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30 Abstract
31

32  Proposals to increase research reproducibility frequently call for focusing on effect sizes
33 instead of p values, as well as for increasing the statistical power of experiments.
34  However, it is unclear to what extent these two concepts are indeed taken into account
35 in basic biomedical science. To study this in a real-case scenario, we performed a
36  systematic review of effect sizes and statistical power in studies on learning of rodent
37  fear conditioning, a widely used behavioral task to evaluate memory. Our search criteria
38 vyielded 410 experiments comparing control and treated groups in 122 articles.
39 Interventions had a mean effect size of 29.5%, and amnesia caused by memory-
40  impairing interventions was nearly always partial. Mean statistical power to detect the
41  average effect size observed in well-powered experiments with significant differences
42 (37.2%) was 65%, and was lower among studies with non-significant results. Only one
43 article reported a sample size calculation, and our estimated sample size to achieve 80%
44 power considering typical effect sizes and variances (15 animals per group) was reached
45 in only 12.2% of experiments. Actual effect sizes correlated with effect size inferences
46 made by readers on the basis of textual descriptions of results only when findings were
47  non-significant, and neither effect size nor power correlated with study quality
48  indicators, number of citations or impact factor of the publishing journal. In summary,
49  effect sizes and statistical power have a wide distribution in the rodent fear conditioning
50 literature, but do not seem to have a large influence on how results are described or
51 cited. Failure to take these concepts into consideration might limit attempts to improve
52  reproducibility in this field of science.
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56
57 Introduction
58 Biomedical research over the last decades has relied heavily on the concept of

59 statistical significance — i.e. the probability that an effect equal to or larger than that
60  observed experimentally would occur by chance under the null hypothesis — and
61 classifying results as “significant” or “non-significant” on the basis of an arbitrary
62  threshold (usually set at p < 0.05) has become standard practice in most fields. This
63  approach, however, has well-described limitations that can lead to erroneous
64  conclusions when researchers rely on p values alone to judge results [1-6]. First of all, p
65 values do not measure the magnitude of an effect, and thus cannot be used by
66  themselves to evaluate its biological significance [7]. Moreover, the predictive value of
67  a significance test is heavily influenced by factors such as the prior probability of the
68  tested hypothesis, the number of tests performed and their statistical power [8]; thus,
69  similar p values can lead to very different conclusions in distinct scenarios [1].

70 Recent calls for improving research reproducibility have focused on reporting
71  effect sizes and confidence intervals alongside or instead of p values [6-9] and for the
72 use of both informal Bayesian inference [10] and formal data synthesis methods [11]
73  when aggregating data from multiple studies. The concepts of effect size and statistical
74  power are central for such approaches, as how much a given experiment will change a
75  conclusion or an effect estimate will depend on both. However, it is unclear whether
76  they receive much attention from authors in basic science publications. Discussion of
77  effect sizes seems to be scarce, and recent data has shown that sample size and power
78  calculations are very rare in the preclinical literature [12,13]. The potential impact of
79  these omissions is large, as reliance on the results of significance tests without

80  consideration of statistical power can decrease the reliability of study conclusions [14].
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81 Another issue is that, if effect size is not taken into account, it is difficult to
82  adequately assess the biological significance of a given finding. As p values will be low
83  even for small effect sizes if sample size is large, biologically trivial effects can be
84  found to be statistically significant. In preclinical studies, overlooking effect sizes will
85  thus lead to inadequate assessment of therapeutic potential, whereas in basic research it
86  will cause difficulties in dissecting essential biological mechanisms from peripheral
87  modulatory influences [15]. The wealth of findings in the literature will thus translate
88  poorly into better comprehension of phenomena, and the abundance of statistically
89  significant findings with small effect sizes can eventually do more harm than good. This
90  problem is made much worse when many of these studies have low positive predictive
91 values due to insufficient power, leading a large fraction of them to be false positives
92 [8,14,16-18].
93 To analyze how effect sizes and statistical power are taken into account in the
94  description and publication of findings in a real-case scenario of basic biomedical
95  science, we chose to perform a systematic review of articles on learning of rodent fear
96  conditioning, probably the most widely used behavioral task to study memory in
97  animals [19]. Focusing on this task provides a major advantage in the fact that the vast
98  majority of articles use the same measure to describe results (i.e. percentage of time
99  spent in freezing behavior during a test session). As effect sizes are comparable across
100  studies, studying their distribution allows one to estimate the statistical power of
101 individual experiments to detect typical differences.
102 Our first objective in this study is to analyze the distribution of effect sizes and
103  statistical power in a large sample of articles using different interventions, showing how
104 they are related to the outcome of statistical significance tests. Next, we will study

105  whether these two measures are correlated, in order to look for evidence of publication
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106  bias and effect size inflation. We will also correlate effect sizes and variances with
107  different aspects of experimental design, such as species, sex and type of conditioning,
108 as well as with indicators of risk of bias. To inquire whether effect size and power are
109 taken into consideration by authors when interpreting findings, we will evaluate
110  whether they correlate with effect size inferences made by readers based on textual
111  descriptions of results in the articles. Finally, we will analyze whether mean effect size
112 and power correlate with article-level metrics, such as number of citations and impact

113  factor of the publishing journal, to explore how they influence the publication of results.

114

115 Results

116 Article search and inclusion

117 As previously described in a protocol published in advance of full data

118  collection [20], we performed a PubMed search for fear conditioning articles published
119  online in 2013. The search process (Fig. 1) yielded 400 search hits, of which 386 were
120  original articles that were included if they fulfilled pre-established criteria (see
121 Methods). Two investigators examined all included articles, and agreement for
122 exclusions measured on a double-screened sample of 40 articles was 95%. This led to a
123 final sample of 122 articles and 410 experiments, used to build the database provided as

124  Supplementary Data.
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Search: 400 articles

Excluded: 14 review articles

Excluded: 264 articles

113 with no intervention on fear

386 selected for acquisition or consolidation
full-text screening

48 not using/showing freezing
as a measure

26 not showing mean freezing
levels for the whole test session

23 not comparing intervention
Final selection: group with a control, or without
122 articles a clearly defined control group

410 comparisons

16 with combined interventions

13 with one or more reasons

25 for other reasons

125

126  Figure 1. Study flow diagram. Our PubMed search yielded 400 results, of which 14
127  were excluded based on initial screening of titles and abstracts and 386 were selected
128  for full-text analysis. This led to the inclusion of 122 articles, containing a total of 410
129  comparisons (i.e. individual experiments). The main reasons for exclusion are listed in

130  the figure, in compliance with the PRISMA statement [21].

131
132 Distribution of effect sizes among experiments
133 For each experiment, we initially calculated effect size as the relative difference

134  (i.e. percentage of change) in the freezing levels of treated groups when compared to

135  controls. As shown in Fig. 2A, this leads interventions that enhance memory acquisition
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136  (i.e. those in which freezing is significantly higher in the treated group) to have larger
137  effect sizes than those that impair it (i.e. those in which freezing is significantly lower in
138  the treated group) due to an asymmetry that is inherent to ratios. To account for this and
139 make effect sizes comparable between both types of interventions, we used a
140  normalized effect size, with difference expressed as a percentage of the highest freezing

141  value between groups (Fig. 2B) [11].

142 Use of absolute differences in freezing instead of relative ones led to similar, but
143  more constrained distributions (S1 Fig.) due to mathematical limits on absolute
144  differences. Freezing levels in the reference group correlated negatively with relative
145  effect size and pooled coefficient of variation (i.e. the ratio between the sample size-
146  weighted pooled SD and the pooled mean); however, normalization by the highest-
147  freezing group reduced this effect (S2 Fig. A-C). Absolute effect size, on the contrary,
148  showed a positive correlation with freezing levels in the control or highest-freezing
149  group (S2 Fig. D-F). We also calculated effect sizes as standardized mean differences
150  (i.e Cohen’s d, S3 Fig.), but chose to use relative percentages throughout the study, as

151  they are more closely related to the way results are expressed in articles.
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153  Figure 2. Distribution of effect sizes. (A) Distribution of effect sizes, calculated as %

154  of control group freezing. Interventions were divided into memory-impairing (-48.6

I+

+

155  18.1%, n=146), memory-enhancing (71.6 + 53.2%, n=53) or non-effective (-1.8 *
156  26.2%, n=211) for visualization purposes, according to the statistical significance of the
157  comparison performed in the article. Additionally, the whole sample of experiments is
158  shown in grey (-9.0 £ 47.5% [-13.6 to -4.4], n=410). Values are expressed as mean *
159  SD [95% confidence interval]. Lines and whiskers in the inset express median and
160 interquartile interval. (B) Distribution of normalized effect sizes, calculated as % of the
161  group with the highest mean (i.e. control group for memory-impairing interventions, or

162 treated group for memory-enhancing interventions).
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163 All 410 experiments combined had a mean normalized effect size of 29.5 +
164  22.4% (mean x SD; 95% CI [27.4 to 31.7]). When results were divided according to the
165  statistical comparison originally performed in the article, mean normalized effect size
166  was 48.6 + 18.1% for memory-impairing interventions, 37.6 £ 14.2% for memory-
167  enhancing interventions and 14.4 + 14.2% for non-effective interventions — i.e. those in
168  which a significant difference between groups was not found. This does not imply that
169  data in each of these groups represents effects coming from a different distribution, or
170  that significant and non-significant results correspond to true positive or true negative
171  effects. On the contrary, each group likely represents a mixture of heterogeneous effect
172 size distributions, as sampling error and lack of statistical power can directly impact the
173 chances of a result achieving statistical significance. Distribution of mean effect sizes at
174  the article level showed similar results to those found at the level of experiments (S4

175  Fig.).

176 The distribution of effect sizes shows that the vast majority of memory-
177  impairing interventions cause partial reductions in learning, leaving the treated group
178  with residual freezing levels that are higher than those of a non-conditioned animal. In
179  fact, in all 35 memory-impairing experiments in which pre-conditioning freezing levels
180  were shown for the treated group, these were lower than those observed in the test
181  session — with p values below 0.05 in 25 (78%) out of the 32 cases in which there was
182  enough information for us to perform an unpaired t test between sessions (S5 Fig.). It is
183  also worth noting that 26.5% of non-significant experiments had an effect size greater
184  than 20%, suggesting that these experiments might have been underpowered. With this

185 in mind, we went on to evaluate the distribution of statistical power among studies.

186 Distribution of statistical power among experiments
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For analyzing statistical power, we first sought to evaluate the distribution of
sample sizes and coefficients of variation (both of which are determinants of power). As
shown in Fig. 3A, most experiments had mean sample sizes between 8 and 12
animals/group, and this distribution did not vary between enhancing, impairing and non-
effective interventions. On the other hand, higher coefficients of variation were more
frequent among non-effective interventions (Fig. 3B). This difference was partly
explained by freezing levels in the reference group — which correlated negatively with
coefficients of variation (S2 Fig. G-1) and were lower on average for non-significant
experiments (49.3% vs. 52.9% in memory-impairing and 61.3% in memory-enhancing

experiments).

W
o

n
=]

=)

Frequency of experiments (%) >
Frequency of experiments (%) ov]
&

A
b /‘/\7\\1)(\\-/\(7(\/\/\

oL SAA 07 UL © P -
5o 2N P AP AR S I P T PRI RO N8
Mean Sample Size Coefficient of Variation

C.o 10
_ 08 = .08
o o o
g : :
a 06 a a 06
8 3 8
% 04 k7] 204
b k] s
? 02} 2 “02

0 52 [ 0 0 L |

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Effect Size (%) Effect Size (%) Effect Size (%)
Upper-bound ES Intermediate ES Lower-bound ES

1.0+ . 3:,-_ = 10
5 08 L 508
: g
o 06 s~ 06
2 ol 8
3 04 X z04
5 s 5
02 ? 02

0 T 0

mm Impairing mm Enhancing 1 Non-effective

Upper-bound ES J Intermediate ES K

1.0 R —— — 1.0 1.0

_ -

08 - 08 038
b} ] [}
3 = -3

Sos Qo6 € 06
3 8 8

%04 % 04 B 04
5 5 &
)

®o21, ? 02 02

0 0 0

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
Sample Size Sample Size Sample Size

10


https://doi.org/10.1101/116202
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/116202; this version posted March 8, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

198 Figure 3. Distribution of sample size, variation and statistical power. (A)
199  Distribution of mean sample size between groups. Gray bars show the distribution of
200 the whole sample, while colored lines show distributions of impairing (n=120),
201  enhancing (n=39) and non-significant (n=177) experiments separately for visualization
202  purposes. (B) Distribution of coefficients of variation (pooled standard deviation/pooled
203  mean) for each type of experiment. (C) Distribution of statistical power for memory-
204  impairing interventions: based on each experiment’s variance and sample size, power
205  varies according to the difference to be detected for 0=0.05. Dashed lines show the three
206  effect sizes used for point estimates of power in F, G and H. (D) Distribution of
207  statistical power for memory-enhancing interventions. (E) Distribution of statistical
208  power for non-effective interventions. (F) Distribution of statistical power to detect the
209  upper-bound effect size of 45.6% (right dashed line on C, D and E) for impairing (red),
210  enhancing (blue), non-significant (yellow) and all (grey) experiments. Lines and
211 whiskers express median and interquartile interval. (G) Distribution of statistical power
212 to detect the intermediate effect size of 37.2% (middle dashed line on C, D and E). (H)
213  Distribution of statistical power to detect the lower-bound effect size of 29.5% (left
214  dashed line on C, D and E). (I) Sample size vs. statistical power to detect the upper-
215  bound effect size of 45.6%. Continuous lines use the 50" percentile of coefficients of
216  variation for calculations, while dotted lines use the 25" and 75" percentiles. (J) Sample
217  size vs. statistical power to detect the intermediate effect size of 37.2%. (K) Sample size

218  vs. statistical power to detect the lower-bound effect size of 29.5%.
219

220 Based on each experiment’s variance and sample size, we built power curves to
221  show how power varies according to the difference to be detected at 0=0.05 for each

222 individual experiment (Fig. 3C-E). To detect the mean effect size of 45.6% found for

11
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223 nominally effective interventions (i.e. those leading to statistically significant
224  differences between groups), mean statistical power in our sample was 0.75 + 0.26; 95%
225 CI [0.72 - 0.78] (Fig. 3F). This estimate, however, is an optimistic, upper-bound
226  calculation of the typical effect size of biologically effective interventions (from here on
227  referred to as “upper-bound ES”): as only large effects will be detected by
228  underpowered studies, basing calculations only on significant results leads to effect size
229 inflation [14]. A more realistic estimate of effect size was obtained based only on
230  experiments that achieved statistical power above 0.95 (n=60) in the first analysis (and
231 are thus less subject to effect size inflation), leading to a mean effect size of 37.2%.
232 Predictably, mean statistical power to detect this difference (“intermediate ES”, Fig.
233  3G) fell to 0.65 + 0.28 [0.62 - 0.68]. Using the mean effect size of all experiments
234 (“lower-bound ES”, 29.5%) led to an even lower power of 0.52 + 0.29 [0.49 - 0.56]
235  (Fig. 3H), although this estimate of a typical effect size is likely pessimistic, as it

236 probably includes many true negative effects.

237 Interestingly, using mean absolute differences instead of relative ones to
238  calculate statistical power led to a smaller number of experiments with very low power
239  (S6 Fig.). This suggests that some of the underpowered experiments in the first analysis
240 had low freezing levels in the reference group, as in this case even large relative
241  differences will still be small when expressed in absolute terms for statistical analysis.
242 Also of note is that, if one uses Cohen’s traditional definitions of small (d=0.2), medium
243  (d=0.5) and large (d=0.8) effect sizes [22] as the basis for calculations, mean power is
244  0.07 £ 0.01, 0.21 + 0.07 and 0.44 % 0.13, respectively (S7 Fig.). These much lower
245  estimates reflect the fact that effect sizes are typically much larger in rodent fear
246  conditioning than in psychology experiments, for which this arbitrary classification was

247  originally devised, and suggests that it might not be applicable to other fields of science.

12
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248 A practical application of these power curves is that we were able to calculate
249  the necessary sample size to achieve desired power for each effect size estimate,
250  considering the median coefficient of variation (as well as the 25" and 75" quartiles) of
251  experiments in our sample (Fig. 31-K). Thus, for an experiment with typical variation,
252 around 15 animals per group are needed to achieve 80% power to detect our
253  ‘intermediate effect size’ of 37.2%, which we consider our more realistic estimate for a
254  typical effect size in the field. Nevertheless, only 12.2% of comparisons in our sample
255 had a sample size of 15 or above in each experimental group, suggesting that such

256  calculations are seldom performed.

257 We also analyzed the distributions of statistical power at the level of articles
258 instead of individual experiments. Results for these analyses are shown in S8 Fig., and
259  are generally similar to those obtained for the experiment-level analysis, except that the
260 long tail of non-significant experiments with large coefficients of variation is not
261  observed. This suggests that experiments with large variation and low power are
262  frequently found alongside others with adequate power within the same articles. It is
263 unclear, however, whether this means that the low power of some experiments is a
264  consequence of random fluctuations of experimental variance, or if these experiments
265  use protocols that lead to larger coefficients of variation — for example, by generating

266  lower mean levels of freezing (see S2 Fig.).
267 Correlation between effect sizes and statistical power/sample size

268 We next sought to correlate normalized effect size with sample size and
269  statistical power for each experiment. The presence of a negative correlation between
270  these variables has been considered an indirect measure of publication bias [23], as
271  articles with low power or sample size will be subject to effect size inflation caused by

272 selective reporting of significant findings [24]. In our analysis, no correlation was found

13
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273  between effect size and sample size (Fig. 4A, r=0.0007, p=0.99); on the other hand, a
274  positive correlation between effect size and coefficient of variation was observed (Fig.
275 4B, r=0.37, p<0.0001). Part of this correlation was mediated by the association of both
276  variables with freezing levels (S2 Fig.), but the correlation remained significant after

277  adjustment for this variable (r=0.32, p<0.001).

278 Because of this, negative correlations between effect size and power were
279  observed for the three effect size estimates used (Figs. 4C-E), although they were larger
280  for the lower-bound estimate (Fig. 4E, r=-0.21, p<0.0001) than for the intermediate
281  (Fig. 4D, r=-0.16, p=0.003) and upper-bound (Fig. 4C, r=-0.12, p=0.03) ones due to a
282  ceiling effect on power. This negative correlation is observed even when power is
283  calculated based on absolute differences (S9 Fig.), for which the correlation between
284  coefficients of variation and reference freezing levels is in the opposite direction of that
285  observed with relative differences (see S2 Fig.). This strongly suggests that the
286  correlation represents a real phenomenon related to publication bias and/or effect size
287 inflation, and is not merely due to the correlation of both variables with freezing levels.
288 A correlation between effect size and power is also observed when both are calculated
289  on the basis of standardized mean differences (i.e. Cohen’s d) (S10 Fig.). In this case,
290 the line separating significant and non-significant results for a given sample size is
291  clearer, as significance is more directly related to standardized mean differences.
292 Expressing effect sizes in Cohen’s d also makes effect size inflation in experiments with

293  low sample size and power more obvious.

14
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Figure 4. Correlations between effect size, variation and statistical power. (A)
Correlation between normalized effect size and mean sample size. No correlation is
found (r=0.0007, p=0.99; r=-0.26, p=0.64 after adjustment), although sample size
variation is limited. (B) Correlation between normalized effect size and coefficient of
variation. Correlation of the whole sample of experiments yields r=0.37, p<0.0001*
(n=336; r=0.32, p<0.001 after adjustment for freezing levels). (C) Correlation between
normalized effect size and statistical power based on upper-bound effect size of 45.6%.
Correlation of the whole sample of experiments yields r=-0.12, p=0.03 (r=0.11, p=0.84
after adjustment for freezing levels), but distribution is skewed due to a ceiling effect on
power. (D) Correlation between normalized effect size and statistical power based on
intermediate effect size of 37.2%; r=-0.16, p=0.003* (r=-0.16, p=0.48 after adjustment).
(E) Correlation between normalized effect size and statistical power based on lower-
bound effect size of 29.5%; r=-0.21, p<0.0001* (r=-0.1, p=0.06 after adjustment).
Asterisks indicate significant results according to Holm-Sidak correction for 28

experiment-level correlations.
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310 Interestingly, the correlation between effect size and power was driven by a
311  scarcity of experiments with large effect size and high power. This raises the possibility
312  that truly large effects are unusual in fear conditioning, and that some of the large effect
313  sizes among low-powered experiments in our sample are inflated. On the other hand, a
314  pattern classically suggesting publication bias — i.e. a scarcity of low-powered
315  experiments with small effects [23] — is not observed. It should be noted, however, that
316  our analysis focused on individual experiments within articles, meaning that non-
317  significant results were usually presented alongside other experiments with significant
318  differences; thus, this analysis does not allow us to assess publication bias at the level of

319 articles.

320 Effects of methodological variables on the distributions of effect sizes and

321  coefficients of variation.

322 We next examined whether the distributions of effect sizes and coefficients of
323  variation were influenced by type of conditioning, species or sex of the animals (Fig. 5).
324  Mean normalized effect size was slightly larger in contextual than in cued fear
325  conditioning (33.2% vs. 24.4%, Student’s t test p<<0.0001) and markedly larger in males
326  than in females (30.3% vs. 18.9% vs. 34.2% for experiments using both, one-way
327  ANOVA, p=0.004), but roughly equivalent between mice and rats (29.8% vs. 29.1%,
328 p=0.76). Coefficients of variation were higher in contextual conditioning (0.51 vs. 0.41,
329  Student’s t test p=0.001), in experiments using animals of both sexes (0.62 vs. 0.44 in
330 males and 0.41 in females, one-way ANOVA, p <0.0001), and in those using mice (0.50
331  vs. 0.42, Student’s t test, p=0.008), although the latter difference was not statistically
332 significant after correction for multiple comparisons. All of these associations should be
333  considered correlational and not causal, as specific types of conditioning or animals of a

334  particular species or sex might be more frequently used for testing interventions with

16


https://doi.org/10.1101/116202
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/116202; this version posted March 8, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

335

336

337

338

339

340

341

342

343

available under aCC-BY-NC 4.0 International license.

particularly high or low effect sizes. Also of note is the fact that experiments on males
were 7.7 times more common than those on females in our sample (277 vs. 36),

indicating a strong preference of researchers for using male animals.
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Figure 5. Effect sizes and coefficients of variation across different protocols,
species and sexes. Colors indicate memory-enhancing (red), memory-impairing (blue)
or non-effective (yellow) experiments, all of which are pooled for analysis. Lines and
whiskers express median and interquartile interval. (A) Distribution of effect sizes

across cued (n=171) and contextual (n=239) conditioning protocols. Student’s t test,
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344  p<0.0001*. (B) Coefficients of variation across cued (n=145) and contextual (n=191)
345  conditioning protocols. Student’s t test, p=0.001*. (C) Distribution of effect sizes across
346  experiments using mice (n=237) or rats (n=173). Student’s t test, p=0.76. (D)
347  Coefficients of variation across experiments using mice (n=193) or rats (n=143).
348  Student’s t test, p=0.008. (E) Distribution of effect sizes across experiments using male
349  (n=277), female (n=36) or both (n=67) sexes. One-way ANOVA, p=0.004*; Tukey’s
350  post-hoc test, male vs. female p=0.01, male vs. both p=0.40, female vs. both p=0.003.
351 30 experiments were excluded from this analysis for not stating the sex of animals. (F)
352  Coefficients of variation across experiments using male (n=233), female (n=28) or both
353  (n=60) sexes. One-way ANOVA, p<0.0001*; Tukey’s test, male vs. female p=0.85,
354  male vs. both p<0.0001, female vs. both p=0.0006. For coefficient of variation analyses,
355 74 experiments were excluded due to lack of information on sample size for individual
356  groups. Asterisks indicate significant results according to Holm-Sidak correction for 14

357  experiment-level comparisons.

358

359 We also examined whether effect sizes and coefficients of variation differed
360  systematically according to the type, timing or anatomical site of intervention (S11
361  Fig.). Effect sizes did not differ significantly between surgical, pharmacological, genetic
362  and behavioral interventions (38.7% vs. 28.1% vs. 30.5% vs. 25.8% one-way ANOVA,
363 p=0.12), although there was a trend for greater effects with surgical interventions
364  (which were uncommon in our sample). No differences were found between the mean
365 effect sizes of systemic and intracerebral interventions (28.7% vs. 30.3%, Student’s t
366  test, p=0.45) or between those of pre- and post-training interventions (30.5% vs. 25.4%,
367  Student’s t test, p=0.07), although pre-training interventions had slightly higher

368  coefficients of variation (0.49 vs 0.37, Student’s t test p=0.0015). Coefficients of
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369 variation did not differ significantly between surgical, pharmacological, genetic and
370  behavioral interventions (0.41 vs. 0.43 vs. 0.50 vs. 0.50, one-way ANOVA p=0.08) or
371  between systemic and intracerebral interventions (0.49 vs. 0.45, Student’s t test p=0.15).

372 Once again, these differences can only be considered correlational and not causal.

373 Risk of bias indicators and their relationship with effect size and power

374 As previous studies have shown that measures to reduce risk of bias are not
375  widely reported in animal research [12,13], we investigated the prevalence of these
376  measures in our sample of fear conditioning articles, and evaluated whether they were
377  correlated with effect sizes or power. Table 1 shows the percentage of articles reporting
378 7 items thought to reduce risk of bias in animal studies, adapted and expanded from the
379 CAMARADES checklist [25]. Although some items were reported in most articles
380  (statement of compliance with animal regulations, adequate description of sample size,
381  blinding), others were virtually inexistent, such as the presence of a sample size
382  calculation (1 article) and compliance with the ARRIVE guidelines [26] (O articles).
383  Contrary to previous reports in other areas [27-30], however, no significant association
384  was found between reporting of these indicators and either the percentage of significant
385  experiments, the mean effect size of effective interventions or the mean statistical power
386  of experiments in our sample (S12 Fig.). The region of origin of the article also had no
387  correlation with either of these variables (S13 Fig.). Nevertheless, it should be noted
388 that this analysis used only experiments on fear conditioning acquisition or
389  consolidation, which were not necessarily the only results or the main findings
390 presented in these articles. Thus, it is possible that other results in the article might have

391  shown higher correlation with risk of bias indicators.

Quality Randomization Blinded or Sample size  Exact sample Statement of Statement  Statement of
assessment  of allocation automated calculation size description  compliance with  on conflict ~ compliance
regulatory
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item assessment requirements of interest  with ARRIVE
Number of 18/77 92/122 1/122 98/122 118/122 66/122 0/122
articles (%0) (23.4%) (75.4%) (0.8%) (80.3%) (96.7%) (54.1%) (0%)

392  Table 1. Number of articles including quality assessment items. Percentages were
393 calculated using all 122 articles, except in the case of randomization, which was
394  calculated based on 77 articles, as it is not applicable to genetic interventions. In the
395 case of blinding, 68 articles used automated analysis and 24 used blinded observers,

396 totaling 92 articles scored for this item.

397
398 Correlation between effect sizes/statistical power and description of results
399 Given the wide distribution of effect sizes and statistical power in the literature

400 on fear conditioning learning, we tried to determine whether these were taken into
401  account by authors when describing results in the text. For each included comparison,
402  we extracted the words or phrases describing the results of that experiment in the text or
403  figure legends, and asked 14 behavioral neuroscience researchers to classify them
404  according to the implicit information they contained about effect size. For comparisons
405  with significant differences, terms were to be classified as implying strong (i.e. large
406  effect size) or weak (i.e. small effect size) effects, or as neutral terms (i.e. those from
407  which effect size could not be deduced). For non-significant differences, terms were to
408 be classified as implying similarity between groups, as suggesting a trend towards
409  difference, or as neutral terms (i.e. those from which the presence or absence of a trend
410  could not be deduced). From the average of these classifications, we defined a score for
411  each term (S1 and S2 Tables) and correlated these scores with the actual effect size and

412  statistical power of experiments.
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413 Agreement between researchers over classification was low, especially for terms
414  describing significant differences: single measures intraclass correlation coefficients
415  (reflecting the reliability of individual researchers when compared to the whole sample)
416  were 0.234 for significant interventions and 0.597 for non-significant ones, while
417  average measures coefficients (reflecting the aggregated reliability of the sample) were
418  0.839 and 0.962, respectively. This, along with a trend for the use of terms with little
419  effect size information (“increase”, “decrease”, “significantly more”, “significantly
420  less”, etc.), led most terms describing effective interventions to receive intermediate
421  scores approaching 1 (i.e. neutral). For these interventions, no correlations were
422  observed between this score and either effect size (r=-0.05, p=0.48) or statistical power
423 (r=0.03, p=0.73) (Fig. 6A and 6B). For non-effective interventions, a significant
424  correlation between description score and effect size was observed (Fig 6C, r=0.28,
425  p=0.0002), as larger effect sizes were associated with terms indicating a trend for
426  difference. Still, no correlation was observed between textual descriptions of results and
427  power (Fig 6D, r=0.03, p=0.74). Moreover, statistical power was rarely mentioned in
428  the textual description of results — the term “power” was used in this context in only 4
429  articles— suggesting that it is largely ignored when discussing findings, as shown in

430  other areas of research [31].
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432  Figure 6. Correlation between description of results and effect size/statistical
433  power. Description scores refer to the mean score given by 14 neuroscience researchers
434  who rated terms as “weak” (0), “neutral” (1) or “strong” (2) in the case of those
435  describing significant differences, or as “similar” (0), “neutral” (1) or “trend” (2) in the
436  case of those describing non-significant ones. (A) Correlation between normalized
437  effect size and description score for significant results. r=-0.05, p=0.48 (n=195). (B)
438  Correlation between statistical power and description score for significant results.
439  r=0.03, p=0.73 (n=155). (C) Correlation between normalized effect size and description
440  score for non-significant results. r=0.28, p=0.0002* (n=174). (D) Correlation between
441  upper-bound estimate of statistical power and description score for non-significant
442  results. r=0.03, p=0.74 (n=146). Asterisk indicates significant result according to Holm-

443  Sidak correction for 28 experiment-level correlations.

444
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445 Correlations of effect size, power and study quality with article citations

446 Finally, we investigated whether the percentage of significant experiments
447  reported in each article, mean effect size for effective interventions, mean statistical
448  power or a composite study quality score (aggregating the 7 risk of bias indicators
449  described in Table 1) correlated with article impact, as measured by the number of
450  citations (Fig. 7) and the impact factor of the publishing journal (S14 Fig.). None of the
451  correlations was significant after adjustment for multiple comparisons, although a weak
452  positive correlation was observed between study quality score and impact factor
453  (r=0.22, p=0.01), driven by associations of higher impact factors with blinding
454  (Student’s t test with Welch’s correction, p=0.0001), conflict of interest reporting
455  (Student’s t test with Welch’s correction, p=0.03) and exact sample size description
456  (Student’s t test, p=0.03). It should be noted that the distribution of impact factors and
457  citations is heavily skewed, limiting the use of linear correlations as planned in the
458  original protocol — nevertheless, exploratory non-parametric analysis of the data
459  confirmed the lack of significance of correlations. Once again, our data refers only to
460  experiments on fear conditioning acquisition or consolidation — therefore, other data in

461  the articles could feasibly account for the variation in impact factor and citations.
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Figure 7. Correlation between citations and percentage of significant experiments,

effect size and statistical power. Citations were obtained for all articles on August 26™

2016. (A) Correlation between % of significant results per article and citations. r=-0.03,

p=0.75 (n=121). (B) Correlation between mean normalized effect size of effective

interventions and citations. r=0.097, p=0.34 (n=98). (C) Correlation between mean

statistical power (upper-bound estimate) and citations. r=-0.08, p=0.40 (n=104). (D)

Correlation between study quality score and citations. r=0.09, p=0.31 (n=121).

According to Holm-Sidak correction for 8 article-level correlations, none is significant.

Discussion

In light of the low reproducibility of published studies in various fields of

biomedical research [32—-34] which is thought by many to be a consequence of low

statistical power and excessive reliance on significance tests [8,16] calls have been
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476  made to report effect sizes and confidence intervals alongside or in place of p values
477  [4,6,7,9] and to increase statistical power [14,31,35]. However, it is unclear whether
478  these proposals have had much impact on most fields of basic science. We have taken
479  one particular memory task in rodents, in which outcomes and effect sizes are described
480 in a standardized way and are thus comparable across studies, in order to analyze how
481  these two concepts are dealt with in the study of fear learning.

482 Our first main finding is that most amnestic interventions targeting fear
483  acquisition or consolidation cause partial effects, with residual freezing remaining
484  significantly above pre-conditioning levels in 78% of the experiments with available
485 data. Moreover, most of the large effect sizes in our sample were found in
486  underpowered studies, suggesting that they could represent inflated estimates [24]. This
487 is not necessarily unexpected: as fear memories depend on a well distributed network,
488  both anatomically and molecularly [19], it seems natural that most interventions
489  directed at a specific site or pharmacological target will modulate learning rather than
490  fully block it. This creates a problem, however, when effect sizes are not considered in
491  the analysis of experiments, as it is not possible to differentiate essential mechanisms of
492  memory formation from modulatory influences on the basis of statistical significance
493  alone. This can lead to a situation in which accumulating evidence, even if correct, can
494  confuse rather than advance understanding, as has been suggested to occur in fields such
495  as long-term potentiation [15] and apoptosis [36].

496 Matters are complicated further by the possibility that many of these findings are
497  false positives and/or false negatives. The prevalence of both in relation to true positives
498  and negatives depends crucially on statistical power, which in turn depends on sample
499  size. Calculating the actual power of published experiments is challenging, as the

500 difference used for the calculations should not be based on the observed results — which
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501 leads power analysis to become circular [18,37]. Thus, statistical power depend on
502  expected effect sizes, which are arbitrary by nature — although they can sometimes be
503  estimated from meta-analyses [14], which were not performed in this study due to the
504 large variety of heterogeneous interventions. However, by considering the mean effect
505  size for well-powered experiments in our sample, we arrived at an estimate of around
506 37.2% that might be considered “typical” for a published experiment with an
507 intervention affecting fear conditioning acquisition or consolidation. Using the sample
508 size and variation for each experiment, we found mean statistical power to detect this

509 effect size to be 65% in our sample.

510 As sample size calculations are exceedingly rare, and insufficient power seems
511  to be the norm in other fields of neuroscience as well [14,18], it is quite possible that
512  classically used sample sizes in behavioral neuroscience (and perhaps in other fields of
513  basic science) might thus be insufficient. Considering median variances and our
514  intermediate effect size estimate, the ideal sample size to achieve 80% power would be
515 around 15 animals per group. This number, however, was reached in only 12.2% of
516  cases in our sample, as most experiments had sample sizes of 8 to 12, informally
517  considered to be standard in the field. This seems to confirm recent models suggesting
518 that current incentives in science favor the publication of underpowered studies [16,38],
519 although they could also be due to restrictions on animal use imposed by ethical
520 regulations. That said, average power in our sample for typical effect sizes was higher
521  than those described in other areas of neuroscience by Button et al. [14]; however, this
522  could reflect the fact that effect sizes in their study were calculated by meta-analysis,
523  and might be smaller than those derived by our method of estimation, or underestimated
524 due to the inclusion of negative results [18]. One should also note that the

525 abovementioned power estimates were found to vary widely across subfields of
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526  neuroscience [18] — in this sense, the power distribution of fear conditioning studies
527  seems to resemble those found for psychology and neurochemistry studies, in which a

528  reasonable number of well-powered studies coexist with underpowered ones.

529 On the other hand, our statistical power to detect Cohen’s definitions of small,
530 medium and large effects [22] were even lower than those recently reported in cognitive
531  neuroscience studies by Szucs and loannidis (2017). That said, our data provides a
532  strong cautionary note against the use of these arbitrary definitions, originally devised
533  for psychology studies, in calculations of statistical power, as 88.7% of statistically
534  significant experiments (or 48.2% of the whole sample) fell into the “large” category of
535  Cohen’s original proposal. This suggests that laboratory studies in rodents have larger
536  effects than those found in human psychology (an unsurprising finding, given the
537  greater invasiveness of the interventions), as has also been found in meta-analyses
538  studying similar treatments in laboratory animals and humans [39], demonstrating that

539  what constitutes a small or large effect can vary between different fields of science.

540 An old-established truism in the behavioral neuroscience field — as well as in
541  other fields of basic science — is that experiments in females tend to yield more variable
542  results due to estrous cycle variations [40]. However, at least in our analysis,
543  coefficients of variation were similar between experiments in males and females (and
544  predictably higher in experiments using both), as has been found in other areas of
545  science [41,42] suggesting that this belief is false. Nevertheless, adherence to it likely
546  accounts for the vast preponderance of experiments on male animals, which were nearly
547 8 times more common than those in females in our sample — a sex bias greater than
548  those described for most fields [43] although smaller than that recently reported for
549  rodent models of anxiety [44]. Previous work in clinical [45] and preclinical [40,43]

550 data has pointed out the drawbacks of concentrating experiments in male populations.
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551  However, despite calls for increasing the number of studies on females [46] this

552  problem remains strikingly present in the fear learning field.

553 Concerning risk of bias indicators, the prevalence found in our sample was
554  roughly similar to previous reports on animal studies for randomization and conflict of
555 interest reporting [13] but were distinctly higher for blinded assessment of outcome,
556  largely because 59% of articles used automated software to measure freezing, which we
557  considered to be equivalent to blinded assessment. If one considers only articles
558  reporting manual scoring of freezing, however, blinding was reported in 57% of cases,
559  which is still higher than most areas of preclinical science [13]. As described previously
560 in many fields [12,13,31] sample size calculations were almost non-existent, which
561  helps to explain why many experiments are underpowered. Interestingly, although we
562  analyzed a sample of papers published 3 years after the ARRIVE guidelines they were
563  not mentioned in any of the articles, suggesting that their impact, at least in the field of

564  behavioral neuroscience, was still rather limited at this time.

565 Contrary to previous studies, however, we did not detect an impact of these risk
566  of bias indicators on article-level measures such as percentage of fear conditioning
567 learning experiments with significant results, mean effect size of significant
568  experiments and mean statistical power. This could mean that, compared to preclinical
569  studies, bias towards positive results is lower in studies on fear learning. However, it
570  seems more likely that, as we selected particular experiments within papers containing
571  other results, we were not as likely to detect effects of bias on article-level measures. As
572  basic science articles typically contain numerous results, it is perhaps less likely that all
573  comparisons will be subject to bias towards positive findings. Moreover, the
574  experiments in our sample probably included negative controls for other findings, which

575  might have been expected to yield non-significant results. Thus, although our results do
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576  not indicate an impact of bias on article-level results, they should not be taken as

577  evidence that this does not occur.

578 The same reasoning applies for the evaluation of publication bias, in which the
579  experiments we analyzed could have been published along with positive ones.
580  Nevertheless, we were still able to detect a negative correlation between effect size and
581  statistical power, suggesting effect size inflation due to low statistical power to be
582  present in studies on fear conditioning learning. Although the pattern we detected was
583  less suggestive of actual publication bias, our capability to detect it was likely smaller
584  due to the choice to use experiments within articles. Other methods to detect publication
585  bias, such as the loannidis excess significance test [47] and the use of p-value
586  distributions [48-50] were also considered, but found to be inappropriate for use with
587  our methodology (in the first case due to the absence of a meta-analytic effect estimate,

588 and in the second because exact p values were infrequently provided in articles).

589 One of the most interesting findings of our article was the lack of correlation of
590 effect sizes inferred from textual description of results with the actual effect sizes of
591 significant experiments, as well as with statistical power. Although this suggests that
592  these measures are not usually considered in the interpretation of results, there are
593  caveats to this data. First of all, agreement between what words describe a “strong” or
594  “weak” effect between researchers evaluating them was strikingly low, suggesting that
595  written language is a poor descriptor for quantitative data. Moreover, the fact that most
596 terms used to describe differences were neutral to effect sizes (e.g. “significantly
597  higher”, “significantly lower”, etc.) limited our ability to detect a correlation. That said,
598 the high prevalence of neutral terms by itself is evidence that effect sizes are not usually
599 taken into account when reporting results, as differences tend to be described in the text

600 by their statistical significance only.
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601 This point is especially important to consider in the light of recent calls for basic
602  science to use data synthesis tools such as meta-analysis [11] and formal or informal
603  Bayesian inference [2,8,10,51]. In both of these cases, the incremental effect of each
604  new experiment on researchers’ beliefs on the veracity of a finding is dependent both on
605 the effect size of the result and on its statistical significance. However, even exact p
606  values were uncommonly reported in our sample, with the majority of articles
607  describing p as being above or below a threshold value. This seems to suggest that
608  researchers in the field indeed tend to consider statistical significance as a binary
609  outcome, and might not be quite ready or willing to move towards Bayesian logic,
610  which would require a major paradigm shift in the way results are reported and

611  discussed.

612 An interesting question is that, if researches in the field indeed were to move
613  away from null-significance hypothesis testing, the concept of statistical power as it is
614  defined today would largely lose its meaning (as it is intrinsically linked to the idea of a
615  significance threshold). Nevertheless, the necessity of adequate sample size for
616  statistical robustness would remain — in this case, not in order to detect significant
617  differences and prevent false-negatives and false-positives, but to estimate effect sizes
618  with adequate precision. The current notion of statistical power to detect a given
619  difference could thus be replaced with a desired confidence interval for the obtained
620  result when performing sample size calculations — a formulation that might be useful in

621  terms of differentiating biologically significant results from irrelevant ones.

622 Concerning article impact metrics, our results are in line with previous work
623  showing that journal impact factor does not correlate with statistical power [14] or with
624  most risk of bias indicators [13]. Furthermore, we showed that, in articles on fear

625  conditioning, this lack of correlation also occurs for the percentage of significant

30


https://doi.org/10.1101/116202
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/116202; this version posted March 8, 2018. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

626  experiments and the mean effect size for significant differences, and that it extends to
627  citations measured over 2 subsequent years. That said, our article-level analysis was
628 limited by the fact that, for many articles, the included experiments represented a
629  minority of the findings. Moreover, most articles tend to cluster around intermediate
630  impact factors (i.e. between 3 and 6) and relatively low (< 20) citation numbers. Thus,
631  our methodology might not have been adequate to detect correlations between these

632  metrics with article-wide effect size and power estimates.

633 The choice to focus on a particular type of experiment — in this case,
634  interventions directed at rodent fear conditioning acquisition or consolidation — is both
635 one of the main strengths and the major limitation of our findings. On one hand, it
636  allows us to look at effect sizes that are truly on the same scale, as fear conditioning
637  protocols tend to be reasonably similar across laboratories, and all included experiments
638  described their results using the same metric. Thus, the studied effect sizes are not
639 abstract and have real-life meaning. On the other hand, this decision limits our
640  conclusions to this specific field of science, and also weakens our article-level

641  conclusions, as most articles had only a fraction of their experiments analyzed.

642 Dealing with multiple experiments using different outcomes presents a major
643  challenge for meta-research in basic science, and all alternatives present limitations. A
644  radically opposite approach of converting all effect sizes in a field to a single metric
645 (e.g. Pearson’s r, Cohen’s d, etc.) has been used by other researchers investigating
646  similar topics in neuroscience and psychology [17,23,31,35]. Although normalizing
647  effect sizes allows one to obtain results from a wider field, it also leads them to be
648  abstract and not as readily understandable by experimental researchers. Moreover, this
649  approach can lead to the aggregation of results from disparate types of experiments for

650  which effect sizes are not in the same scale, leading to important distortions in
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651 calculating power for individual experiments. Finally, recent evidence indicates that,
652  even within neuroscience, features such as statistical power have very different
653  distributions across subfields [18], suggesting that surveys of individual areas are likely

654  to be more reliable for studying them.

655 In our case, studying the concrete scenario of a specific methodology leads to
656  more readily applicable suggestions for experimental researchers, such as the rule-of-
657 thumb recommendation that the average number of animals per group in a fear
658  conditioning experiments to achieve 80% power would be around 15 for typical effect
659  sizes and variances. Our approach also allowed us to detect correlations between results
660  and specific methodological factors (e.g. context vs. cued conditioning, female vs. male
661 animals) that would not be apparent if multiple types of experiments were pooled
662  together. Still, to provide more solid conclusions on the causal influence of these factors
663  on experimental results, even our methodology has too wide a focus, as analyzing
664  multiple interventions limits our possibilities to perform meta-analysis and meta-
665  regression to control for confounding variables. Follow-up studies with more specific
666 aims (i.e. meta-analyses of specific interventions in fear conditioning) are thus

667  warranted to understand the variation between results in the field.

668 Finally, it is important to note that, while our study has led to some illuminating
669  conclusions, they are inherently limited to the methodology under study. Thus,
670  extrapolating our findings to other types of behavioral studies, not to mention other
671  fields of science, requires data to be collected for each specific subfield. While this
672  might appear herculean at first glance, it is easily achievable if scientists working within
673  specific domains start to design and perform their own systematic reviews. Only

674  through this dissemination of meta-research across different areas of science will we be
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675  able to develop solutions that, by respecting the particularities of individual subfields,

676  will be accepted enough to have an impact on research reproducibility.

677
678 Materials and Methods
679 The full protocol of data selection, extraction and analysis was initially planned

680  on the basis of a pilot analysis of 30 papers, and was registered, reviewed and published
681 ahead of full data extraction [20]. In brief, we searched PubMed for the term “fear
682  conditioning” AND (“learning” OR “consolidation” OR “acquisition”) AND (“mouse”
683  OR “mice” OR “rat” OR “rats”)” to obtain all articles published online in 2013. Titles
684  and abstracts were first scanned for articles presenting original results involving fear
685  conditioning in rodents that were written in English. Selected articles underwent full-
686  text screening for selection of experiments that (a) described the effects of a single
687 intervention on fear conditioning acquisition or consolidation, (b) had a clearly defined
688  control group to which the experimental group is compared to, (c) used freezing
689  behavior as a measure of conditioned fear in a test session and (d) had available data on
690 mean freezing, SD or SEM, as well as on the significance of the comparison. Articles
691  were screened by one of two investigators (C.F.D.C. or T.C.M.) for relevant data and

692  were analyzed by the other — thus, all included experiments were dual-reviewed.

693 Only experiments analyzing the effect of interventions performed before or up to
694 6 hours after the training session (i.e. those affecting fear conditioning acquisition or its
695 immediate consolidation) were included. Data on mean freezing and SD or SEM were
696  obtained for each group from the text when available; otherwise, it was extracted using
697  Gsys 2.4.6 software (Hokkaido University Nuclear Reaction Data Centre). When exact

698  sample size for each group was available, the experiment was used for the analysis of
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699  effect size and statistical power — otherwise, only effect size was obtained, and the
700  experiment was excluded from power analysis. For individual experiments, study
701  design characteristics were also obtained, including species and sex of the animals, type

702  of conditioning protocol, type, timing and site of intervention.

703 From each comparison, we also obtained the description term used by the
704  authors in the results session of the paper. Classification of the terms used to describe
705  effects (S1 and S2 Tables) was based on a blinded assessment of words or phrases by a
706  pool of 14 researchers who were fluent or native speakers of English and had current or
707  past experience in the field of behavioral neuroscience. Categories were given a score
708  from O to 2 in order of magnitude (i.e. 0 = weak, 1 = neutral, 2 = strong for significant
709  results; O = similar, 1 = neutral, 2 = trend for non-significant results), and the average

710  results for all researchers was used as a continuous variable for analysis.

711 Apart from experiment-level variables, we also extracted article-level data such
712 as impact factor of the journal in which it was published (based on the 2013 Journal
713  Citations Report), number of citations (obtained for all articles on August 26" 2016),
714  country of origin (defined by the corresponding author’s affiliation) and the 7 risk of
715  bias indicators described on Table 1. For article-level correlations, we compiled these

716  measures into a normalized score.

717 After completion of data extraction, all calculations and analyses were
718  performed according to the previously specified protocol. Specific details of
719  calculations (as well as the raw data used) are presented as Supplementary Data. After

720  this, the following additional analyses were performed in an exploratory fashion:
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721 (@ To confirm that residual freezing levels after memory-impairing
722  interventions were indeed above training values, demonstrating that most amnestic
723  intervention have partial effects, we extracted pre-conditioning freezing levels from
724  training sessions when these were available. These levels were obtained for pre-shock
725  periods only, and separated as baseline values for contextual (i.e. freezing in the absence
726  of tone) or tone conditioning (i.e. freezing in the presence of a tone, but before shock),
727  as displayed in S5 Fig. These were compared to the corresponding test session values
728  for treated groups in memory-impairing interventions by an unpaired t test based on the

729  extracted means, SD or SEM and sample size when these were available.

730 (b) In the original protocol, only the mean of all effective interventions (i.e.
731  upper-bound effect size) was planned as a point estimate to be used for power
732  calculations, although we acknowledged this to be optimistic [20]. We later decided to
733 perform power calculations based on the mean effect size of the experiments achieving
734  power above 0.95 on the first analysis (i.e. intermediate effect size) to avoid effect size
735 inflation, as we reached the conclusion that this would provide a more realistic estimate.
736  Additionally, we calculated power based on the mean effect size of the whole sample of
737  experiments as a lower-bound estimate, and presented all three estimates in the results

738  section and figures.

739 (c) In order to evaluate whether the distribution of effect sizes and statistical
740  power varied if effect sizes were defined as absolute differences in freezing levels
741  instead of relative ones, we repeated the analyses in Figs. 2, 3 and 4 using absolute
742  differences in S1 Fig., S6 Fig. and S9 Fig.. This proved to be particularly important to
743  demonstrate that correlations between effect sizes and power were not the consequence

744  of a confounding association of both variables with coefficients of variation. We also
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745  repeated power and correlation analyses using effect sizes as standardized mean

746  differences (e.g. Cohen’s d) in S7 Fig. and S10 Fig.)

747 (d) To further evaluate the possible impact of the negative correlation between
748  coefficients of variation and freezing levels on our results, we decided to use freezing
749  levels as a covariate in the correlations shown in Fig. 4. We also checked whether
750  adding freezing levels as a covariate influenced the statistical analyses in Fig. 5, Fig. 6
751 and S11 Fig., but as this did not have a significant impact on the results in these figures,

752 we only reported the originally planned analyses.

753 (e) All of our planned analyses were parametric; after extraction, however, it
754  was clear that some of the data deviated from a normal distribution (especially in the
755 case of power estimates, citation counts and impact factor). Because of this, we
756  performed additional non-parametric analyses for the correlations of citations and
757  impact factor with percentage of significant results, mean normalized effect size,

758  statistical power and study quality score.

759 (F) In the protocol, we had planned to test correlations between normalized effect
760  sizes and statistical power, mean sample size and absolute freezing levels (using the
761  group with the highest freezing). After analyzing the results, we also decided to
762  correlate normalized effect sizes with coefficients of variation (as this, rather than
763  sample size, seemed to explain the lower power of non-significant results), additional
764  power estimates (as using our original estimate led to a ceiling effect) and different
765  estimates of freezing based on the control group or on the mean freezing of both groups

766  (to compare these forms of normalization with the one we chose).
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(g) Due to the correlation of study quality assessment with journal impact
factor, we performed an exploratory analysis of the correlation of this metric with each
of the individual quality assessment items by performing a Student’s t test (corrected for
unequal variances by Welch’s correction) between the impact factors of studies with

and without each item.

(h) Because of the additional analyses above, we adjusted the number of
comparisons/correlations used as the basis of the Holm-Sidak correction for multiple
comparisons. The total numbers used for each correction were 14 for experiment-level
comparisons, 17 for article-level comparisons, 28 for experiment-level correlations and
8 for article-level correlations, leading to significance thresholds between 0.003 and

0.05.
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