146). Asterisk indicates significant result according to Holm-442 

Sidak correction for 28 experiment-level correlations. 443 

 444 
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Correlations of effect size, power and study quality with article citations 445 

 Finally, we investigated whether the percentage of significant experiments 446 

reported in each article, mean effect size for effective interventions, mean statistical 447 

power or a composite study quality score (aggregating the 7 risk of bias indicators 448 

described in Table 1) correlated with article impact, as measured by the number of 449 

citations (Fig. 7) and the impact factor of the publishing journal (S14 Fig.). None of the 450 

correlations was significant after adjustment for multiple comparisons, although a weak 451 

positive correlation was observed between study quality score and impact factor 452 

(r=0.22, p=0.01), driven by associations of higher impact factors with blinding 453 

(Student’s t test with Welch’s correction, p=0.0001), conflict of interest reporting 454 

(Student’s t test with Welch’s correction, p=0.03) and exact sample size description 455 

(Student’s t test, p=0.03). It should be noted that the distribution of impact factors and 456 

citations is heavily skewed, limiting the use of linear correlations as planned in the 457 

original protocol – nevertheless, exploratory non-parametric analysis of the data 458 

confirmed the lack of significance of correlations. Once again, our data refers only to 459 

experiments on fear conditioning acquisition or consolidation – therefore, other data in 460 

the articles could feasibly account for the variation in impact factor and citations.  461 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 8, 2018. ; https://doi.org/10.1101/116202doi: bioRxiv preprint 

https://doi.org/10.1101/116202
http://creativecommons.org/licenses/by-nc/4.0/


 
 

 24 

 462 

Figure 7. Correlation between citations and percentage of significant experiments, 463 

effect size and statistical power. Citations were obtained for all articles on August 26th, 464 

2016. (A) Correlation between % of significant results per article and citations. r=-0.03, 465 

p=0.75 (n=121). (B) Correlation between mean normalized effect size of effective 466 

interventions and citations. r=0.097, p=0.34 (n=98). (C) Correlation between mean 467 

statistical power (upper-bound estimate) and citations. r=-0.08, p=0.40 (n=104). (D) 468 

Correlation between study quality score and citations. r=0.09, p=0.31 (n=121). 469 

According to Holm-Sidak correction for 8 article-level correlations, none is significant.  470 

 471 

Discussion 472 

 In light of the low reproducibility of published studies in various fields of 473 

biomedical research [32–34] which is thought by many to be a consequence of low 474 

statistical power and excessive reliance on significance tests [8,16] calls have been 475 
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made to report effect sizes and confidence intervals alongside or in place of p values 476 

[4,6,7,9] and to increase statistical power [14,31,35]. However, it is unclear whether 477 

these proposals have had much impact on most fields of basic science. We have taken 478 

one particular memory task in rodents, in which outcomes and effect sizes are described 479 

in a standardized way and are thus comparable across studies, in order to analyze how 480 

these two concepts are dealt with in the study of fear learning. 481 

 Our first main finding is that most amnestic interventions targeting fear 482 

acquisition or consolidation cause partial effects, with residual freezing remaining 483 

significantly above pre-conditioning levels in 78% of the experiments with available 484 

data. Moreover, most of the large effect sizes in our sample were found in 485 

underpowered studies, suggesting that they could represent inflated estimates [24]. This 486 

is not necessarily unexpected: as fear memories depend on a well distributed network, 487 

both anatomically and molecularly [19], it seems natural that most interventions 488 

directed at a specific site or pharmacological target will modulate learning rather than 489 

fully block it. This creates a problem, however, when effect sizes are not considered in 490 

the analysis of experiments, as it is not possible to differentiate essential mechanisms of 491 

memory formation from modulatory influences on the basis of statistical significance 492 

alone. This can lead to a situation in which accumulating evidence, even if correct, can 493 

confuse rather than advance understanding, as has been suggested to occur in fields such 494 

as long-term potentiation [15] and apoptosis [36]. 495 

 Matters are complicated further by the possibility that many of these findings are 496 

false positives and/or false negatives. The prevalence of both in relation to true positives 497 

and negatives depends crucially on statistical power, which in turn depends on sample 498 

size. Calculating the actual power of published experiments is challenging, as the 499 

difference used for the calculations should not be based on the observed results – which 500 
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leads power analysis to become circular [18,37]. Thus, statistical power depend on 501 

expected effect sizes, which are arbitrary by nature – although they can sometimes be 502 

estimated from meta-analyses [14], which were not performed in this study due to the 503 

large variety of heterogeneous interventions. However, by considering the mean effect 504 

size for well-powered experiments in our sample, we arrived at an estimate of around 505 

37.2% that might be considered “typical” for a published experiment with an 506 

intervention affecting fear conditioning acquisition or consolidation. Using the sample 507 

size and variation for each experiment, we found mean statistical power to detect this 508 

effect size to be 65% in our sample.  509 

As sample size calculations are exceedingly rare, and insufficient power seems 510 

to be the norm in other fields of neuroscience as well [14,18], it is quite possible that 511 

classically used sample sizes in behavioral neuroscience (and perhaps in other fields of 512 

basic science) might thus be insufficient. Considering median variances and our 513 

intermediate effect size estimate, the ideal sample size to achieve 80% power would be 514 

around 15 animals per group. This number, however, was reached in only 12.2% of 515 

cases in our sample, as most experiments had sample sizes of 8 to 12, informally 516 

considered to be standard in the field. This seems to confirm recent models suggesting 517 

that current incentives in science favor the publication of underpowered studies [16,38], 518 

although they could also be due to restrictions on animal use imposed by ethical 519 

regulations. That said, average power in our sample for typical effect sizes was higher 520 

than those described in other areas of neuroscience by Button et al. [14]; however, this 521 

could reflect the fact that effect sizes in their study were calculated by meta-analysis, 522 

and might be smaller than those derived by our method of estimation, or underestimated 523 

due to the inclusion of negative results [18]. One should also note that the 524 

abovementioned power estimates were found to vary widely across subfields of 525 
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neuroscience [18] – in this sense, the power distribution of fear conditioning studies 526 

seems to resemble those found for psychology and neurochemistry studies, in which a 527 

reasonable number of well-powered studies coexist with underpowered ones. 528 

On the other hand, our statistical power to detect Cohen’s definitions of small, 529 

medium and large effects [22] were even lower than those recently reported in cognitive 530 

neuroscience studies by Szucs and Ioannidis (2017). That said, our data provides a 531 

strong cautionary note against the use of these arbitrary definitions, originally devised 532 

for psychology studies, in calculations of statistical power, as 88.7% of statistically 533 

significant experiments (or 48.2% of the whole sample) fell into the “large” category of 534 

Cohen’s original proposal. This suggests that laboratory studies in rodents have larger 535 

effects than those found in human psychology (an unsurprising finding, given the 536 

greater invasiveness of the interventions), as has also been found in meta-analyses 537 

studying similar treatments in laboratory animals and humans [39], demonstrating that 538 

what constitutes a small or large effect can vary between different fields of science. 539 

 An old-established truism in the behavioral neuroscience field – as well as in 540 

other fields of basic science – is that experiments in females tend to yield more variable 541 

results due to estrous cycle variations [40]. However, at least in our analysis, 542 

coefficients of variation were similar between experiments in males and females (and 543 

predictably higher in experiments using both), as has been found in other areas of 544 

science [41,42] suggesting that this belief is false. Nevertheless, adherence to it likely 545 

accounts for the vast preponderance of experiments on male animals, which were nearly 546 

8 times more common than those in females in our sample – a sex bias greater than 547 

those described for most fields [43] although smaller than that recently reported for 548 

rodent models of anxiety [44]. Previous work in clinical [45] and preclinical [40,43] 549 

data has pointed out the drawbacks of concentrating experiments in male populations. 550 
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However, despite calls for increasing the number of studies on females [46] this 551 

problem remains strikingly present in the fear learning field. 552 

Concerning risk of bias indicators, the prevalence found in our sample was 553 

roughly similar to previous reports on animal studies for randomization and conflict of 554 

interest reporting [13] but were distinctly higher for blinded assessment of outcome, 555 

largely because 59% of articles used automated software to measure freezing, which we 556 

considered to be equivalent to blinded assessment. If one considers only articles 557 

reporting manual scoring of freezing, however, blinding was reported in 57% of cases, 558 

which is still higher than most areas of preclinical science [13]. As described previously 559 

in many fields [12,13,31] sample size calculations were almost non-existent, which 560 

helps to explain why many experiments are underpowered. Interestingly, although we 561 

analyzed a sample of papers published 3 years after the ARRIVE guidelines they were 562 

not mentioned in any of the articles, suggesting that their impact, at least in the field of 563 

behavioral neuroscience, was still rather limited at this time. 564 

Contrary to previous studies, however, we did not detect an impact of these risk 565 

of bias indicators on article-level measures such as percentage of fear conditioning 566 

learning experiments with significant results, mean effect size of significant 567 

experiments and mean statistical power. This could mean that, compared to preclinical 568 

studies, bias towards positive results is lower in studies on fear learning. However, it 569 

seems more likely that, as we selected particular experiments within papers containing 570 

other results, we were not as likely to detect effects of bias on article-level measures. As 571 

basic science articles typically contain numerous results, it is perhaps less likely that all 572 

comparisons will be subject to bias towards positive findings. Moreover, the 573 

experiments in our sample probably included negative controls for other findings, which 574 

might have been expected to yield non-significant results. Thus, although our results do 575 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 8, 2018. ; https://doi.org/10.1101/116202doi: bioRxiv preprint 

https://doi.org/10.1101/116202
http://creativecommons.org/licenses/by-nc/4.0/


 
 

 29 

not indicate an impact of bias on article-level results, they should not be taken as 576 

evidence that this does not occur. 577 

The same reasoning applies for the evaluation of publication bias, in which the 578 

experiments we analyzed could have been published along with positive ones. 579 

Nevertheless, we were still able to detect a negative correlation between effect size and 580 

statistical power, suggesting effect size inflation due to low statistical power to be 581 

present in studies on fear conditioning learning. Although the pattern we detected was 582 

less suggestive of actual publication bias, our capability to detect it was likely smaller 583 

due to the choice to use experiments within articles. Other methods to detect publication 584 

bias, such as the Ioannidis excess significance test [47] and the use of p-value 585 

distributions [48–50] were also considered, but found to be inappropriate for use with 586 

our methodology (in the first case due to the absence of a meta-analytic effect estimate, 587 

and in the second because exact p values were infrequently provided in articles). 588 

One of the most interesting findings of our article was the lack of correlation of 589 

effect sizes inferred from textual description of results with the actual effect sizes of 590 

significant experiments, as well as with statistical power. Although this suggests that 591 

these measures are not usually considered in the interpretation of results, there are 592 

caveats to this data. First of all, agreement between what words describe a “strong” or 593 

“weak” effect between researchers evaluating them was strikingly low, suggesting that 594 

written language is a poor descriptor for quantitative data. Moreover, the fact that most 595 

terms used to describe differences were neutral to effect sizes (e.g. “significantly 596 

higher”, “significantly lower”, etc.) limited our ability to detect a correlation. That said, 597 

the high prevalence of neutral terms by itself is evidence that effect sizes are not usually 598 

taken into account when reporting results, as differences tend to be described in the text 599 

by their statistical significance only. 600 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 8, 2018. ; https://doi.org/10.1101/116202doi: bioRxiv preprint 

https://doi.org/10.1101/116202
http://creativecommons.org/licenses/by-nc/4.0/


 
 

 30 

This point is especially important to consider in the light of recent calls for basic 601 

science to use data synthesis tools such as meta-analysis [11] and formal or informal 602 

Bayesian inference [2,8,10,51]. In both of these cases, the incremental effect of each 603 

new experiment on researchers’ beliefs on the veracity of a finding is dependent both on 604 

the effect size of the result and on its statistical significance. However, even exact p 605 

values were uncommonly reported in our sample, with the majority of articles 606 

describing p as being above or below a threshold value. This seems to suggest that 607 

researchers in the field indeed tend to consider statistical significance as a binary 608 

outcome, and might not be quite ready or willing to move towards Bayesian logic, 609 

which would require a major paradigm shift in the way results are reported and 610 

discussed. 611 

An interesting question is that, if researches in the field indeed were to move 612 

away from null-significance hypothesis testing, the concept of statistical power as it is 613 

defined today would largely lose its meaning (as it is intrinsically linked to the idea of a 614 

significance threshold). Nevertheless, the necessity of adequate sample size for 615 

statistical robustness would remain – in this case, not in order to detect significant 616 

differences and prevent false-negatives and false-positives, but to estimate effect sizes 617 

with adequate precision. The current notion of statistical power to detect a given 618 

difference could thus be replaced with a desired confidence interval for the obtained 619 

result when performing sample size calculations – a formulation that might be useful in 620 

terms of differentiating biologically significant results from irrelevant ones. 621 

Concerning article impact metrics, our results are in line with previous work 622 

showing that journal impact factor does not correlate with statistical power [14] or with 623 

most risk of bias indicators [13]. Furthermore, we showed that, in articles on fear 624 

conditioning, this lack of correlation also occurs for the percentage of significant 625 
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experiments and the mean effect size for significant differences, and that it extends to 626 

citations measured over 2 subsequent years. That said, our article-level analysis was 627 

limited by the fact that, for many articles, the included experiments represented a 628 

minority of the findings. Moreover, most articles tend to cluster around intermediate 629 

impact factors (i.e. between 3 and 6) and relatively low (< 20) citation numbers. Thus, 630 

our methodology might not have been adequate to detect correlations between these 631 

metrics with article-wide effect size and power estimates. 632 

The choice to focus on a particular type of experiment – in this case, 633 

interventions directed at rodent fear conditioning acquisition or consolidation – is both 634 

one of the main strengths and the major limitation of our findings. On one hand, it 635 

allows us to look at effect sizes that are truly on the same scale, as fear conditioning 636 

protocols tend to be reasonably similar across laboratories, and all included experiments 637 

described their results using the same metric. Thus, the studied effect sizes are not 638 

abstract and have real-life meaning. On the other hand, this decision limits our 639 

conclusions to this specific field of science, and also weakens our article-level 640 

conclusions, as most articles had only a fraction of their experiments analyzed. 641 

Dealing with multiple experiments using different outcomes presents a major 642 

challenge for meta-research in basic science, and all alternatives present limitations. A 643 

radically opposite approach of converting all effect sizes in a field to a single metric 644 

(e.g. Pearson’s r, Cohen’s d, etc.) has been used by other researchers investigating 645 

similar topics in neuroscience and psychology [17,23,31,35]. Although normalizing 646 

effect sizes allows one to obtain results from a wider field, it also leads them to be 647 

abstract and not as readily understandable by experimental researchers. Moreover, this 648 

approach can lead to the aggregation of results from disparate types of experiments for 649 

which effect sizes are not in the same scale, leading to important distortions in 650 
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calculating power for individual experiments. Finally, recent evidence indicates that, 651 

even within neuroscience, features such as statistical power have very different 652 

distributions across subfields [18], suggesting that surveys of individual areas are likely 653 

to be more reliable for studying them.  654 

In our case, studying the concrete scenario of a specific methodology leads to 655 

more readily applicable suggestions for experimental researchers, such as the rule-of-656 

thumb recommendation that the average number of animals per group in a fear 657 

conditioning experiments to achieve 80% power would be around 15 for typical effect 658 

sizes and variances. Our approach also allowed us to detect correlations between results 659 

and specific methodological factors (e.g. context vs. cued conditioning, female vs. male 660 

animals) that would not be apparent if multiple types of experiments were pooled 661 

together. Still, to provide more solid conclusions on the causal influence of these factors 662 

on experimental results, even our methodology has too wide a focus, as analyzing 663 

multiple interventions limits our possibilities to perform meta-analysis and meta-664 

regression to control for confounding variables. Follow-up studies with more specific 665 

aims (i.e. meta-analyses of specific interventions in fear conditioning) are thus 666 

warranted to understand the variation between results in the field. 667 

Finally, it is important to note that, while our study has led to some illuminating 668 

conclusions, they are inherently limited to the methodology under study. Thus, 669 

extrapolating our findings to other types of behavioral studies, not to mention other 670 

fields of science, requires data to be collected for each specific subfield. While this 671 

might appear herculean at first glance, it is easily achievable if scientists working within 672 

specific domains start to design and perform their own systematic reviews. Only 673 

through this dissemination of meta-research across different areas of science will we be 674 
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able to develop solutions that, by respecting the particularities of individual subfields, 675 

will be accepted enough to have an impact on research reproducibility.  676 

 677 

Materials and Methods 678 

The full protocol of data selection, extraction and analysis was initially planned 679 

on the basis of a pilot analysis of 30 papers, and was registered, reviewed and published 680 

ahead of full data extraction [20]. In brief, we searched PubMed for the term “fear 681 

conditioning” AND (“learning” OR “consolidation” OR “acquisition”) AND (“mouse” 682 

OR “mice” OR “rat” OR “rats”)” to obtain all articles published online in 2013. Titles 683 

and abstracts were first scanned for articles presenting original results involving fear 684 

conditioning in rodents that were written in English. Selected articles underwent full-685 

text screening for selection of experiments that (a) described the effects of a single 686 

intervention on fear conditioning acquisition or consolidation, (b) had a clearly defined 687 

control group to which the experimental group is compared to, (c) used freezing 688 

behavior as a measure of conditioned fear in a test session and (d) had available data on 689 

mean freezing, SD or SEM, as well as on the significance of the comparison. Articles 690 

were screened by one of two investigators (C.F.D.C. or T.C.M.) for relevant data and 691 

were analyzed by the other – thus, all included experiments were dual-reviewed.  692 

Only experiments analyzing the effect of interventions performed before or up to 693 

6 hours after the training session (i.e. those affecting fear conditioning acquisition or its 694 

immediate consolidation) were included. Data on mean freezing and SD or SEM were 695 

obtained for each group from the text when available; otherwise, it was extracted using 696 

Gsys 2.4.6 software (Hokkaido University Nuclear Reaction Data Centre). When exact 697 

sample size for each group was available, the experiment was used for the analysis of 698 
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effect size and statistical power – otherwise, only effect size was obtained, and the 699 

experiment was excluded from power analysis. For individual experiments, study 700 

design characteristics were also obtained, including species and sex of the animals, type 701 

of conditioning protocol, type, timing and site of intervention.  702 

From each comparison, we also obtained the description term used by the 703 

authors in the results session of the paper. Classification of the terms used to describe 704 

effects (S1 and S2 Tables) was based on a blinded assessment of words or phrases by a 705 

pool of 14 researchers who were fluent or native speakers of English and had current or 706 

past experience in the field of behavioral neuroscience. Categories were given a score 707 

from 0 to 2 in order of magnitude (i.e. 0 = weak, 1 = neutral, 2 = strong for significant 708 

results; 0 = similar, 1 = neutral, 2 = trend for non-significant results), and the average 709 

results for all researchers was used as a continuous variable for analysis. 710 

Apart from experiment-level variables, we also extracted article-level data such 711 

as impact factor of the journal in which it was published (based on the 2013 Journal 712 

Citations Report), number of citations (obtained for all articles on August 26th 2016), 713 

country of origin (defined by the corresponding author’s affiliation) and the 7 risk of 714 

bias indicators described on Table 1. For article-level correlations, we compiled these 715 

measures into a normalized score. 716 

After completion of data extraction, all calculations and analyses were 717 

performed according to the previously specified protocol. Specific details of 718 

calculations (as well as the raw data used) are presented as Supplementary Data. After 719 

this, the following additional analyses were performed in an exploratory fashion: 720 
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(a) To confirm that residual freezing levels after memory-impairing 721 

interventions were indeed above training values, demonstrating that most amnestic 722 

intervention have partial effects, we extracted pre-conditioning freezing levels from 723 

training sessions when these were available. These levels were obtained for pre-shock 724 

periods only, and separated as baseline values for contextual (i.e. freezing in the absence 725 

of tone) or tone conditioning (i.e. freezing in the presence of a tone, but before shock), 726 

as displayed in S5 Fig. These were compared to the corresponding test session values 727 

for treated groups in memory-impairing interventions by an unpaired t test based on the 728 

extracted means, SD or SEM and sample size when these were available. 729 

(b) In the original protocol, only the mean of all effective interventions (i.e. 730 

upper-bound effect size) was planned as a point estimate to be used for power 731 

calculations, although we acknowledged this to be optimistic [20]. We later decided to 732 

perform power calculations based on the mean effect size of the experiments achieving 733 

power above 0.95 on the first analysis (i.e. intermediate effect size) to avoid effect size 734 

inflation, as we reached the conclusion that this would provide a more realistic estimate. 735 

Additionally, we calculated power based on the mean effect size of the whole sample of 736 

experiments as a lower-bound estimate, and presented all three estimates in the results 737 

section and figures. 738 

(c) In order to evaluate whether the distribution of effect sizes and statistical 739 

power varied if effect sizes were defined as absolute differences in freezing levels 740 

instead of relative ones, we repeated the analyses in Figs. 2, 3 and 4 using absolute 741 

differences in S1 Fig., S6 Fig. and S9 Fig.. This proved to be particularly important to 742 

demonstrate that correlations between effect sizes and power were not the consequence 743 

of a confounding association of both variables with coefficients of variation. We also 744 
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repeated power and correlation analyses using effect sizes as standardized mean 745 

differences (e.g. Cohen’s d) in S7 Fig. and S10 Fig.)  746 

(d) To further evaluate the possible impact of the negative correlation between 747 

coefficients of variation and freezing levels on our results, we decided to use freezing 748 

levels as a covariate in the correlations shown in Fig. 4. We also checked whether 749 

adding freezing levels as a covariate influenced the statistical analyses in Fig. 5, Fig. 6 750 

and S11 Fig., but as this did not have a significant impact on the results in these figures, 751 

we only reported the originally planned analyses. 752 

 (e) All of our planned analyses were parametric; after extraction, however, it 753 

was clear that some of the data deviated from a normal distribution (especially in the 754 

case of power estimates, citation counts and impact factor). Because of this, we 755 

performed additional non-parametric analyses for the correlations of citations and 756 

impact factor with percentage of significant results, mean normalized effect size, 757 

statistical power and study quality score. 758 

(f) In the protocol, we had planned to test correlations between normalized effect 759 

sizes and statistical power, mean sample size and absolute freezing levels (using the 760 

group with the highest freezing). After analyzing the results, we also decided to 761 

correlate normalized effect sizes with coefficients of variation (as this, rather than 762 

sample size, seemed to explain the lower power of non-significant results), additional 763 

power estimates (as using our original estimate led to a ceiling effect) and different 764 

estimates of freezing based on the control group or on the mean freezing of both groups 765 

(to compare these forms of normalization with the one we chose). 766 
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 (g) Due to the correlation of study quality assessment with journal impact 767 

factor, we performed an exploratory analysis of the correlation of this metric with each 768 

of the individual quality assessment items by performing a Student’s t test (corrected for 769 

unequal variances by Welch’s correction) between the impact factors of studies with 770 

and without each item. 771 

 (h) Because of the additional analyses above, we adjusted the number of 772 

comparisons/correlations used as the basis of the Holm-Sidak correction for multiple 773 

comparisons. The total numbers used for each correction were 14 for experiment-level 774 

comparisons, 17 for article-level comparisons, 28 for experiment-level correlations and 775 

8 for article-level correlations, leading to significance thresholds between 0.003 and 776 

0.05. 777 
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