

1 Effect size and statistical power in the rodent fear conditioning
2 literature – a systematic review

3 **Short title:** Effect sizes and statistical power in fear conditioning

4 **Authors:** Clarissa F. D. Carneiro^{1*}, Thiago C. Moulin^{1*}, Malcolm R. Macleod², Olavo
5 B. Amaral¹

6 ¹Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de
7 Janeiro, Rio de Janeiro, Brazil and ²Division of Clinical Neurosciences, University of
8 Edinburgh, Edinburgh, UK

9 * Both authors contributed equally to the work.

10

11 **Corresponding author:**

12 Olavo B. Amaral, M.D., PhD.

13 Instituto de Bioquímica Médica Leopoldo de Meis
14 Av. Carlos Chagas Filho 373, E-38
15 Cidade Universitária
16 Rio de Janeiro, RJ, Brazil
17 CEP 21941-902
18 Phone: +55-21-39386762
19 E-mail: olavo@bioqmed.ufrj.br

20

21

22

23

24

25

26

27

28

29

30

Abstract

31

32 Proposals to increase research reproducibility frequently call for focusing on effect sizes
33 instead of p values, as well as for increasing the statistical power of experiments.
34 However, it is unclear to what extent these two concepts are indeed taken into account
35 in basic biomedical science. To study this in a real-case scenario, we performed a
36 systematic review of effect sizes and statistical power in studies on learning of rodent
37 fear conditioning, a widely used behavioral task to evaluate memory. Our search criteria
38 yielded 410 experiments comparing control and treated groups in 122 articles.
39 Interventions had a mean effect size of 29.5%, and amnesia caused by memory-
40 impairing interventions was nearly always partial. Mean statistical power to detect the
41 average effect size observed in well-powered experiments with significant differences
42 (37.2%) was 65%, and was lower among studies with non-significant results. Only one
43 article reported a sample size calculation, and our estimated sample size to achieve 80%
44 power considering typical effect sizes and variances (15 animals per group) was reached
45 in only 12.2% of experiments. Actual effect sizes correlated with effect size inferences
46 made by readers on the basis of textual descriptions of results only when findings were
47 non-significant, and neither effect size nor power correlated with study quality
48 indicators, number of citations or impact factor of the publishing journal. In summary,
49 effect sizes and statistical power have a wide distribution in the rodent fear conditioning
50 literature, but do not seem to have a large influence on how results are described or
51 cited. Failure to take these concepts into consideration might limit attempts to improve
52 reproducibility in this field of science.

53

54

55

56

57

Introduction

58 Biomedical research over the last decades has relied heavily on the concept of
59 statistical significance – i.e. the probability that an effect equal to or larger than that
60 observed experimentally would occur by chance under the null hypothesis – and
61 classifying results as “significant” or “non-significant” on the basis of an arbitrary
62 threshold (usually set at $p < 0.05$) has become standard practice in most fields. This
63 approach, however, has well-described limitations that can lead to erroneous
64 conclusions when researchers rely on p values alone to judge results [1–6]. First of all, p
65 values do not measure the magnitude of an effect, and thus cannot be used by
66 themselves to evaluate its biological significance [7]. Moreover, the predictive value of
67 a significance test is heavily influenced by factors such as the prior probability of the
68 tested hypothesis, the number of tests performed and their statistical power [8]; thus,
69 similar p values can lead to very different conclusions in distinct scenarios [1].

70 Recent calls for improving research reproducibility have focused on reporting
71 effect sizes and confidence intervals alongside or instead of p values [6–9] and for the
72 use of both informal Bayesian inference [10] and formal data synthesis methods [11]
73 when aggregating data from multiple studies. The concepts of effect size and statistical
74 power are central for such approaches, as how much a given experiment will change a
75 conclusion or an effect estimate will depend on both. However, it is unclear whether
76 they receive much attention from authors in basic science publications. Discussion of
77 effect sizes seems to be scarce, and recent data has shown that sample size and power
78 calculations are very rare in the preclinical literature [12,13]. The potential impact of
79 these omissions is large, as reliance on the results of significance tests without
80 consideration of statistical power can decrease the reliability of study conclusions [14].

81 Another issue is that, if effect size is not taken into account, it is difficult to
82 adequately assess the biological significance of a given finding. As p values will be low
83 even for small effect sizes if sample size is large, biologically trivial effects can be
84 found to be statistically significant. In preclinical studies, overlooking effect sizes will
85 thus lead to inadequate assessment of therapeutic potential, whereas in basic research it
86 will cause difficulties in dissecting essential biological mechanisms from peripheral
87 modulatory influences [15]. The wealth of findings in the literature will thus translate
88 poorly into better comprehension of phenomena, and the abundance of statistically
89 significant findings with small effect sizes can eventually do more harm than good. This
90 problem is made much worse when many of these studies have low positive predictive
91 values due to insufficient power, leading a large fraction of them to be false positives
92 [8,14,16–18].

93 To analyze how effect sizes and statistical power are taken into account in the
94 description and publication of findings in a real-case scenario of basic biomedical
95 science, we chose to perform a systematic review of articles on learning of rodent fear
96 conditioning, probably the most widely used behavioral task to study memory in
97 animals [19]. Focusing on this task provides a major advantage in the fact that the vast
98 majority of articles use the same measure to describe results (i.e. percentage of time
99 spent in freezing behavior during a test session). As effect sizes are comparable across
100 studies, studying their distribution allows one to estimate the statistical power of
101 individual experiments to detect typical differences.

102 Our first objective in this study is to analyze the distribution of effect sizes and
103 statistical power in a large sample of articles using different interventions, showing how
104 they are related to the outcome of statistical significance tests. Next, we will study
105 whether these two measures are correlated, in order to look for evidence of publication

106 bias and effect size inflation. We will also correlate effect sizes and variances with
107 different aspects of experimental design, such as species, sex and type of conditioning,
108 as well as with indicators of risk of bias. To inquire whether effect size and power are
109 taken into consideration by authors when interpreting findings, we will evaluate
110 whether they correlate with effect size inferences made by readers based on textual
111 descriptions of results in the articles. Finally, we will analyze whether mean effect size
112 and power correlate with article-level metrics, such as number of citations and impact
113 factor of the publishing journal, to explore how they influence the publication of results.

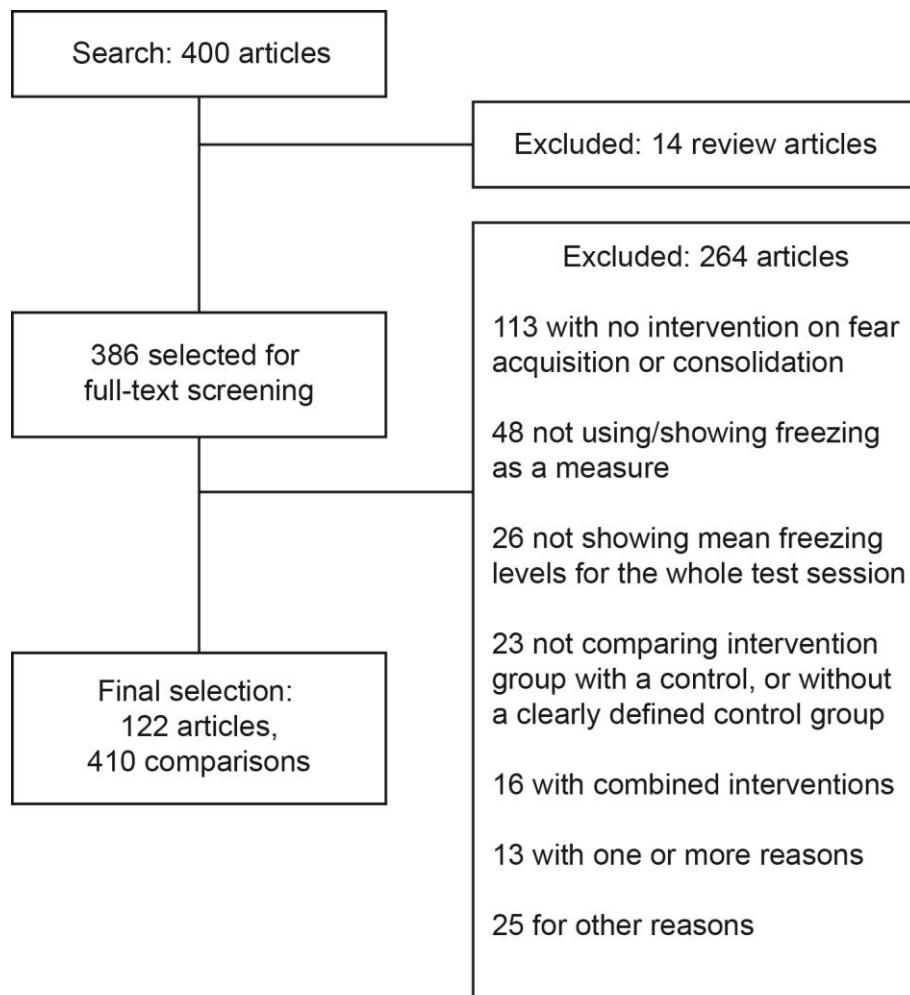
114

115 **Results**

116 *Article search and inclusion*

117 As previously described in a protocol published in advance of full data
118 collection [20], we performed a PubMed search for fear conditioning articles published
119 online in 2013. The search process (**Fig. 1**) yielded 400 search hits, of which 386 were
120 original articles that were included if they fulfilled pre-established criteria (see
121 Methods). Two investigators examined all included articles, and agreement for
122 exclusions measured on a double-screened sample of 40 articles was 95%. This led to a
123 final sample of 122 articles and 410 experiments, used to build the database provided as

124 **Supplementary Data.**



125

126 **Figure 1. Study flow diagram.** Our PubMed search yielded 400 results, of which 14
127 were excluded based on initial screening of titles and abstracts and 386 were selected
128 for full-text analysis. This led to the inclusion of 122 articles, containing a total of 410
129 comparisons (i.e. individual experiments). The main reasons for exclusion are listed in
130 the figure, in compliance with the PRISMA statement [21].

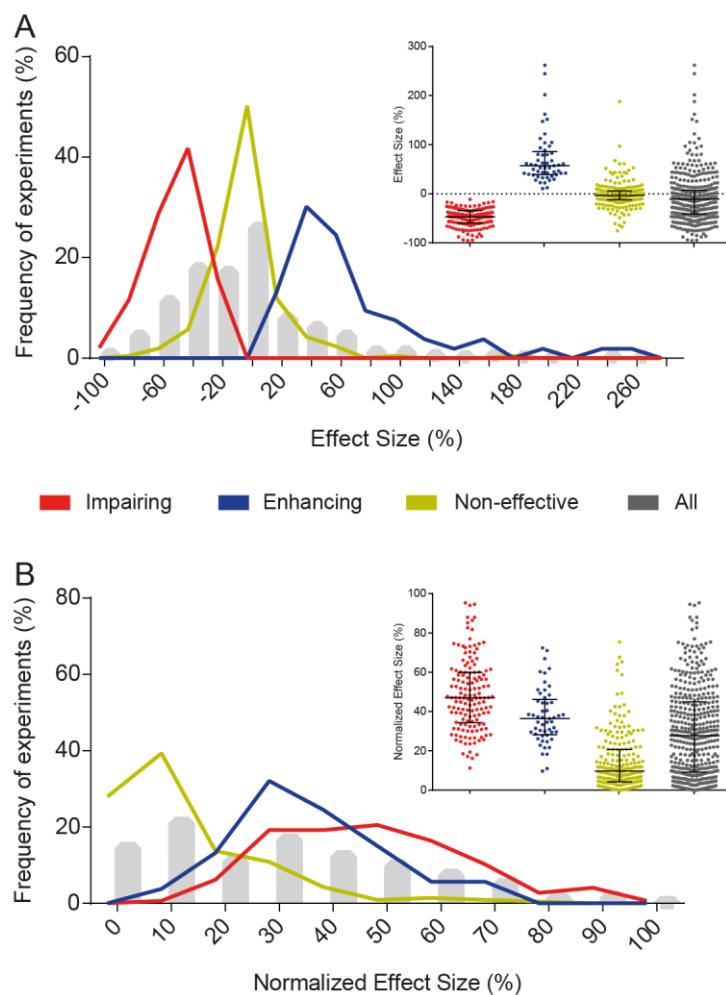
131

132 *Distribution of effect sizes among experiments*

133 For each experiment, we initially calculated effect size as the relative difference
134 (i.e. percentage of change) in the freezing levels of treated groups when compared to
135 controls. As shown in **Fig. 2A**, this leads interventions that enhance memory acquisition

136 (i.e. those in which freezing is significantly higher in the treated group) to have larger
137 effect sizes than those that impair it (i.e. those in which freezing is significantly lower in
138 the treated group) due to an asymmetry that is inherent to ratios. To account for this and
139 make effect sizes comparable between both types of interventions, we used a
140 normalized effect size, with difference expressed as a percentage of the highest freezing
141 value between groups (**Fig. 2B**) [11].

142 Use of absolute differences in freezing instead of relative ones led to similar, but
143 more constrained distributions (**S1 Fig.**) due to mathematical limits on absolute
144 differences. Freezing levels in the reference group correlated negatively with relative
145 effect size and pooled coefficient of variation (i.e. the ratio between the sample size-
146 weighted pooled SD and the pooled mean); however, normalization by the highest-
147 freezing group reduced this effect (**S2 Fig. A-C**). Absolute effect size, on the contrary,
148 showed a positive correlation with freezing levels in the control or highest-freezing
149 group (**S2 Fig. D-F**). We also calculated effect sizes as standardized mean differences
150 (i.e Cohen's d, **S3 Fig.**), but chose to use relative percentages throughout the study, as
151 they are more closely related to the way results are expressed in articles.



152

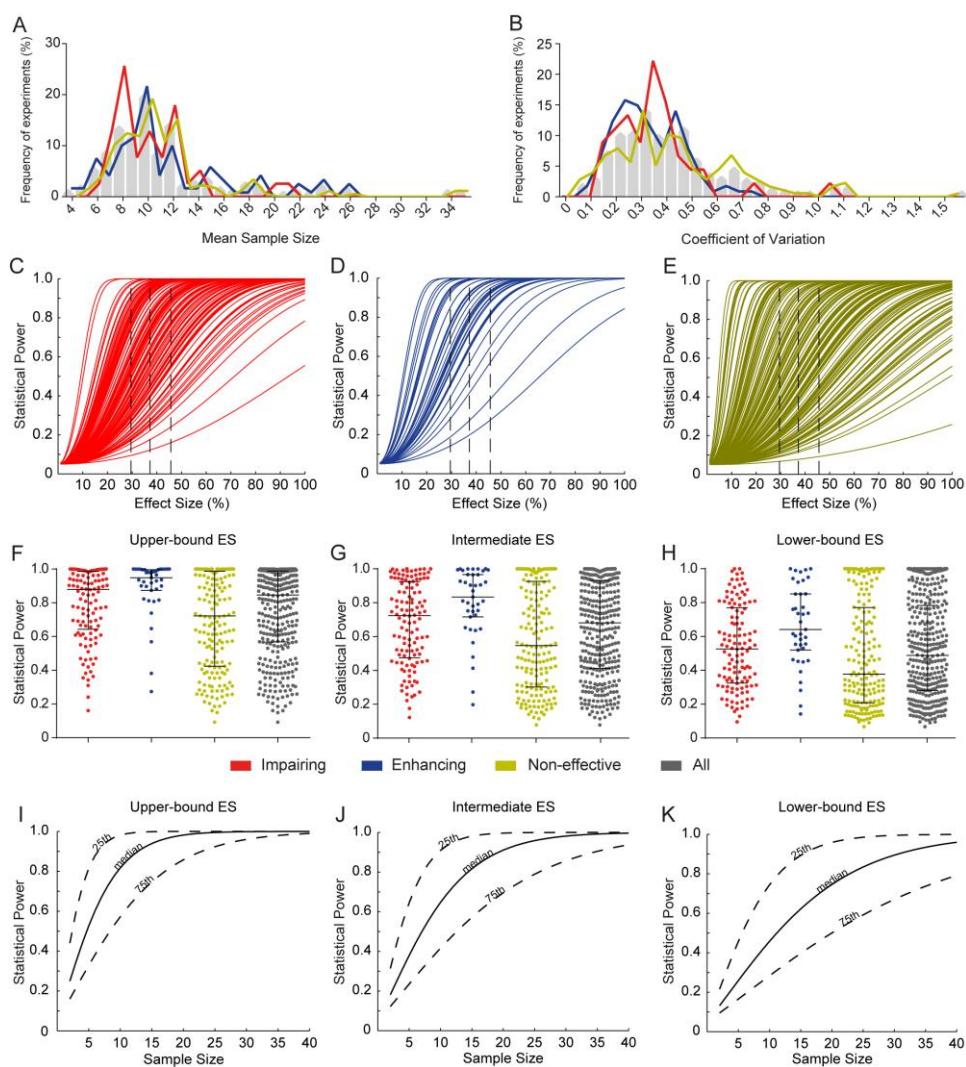
153 **Figure 2. Distribution of effect sizes.** (A) Distribution of effect sizes, calculated as %
154 of control group freezing. Interventions were divided into memory-impairing ($-48.6 \pm$
155 18.1% , $n=146$), memory-enhancing ($71.6 \pm 53.2\%$, $n=53$) or non-effective ($-1.8 \pm$
156 26.2% , $n=211$) for visualization purposes, according to the statistical significance of the
157 comparison performed in the article. Additionally, the whole sample of experiments is
158 shown in grey ($-9.0 \pm 47.5\%$ [-13.6 to -4.4], $n=410$). Values are expressed as mean \pm
159 SD [95% confidence interval]. Lines and whiskers in the inset express median and
160 interquartile interval. (B) Distribution of normalized effect sizes, calculated as % of the
161 group with the highest mean (i.e. control group for memory-impairing interventions, or
162 treated group for memory-enhancing interventions).

163 All 410 experiments combined had a mean normalized effect size of $29.5 \pm$
164 22.4% (mean \pm SD; 95% CI [27.4 to 31.7]). When results were divided according to the
165 statistical comparison originally performed in the article, mean normalized effect size
166 was $48.6 \pm 18.1\%$ for memory-impairing interventions, $37.6 \pm 14.2\%$ for memory-
167 enhancing interventions and $14.4 \pm 14.2\%$ for non-effective interventions – i.e. those in
168 which a significant difference between groups was not found. This does not imply that
169 data in each of these groups represents effects coming from a different distribution, or
170 that significant and non-significant results correspond to true positive or true negative
171 effects. On the contrary, each group likely represents a mixture of heterogeneous effect
172 size distributions, as sampling error and lack of statistical power can directly impact the
173 chances of a result achieving statistical significance. Distribution of mean effect sizes at
174 the article level showed similar results to those found at the level of experiments (**S4**
175 **Fig.**).

176 The distribution of effect sizes shows that the vast majority of memory-
177 impairing interventions cause partial reductions in learning, leaving the treated group
178 with residual freezing levels that are higher than those of a non-conditioned animal. In
179 fact, in all 35 memory-impairing experiments in which pre-conditioning freezing levels
180 were shown for the treated group, these were lower than those observed in the test
181 session – with p values below 0.05 in 25 (78%) out of the 32 cases in which there was
182 enough information for us to perform an unpaired *t* test between sessions (**S5 Fig.**). It is
183 also worth noting that 26.5% of non-significant experiments had an effect size greater
184 than 20%, suggesting that these experiments might have been underpowered. With this
185 in mind, we went on to evaluate the distribution of statistical power among studies.

186 *Distribution of statistical power among experiments*

187 For analyzing statistical power, we first sought to evaluate the distribution of
188 sample sizes and coefficients of variation (both of which are determinants of power). As
189 shown in **Fig. 3A**, most experiments had mean sample sizes between 8 and 12
190 animals/group, and this distribution did not vary between enhancing, impairing and non-
191 effective interventions. On the other hand, higher coefficients of variation were more
192 frequent among non-effective interventions (**Fig. 3B**). This difference was partly
193 explained by freezing levels in the reference group – which correlated negatively with
194 coefficients of variation (**S2 Fig. G-I**) and were lower on average for non-significant
195 experiments (49.3% vs. 52.9% in memory-impairing and 61.3% in memory-enhancing
196 experiments).



197

198 **Figure 3. Distribution of sample size, variation and statistical power.** (A)
199 Distribution of mean sample size between groups. Gray bars show the distribution of
200 the whole sample, while colored lines show distributions of impairing (n=120),
201 enhancing (n=39) and non-significant (n=177) experiments separately for visualization
202 purposes. (B) Distribution of coefficients of variation (pooled standard deviation/pooled
203 mean) for each type of experiment. (C) Distribution of statistical power for memory-
204 impairing interventions: based on each experiment's variance and sample size, power
205 varies according to the difference to be detected for $\alpha=0.05$. Dashed lines show the three
206 effect sizes used for point estimates of power in F, G and H. (D) Distribution of
207 statistical power for memory-enhancing interventions. (E) Distribution of statistical
208 power for non-effective interventions. (F) Distribution of statistical power to detect the
209 upper-bound effect size of 45.6% (right dashed line on C, D and E) for impairing (red),
210 enhancing (blue), non-significant (yellow) and all (grey) experiments. Lines and
211 whiskers express median and interquartile interval. (G) Distribution of statistical power
212 to detect the intermediate effect size of 37.2% (middle dashed line on C, D and E). (H)
213 Distribution of statistical power to detect the lower-bound effect size of 29.5% (left
214 dashed line on C, D and E). (I) Sample size vs. statistical power to detect the upper-
215 bound effect size of 45.6%. Continuous lines use the 50th percentile of coefficients of
216 variation for calculations, while dotted lines use the 25th and 75th percentiles. (J) Sample
217 size vs. statistical power to detect the intermediate effect size of 37.2%. (K) Sample size
218 vs. statistical power to detect the lower-bound effect size of 29.5%.

219

220 Based on each experiment's variance and sample size, we built power curves to
221 show how power varies according to the difference to be detected at $\alpha=0.05$ for each
222 individual experiment (**Fig. 3C-E**). To detect the mean effect size of 45.6% found for

223 nominally effective interventions (i.e. those leading to statistically significant
224 differences between groups), mean statistical power in our sample was 0.75 ± 0.26 ; 95%
225 CI [0.72 - 0.78] (**Fig. 3F**). This estimate, however, is an optimistic, upper-bound
226 calculation of the typical effect size of biologically effective interventions (from here on
227 referred to as “upper-bound ES”): as only large effects will be detected by
228 underpowered studies, basing calculations only on significant results leads to effect size
229 inflation [14]. A more realistic estimate of effect size was obtained based only on
230 experiments that achieved statistical power above 0.95 (n=60) in the first analysis (and
231 are thus less subject to effect size inflation), leading to a mean effect size of 37.2%.
232 Predictably, mean statistical power to detect this difference (“intermediate ES”, **Fig.**
233 **3G**) fell to 0.65 ± 0.28 [0.62 - 0.68]. Using the mean effect size of all experiments
234 (“lower-bound ES”, 29.5%) led to an even lower power of 0.52 ± 0.29 [0.49 - 0.56]
235 (**Fig. 3H**), although this estimate of a typical effect size is likely pessimistic, as it
236 probably includes many true negative effects.

237 Interestingly, using mean absolute differences instead of relative ones to
238 calculate statistical power led to a smaller number of experiments with very low power
239 (**S6 Fig.**). This suggests that some of the underpowered experiments in the first analysis
240 had low freezing levels in the reference group, as in this case even large relative
241 differences will still be small when expressed in absolute terms for statistical analysis.
242 Also of note is that, if one uses Cohen’s traditional definitions of small ($d=0.2$), medium
243 ($d=0.5$) and large ($d=0.8$) effect sizes [22] as the basis for calculations, mean power is
244 0.07 ± 0.01 , 0.21 ± 0.07 and 0.44 ± 0.13 , respectively (**S7 Fig.**). These much lower
245 estimates reflect the fact that effect sizes are typically much larger in rodent fear
246 conditioning than in psychology experiments, for which this arbitrary classification was
247 originally devised, and suggests that it might not be applicable to other fields of science.

248 A practical application of these power curves is that we were able to calculate
249 the necessary sample size to achieve desired power for each effect size estimate,
250 considering the median coefficient of variation (as well as the 25th and 75th quartiles) of
251 experiments in our sample (**Fig. 3I-K**). Thus, for an experiment with typical variation,
252 around 15 animals per group are needed to achieve 80% power to detect our
253 ‘intermediate effect size’ of 37.2%, which we consider our more realistic estimate for a
254 typical effect size in the field. Nevertheless, only 12.2% of comparisons in our sample
255 had a sample size of 15 or above in each experimental group, suggesting that such
256 calculations are seldom performed.

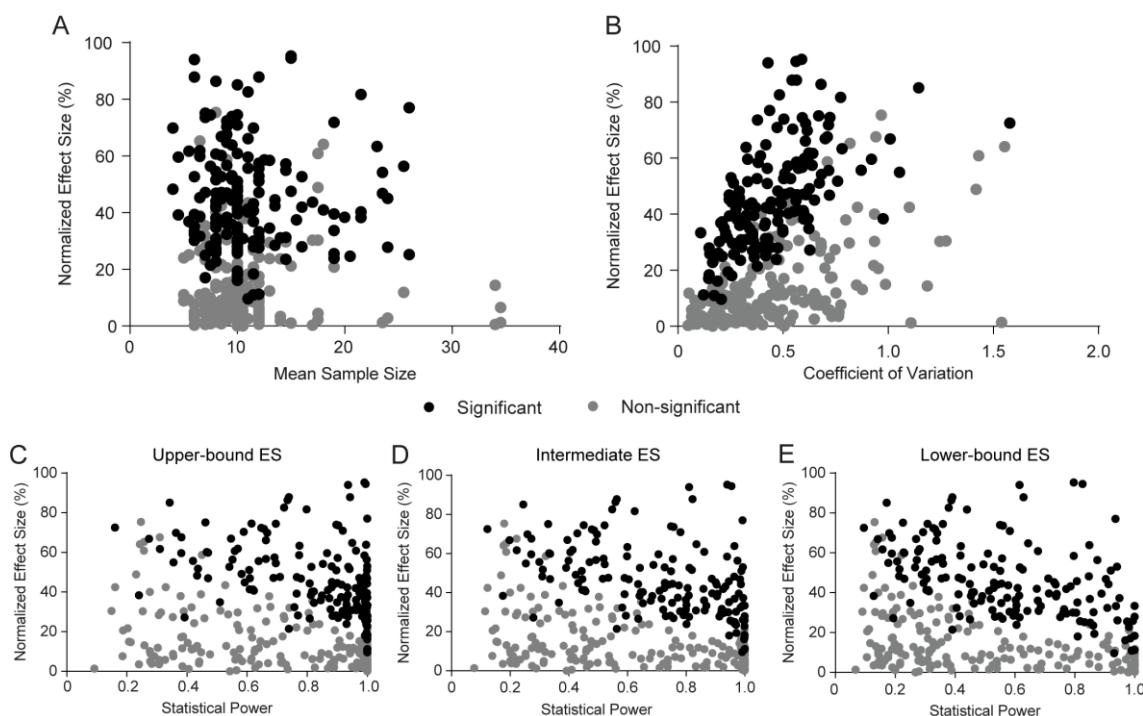
257 We also analyzed the distributions of statistical power at the level of articles
258 instead of individual experiments. Results for these analyses are shown in **S8 Fig.**, and
259 are generally similar to those obtained for the experiment-level analysis, except that the
260 long tail of non-significant experiments with large coefficients of variation is not
261 observed. This suggests that experiments with large variation and low power are
262 frequently found alongside others with adequate power within the same articles. It is
263 unclear, however, whether this means that the low power of some experiments is a
264 consequence of random fluctuations of experimental variance, or if these experiments
265 use protocols that lead to larger coefficients of variation – for example, by generating
266 lower mean levels of freezing (see **S2 Fig.**).

267 *Correlation between effect sizes and statistical power/sample size*

268 We next sought to correlate normalized effect size with sample size and
269 statistical power for each experiment. The presence of a negative correlation between
270 these variables has been considered an indirect measure of publication bias [23], as
271 articles with low power or sample size will be subject to effect size inflation caused by
272 selective reporting of significant findings [24]. In our analysis, no correlation was found

273 between effect size and sample size (**Fig. 4A**, $r=0.0007$, $p=0.99$); on the other hand, a
274 positive correlation between effect size and coefficient of variation was observed (**Fig.**
275 **4B**, $r=0.37$, $p<0.0001$). Part of this correlation was mediated by the association of both
276 variables with freezing levels (**S2 Fig.**), but the correlation remained significant after
277 adjustment for this variable ($r=0.32$, $p<0.001$).

278 Because of this, negative correlations between effect size and power were
279 observed for the three effect size estimates used (**Figs. 4C-E**), although they were larger
280 for the lower-bound estimate (**Fig. 4E**, $r=-0.21$, $p<0.0001$) than for the intermediate
281 (**Fig. 4D**, $r=-0.16$, $p=0.003$) and upper-bound (**Fig. 4C**, $r=-0.12$, $p=0.03$) ones due to a
282 ceiling effect on power. This negative correlation is observed even when power is
283 calculated based on absolute differences (**S9 Fig.**), for which the correlation between
284 coefficients of variation and reference freezing levels is in the opposite direction of that
285 observed with relative differences (see **S2 Fig.**). This strongly suggests that the
286 correlation represents a real phenomenon related to publication bias and/or effect size
287 inflation, and is not merely due to the correlation of both variables with freezing levels.
288 A correlation between effect size and power is also observed when both are calculated
289 on the basis of standardized mean differences (i.e. Cohen's d) (**S10 Fig.**). In this case,
290 the line separating significant and non-significant results for a given sample size is
291 clearer, as significance is more directly related to standardized mean differences.
292 Expressing effect sizes in Cohen's d also makes effect size inflation in experiments with
293 low sample size and power more obvious.



294

295 **Figure 4. Correlations between effect size, variation and statistical power. (A)**

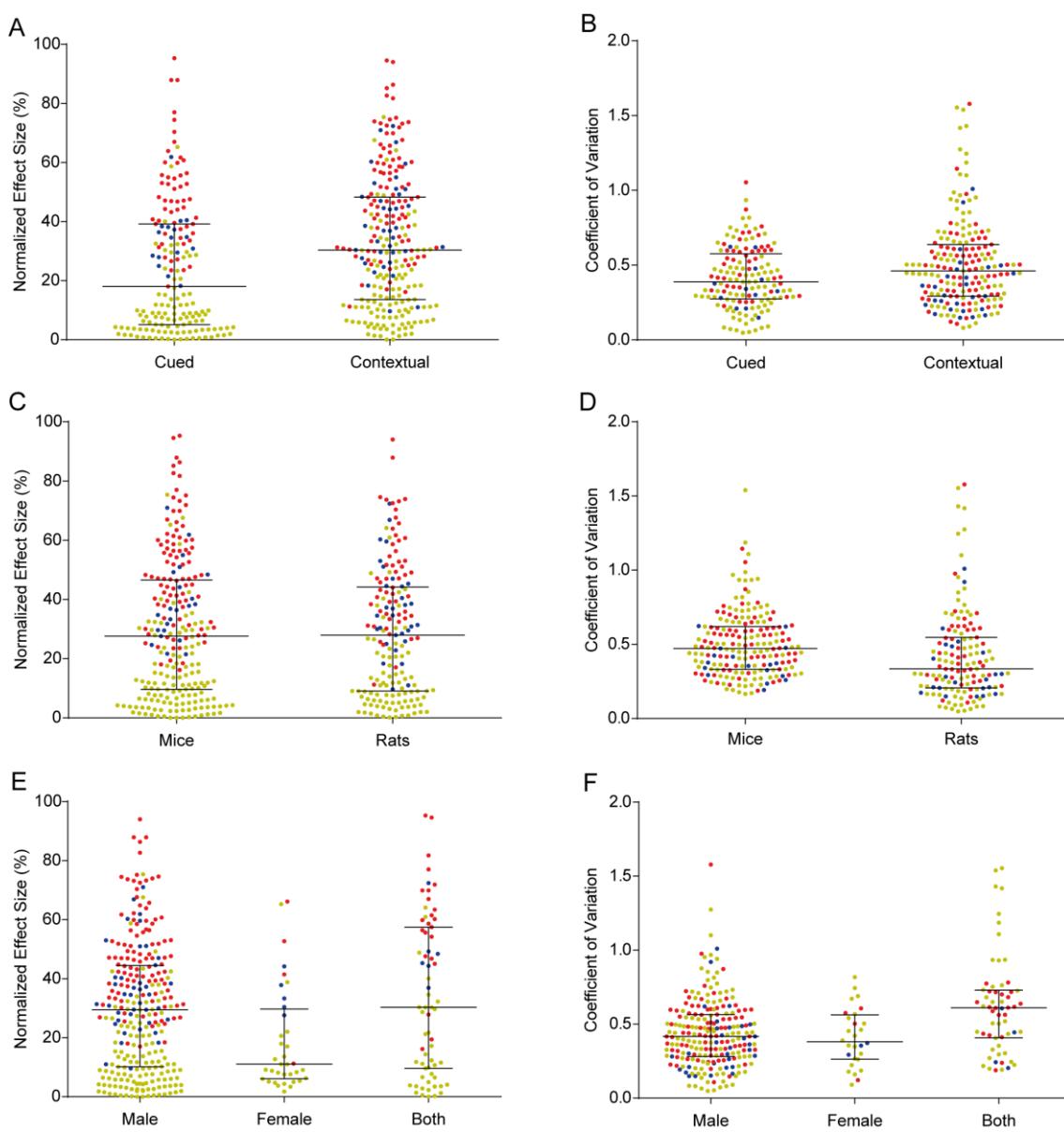
296 Correlation between normalized effect size and mean sample size. No correlation is
297 found ($r=0.0007$, $p=0.99$; $r=-0.26$, $p=0.64$ after adjustment), although sample size
298 variation is limited. (B) Correlation between normalized effect size and coefficient of
299 variation. Correlation of the whole sample of experiments yields $r=0.37$, $p<0.0001^*$
300 ($n=336$; $r=0.32$, $p<0.001$ after adjustment for freezing levels). (C) Correlation between
301 normalized effect size and statistical power based on upper-bound effect size of 45.6%.
302 Correlation of the whole sample of experiments yields $r=-0.12$, $p=0.03$ ($r=0.11$, $p=0.84$
303 after adjustment for freezing levels), but distribution is skewed due to a ceiling effect on
304 power. (D) Correlation between normalized effect size and statistical power based on
305 intermediate effect size of 37.2%; $r=-0.16$, $p=0.003^*$ ($r=-0.16$, $p=0.48$ after adjustment).
306 (E) Correlation between normalized effect size and statistical power based on lower-
307 bound effect size of 29.5%; $r=-0.21$, $p<0.0001^*$ ($r=-0.1$, $p=0.06$ after adjustment).
308 Asterisks indicate significant results according to Holm-Sidak correction for 28
309 experiment-level correlations.

310 Interestingly, the correlation between effect size and power was driven by a
311 scarcity of experiments with large effect size and high power. This raises the possibility
312 that truly large effects are unusual in fear conditioning, and that some of the large effect
313 sizes among low-powered experiments in our sample are inflated. On the other hand, a
314 pattern classically suggesting publication bias – i.e. a scarcity of low-powered
315 experiments with small effects [23] – is not observed. It should be noted, however, that
316 our analysis focused on individual experiments within articles, meaning that non-
317 significant results were usually presented alongside other experiments with significant
318 differences; thus, this analysis does not allow us to assess publication bias at the level of
319 articles.

320 *Effects of methodological variables on the distributions of effect sizes and*
321 *coefficients of variation.*

322 We next examined whether the distributions of effect sizes and coefficients of
323 variation were influenced by type of conditioning, species or sex of the animals (**Fig. 5**).
324 Mean normalized effect size was slightly larger in contextual than in cued fear
325 conditioning (33.2% vs. 24.4%, Student's t test $p<0.0001$) and markedly larger in males
326 than in females (30.3% vs. 18.9% vs. 34.2% for experiments using both, one-way
327 ANOVA, $p=0.004$), but roughly equivalent between mice and rats (29.8% vs. 29.1%,
328 $p=0.76$). Coefficients of variation were higher in contextual conditioning (0.51 vs. 0.41,
329 Student's t test $p=0.001$), in experiments using animals of both sexes (0.62 vs. 0.44 in
330 males and 0.41 in females, one-way ANOVA, $p <0.0001$), and in those using mice (0.50
331 vs. 0.42, Student's t test, $p=0.008$), although the latter difference was not statistically
332 significant after correction for multiple comparisons. All of these associations should be
333 considered correlational and not causal, as specific types of conditioning or animals of a
334 particular species or sex might be more frequently used for testing interventions with

335 particularly high or low effect sizes. Also of note is the fact that experiments on males
336 were 7.7 times more common than those on females in our sample (277 vs. 36),
337 indicating a strong preference of researchers for using male animals.



338
339 **Figure 5. Effect sizes and coefficients of variation across different protocols,**
340 **species and sexes.** Colors indicate memory-enhancing (red), memory-impairing (blue)
341 or non-effective (yellow) experiments, all of which are pooled for analysis. Lines and
342 whiskers express median and interquartile interval. (A) Distribution of effect sizes
343 across cued (n=171) and contextual (n=239) conditioning protocols. Student's t test,

344 p<0.0001*. (B) Coefficients of variation across cued (n=145) and contextual (n=191)
345 conditioning protocols. Student's t test, p=0.001*. (C) Distribution of effect sizes across
346 experiments using mice (n=237) or rats (n=173). Student's t test, p=0.76. (D)
347 Coefficients of variation across experiments using mice (n=193) or rats (n=143).
348 Student's t test, p=0.008. (E) Distribution of effect sizes across experiments using male
349 (n=277), female (n=36) or both (n=67) sexes. One-way ANOVA, p=0.004*; Tukey's
350 post-hoc test, male vs. female p=0.01, male vs. both p=0.40, female vs. both p=0.003.
351 30 experiments were excluded from this analysis for not stating the sex of animals. (F)
352 Coefficients of variation across experiments using male (n=233), female (n=28) or both
353 (n=60) sexes. One-way ANOVA, p<0.0001*; Tukey's test, male vs. female p=0.85,
354 male vs. both p<0.0001, female vs. both p=0.0006. For coefficient of variation analyses,
355 74 experiments were excluded due to lack of information on sample size for individual
356 groups. Asterisks indicate significant results according to Holm-Sidak correction for 14
357 experiment-level comparisons.

358

359 We also examined whether effect sizes and coefficients of variation differed
360 systematically according to the type, timing or anatomical site of intervention (**S11**
361 **Fig.**). Effect sizes did not differ significantly between surgical, pharmacological, genetic
362 and behavioral interventions (38.7% vs. 28.1% vs. 30.5% vs. 25.8% one-way ANOVA,
363 p=0.12), although there was a trend for greater effects with surgical interventions
364 (which were uncommon in our sample). No differences were found between the mean
365 effect sizes of systemic and intracerebral interventions (28.7% vs. 30.3%, Student's t
366 test, p=0.45) or between those of pre- and post-training interventions (30.5% vs. 25.4%,
367 Student's t test, p=0.07), although pre-training interventions had slightly higher
368 coefficients of variation (0.49 vs 0.37, Student's t test p=0.0015). Coefficients of

369 variation did not differ significantly between surgical, pharmacological, genetic and
370 behavioral interventions (0.41 vs. 0.43 vs. 0.50 vs. 0.50, one-way ANOVA $p=0.08$) or
371 between systemic and intracerebral interventions (0.49 vs. 0.45, Student's t test $p=0.15$).
372 Once again, these differences can only be considered correlational and not causal.

373 *Risk of bias indicators and their relationship with effect size and power*

374 As previous studies have shown that measures to reduce risk of bias are not
375 widely reported in animal research [12,13], we investigated the prevalence of these
376 measures in our sample of fear conditioning articles, and evaluated whether they were
377 correlated with effect sizes or power. **Table 1** shows the percentage of articles reporting
378 7 items thought to reduce risk of bias in animal studies, adapted and expanded from the
379 CAMARADES checklist [25]. Although some items were reported in most articles
380 (statement of compliance with animal regulations, adequate description of sample size,
381 blinding), others were virtually nonexistent, such as the presence of a sample size
382 calculation (1 article) and compliance with the ARRIVE guidelines [26] (0 articles).
383 Contrary to previous reports in other areas [27–30], however, no significant association
384 was found between reporting of these indicators and either the percentage of significant
385 experiments, the mean effect size of effective interventions or the mean statistical power
386 of experiments in our sample (**S12 Fig.**). The region of origin of the article also had no
387 correlation with either of these variables (**S13 Fig.**). Nevertheless, it should be noted
388 that this analysis used only experiments on fear conditioning acquisition or
389 consolidation, which were not necessarily the only results or the main findings
390 presented in these articles. Thus, it is possible that other results in the article might have
391 shown higher correlation with risk of bias indicators.

Quality assessment	Randomization of allocation	Blinded or automated	Sample size calculation	Exact sample size description	Statement of compliance with regulatory	Statement on conflict	Statement of compliance
--------------------	-----------------------------	----------------------	-------------------------	-------------------------------	---	-----------------------	-------------------------

item	assessment	requirements	of interest	with ARRIVE
Number of articles (%)	18/77 (23.4%)	92/122 (75.4%)	1/122 (0.8%)	98/122 (80.3%)

392 **Table 1. Number of articles including quality assessment items.** Percentages were
393 calculated using all 122 articles, except in the case of randomization, which was
394 calculated based on 77 articles, as it is not applicable to genetic interventions. In the
395 case of blinding, 68 articles used automated analysis and 24 used blinded observers,
396 totaling 92 articles scored for this item.

397

398 *Correlation between effect sizes/statistical power and description of results*

399 Given the wide distribution of effect sizes and statistical power in the literature
400 on fear conditioning learning, we tried to determine whether these were taken into
401 account by authors when describing results in the text. For each included comparison,
402 we extracted the words or phrases describing the results of that experiment in the text or
403 figure legends, and asked 14 behavioral neuroscience researchers to classify them
404 according to the implicit information they contained about effect size. For comparisons
405 with significant differences, terms were to be classified as implying strong (i.e. large
406 effect size) or weak (i.e. small effect size) effects, or as neutral terms (i.e. those from
407 which effect size could not be deduced). For non-significant differences, terms were to
408 be classified as implying similarity between groups, as suggesting a trend towards
409 difference, or as neutral terms (i.e. those from which the presence or absence of a trend
410 could not be deduced). From the average of these classifications, we defined a score for
411 each term (**S1 and S2 Tables**) and correlated these scores with the actual effect size and
412 statistical power of experiments.

413 Agreement between researchers over classification was low, especially for terms
414 describing significant differences: single measures intraclass correlation coefficients
415 (reflecting the reliability of individual researchers when compared to the whole sample)
416 were 0.234 for significant interventions and 0.597 for non-significant ones, while
417 average measures coefficients (reflecting the aggregated reliability of the sample) were
418 0.839 and 0.962, respectively. This, along with a trend for the use of terms with little
419 effect size information (“increase”, “decrease”, “significantly more”, “significantly
420 less”, etc.), led most terms describing effective interventions to receive intermediate
421 scores approaching 1 (i.e. neutral). For these interventions, no correlations were
422 observed between this score and either effect size ($r=-0.05$, $p=0.48$) or statistical power
423 ($r=0.03$, $p=0.73$) (**Fig. 6A and 6B**). For non-effective interventions, a significant
424 correlation between description score and effect size was observed (**Fig 6C**, $r=0.28$,
425 $p=0.0002$), as larger effect sizes were associated with terms indicating a trend for
426 difference. Still, no correlation was observed between textual descriptions of results and
427 power (**Fig 6D**, $r=0.03$, $p=0.74$). Moreover, statistical power was rarely mentioned in
428 the textual description of results – the term “power” was used in this context in only 4
429 articles– suggesting that it is largely ignored when discussing findings, as shown in
430 other areas of research [31].



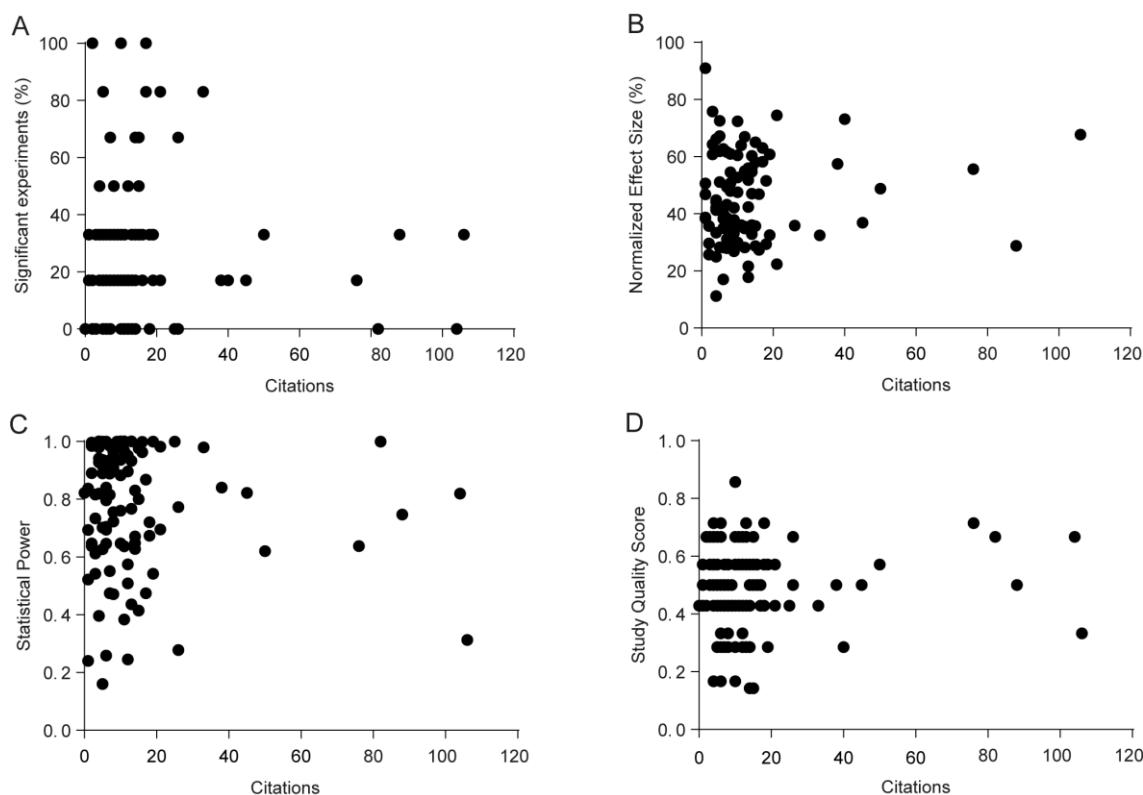
431

432 **Figure 6. Correlation between description of results and effect size/statistical**
433 **power.** Description scores refer to the mean score given by 14 neuroscience researchers
434 who rated terms as “weak” (0), “neutral” (1) or “strong” (2) in the case of those
435 describing significant differences, or as “similar” (0), “neutral” (1) or “trend” (2) in the
436 case of those describing non-significant ones. (A) Correlation between normalized
437 effect size and description score for significant results. $r=-0.05$, $p=0.48$ ($n=195$). (B)
438 Correlation between statistical power and description score for significant results.
439 $r=0.03$, $p=0.73$ ($n=155$). (C) Correlation between normalized effect size and description
440 score for non-significant results. $r=0.28$, $p=0.0002^*$ ($n=174$). (D) Correlation between
441 upper-bound estimate of statistical power and description score for non-significant
442 results. $r=0.03$, $p=0.74$ ($n=146$). Asterisk indicates significant result according to Holm-
443 Sidak correction for 28 experiment-level correlations.

444

445 *Correlations of effect size, power and study quality with article citations*

446 Finally, we investigated whether the percentage of significant experiments
447 reported in each article, mean effect size for effective interventions, mean statistical
448 power or a composite study quality score (aggregating the 7 risk of bias indicators
449 described in **Table 1**) correlated with article impact, as measured by the number of
450 citations (**Fig. 7**) and the impact factor of the publishing journal (**S14 Fig.**). None of the
451 correlations was significant after adjustment for multiple comparisons, although a weak
452 positive correlation was observed between study quality score and impact factor
453 ($r=0.22$, $p=0.01$), driven by associations of higher impact factors with blinding
454 (Student's t test with Welch's correction, $p=0.0001$), conflict of interest reporting
455 (Student's t test with Welch's correction, $p=0.03$) and exact sample size description
456 (Student's t test, $p=0.03$). It should be noted that the distribution of impact factors and
457 citations is heavily skewed, limiting the use of linear correlations as planned in the
458 original protocol – nevertheless, exploratory non-parametric analysis of the data
459 confirmed the lack of significance of correlations. Once again, our data refers only to
460 experiments on fear conditioning acquisition or consolidation – therefore, other data in
461 the articles could feasibly account for the variation in impact factor and citations.



462

463 **Figure 7. Correlation between citations and percentage of significant experiments,**
464 **effect size and statistical power.** Citations were obtained for all articles on August 26th,
465 2016. (A) Correlation between % of significant results per article and citations. $r=-0.03$,
466 $p=0.75$ ($n=121$). (B) Correlation between mean normalized effect size of effective
467 interventions and citations. $r=0.097$, $p=0.34$ ($n=98$). (C) Correlation between mean
468 statistical power (upper-bound estimate) and citations. $r=-0.08$, $p=0.40$ ($n=104$). (D)
469 Correlation between study quality score and citations. $r=0.09$, $p=0.31$ ($n=121$).
470 According to Holm-Sidak correction for 8 article-level correlations, none is significant.

471

472

Discussion

473 In light of the low reproducibility of published studies in various fields of
474 biomedical research [32–34] which is thought by many to be a consequence of low
475 statistical power and excessive reliance on significance tests [8,16] calls have been

476 made to report effect sizes and confidence intervals alongside or in place of p values
477 [4,6,7,9] and to increase statistical power [14,31,35]. However, it is unclear whether
478 these proposals have had much impact on most fields of basic science. We have taken
479 one particular memory task in rodents, in which outcomes and effect sizes are described
480 in a standardized way and are thus comparable across studies, in order to analyze how
481 these two concepts are dealt with in the study of fear learning.

482 Our first main finding is that most amnestic interventions targeting fear
483 acquisition or consolidation cause partial effects, with residual freezing remaining
484 significantly above pre-conditioning levels in 78% of the experiments with available
485 data. Moreover, most of the large effect sizes in our sample were found in
486 underpowered studies, suggesting that they could represent inflated estimates [24]. This
487 is not necessarily unexpected: as fear memories depend on a well distributed network,
488 both anatomically and molecularly [19], it seems natural that most interventions
489 directed at a specific site or pharmacological target will modulate learning rather than
490 fully block it. This creates a problem, however, when effect sizes are not considered in
491 the analysis of experiments, as it is not possible to differentiate essential mechanisms of
492 memory formation from modulatory influences on the basis of statistical significance
493 alone. This can lead to a situation in which accumulating evidence, even if correct, can
494 confuse rather than advance understanding, as has been suggested to occur in fields such
495 as long-term potentiation [15] and apoptosis [36].

496 Matters are complicated further by the possibility that many of these findings are
497 false positives and/or false negatives. The prevalence of both in relation to true positives
498 and negatives depends crucially on statistical power, which in turn depends on sample
499 size. Calculating the actual power of published experiments is challenging, as the
500 difference used for the calculations should not be based on the observed results – which

501 leads power analysis to become circular [18,37]. Thus, statistical power depend on
502 expected effect sizes, which are arbitrary by nature – although they can sometimes be
503 estimated from meta-analyses [14], which were not performed in this study due to the
504 large variety of heterogeneous interventions. However, by considering the mean effect
505 size for well-powered experiments in our sample, we arrived at an estimate of around
506 37.2% that might be considered “typical” for a published experiment with an
507 intervention affecting fear conditioning acquisition or consolidation. Using the sample
508 size and variation for each experiment, we found mean statistical power to detect this
509 effect size to be 65% in our sample.

510 As sample size calculations are exceedingly rare, and insufficient power seems
511 to be the norm in other fields of neuroscience as well [14,18], it is quite possible that
512 classically used sample sizes in behavioral neuroscience (and perhaps in other fields of
513 basic science) might thus be insufficient. Considering median variances and our
514 intermediate effect size estimate, the ideal sample size to achieve 80% power would be
515 around 15 animals per group. This number, however, was reached in only 12.2% of
516 cases in our sample, as most experiments had sample sizes of 8 to 12, informally
517 considered to be standard in the field. This seems to confirm recent models suggesting
518 that current incentives in science favor the publication of underpowered studies [16,38],
519 although they could also be due to restrictions on animal use imposed by ethical
520 regulations. That said, average power in our sample for typical effect sizes was higher
521 than those described in other areas of neuroscience by Button et al. [14]; however, this
522 could reflect the fact that effect sizes in their study were calculated by meta-analysis,
523 and might be smaller than those derived by our method of estimation, or underestimated
524 due to the inclusion of negative results [18]. One should also note that the
525 abovementioned power estimates were found to vary widely across subfields of

526 neuroscience [18] – in this sense, the power distribution of fear conditioning studies
527 seems to resemble those found for psychology and neurochemistry studies, in which a
528 reasonable number of well-powered studies coexist with underpowered ones.

529 On the other hand, our statistical power to detect Cohen's definitions of small,
530 medium and large effects [22] were even lower than those recently reported in cognitive
531 neuroscience studies by Szucs and Ioannidis (2017). That said, our data provides a
532 strong cautionary note against the use of these arbitrary definitions, originally devised
533 for psychology studies, in calculations of statistical power, as 88.7% of statistically
534 significant experiments (or 48.2% of the whole sample) fell into the “large” category of
535 Cohen's original proposal. This suggests that laboratory studies in rodents have larger
536 effects than those found in human psychology (an unsurprising finding, given the
537 greater invasiveness of the interventions), as has also been found in meta-analyses
538 studying similar treatments in laboratory animals and humans [39], demonstrating that
539 what constitutes a small or large effect can vary between different fields of science.

540 An old-established truism in the behavioral neuroscience field – as well as in
541 other fields of basic science – is that experiments in females tend to yield more variable
542 results due to estrous cycle variations [40]. However, at least in our analysis,
543 coefficients of variation were similar between experiments in males and females (and
544 predictably higher in experiments using both), as has been found in other areas of
545 science [41,42] suggesting that this belief is false. Nevertheless, adherence to it likely
546 accounts for the vast preponderance of experiments on male animals, which were nearly
547 8 times more common than those in females in our sample – a sex bias greater than
548 those described for most fields [43] although smaller than that recently reported for
549 rodent models of anxiety [44]. Previous work in clinical [45] and preclinical [40,43]
550 data has pointed out the drawbacks of concentrating experiments in male populations.

551 However, despite calls for increasing the number of studies on females [46] this
552 problem remains strikingly present in the fear learning field.

553 Concerning risk of bias indicators, the prevalence found in our sample was
554 roughly similar to previous reports on animal studies for randomization and conflict of
555 interest reporting [13] but were distinctly higher for blinded assessment of outcome,
556 largely because 59% of articles used automated software to measure freezing, which we
557 considered to be equivalent to blinded assessment. If one considers only articles
558 reporting manual scoring of freezing, however, blinding was reported in 57% of cases,
559 which is still higher than most areas of preclinical science [13]. As described previously
560 in many fields [12,13,31] sample size calculations were almost non-existent, which
561 helps to explain why many experiments are underpowered. Interestingly, although we
562 analyzed a sample of papers published 3 years after the ARRIVE guidelines they were
563 not mentioned in any of the articles, suggesting that their impact, at least in the field of
564 behavioral neuroscience, was still rather limited at this time.

565 Contrary to previous studies, however, we did not detect an impact of these risk
566 of bias indicators on article-level measures such as percentage of fear conditioning
567 learning experiments with significant results, mean effect size of significant
568 experiments and mean statistical power. This could mean that, compared to preclinical
569 studies, bias towards positive results is lower in studies on fear learning. However, it
570 seems more likely that, as we selected particular experiments within papers containing
571 other results, we were not as likely to detect effects of bias on article-level measures. As
572 basic science articles typically contain numerous results, it is perhaps less likely that all
573 comparisons will be subject to bias towards positive findings. Moreover, the
574 experiments in our sample probably included negative controls for other findings, which
575 might have been expected to yield non-significant results. Thus, although our results do

576 not indicate an impact of bias on article-level results, they should not be taken as
577 evidence that this does not occur.

578 The same reasoning applies for the evaluation of publication bias, in which the
579 experiments we analyzed could have been published along with positive ones.
580 Nevertheless, we were still able to detect a negative correlation between effect size and
581 statistical power, suggesting effect size inflation due to low statistical power to be
582 present in studies on fear conditioning learning. Although the pattern we detected was
583 less suggestive of actual publication bias, our capability to detect it was likely smaller
584 due to the choice to use experiments within articles. Other methods to detect publication
585 bias, such as the Ioannidis excess significance test [47] and the use of p-value
586 distributions [48–50] were also considered, but found to be inappropriate for use with
587 our methodology (in the first case due to the absence of a meta-analytic effect estimate,
588 and in the second because exact p values were infrequently provided in articles).

589 One of the most interesting findings of our article was the lack of correlation of
590 effect sizes inferred from textual description of results with the actual effect sizes of
591 significant experiments, as well as with statistical power. Although this suggests that
592 these measures are not usually considered in the interpretation of results, there are
593 caveats to this data. First of all, agreement between what words describe a “strong” or
594 “weak” effect between researchers evaluating them was strikingly low, suggesting that
595 written language is a poor descriptor for quantitative data. Moreover, the fact that most
596 terms used to describe differences were neutral to effect sizes (e.g. “significantly
597 higher”, “significantly lower”, etc.) limited our ability to detect a correlation. That said,
598 the high prevalence of neutral terms by itself is evidence that effect sizes are not usually
599 taken into account when reporting results, as differences tend to be described in the text
600 by their statistical significance only.

601 This point is especially important to consider in the light of recent calls for basic
602 science to use data synthesis tools such as meta-analysis [11] and formal or informal
603 Bayesian inference [2,8,10,51]. In both of these cases, the incremental effect of each
604 new experiment on researchers' beliefs on the veracity of a finding is dependent both on
605 the effect size of the result and on its statistical significance. However, even exact p
606 values were uncommonly reported in our sample, with the majority of articles
607 describing p as being above or below a threshold value. This seems to suggest that
608 researchers in the field indeed tend to consider statistical significance as a binary
609 outcome, and might not be quite ready or willing to move towards Bayesian logic,
610 which would require a major paradigm shift in the way results are reported and
611 discussed.

612 An interesting question is that, if researches in the field indeed were to move
613 away from null-significance hypothesis testing, the concept of statistical power as it is
614 defined today would largely lose its meaning (as it is intrinsically linked to the idea of a
615 significance threshold). Nevertheless, the necessity of adequate sample size for
616 statistical robustness would remain – in this case, not in order to detect significant
617 differences and prevent false-negatives and false-positives, but to estimate effect sizes
618 with adequate precision. The current notion of statistical power to detect a given
619 difference could thus be replaced with a desired confidence interval for the obtained
620 result when performing sample size calculations – a formulation that might be useful in
621 terms of differentiating biologically significant results from irrelevant ones.

622 Concerning article impact metrics, our results are in line with previous work
623 showing that journal impact factor does not correlate with statistical power [14] or with
624 most risk of bias indicators [13]. Furthermore, we showed that, in articles on fear
625 conditioning, this lack of correlation also occurs for the percentage of significant

626 experiments and the mean effect size for significant differences, and that it extends to
627 citations measured over 2 subsequent years. That said, our article-level analysis was
628 limited by the fact that, for many articles, the included experiments represented a
629 minority of the findings. Moreover, most articles tend to cluster around intermediate
630 impact factors (i.e. between 3 and 6) and relatively low (< 20) citation numbers. Thus,
631 our methodology might not have been adequate to detect correlations between these
632 metrics with article-wide effect size and power estimates.

633 The choice to focus on a particular type of experiment – in this case,
634 interventions directed at rodent fear conditioning acquisition or consolidation – is both
635 one of the main strengths and the major limitation of our findings. On one hand, it
636 allows us to look at effect sizes that are truly on the same scale, as fear conditioning
637 protocols tend to be reasonably similar across laboratories, and all included experiments
638 described their results using the same metric. Thus, the studied effect sizes are not
639 abstract and have real-life meaning. On the other hand, this decision limits our
640 conclusions to this specific field of science, and also weakens our article-level
641 conclusions, as most articles had only a fraction of their experiments analyzed.

642 Dealing with multiple experiments using different outcomes presents a major
643 challenge for meta-research in basic science, and all alternatives present limitations. A
644 radically opposite approach of converting all effect sizes in a field to a single metric
645 (e.g. Pearson's r , Cohen's d , etc.) has been used by other researchers investigating
646 similar topics in neuroscience and psychology [17,23,31,35]. Although normalizing
647 effect sizes allows one to obtain results from a wider field, it also leads them to be
648 abstract and not as readily understandable by experimental researchers. Moreover, this
649 approach can lead to the aggregation of results from disparate types of experiments for
650 which effect sizes are not in the same scale, leading to important distortions in

651 calculating power for individual experiments. Finally, recent evidence indicates that,
652 even within neuroscience, features such as statistical power have very different
653 distributions across subfields [18], suggesting that surveys of individual areas are likely
654 to be more reliable for studying them.

655 In our case, studying the concrete scenario of a specific methodology leads to
656 more readily applicable suggestions for experimental researchers, such as the rule-of-
657 thumb recommendation that the average number of animals per group in a fear
658 conditioning experiments to achieve 80% power would be around 15 for typical effect
659 sizes and variances. Our approach also allowed us to detect correlations between results
660 and specific methodological factors (e.g. context vs. cued conditioning, female vs. male
661 animals) that would not be apparent if multiple types of experiments were pooled
662 together. Still, to provide more solid conclusions on the causal influence of these factors
663 on experimental results, even our methodology has too wide a focus, as analyzing
664 multiple interventions limits our possibilities to perform meta-analysis and meta-
665 regression to control for confounding variables. Follow-up studies with more specific
666 aims (i.e. meta-analyses of specific interventions in fear conditioning) are thus
667 warranted to understand the variation between results in the field.

668 Finally, it is important to note that, while our study has led to some illuminating
669 conclusions, they are inherently limited to the methodology under study. Thus,
670 extrapolating our findings to other types of behavioral studies, not to mention other
671 fields of science, requires data to be collected for each specific subfield. While this
672 might appear herculean at first glance, it is easily achievable if scientists working within
673 specific domains start to design and perform their own systematic reviews. Only
674 through this dissemination of meta-research across different areas of science will we be

675 able to develop solutions that, by respecting the particularities of individual subfields,
676 will be accepted enough to have an impact on research reproducibility.

677

678 **Materials and Methods**

679 The full protocol of data selection, extraction and analysis was initially planned
680 on the basis of a pilot analysis of 30 papers, and was registered, reviewed and published
681 ahead of full data extraction [20]. In brief, we searched PubMed for the term “fear
682 conditioning” AND (“learning” OR “consolidation” OR “acquisition”) AND (“mouse”
683 OR “mice” OR “rat” OR “rats”)” to obtain all articles published online in 2013. Titles
684 and abstracts were first scanned for articles presenting original results involving fear
685 conditioning in rodents that were written in English. Selected articles underwent full-
686 text screening for selection of experiments that (a) described the effects of a single
687 intervention on fear conditioning acquisition or consolidation, (b) had a clearly defined
688 control group to which the experimental group is compared to, (c) used freezing
689 behavior as a measure of conditioned fear in a test session and (d) had available data on
690 mean freezing, SD or SEM, as well as on the significance of the comparison. Articles
691 were screened by one of two investigators (C.F.D.C. or T.C.M.) for relevant data and
692 were analyzed by the other – thus, all included experiments were dual-reviewed.

693 Only experiments analyzing the effect of interventions performed before or up to
694 6 hours after the training session (i.e. those affecting fear conditioning acquisition or its
695 immediate consolidation) were included. Data on mean freezing and SD or SEM were
696 obtained for each group from the text when available; otherwise, it was extracted using
697 Gsys 2.4.6 software (Hokkaido University Nuclear Reaction Data Centre). When exact
698 sample size for each group was available, the experiment was used for the analysis of

699 effect size and statistical power – otherwise, only effect size was obtained, and the
700 experiment was excluded from power analysis. For individual experiments, study
701 design characteristics were also obtained, including species and sex of the animals, type
702 of conditioning protocol, type, timing and site of intervention.

703 From each comparison, we also obtained the description term used by the
704 authors in the results session of the paper. Classification of the terms used to describe
705 effects (**S1 and S2 Tables**) was based on a blinded assessment of words or phrases by a
706 pool of 14 researchers who were fluent or native speakers of English and had current or
707 past experience in the field of behavioral neuroscience. Categories were given a score
708 from 0 to 2 in order of magnitude (i.e. 0 = weak, 1 = neutral, 2 = strong for significant
709 results; 0 = similar, 1 = neutral, 2 = trend for non-significant results), and the average
710 results for all researchers was used as a continuous variable for analysis.

711 Apart from experiment-level variables, we also extracted article-level data such
712 as impact factor of the journal in which it was published (based on the 2013 Journal
713 Citations Report), number of citations (obtained for all articles on August 26th 2016),
714 country of origin (defined by the corresponding author's affiliation) and the 7 risk of
715 bias indicators described on **Table 1**. For article-level correlations, we compiled these
716 measures into a normalized score.

717 After completion of data extraction, all calculations and analyses were
718 performed according to the previously specified protocol. Specific details of
719 calculations (as well as the raw data used) are presented as **Supplementary Data**. After
720 this, the following additional analyses were performed in an exploratory fashion:

721 (a) To confirm that residual freezing levels after memory-impairing
722 interventions were indeed above training values, demonstrating that most amnestic
723 intervention have partial effects, we extracted pre-conditioning freezing levels from
724 training sessions when these were available. These levels were obtained for pre-shock
725 periods only, and separated as baseline values for contextual (i.e. freezing in the absence
726 of tone) or tone conditioning (i.e. freezing in the presence of a tone, but before shock),
727 as displayed in **S5 Fig.** These were compared to the corresponding test session values
728 for treated groups in memory-impairing interventions by an unpaired *t* test based on the
729 extracted means, SD or SEM and sample size when these were available.

730 (b) In the original protocol, only the mean of all effective interventions (i.e.
731 upper-bound effect size) was planned as a point estimate to be used for power
732 calculations, although we acknowledged this to be optimistic [20]. We later decided to
733 perform power calculations based on the mean effect size of the experiments achieving
734 power above 0.95 on the first analysis (i.e. intermediate effect size) to avoid effect size
735 inflation, as we reached the conclusion that this would provide a more realistic estimate.
736 Additionally, we calculated power based on the mean effect size of the whole sample of
737 experiments as a lower-bound estimate, and presented all three estimates in the results
738 section and figures.

739 (c) In order to evaluate whether the distribution of effect sizes and statistical
740 power varied if effect sizes were defined as absolute differences in freezing levels
741 instead of relative ones, we repeated the analyses in **Figs. 2, 3 and 4** using absolute
742 differences in **S1 Fig.**, **S6 Fig.** and **S9 Fig.**. This proved to be particularly important to
743 demonstrate that correlations between effect sizes and power were not the consequence
744 of a confounding association of both variables with coefficients of variation. We also

745 repeated power and correlation analyses using effect sizes as standardized mean
746 differences (e.g. Cohen's d) in **S7 Fig.** and **S10 Fig.**)

747 (d) To further evaluate the possible impact of the negative correlation between
748 coefficients of variation and freezing levels on our results, we decided to use freezing
749 levels as a covariate in the correlations shown in **Fig. 4**. We also checked whether
750 adding freezing levels as a covariate influenced the statistical analyses in **Fig. 5**, **Fig. 6**
751 and **S11 Fig.**, but as this did not have a significant impact on the results in these figures,
752 we only reported the originally planned analyses.

753 (e) All of our planned analyses were parametric; after extraction, however, it
754 was clear that some of the data deviated from a normal distribution (especially in the
755 case of power estimates, citation counts and impact factor). Because of this, we
756 performed additional non-parametric analyses for the correlations of citations and
757 impact factor with percentage of significant results, mean normalized effect size,
758 statistical power and study quality score.

759 (f) In the protocol, we had planned to test correlations between normalized effect
760 sizes and statistical power, mean sample size and absolute freezing levels (using the
761 group with the highest freezing). After analyzing the results, we also decided to
762 correlate normalized effect sizes with coefficients of variation (as this, rather than
763 sample size, seemed to explain the lower power of non-significant results), additional
764 power estimates (as using our original estimate led to a ceiling effect) and different
765 estimates of freezing based on the control group or on the mean freezing of both groups
766 (to compare these forms of normalization with the one we chose).

767 (g) Due to the correlation of study quality assessment with journal impact
768 factor, we performed an exploratory analysis of the correlation of this metric with each
769 of the individual quality assessment items by performing a Student's t test (corrected for
770 unequal variances by Welch's correction) between the impact factors of studies with
771 and without each item.

772 (h) Because of the additional analyses above, we adjusted the number of
773 comparisons/correlations used as the basis of the Holm-Sidak correction for multiple
774 comparisons. The total numbers used for each correction were 14 for experiment-level
775 comparisons, 17 for article-level comparisons, 28 for experiment-level correlations and
776 8 for article-level correlations, leading to significance thresholds between 0.003 and
777 0.05.

778 **References**

- 779 1. Nuzzo R. Statistical errors. *Nature*. 2014;506: 150–152.
- 780 2. Colquhoun D. An investigation of the false discovery rate and the
781 misinterpretation of p-values. *R Soc Open Sci*. 2014;1: 140216–140216.
- 782 3. Altman N, Krzywinski M. Points of significance: P values and the search for
783 significance. *Nat Methods*. 2016;14: 3–4.
- 784 4. Halsey LG, Curran-Everett D, Vowler SL, Drummond GB. The fickle P value
785 generates irreproducible results. *Nat Methods*. 2015;12: 179–185.
- 786 5. Wasserstein RL, Lazar NA. The ASA's statement on p-values : context, process,
787 and purpose. 2016;70: 129-133.
- 788 6. Greenland S, Senn SJ, Rothman KJ, Carlin JB, Poole C, Goodman SN, et al.
789 Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations.
790 *Eur J Epidemiol*. 2016;31: 337-350.

791 7. Nakagawa S, Cuthill IC. Effect size, confidence interval and statistical
792 significance: a practical guide for biologists. *Biol Rev.* 2007;82: 591–605.

793 8. Ioannidis JPA. Why most published research findings are false. *PLoS Med.*
794 2005;2: 696–701.

795 9. Trafimow D, Marks M. Editorial. *Basic Appl Soc Psych.* 2015;37: 1–2.

796 10. Goodman SN, Fanelli D, Ioannidis JPA. What does research reproducibility
797 mean? *Sci Transl Med.* 2016;8: 1–6.

798 11. Vesterinen HM, Sena ES, Egan KJ, Hirst TC, Churolov L, Currie GL, et al.
799 Meta-analysis of data from animal studies: A practical guide. *J Neurosci Methods.*
800 2014;221: 92–102.

801 12. Kilkenny C, Parsons N, Kadyszewski E, Festing MFW, Cuthill IC, Fry D, et al.
802 Survey of the quality of experimental design, statistical analysis and reporting of
803 research using animals. *PLoS One.* 2009;4: e7824.

804 13. Macleod MR, Lawson McLean A, Kyriakopoulou A, Serghiou S, de Wilde A,
805 Sherratt N, et al. Risk of bias in reports of in vivo research: a focus for improvement.
806 *PLoS Biol.* 2015;13: e1002273.

807 14. Button KS, Ioannidis JP, Mokrysz C, Nosek B, Flint J, Robinson ESJ, et al.
808 Power failure: why small sample size undermines the reliability of neuroscience. *Nat
809 Rev Neurosci.* 2013;14: 365–76.

810 15. Sanes JR, Lichtman JW. Can molecules explain long-term potentiation? *Nat
811 Neurosci.* 1999;2: 597–604.

812 16. Higginson AD, Munafò MR. Current incentives for scientists lead to
813 underpowered studies with erroneous conclusions. *PLoS Biol.* 2016;14: e2000995.

814 17. Szucs D, Ioannidis JPA. Empirical assessment of published effect sizes and
815 power in the recent cognitive neuroscience and psychology literature. *PLoS Biol.*
816 2017;15: e2000797.

817 18. Nord CL, Valton V, Wood J, Roiser JP. Power-up: a reanalysis of “power
818 failure” in neuroscience using mixture modelling. *J Neurosci.* 2017;37: 3592–16.

819 19. Maren S. Neurobiology of Pavlovian fear conditioning. *Annu Rev Neurosci.*
820 2001;24: 897–931.

821 20. Moulin TC, Carneiro CFD, Macleod MR, Amaral OB. Protocol for a systematic
822 review of effect sizes and statistical power in the rodent fear conditioning literature.
823 *Evid Based Preclin Med.* 2016;3: 24–32.

824 21. Moher D, Liberati A, Tetzlaff J, Altman DG, Altman D, Antes G, et al. Preferred
825 reporting items for systematic reviews and meta-analyses: The PRISMA statement.
826 *PLoS Med.* 2009;6: e1000097.

827 22. Cohen J. Statistical power analysis for the behavioral sciences (2nd ed.). New
828 York: Academic Press; 1977.

829 23. Kuhberger A, Fritz A, Scherndl T. Publication bias in psychology: A diagnosis
830 based on the correlation between effect size and sample size. *PLoS One.* 2014;9:
831 e105825.

832 24. Ioannidis JPA. Why most discovered true associations are inflated.
833 *Epidemiology.* 2008;19: 640–648.

834 25. Sena E, van der Worp HB, Howells D, Macleod M. How can we improve the
835 pre-clinical development of drugs for stroke? *Trends Neurosci.* 2007;30: 433–9.

836 26. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving
837 bioscience research reporting: the ARRIVE guidelines for reporting animal research.
838 *PLoS Biol.* 2010;8: e1000412.

839 27. Macleod MR, van der Worp HB, Sena ES, Howells DW, Dirnagl U, Donnan
840 GA. Evidence for the efficacy of NXY-059 in experimental focal cerebral ischaemia is
841 confounded by study quality. *Stroke*. 2008;39: 2824–9.

842 28. Vesterinen HM, Sena ES, Ffrench-Constant C, Williams A, Chandran S,
843 Macleod MR. Improving the translational hit of experimental treatments in multiple
844 sclerosis. *Mult Scler*. 2010;16: 1044–55.

845 29. Rooke EDM, Vesterinen HM, Sena ES, Egan KJ, Macleod MR. Dopamine
846 agonists in animal models of Parkinson’s disease: A systematic review and meta-
847 analysis. *Parkinsonism Relat Disord*. 2011;17: 313–320.

848 30. Currie GL, Delaney A, Bennett MI, Dickenson AH, Egan KJ, Vesterinen HM, et
849 al. Animal models of bone cancer pain: Systematic review and meta-analyses. *Pain*.
850 2013;154: 917–926.

851 31. Sedlmeier P, Gigerenzer G. Do studies of statistical power have an effect on the
852 power of studies? 1989;105: 309–316.

853 32. Scott S, Kranz JE, Cole J, Lincecum JM, Thompson K, Kelly N, et al. Design,
854 power, and interpretation of studies in the standard murine model of ALS. *Amyotroph
855 Lateral Scler*. 2008;9: 4–15.

856 33. Prinz F, Schlange T, Asadullah K. Believe it or not: how much can we rely on
857 published data on potential drug targets? *Nat Rev Drug Discov*. 2011;10: 712.

858 34. Begley CG, Ellis LM. Drug development: Raise standards for preclinical cancer
859 research. *Nature*. 2012;483: 531–3.

860 35. Cohen J. The statistical power of abnormal-social psychological research: a
861 review. *J Abnorm Soc Psychol*. 1962;65: 145–53.

862 36. Lazebnik Y. Can a biologist fix a radio?--Or, what I learned while studying
863 apoptosis. *Cancer Cell*. 2002;2: 179–82.

864 37. Goodman SN, Berlin JA. The use of predicted confidence intervals when
865 planning experiments and the misuse of power when interpreting results. *Ann Intern
866 Med.* 1994; 121: 200-206.

867 38. Smaldino PE, McElreath R. The natural selection of bad science. *R Soc Open
868 Sci.* 2016;3: 160384.

869 39. Norberg MM, Krystal JH, Tolin DF. A meta-analysis of D-cycloserine and the
870 facilitation of fear extinction and exposure therapy. *Biol Psychiatry.* 2008;63: 1118–
871 1126.

872 40. Wald C, Wu C. Of mice and women: The bias in animal models. *Science.*
873 2010;327: 1571–1572.

874 41. Mogil JS, Chanda ML. The case for the inclusion of female subjects in basic
875 science studies of pain. *Pain.* 2005;117: 1–5.

876 42. Prendergast BJ, Onishi KG, Zucker I. Female mice liberated for inclusion in
877 neuroscience and biomedical research. *Neurosci Biobehav Rev.* 2014;40: 1–5.

878 43. Beery AK, Zucker I. Sex bias in neuroscience and biomedical research. *Neurosci
879 Biobehav Rev.* 2011;35: 565–572.

880 44. Mohammad F, Ho J, Woo JH, Lim CL, Poon DJJ, Lamba B, et al. Concordance
881 and incongruence in preclinical anxiety models: Systematic review and meta-analyses.
882 *Neurosci Biobehav Rev.* 2016;68: 504–529.

883 45. Wizemann TM. Sex-specific reporting of scientific research. Washington:
884 National Academies Press. 2012.

885 46. Clayton JA, Collins FS. Policy: NIH to balance sex in cell and animal studies.
886 *Nature.* 2014;509: 282–3.

887 47. Ioannidis JP, Trikalinos TA. An exploratory test for an excess of significant
888 findings. *Clin Trials.* 2007;4: 245–253.

889 48. Ridley J, Kolm N, Freckleton RP, Gage MJG. An unexpected influence of
890 widely used significance thresholds on the distribution of reported P-values. *J Evol
891 Biol.* 2007;20: 1082–1089.

892 49. Simonsohn U, Nelson LD, Simmons JP. *p* -Curve and Effect Size. *Perspect
893 Psychol Sci.* 2014;9: 666–681.

894 50. de Winter JC, Dodou D. A surge of *p*-values between 0.041 and 0.049 in recent
895 decades (but negative results are increasing rapidly too). *PeerJ.* 2015;3: e733.

896 51. Wagenmakers EJ. A practical solution to the pervasive problems of *p* values.
897 *Psychon Bull Rev.* 2007;14: 779–804.