

1

2 **Widespread paleopolyploidy, gene tree conflict, and recalcitrant relationships among the**
3 **carnivorous Caryophyllales¹**

4

5 Joseph F. Walker^{*2}, Ya Yang^{2,5}, Michael J. Moore³, Jessica Mikenas³, Alfonso Timoneda⁴, Samuel F.
6 Brockington⁴ and Stephen A. Smith^{*2}

7

8 ²Department of Ecology & Evolutionary Biology, University of Michigan, 830 North University Avenue,
9 Ann Arbor, MI 48109-1048, USA

10 ³Department of Biology, Oberlin College, Science Center K111, 119 Woodland St., Oberlin, Ohio 44074-
11 1097 USA

12 ⁴Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, United Kingdom

13 ⁵Department of Plant Biology, University of Minnesota-Twin Cities. 1445 Gortner Avenue, St. Paul, MN
14 55108

15 CORRESPONDING AUTHORS: Joseph F. Walker; jfwalker@umich.edu and Stephen A. Smith;
16 eebsmith@umich.edu

17

18 ¹Manuscript received ____; revision accepted ____.

19 **ABSTRACT**

- 20 • The carnivorous members of the large, hyperdiverse Caryophyllales (e.g. Venus flytrap, sundews
21 and *Nepenthes* pitcher plants) represent perhaps the oldest and most diverse lineage of
22 carnivorous plants. However, despite numerous studies seeking to elucidate their evolutionary
23 relationships, the early-diverging relationships remain unresolved.
- 24 • To explore the utility of phylogenomic data sets for resolving relationships among the
25 carnivorous Caryophyllales, we sequenced ten transcriptomes, including all the carnivorous
26 genera except those in the rare West African liana family (Dioncophyllaceae). We used a variety
27 of methods to infer the species tree, examine gene tree conflict and infer paleopolyploidy events.
- 28 • Phylogenomic analyses support the monophyly of the carnivorous Caryophyllales, with an origin
29 of 68-83 mya. In contrast to previous analyses recover the remaining non-core Caryophyllales as
30 non-monophyletic, although there are multiple reasons this result may be spurious and node
31 supporting this relationship contains a significant amount gene tree discordance. We present
32 evidence that the clade contains at least seven independent paleopolyploidy events, previously
33 debated nodes from the literature have high levels of gene tree conflict, and taxon sampling
34 influences topology even in a phylogenomic data set.
- 35 • Our data demonstrate the importance of carefully considering gene tree conflict and taxon
36 sampling in phylogenomic analyses. Moreover, they provide a remarkable example of the
37 propensity for paleopolyploidy in angiosperms, with at least seven such events in a clade of less
38 than 2500 species.

39 *Keywords:* Caryophyllales; paleopolyploidy; phylogenomics; gene tree conflict; plant carnivory

40 INTRODUCTION

41 Carnivory in plants has long fascinated both the general public and evolutionary biologists. Charles
42 Darwin himself dedicated an entire volume to carnivorous species in his *Insectivorous Plants* (Darwin,
43 1875). The wide array of traps that are used to catch insects and other prey items make carnivorous plants
44 some of the most morphologically diverse plants on Earth (Ellison and Gotelli, 2001; Heubl et al., 2006).
45 These plants are able to occupy nutrient poor soils that would otherwise be unsuitable for plant life by
46 obtaining nutrients unavailable in the soil through the digestion of animals.

47 Across angiosperms, carnivory is hypothesized to have independently evolved at least nine times
48 (Givnish, 2015). One of these events is thought to have occurred relatively early on (~83mya) in the non-
49 core Caryophyllales (Magallón et al., 2015), giving rise to a “carnivorous clade” consisting of the fully
50 carnivorous families Droseraceae, Drosophyllaceae, and Nepenthaceae, the small non-carnivorous
51 African family Ancistrocladaceae, and the rare west African family Dioncophyllaceae, which includes the
52 unusual carnivorous liana *Triphyophyllum peltatum* and two other monotypic, non-carnivorous genera
53 (*Dioncophyllum* and *Habropetalum*) (Albert et al., 1992; Meimberg et al., 2000; Brockington et al., 2009;
54 Soltis et al., 2011; Hernández-Ledesma et al., 2015). This clade comprises approximately 250 of the
55 estimated 600 species of carnivorous angiosperms (Heubl et al., 2006; Ellison and Gotelli, 2009) and
56 includes a diverse assemblage of trap-plants and pitcher plants that occupy a wide range of ecosystems,
57 from the fully aquatic *Aldrovanda vesiculosa* to desert species of *Drosera* to the rainforest liana
58 *Triphyophyllum*. Moreover, carnivory also appears to have been lost 1-3 times (Heubl et al., 2006) within
59 the carnivorous clade, including in the ancestor of the 16 species of Ancistrocladaceae (Taylor et al.,
60 2005) as well as in the ancestors of *Dioncophyllum* and *Habropetalum* (Meimberg et al., 2000).

61 Despite broad appeal and interest, the evolutionary relationships in the non-core Caryophyllales
62 remain ambiguous, with studies seeking to resolve these relationships often resulting in individually well
63 supported but mutually conflicting topologies (Meimberg et al., 2000; Cameron et al., 2002; Brockington
64 et al., 2009; Hernández-Ledesma et al., 2015). Much of this conflict involves the earliest branch in the
65 non-core carnivorous clade, with studies finding Nepenthaceae as sister to the remaining lineages
66 (Hernández-Ledesma et al., 2015), others finding Droseraceae as sister to the rest of the group (Meimberg
67 et al., 2000), and yet others finding Droseraceae to be sister to the Nepenthaceae (Brockington et al.,
68 2009). The strong support for conflicting topologies from different studies may be explained by the
69 reliance on one or a few genes leading to systematic error (Maddison, 1997; Rokas et al., 2003). This type
70 of error can arise from a variety of sources, including, but not limited to, incomplete lineage sorting,
71 horizontal gene transfer, hybridization and hidden paralogy (Galtier and Daubin, 2008). Untangling these
72 processes has proven to be a challenge and adds a strong level of complexity to phylogenomic analyses
73 (Smith et al., 2015).

74 Transcriptomes have proven to be a powerful source of data for understanding this complexity,
75 and have helped provide insight into the evolutionary history of non-model species (Dunn et al., 2008;
76 Cannon et al., 2015; Yang et al., 2015). The thousands of genes typically sequenced in a transcriptome
77 provide a means of identifying gene duplications and paleopolyploidy events (Cannon et al., 2015; Yang
78 et al., 2015; Barker et al., 2016), which may clarify whether such events have been major drivers of
79 evolutionary novelty (Ohno et al., 1968; Soltis et al., 2014). Moreover, analyses of gene tree concordance
80 and conflict allows for a better understanding of the formation of species relationships and the complexity
81 that arises in genomes as a result of speciation (Pease et al., 2016).

82 In this study, we conduct the first phylogenomic analysis focused on the non-core Caryophyllales,
83 with sampling that covers all genera of carnivorous Caryophyllales except the poorly studied and rare
84 liana *Triphyophyllum* (Dioncophyllaceae) of West Africa. We use large datasets to help resolve
85 evolutionary relationships and explore gene tree discordance and its possible causes, as well as its
86 consequences for phylogenetics among the carnivorous Caryophyllales. We find that, even with
87 phylotranscriptomic data, many of the complications observed earlier in targeted sequencing studies (e.g.
88 taxon sampling, gene tree conflict) are still present. However, we show how transcriptome data provide
89 important insights into the reasons for these complications. Furthermore, we use transcriptome data to
90 help provide information on the prevalence of polyploidy in this ecologically and morphologically diverse
91 clade and explore the molecular evolution of the group.

93 MATERIALS AND METHODS

95 *Data Availability—*

97 Raw reads for the ten newly generated transcriptomes were deposited in the NCBI Sequence Read
98 Archive (Table S1; Bioproject: PRJNA350559). Assembled sequences, data files, programs, alignments
99 and trees are available from Dryad (XXXX).

100

101 *Taxon Sampling, Tissue Collection, Sequencing and Data Assembly—*

102

103 The workflow for processing the data was run using a previously developed phylogenomic workflow
104 (Yang et al., 2016). Transcriptomes of eight non-core Caryophyllales families representing nearly all of
105 the major lineages of non-core Caryophyllales were included in this study (Table S1). The transcriptomes
106 of *Dionaea muscipula*, *Aldrovanda vesiculosa*, *Nepenthes ampullaria* and *Reaumuria trigyna* were
107 downloaded from the NCBI Sequence Read Archive [accessions SRX1376794, SRR1979677,

108 (SRR2666506, SRR2866512 and SRR2866533 combined) and (SRX105466 & SRX099851 combined)
109 respectively] (Dang et al., 2013; Brockington et al., 2015; Bemm et al., 2016; Wan Zakaria et al., 2016).
110 The assembly used for *Frankenia laevis* was the same as in Yang et. al. (2015) and can be found in Dryad
111 (<http://dx.doi.org/10.5061/dryad.33m48>). The genomes of *Beta vulgaris* (RefBeet-1.2) and *Spinacia*
112 *oleracea* were downloaded from The *Beta vulgaris* Resource
113 (<http://bvseq.molgen.mpg.de/Genome/Download/index.shtml>; accessed Jul 10, 2015) (Dohm et al., 2014).
114 We generated ten new transcriptomes for this study from fresh leaf tissue collected from *Drosera binata*,
115 *Nepenthes alata*, *Ancistrocladus robertsoniorum*, *Plumbago auriculata*, *Ruprechtia salicifolia* and
116 *Drosophyllum lusitanicum*. The *D. binata* and *N. alata* data were also collected from trap tissue at three
117 different life stages. The plant tissues were flash frozen in liquid nitrogen and stored at -80°C. RNAs were
118 extracted from the leaf tissue using the Ambion PureLink Plant RNA Reagent (ThermoFisher Scientific
119 Inc, Waltham, Massachusetts, United States) following the manufacturer's instructions and quantified
120 using the Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, California, United States).
121 Sequence libraries were prepared using the KAPA stranded mRNA library preparation kit (Kapa
122 Biosystems, Wilmington, Massachusetts, United States) using the default protocols except for
123 fragmentation at 94°C for 6 min and ten cycles of PCR enrichment. All ten libraries were multiplexed,
124 then *D. binata* and *N. alata* were sequenced together on the same lane of the Illumina HiSeq2000
125 platform. *Ruprechtia salicifolia* was run on a separate Illumina HiSeq2000 lane with six other samples, *A.*
126 *robertsoniorum* was run on a separate Illumina HiSeq2500V4 along with ten other samples and *P.*
127 *auriculata* was run on a separate Illumina HiSeq2500V4 run along with ten other samples.

128 The raw paired end reads from the newly generated transcriptomes were trimmed and filtered
129 using Trimmomatic (Bolger et al., 2014) with trim settings sliding window 4:5, leading 5, trailing 5 and
130 min length 25. For both *D. binata* and *N. alata*, the three transcriptomes from trap tissues were combined
131 and assembled together. The procedure was conducted as follows: the remaining read set was assembled
132 using Trinity v2.04 (Grabherr et al., 2011) with strand-specific settings and stranded 'RF' and the
133 assembled reads were translated using Transdecoder v2.0 (Haas et al., 2013) guided by BLASTP against a
134 BLAST database consisting of concatenated *Arabidopsis thaliana* and *B. vulgaris* proteome (Dohm et al.,
135 2014), with strand-specific settings. All translated amino acid datasets were reduced with cd-hit v4.6 (-c
136 0.995 -n 5) (Fu et al., 2012).
137

138 ***Analysis of Sources of Contamination—***

139

140 We tested for within-lane contamination by creating one-to-one ortholog gene trees (using the
141 pipeline described below) and comparing the resulting tree topologies to the expected species tree

142 topology for all samples on the lane. Additionally, we examined *matK* sequences from the assembled
143 transcriptome coding DNA sequence (CDS) data. Using these sequences together with those obtained
144 from GenBank (Table S2) to represent each of the non-core families used in the analysis, we constructed
145 a phylogeny using maximum likelihood and the settings “-f a -# 200 -m GTRCAT -p 12345 -x 112233”
146 as implemented in RAxML (Stamatakis, 2014). We were unable to recover *matK* from two of the
147 assembled transcriptomes (*A. vesiculosa* and *P. auriculata*), and instead we ensured that the highest
148 GenBank BLAST hit was that of the same species *A. vesiculosa* (AY096106.1) and *P. auriculata*
149 (EU002283.1) respectively.

150

151 ***Homology Inference and Species Tree Estimation—***

152

153 Homology and orthology inference along with species tree estimation were carried out following
154 Yang and Smith (2014), which is briefly summarized below. The exact commands and programs are
155 available either at https://github.com/jfwalker/JFW_NonCore_Caryophyllales for scripts involved in the
156 downstream analysis or at https://bitbucket.org/yangya/phylogenomic_dataset_construction for scripts
157 used in assembling the species tree. After the peptide and coding DNA sequences were reduced using cd-
158 hit, we created six datasets to explore the influence of taxon sampling and sequence type. Three of the
159 datasets were made using the peptide data. One dataset consisted of all taxa; one dataset excluded
160 *Ancistrocladus robertsoniorum* and one dataset excluded *Drosophyllum lusitanicum*. We then created
161 corresponding nucleotide sequence datasets with the same taxon content. All steps for the homology
162 inference and species tree estimation were the same for all datasets, except where noted below. The first
163 step was an all-by-all BLASTP search, in the case of the peptide datasets, or an all-by-all BLASTN
164 search in the case of the nucleotide data, which was conducted with an e-value of 10. Putative homolog
165 groups were formed by retaining species with a hit fraction >0.4 and using Markov clustering as
166 implemented in MCL14-137 (Van Dongen, 2000) with the inflation value set to 1.4 and e-value cutoff of
167 5. Only clusters that had at least 4 taxa were retained.

168 Each cluster was then aligned using MAFFT v7 (Katoh and Standley, 2013) with “--genafpair
169 maxiterate 1000” and trimming of the alignments was conducted using Phyutility v2.2.6 (Smith and
170 Dunn, 2008) with “-clean 0.1”. For sequence clusters containing less than 2000 sequences, the
171 phylogenetic trees were estimated through maximum likelihood as implemented in RAxML v8.2.3
172 (Stamatakis, 2014) with the model PROTCATWAG (AA) or GTRCAT (DNA). In the case of sequence
173 clusters larger than 2000 sequences, this was done with FastTree 2 (2.1.8) (Price et al., 2010) with the
174 WAG model (AA) or the GTR model (DNA). All single branches greater than 2 substitutions per site
175 were removed as these are likely the result of sequences being pulled together by error or conserved

176 domains. We also removed all branches 10 times or greater in length than their sister branches in the
177 homolog tree for similar reasons. In the case of clades, the analysis took the step-wise average from root
178 to tip and removed it if that was greater than 10 times the length of the sister and the tips of the same
179 species that appeared as monophyletic, indicating they were likely alternate transcripts or in-paralogs.
180 Further data refinement was done by removing all the monophyletic tips except the tip associated with the
181 sequence with the highest number of aligned characters after trimming (i.e. most informative) data. The
182 sequence data were then removed from the homolog trees and the process was repeated a second time, to
183 further clean the data.

184 The support for the homolog trees was analyzed after the second round using the Shimodaira-
185 Hasegawa-like approximate likelihood ratio branch test (Anisimova et al., 2011) as implemented in
186 RAxML, for downstream analysis only branches with (SH-Like => 80) we considered informative. Then
187 one-to-one orthologs were identified from the homolog trees (Yang and Smith, 2014), using *B. vulgaris*
188 and *S. oleracea* as outgroups, both of which are in the core Caryophyllales and have genome information.
189 The ortholog trees produced from these methods were then used to extract the amino acid sequence data
190 associated with the given ortholog tree. A dataset was created from one-to-one orthologs containing no
191 missing taxa. Each ortholog produced from each method was then individually aligned using PRANK
192 v.140603 with default parameters (Löytynoja and Goldman, 2008). The alignments were then trimmed
193 using Phyutility with a minimum occupancy of 0.3 being required at each site. Supermatrices were
194 created for all approaches by concatenating all trimmed alignments that had at least 150 characters. A
195 maximum likelihood tree for each supermatrix was estimated using RAxML with the PROTCATWAG
196 model, partitioning by each ortholog group. Node support was evaluated using 200 nonparametric
197 bootstrap replicates. Following this the Maximum Quartet Support Species Tree (MQSST) was found
198 using ASTRAL (v4.10.0) (Mirarab et al., 2014) with default parameters and using the one-to-one
199 ortholog trees as the inputs.

200

201 ***Dating Analysis—***

202

203 To conduct the analysis, we used the 1237 orthologs identified in the nucleotide dataset and first
204 found the genes whose gene tree matched the species tree. From the 135 genes that met this criterion, we
205 calculated the variance from each tip to root, using pxlstr from the Phyx package (Brown et al. *in review*).
206 The dating analysis was conducted using BEAST (ver. 1.8.3) (Drummond and Rambaut, 2007) on the
207 three genes with the lowest variance as they represent the genes evolving in the most clocklike manner.
208 We used the GTR+G model of evolution and a birth-death tree prior. We calibrated the clade containing
209 the genera Aldrovanda and Dionaea with a lognormal prior with offset 34 and a mean of 0 and standard

210 deviation of 1 based on a fossil Aldrovanda (Degreef, 1997). Because of the low root to tip variance for
211 the three genes (~0.0004), we used the strict clock model for the rates of evolution. We ran the MCMC
212 for 10,000,000 generations and the first 1,000,000 generations were discarded as the burn-in. We
213 summarized the topology as the maximum clade credibility tree.

214

215 ***Gene Family Size Analysis***—

216

217 Two sets of gene families were analyzed, one for the overall largest gene family and one for the
218 gene families previously associated with the adaptation to carnivory in a differential gene expression
219 study (Bemm et al., 2016). To identify the overall largest family, we found the inferred homolog trees that
220 had the largest number of tips, and annotation was done by taking a representative sample from the
221 homolog tree and finding the highest hit on NCBI blast database. For the carnivorous gene families,
222 representative samples from the genes identified in *Bemm et. al* were downloaded from Genbank (Table
223 S3). A blast database was created from the downloaded samples and BLASTP was used to identify their
224 corresponding sequences, which were then found in the homologous gene clusters. The number of tips
225 were counted for each homologous gene tree to identify the size of the gene family and number of genes
226 associated with carnivory.

227

228 ***Analysis of Gene Duplications***—

229

230 Gene duplications were analyzed with phyparts (vrs. 0.0.1) (Smith et al., 2015) using the
231 homolog clusters. Only gene duplications with nodes that contained (≥ 80) SH-Like support were used to
232 identify duplications. The homolog clusters for each of the six datasets were mapped onto their respective
233 species tree topologies. Further analysis of the gene duplications was conducted by finding all gene
234 duplications, irrespective of species tree topology, using a modified version of phyparts. Again in this
235 case only gene duplications that contained (≥ 80) SH-Like support were removed from the homolog trees.
236 These duplications were then used to create a phylogenetic tree by creating a shared presence matrix from
237 existing duplications and correcting for distance by taking (1/number of shared duplications). The
238 distance matrix was used to create a phylogenetic tree following the Neighbor-Joining method (Saitou N,
239 1987). The modified version of phyparts and script (GeneJoin.pl) that creates a phylogenetic tree from
240 that output can be found at (https://github.com/jfwalker/JFW_NonCore_Caryophyllales).

241

242 ***Analysis of Gene Tree Conflict***—

243

244 The one-to-one orthologs recovered from the homolog trees were used to analyze the gene
245 tree/species tree conflict at all nodes and this analysis was performed on all six datasets, with their
246 respective gene trees and species tree being used for each individual analysis. The orthologs were all
247 rooted based on *S. oleracea* and *B. vulgaris* using the phyx program pxrr (Brown et al., 2017). The rooted
248 one-to-one ortholog trees were then compared to the species tree using phyparts with only informative
249 branches being counted. The output of phyparts was used to identify the amount of conflict at each node
250 along with the dominant alternative topology.

251

252 ***Inferring genome duplication events—***

253

254 To infer potential genome duplication events, we visualized the number of synonymous
255 substitutions that were found between the paralogs with all of the taxa. The process was carried out using
256 the script ks_plots.py from Yang et. al 2015 (https://bitbucket.org/yangya/caryophyllales_mbe_2015)
257 which relies upon the pipeline from (https://github.com/tanghaibao/bio-pipeline/tree/master/synonymous_calculation). The pipeline first reduces sets of highly similar sequences
258 using CD-HIT (-c 0.99 -n 5). Following this, an all-by-all BLASTP is carried out within each taxon using
259 an e-value of 10 and -max_target_seq set to 20. The resulting hits with < 20% identity or niden < 50
260 amino acids are removed. The sequences that have ten or more hits are removed to avoid over
261 representation of gene families. The remaining paralog pairs are then used to infer the genome
262 duplications, as areas where the Ks value is greater than the background rate (Schlueter et al., 2004). First
263 pairwise protein alignments are created using the default setting of ClustalW (Larkin et al., 2007), these
264 are then back translated to codon alignments using PAL2NAL, and the synonymous substitutions rates
265 are calculated using yn00 of the PAML package (Yang, 2007), with Nei-Gojobori correction for multiple
266 substitutions (Nei and Gojobori, 1986).

268 To infer the phylogenetic locations of genome duplications, we used a comparison of the genome
269 duplication events identified from paralogs mapped onto the Ks plots of multiple species made from the
270 reciprocal blast hits. The process was carried out using the script MultiKs.pl, which can be found at
271 (https://github.com/jfwalker/JFW_NonCore_Caryophyllales). The pipeline works as follows. First the
272 highly similar sequences are reduced using CD-HIT (-c 0.99 -n 5). Then a reciprocal BLASTP is carried
273 out on the peptide transcriptomes where one of the transcriptomes is used as a query and another is used
274 as the database. Following that the top blast hit is removed and the peptide sequences are aligned using
275 MAFFT. The peptide alignment is then matched with the corresponding nucleotide files and the
276 nucleotides are aligned based on the peptide alignment using the phyx program pxaatocdn (Brown et al.,
277 2017). From there the synonymous substitution rates are calculated using yn00 of the PAML package,

278 with the Nei-Gojobori correction for multiple substitutions. The Ks peaks of the genome duplications
279 inferred from the paralogs are then compared to the Ks peaks of the multispecies comparison, if the peak
280 from the single species comparison is smaller than the multi-species, this provides evidence that the
281 genome duplication occurred after the speciation event (Cannon et al., 2015).

282

283 ***Comparing molecular rates among differing gene tree topologies—***

284

285 The gene trees that contained the topologies supporting either *Drosophyllum* and *Ancistrocladus*
286 as sister to all other lineages or *Drosophyllum* and *Ancistrocladus* as sister to *Nepenthes* were identified
287 from the bipartitions removed using the phyx program pxbp (Brown et al., 2017) and the program
288 GeneHybridSplitter.pl (https://github.com/jfwalker/JFW_NonCore_Caryophyllales). The ortholog tree
289 was considered to support *Drosophyllum* and *Ancistrocladus* as the lineage sister to the others if it
290 contained a bipartition containing only *Drosophyllum* and *Ancistrocladus*, a bipartition containing only
291 the carnivorous lineages except *Drosophyllum* and *Ancistrocladus*, and a bipartition containing only and
292 all the carnivorous taxa. The ortholog trees that supported *Drosophyllum* and *Ancistrocladus* sister to
293 *Nepenthes* were identified if the tree contained a bipartition with only *Ancistrocladus* and *Drosophyllum*,
294 a bipartition with both *Nepenthes* species and *Drosophyllum* and *Ancistrocladus*, and a bipartition
295 containing only and all the carnivorous taxa.

296 The synonymous substitution rates found in both scenarios were calculated using a pairwise
297 comparison of *Drosophyllum* and *Nepenthes alata*, along with a pairwise comparison of *Ancistrocladus*
298 and *N. alata*. The corresponding nucleotide and amino acid sequences of *Drosophyllum* and *N. alata* were
299 removed for all the gene trees that support *Ancistrocladus* and *Drosophyllum* as the basal lineage. The
300 pairwise amino acid sequences were then aligned using MAFFT, and the amino acid alignment was then
301 used to guide the codon based alignment using pxaatcdn. The Ks values for each codon alignment were
302 calculated using the script Ks_test.pl (https://github.com/jfwalker/JFW_NonCore_Caryophyllales), which
303 uses yn00 from the PAML package to obtain the Nei-Gojobori correction for multiple substitutions Ks
304 values. The same procedure for finding synonymous substitutions was then performed on pairwise
305 comparisons of *Drosophyllum* and *N. alata*, where they appear as sister, and was performed on
306 *Ancistrocladus* and *N. alata* for the same situations.

307

308 **RESULTS**

309

310 ***Species tree, dating analysis and gene tree conflict—***

311

312 The monophyly of the non-core Caryophyllales was supported in both the concatenated
313 maximum likelihood supermatrix (Fig. S1) and the maximum quartet support species tree (MQSST)
314 reconciliations (Fig. S2), regardless of taxon sampling or molecule type used in the analysis. The
315 divergence of this group appears to have occurred ~90 mya ago, with adaptation of carnivory arising ~75
316 mya (Fig. 1). A general trend was that branches of high conflict resulted in shorter branch lengths for both
317 the concatenated supermatrix and the MQSST analysis (Fig. S1,S2). A clade of Frankeniaceae and
318 Tamaricaceae was supported as sister to the remaining non-core Caryophyllales in all datasets by most
319 gene trees. In the case of the ALLTAX AA dataset, the branch supporting this as the lineage sister to
320 everything else showed a large amount of conflict with ~15.4% of genes supporting the topology, ~14.6%
321 supporting a dominate alternate topology of a monophyletic non-carnivorous non-core (NCNC), ~25%
322 supporting other alternate topologies and ~45% of gene trees being poorly supported (SH-Like < 80),
323 with similar results for the five other datasets used to reconstruct the species tree topology. Further
324 support of a non-monophyletic relationship of the NCNC was obtained by looking at the number of
325 uniquely shared gene duplications found by the AA ALLTAX for the families in the carnivorous non-
326 core, which in the case of Plumbaginaceae and Polygonaceae was 103. This is in contrast to the five
327 unique gene duplications shared among the NCNC. The MQSST and concatenated ML supermatrix
328 analyses inferred that the next lineage to diverge was a clade containing both the families Plumbaginaceae
329 and Polygonaceae, whose sister relationship received 100% bootstrap support and ~70% genes
330 concordant with the topology with 10.5% conflicting in the case of the AA ALLTAX. This relationship
331 showed up in all datasets regardless of composition of taxa used for the analysis.

332 All datasets revealed a strongly supported (BS = 100%) clade consisting of the carnivorous
333 families and the non-carnivorous family Ancistrocladaceae. In the case of the AA ALLTAX dataset the
334 majority of the well-supported gene trees (~57%) were concordant with the species tree topology, with
335 similar results for all other datasets. In all cases, Droseraceae and Nepenthaceae were each monophyletic
336 (Fig. 2). The main discordance in the species tree topology involved the placement of Drosophyllaceae
337 (Fig. 2). When all taxa were included Drosophyllaceae was sister to Ancistrocladaceae, a relationship that
338 is well supported by concordant gene signal in both the AA dataset (72.5%) and the CDS dataset (93.7%).
339 However, the placement of the clade containing Drosophyllaceae and Ancistrocladaceae changed
340 depending on sequence type: for AA data it is reconstructed as sister to the Nepenthaceae, whereas for
341 CDS data it is sister to the rest of the carnivorous clade, albeit with no bootstrap support (Fig. 2).

342 When *Ancistrocladus* was excluded from analyses, for both the AA and CDS datasets,
343 Drosophyllaceae appeared as sister to the rest of the taxa in the carnivorous clade (Fig. 2b,e). The clade
344 containing Droseraceae and Nepenthaceae has a large amount of discordance with ~18% concordant and
345 32% conflicting for the AA dataset and ~20% concordant and ~22% conflicting for the CDS dataset. In

346 both cases this was a node where many of the gene trees contained low Shimodaira-Hasegawa-Like
347 support (< 80%). When *Drosophyllum* was excluded from analyses, for both the CDS and the AA
348 datasets, Ancistrocladaceae appeared as sister to Nepenthaceae. Again, the node that defined this
349 relationship had a significant amount of conflict, where in the AA dataset ~25% of the gene trees showed
350 a concordant topology and ~24% showed a conflicting topology. With the CDS dataset ~22% of gene
351 trees were concordant with the species topology and ~24% gene trees were conflicting. Again in both
352 cases many of the gene trees did not have strong SH-Like (≥ 80) support for either topology.

353

354 ***Analysis of potential hybridization and comparison of synonymous substitutions rates (Ks) between***
355 ***woody and herbaceous species—***

356

357 No differences were found between the synonymous substitution rate between the gene trees
358 supporting the sister position of *Drosophyllum lusitanicum* and *Aldrovanda robertsoniorum* to the
359 remaining lineages as opposed to those supporting the two species as sister to only Nepenthaceae (Fig.
360 S3). For *D. lusitanicum*, the mean Ks for the trees supporting the sister to the other lineages position was
361 0.8546, whereas those supporting the position sister to Nepenthaceae had a mean Ks value of 0.8586. In
362 the case of *A. robertsoniorum* those supporting a sister to the other lineages relationship had a mean Ks
363 value of 0.6359 and those supporting a relationship sister to only Nepenthaceae is 0.6358.

364

365 ***Genome duplications and gene family sizes—***

366

367 The single-species Ks plots showed that all the Caryophyllales have at least one peak around 2.0
368 (Fig. S4). These plots also showed one additional peak for all taxa in non-core Caryophyllales except for
369 *A. vesiculosa*, which had two additional peaks, and both *D. lusitanicum* and *Frankenia laevis* did not
370 show any extra peaks. A comparison of Ks values between orthologs and paralogs for species pairs
371 showed that in the case of Plumbaginaceae and Polygonaceae, the genome duplication likely occurred
372 post speciation (Fig. 3). This post speciation genome duplication received further support as the two
373 species only shared five unique gene duplications. This same comparison for representative species pairs
374 of Ancistrocladaceae-Nepenthaceae and Droseraceae-Nepenthaceae showed that these genome
375 duplications likely occurred after the divergence of the respective families in each pair (Fig. 3). An among
376 Droseraceae comparison showed the duplication to have occurred after speciation in *Dionaea* but before
377 speciation in *Drosera* (Fig. S5). The peak for the duplication appeared to be before-speciation in a
378 comparison to *Drosera* and *Aldrovanda* (Fig. S5). Overall, the shared unique gene duplications and Ks
379 plots support the inference of seven separate genome duplications across the non-core Caryophyllales,

380 with six occurring after divergence of the families and none being uniquely shared by any two families in
381 the group (Fig. 3).

382 An analysis of the size of homologous gene families on the AA ALLTAX dataset showed that the
383 largest gene family consisted of 3498 homologs (Table S4) and this family was associated with the
384 function “putative leucine-rich repeat receptor-like protein kinase”. When further broken down into genes
385 that are associated with carnivory, we found that the largest of these gene families was the “Plant
386 Peroxidase” family (Table S5). On average, we did not find any specific gene family to have a
387 disproportionate number of duplicated genes in the carnivorous plants as compared to the rest of the
388 samples in the remaining non-core Caryophyllales, however, the plant peroxidase family has shrunk in the
389 carnivorous lineage.

390

391 ***Contamination checking and homology and orthology inference—***

392

393 Three major steps were taken to ensure that we would minimize the possibility of contamination
394 in our samples. The first step was to extract the RNAs, prepare the sequencing libraries, and sequence the
395 samples on separate lanes at different times. This was done for all samples we processed in this study
396 other than *Nepenthes alata*, *Drosera binata*, and the previously published *D. lusitanicum*, which were
397 sequenced together on a single lane. The next step was to create one-to-one ortholog phylogenetic trees
398 out of the samples that were on the same lane, which showed most gene trees support previously accepted
399 hypotheses for the often distantly related species on the lane. The final step was to ensure that the *matK*
400 sequence from each of our assembled transcriptome shared the closest evolutionary relationship with a
401 *matK* sequence taken from the same genus for each sample (Fig. S6; Table S2).

402 The datasets were made of the following taxon compositions for both amino acid (AA) and
403 coding DNA sequence (CDS): all 13 taxa included (ALLTAX), all taxa except *D. lusitanicum* (NO
404 DROS), and all taxa except *A. robertsoniorum* (NO ANC). The two datasets with all 13 taxa revealed that
405 the inferred number of homolog clusters containing at least four taxa was the greatest using nucleotide
406 data (Table S6). This is in contrast with both datasets that consisted of 12 taxa, in which the amino acid
407 datasets inferred more homolog clusters than the nucleotide datasets. The complete taxa one-to-one
408 orthology inference was comparable between all datasets of different taxa composition, where each time
409 the amino acid dataset detected roughly 400 more one-to-one orthologs than its corresponding nucleotide
410 dataset (Table S6).

411

412 **DISCUSSION**

413 ***Discordance among species trees and gene trees—***

414

415 Our transcriptome data confirm the monophyly of the carnivorous clade of Caryophyllales
416 detected in previous studies (Meimberg et al., 2000; Brockington et al., 2009) and imply an ancient origin
417 for the group, which our analyses suggest originated between 68-83 mya (Fig. 1). Our analyses further
418 confirm that carnivory was the likely ancestral character state for the carnivorous clade, and that a
419 mucilage trap characterized the progenitor of this clade (Heubl et al., 2006). Nevertheless, the subsequent
420 evolution of life history within the carnivorous clade is less certain because it depends upon the topology
421 of the earliest branches within the group, which have been unstable in previous analyses (Meimberg et al.,
422 2000; Brockington et al., 2009; Hernández-Ledesma et al., 2015).

423 The large datasets generated in our study provide unique insight into the sources of this
424 topological instability (Galtier and Daubin, 2008). For example, the shifting phylogenetic placement of *D.*
425 *lusitanicum* could result from events such as horizontal gene transfer, incomplete lineage sorting, and/or
426 ancient hybridization between an ancestral lineage that diverged prior to the other carnivorous
427 Caryophyllales and one that diverged after the speciation event between *Ancistrocladaceae* and
428 *Nepenthaceae*. The *Nepenthaceae* provides a logical source of hybridization as many of the species in
429 this genus are still capable of producing viable hybrids and do so in the wild (McPherson, 2009). If
430 hybridization were the cause, we would expect two points of coalescence between *D. lusitanicum* and *N.*
431 *alata* that would be associated with different synonymous substitution (Ks) values, as they would be
432 influenced by the amount of time there was shared common ancestry with *N. alata*. An examination of Ks
433 values did not reveal a difference in Ks values between the gene trees supporting the sister to all other
434 lineages position or the sister to only *Nepenthaceae* position from the nucleotide data for either *D.*
435 *lusitanicum* or *A. robertsoniorum* (Fig. S3). This provides some evidence that something other than
436 hybridization may be the cause. However, full genome sequences would be necessary to improve
437 confidence in our ability to discriminate among these processes because they would allow for direct
438 association of phylogenetic signal over contiguous regions of chromosomal space (Fontaine et al., 2015).
439 However, we did find that Ks values varied greatly between the *D. lusitanicum* and *A. robertsoniorum*
440 comparisons, which may result from differences in habit, with the lineage of *Ancistrocladus* +
441 *Dioncophyllaceae* transitioning to lianas and *Drosophyllum* retaining the ancestral herbaceous life history
442 (Smith and Donoghue, 2008; Yang et al., 2015).

443 The remaining families of non-core Caryophyllales (Polygonaceae, Plumbaginaceae,
444 Tamaricaceae, and Frankeniaceae) have previously been inferred to be a clade (Meimberg et al., 2000;
445 Brockington et al., 2009; Soltis et al., 2011; Hernández-Ledesma et al., 2015; Yang et al., 2015), but our
446 transcriptome-based analyses suggest that the clade of Frankeniaceae and Tamaricaceae and that of
447 Plumbaginaceae and Polygonaceae are successively sister to the carnivorous clade. It is possible that this

448 conflict is the result of our study including more informative phylogenetics characters in the analysis.
449 However, it may also be the result of our relatively limited taxon sampling for these families and/or from
450 the large number of conflicting gene trees associated with divergence events among these three groups
451 (Fig. 1). The large number of conflicting gene trees may, itself, be the result of ILS associated with the
452 relatively rapid divergence of these groups, as demonstrated by the short branch lengths from the MQSST
453 analysis and concatenated supermatrix analysis (Fig. S1,S2). The uniquely shared gene duplications
454 provide evidence for the sister relationship between the carnivorous clade and the clade of
455 Plumbaginaceae + Polygonaceae. However, it should be taken into account that the higher number of
456 gene duplications shared between Plumbaginaceae, Polygonaceae and the carnivorous Caryophyllales
457 could be the result of biased sampling from more thorough sequencing, as transcriptomes are typically
458 only found to recover up to half of coding genes (Yang and Smith, 2013). This provides a potentially
459 biased sample for data when looking at uniquely shared gene duplications.

460 The disagreement between the supermatrix and MQSST methods of species tree reconciliation
461 was likely a product of how the genes were treated in the analyses. In the MQSST all genes are given
462 equal weight regardless of their informativeness and strength of the phylogenetic signal provided by the
463 characters that created them, whereas in the supermatrix approach more informative genes provide a
464 stronger signal for the overall matrix. The conflicting node for the CDS topology, however, received no
465 bootstrap support.

466 Our results help to illustrate the important role that taxon sampling plays even when using
467 character-rich datasets such as those used in phylogenomic reconstructions. In the analyses presented
468 here, *D. lusitanicum* changed positions depending on the sampling used (Fig. 2). This discrepancy was
469 not identified by the non-parametric bootstrap method, as 100% support was given to all nodes in all the
470 reconstructions using the amino acid datasets, regardless of the position of *D. lusitanicum*. This helps to
471 emphasize the importance of looking at more than just the non-parametric bootstrap in phylogenomic
472 reconstructions, as in our datasets it is prone to Type I error and using transcriptome data allows us to
473 examine conflicting signals. The non-parametric bootstrap, however, provided no support for the
474 conflicting signal produced from nucleotide data. While we are unable to include Dioncophyllaceae in our
475 analyses because of the difficulty in obtaining tissue, it is unlikely that inclusion would dramatically
476 change carnivorous relationships given the strong support for its sister relationship to Ancistrocladaceae
477 in all previous analyses (Heubl et al., 2006; Brockington et al., 2009).

478

479 ***At least seven independent paleopolyploidy events in a group of less than 2500 species—***

480

481 Over the past decade, ever-larger phylogenomic datasets and improved methods for detecting
482 genome duplications have revealed that paleopolyploidy is much more common in plants than previously
483 thought (Barker et al., 2008, 2016; Yang et al., 2015). Previous evidence has suggested that the non-core
484 Caryophyllales contain at least three paleopolyploidy events (Yang et al., 2015). Genome duplications
485 have previously been implicated to be a source of novelty (Freeling and Thomas, 2006; Edger et al.,
486 2015), a source of increased diversification (Tank et al., 2015), and decreased diversification (Mayrose et
487 al., 2011). The seven inferred genome duplications of our analysis indicate that genome duplication has
488 been a common occurrence in the history of the non-core Caryophyllales and is especially prevalent
489 considering the group is estimated to have less than 2500 species (Soltis et al., 2006). Our results also
490 support a shared genome duplication between the core and non-core Caryophyllales giving support to the
491 evidence that at least one duplication occurred at the base of the group (Dohm et al., 2012). From our
492 dataset it appears most of the non-core Caryophyllales families have unique genome duplication events.
493 We found a discrepancy in the location of the duplication when comparing *Drosera* to *Dionaea* and when
494 comparing *Drosera* to *Aldrovanda*. This may be due to the duplication occurring shortly before speciation
495 or to the difference in rates of evolution found between *Aldrovanda* and *Dionaea* (Fig. S1). Without
496 exhaustive sampling of each family it will not be possible to pinpoint the phylogenetic locations of the
497 putative duplication events and hence it is not currently possible to determine whether a given
498 paleopolyploid event acted to drive speciation and/or promote ecophysiological and morphological
499 novelty. Nevertheless, the rich diversity and large number of genome duplications present within the non-
500 core Caryophyllales suggests that this group will be a powerful tool for understanding genome and
501 phenotype evolution.

502

503 **ACKNOWLEDGEMENTS**

504 We thank Edwige Mayroud, Joseph Brown, and Oscar Vargas for thoughtful comments on the manuscript
505 and Ning Wang, Sonia Ahluwalia, Jordan Shore, Lijun Zhao, Alex Taylor and Drew Larson for helpful
506 discussion on the manuscript; M. Raquel Marchán Rivadeneira for help with lab work; and Deborah
507 Lalumondier and Justin Lee at the Missouri Botanical Garden for access to their living collections. The
508 molecular work of this study was conducted in the Genomic Diversity Laboratory of the Department of
509 Ecology and Evolutionary Biology, University of Michigan. This work was supported by NSF DEB
510 awards 1352907 and 1354048.

511

512 **AUTHOR CONTRIBUTIONS**

513 J.F.W., Y.Y., M.J.M., S.F.B. and S.A.S designed research. Y.Y., S.F.B., M.J.M. contributed to sampling;
514 Y.Y., A.T. and J.M. conducted lab work; J.F.W. and Y.Y. performed sequence processing; J.F.W. and

515 S.A.S. analyzed the data and led the writing.

516

517 REFERENCES

518 ALBERT, V.A., S.E. WILLIAMS, and M.W. CHASE. 1992. Carnivorous Plants: Phylogeny and Structural
519 Evolution. *Science* 257: 1491–1495.

520 ANISIMOVA, M., M. GIL, J.F. DUFAYARD, C. DESSIMOZ, and O. GASCUEL. 2011. Survey of branch
521 support methods demonstrates accuracy, power, and robustness of fast likelihood-based
522 approximation schemes. *Systematic Biology* 60: 685–699.

523 BARKER, M.S., N.C. KANE, M. MATVIENKO, A. KOZIK, R.W. MICHELMORE, S.J. KNAPP, and L.H.
524 RIESEBERG. 2008. Multiple paleopolyploidizations during the evolution of the compositae reveal
525 parallel patterns of duplicate gene retention after millions of years. *Molecular Biology and Evolution*
526 25: 2445–2455.

527 BARKER, M.S., Z. LI, T.I. KIDDER, C.R. REARDON, Z. LAI, L.O. OLIVEIRA, M. SCASCITELLI, and L.H.
528 RIESEBERG. 2016. Most compositae (Asteraceae) are descendants of a paleohexaploid and all share
529 a paleotetraploid ancestor with the calyceraceae. *American Journal of Botany* 103: 1203–1211.

530 BEMM, F., D. BECKER, C. LARISCH, I. KREUZER, M. ESCALANTE-PEREZ, W.X. SCHULZE, M.
531 ANKENBRAND, ET AL. 2016. Venus flytrap carnivorous lifestyle builds on herbivore defense
532 strategies. *Genome Res.* 26: 812–825.

533 BOLGER, A.M., M. LOHSE, and B. USADEL. 2014. Trimmomatic: A flexible trimmer for Illumina
534 sequence data. *Bioinformatics* 30: 2114–2120.

535 BROCKINGTON, S.F., R. ALEXANDRE, J. RAMDIAL, M.J. MOORE, S. CRAWLEY, A. DHINGRA, K. HILU, ET
536 AL. 2009. Phylogeny of the Caryophyllales sensu lato: revisiting hypotheses on pollination biology
537 and perianth differentiation in the core Caryophyllales. *International Journal of Plant Sciences* 170:
538 627–643.

539 BROCKINGTON, S.F., Y. YANG, F. GANDIA-HERRERO, S. COVSHOFF, J.M. HIBBERD, R.F. SAGE, G.K.S.
540 WONG, ET AL. 2015. Lineage-specific gene radiations underlie the evolution of novel betalain
541 pigmentation in Caryophyllales. *New Phytologist* 207: 1170–1180.

542 BROWN, J.W., J.F. WALKER, and S.A. SMITH. 2017. phyx: Phylogenetic tools for Unix. *Bioinformatics*.
543 Available at: <https://academic.oup.com/bioinformatics/bioinformatics/article/2975328/phyx>:

544 CAMERON, K.M., K.J. WURDACK, and R.W. JOBSON. 2002. Molecular Evidence for the Common Origin
545 Snap - Traps Among Carnivorous Plants. *Taxon* 89: 1503–1509.

546 CANNON, S.B., M.R. MCKAIN, A. HARKESS, M.N. NELSON, S. DASH, M.K. DEYHOLOS, Y. PENG, ET AL.
547 2015. Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes.
548 *Molecular Biology and Evolution* 32: 193–210.

549 DANG, Z., L. ZHENG, J. WANG, Z. GAO, S. WU, Z. QI, and Y. WANG. 2013. Transcriptomic profiling of
550 the salt-stress response in the wild recretohalophyte *Reaumuria trigyna*. *BMC genomics* 14: 29.

551 DARWIN, C. 1875. Insectivorous plants. John Murray, London.

552 DEGREEF, J.D. 1997. Fossil *Aldrovanda*. *Carnivorous Plant Newsletter* 26: 93–97. Available at:
553 http://www.carnivorousplants.org/cpn/articles/CPNv26n3p93_97.pdf %Cnpapers3://publication/uui
554 d/A61A0327-61CF-4683-BF3F-EE5AFFD69F49.

555 DOHM, J.C., C. LANGE, D. HOLTGRAWE, T.R. SORENSEN, D. BORCHARDT, B. SCHULZ, H. LEHRACH, ET
556 AL. 2012. Palaeohexaploid ancestry for Caryophyllales inferred from extensive gene-based physical
557 and genetic mapping of the sugar beet genome (*Beta vulgaris*). *Plant Journal* 70: 528–540.

558 DOHM, J.C., A.E. MINOCHE, D. HOLTGRÄWE, S. CAPELLA-GUTIÉRREZ, F. ZAKRZEWSKI, H. TAVER, O.
559 RUPP, ET AL. 2014. The genome of the recently domesticated crop plant sugar beet (*Beta vulgaris*).
560 *Nature* 505: 546–9.

561 VAN DONGEN, S. 2000. Graph Clustering by Flow Simulation. University of Utrecht.

562 DRUMMOND, A.J., and A. RAMBAUT. 2007. BEAST: Bayesian evolutionary analysis by sampling trees.
563 *BMC evolutionary biology* 7: 214.

564 DUNN, C.W., A. HEJNOL, D.Q. MATUS, K. PANG, W.E. BROWNE, S. A SMITH, E. SEAVER, ET AL. 2008.
565 Broad phylogenomic sampling improves resolution of the animal tree of life. *Nature* 452: 745–9.

566 EDGER, P.P., H.M. HEIDEL-FISCHER, M. BEKAERT, J. ROTA, G. GLÖCKNER, A.E. PLATTS, D.G. HECKEL,
567 ET AL. 2015. The butterfly plant arms-race escalated by gene and genome duplications.

568 ELLISON, A.M., and N.J. GOTELLI. 2009. Energetics and the evolution of carnivorous plants - Darwin's
569 "most wonderful plants in the world." *Journal of Experimental Botany* 60: 19–42.

570 ELLISON, A.M., and N.J. GOTELLI. 2001. Evolutionary ecology of carnivorous plants. *Trends in ecology
571 & evolution* 16: 623–629.

572 FONTAINE, M.C., J.B. PEASE, A. STEELE, R.M. WATERHOUSE, D.E. NEAFSEY, I. V. SHARAKHOV, S.N.
573 MITCHELL, ET AL. 2015. Extensive introgression in a malaria vector species complex revealed by
574 phylogenomics. *Science* 347: 1–20.

575 FREELING, M., and B.C. THOMAS. 2006. Gene-balanced duplications, like tetraploidy, provide predictable
576 drive to increase morphological complexity. *Genome Research* 16: 805–814.

577 FU, L., B. NIU, Z. ZHU, S. WU, and W. LI. 2012. CD-HIT: Accelerated for clustering the next-generation
578 sequencing data. *Bioinformatics* 28: 3150–3152.

579 GALTIER, N., and V. DAUBIN. 2008. Dealing with incongruence in phylogenomic analyses. *Philosophical
580 transactions of the Royal Society of London. Series B, Biological sciences* 363: 4023–4029.

581 GIVNISH, T.J. 2015. New evidence on the origin of carnivorous plants. *Proceedings of the National
582 Academy of Sciences* 112: 10–11.

583 GRABHERR, M.G., B.J. HAAS, M. YASSOUR, J.Z. LEVIN, D.A. THOMPSON, I. AMIT, X. ADICONIS, ET AL.
584 2011. Full-length transcriptome assembly from RNA-Seq data without a reference genome. *Nature*
585 *biotechnology* 29: 644–52.

586 HAAS, B.J., A. PAPANICOLAOU, M. YASSOUR, M. GRABHERR, P.D. BLOOD, J. BOWDEN, M.B. COUGER,
587 ET AL. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform
588 for reference generation and analysis. *Nature protocols* 8: 1494–512.

589 HERNÁNDEZ-LEDESMA, P., W.G. BERENDSOHN, T. BORSCH, S. VON MERING, H. AKHANI, S. ARIAS, I.
590 CASTAÑEDA-NOA, ET AL. 2015. A taxonomic backbone for the global synthesis of species diversity
591 in the angiosperm order Caryophyllales. *Willdenowia* 45: 281–383.

592 HEUBL, G., G. BRINGMANN, and H. MEIMBERG. 2006. Molecular Phylogeny and Character Evolution of
593 Carnivorous Plant Families in Caryophyllales – Revisited. *Plant Biology* 8: 821–830.

594 KATOH, K., and D.M. STANDLEY. 2013. MAFFT multiple sequence alignment software version 7:
595 improvements in performance and usability. *Molecular biology and evolution* 30: 772–80.

596 LARKIN, M.A., G. BLACKSHIELDS, N.P. BROWN, R. CHENNA, P.A. MCGETTIGAN, H. MCWILLIAM, F.
597 VALENTIN, ET AL. 2007. Clustal W and Clustal X version 2.0. *Bioinformatics* 23: 2947–2948.

598 LÖYTINOJA, A., and N. GOLDMAN. 2008. Phylogeny-aware gap placement prevents errors in sequence
599 alignment and evolutionary analysis. *Science (New York, N.Y.)* 320: 1632–1635.

600 MADDISON, W.P. 1997. Gene trees in species trees. *Systematic Biology* 46: 523–536.

601 MAGALLÓN, S., S. GÓMEZ-ACEVEDO, L.L. SÁNCHEZ-REYES, and T. HERNÁNDEZ-HERNÁNDEZ. 2015. A
602 metacalibrated time-tree documents the early rise of flowering plant phylogenetic diversity. *New*
603 *Phytologist* 207: 437–453.

604 MAYROSE, I., S.H. ZHAN, C.J. ROTHFELS, K. MAGNUSON-FORD, M.S. BARKER, L.H. RIESEBERG, and
605 S.P. OTTO. 2011. Recently formed polyploid plants diversify at lower rates. *Science* 333: 2011.

606 MCPHERSON, S.R. 2009. Pitcher Plants of the Old World. 1st ed. A. Robinson, and A. Fleischmann
607 [eds.],. Redfern Natural History Production.

608 MEIMBERG, H., P. DITTRICH, G. BRINGMANN, J. SCHLAUER, and G. HEUBL. 2000. Molecular phylogeny
609 of Caryophyllidae s.l. based on MatK sequences with special emphasis on carnivorous taxa. *Plant*
610 *Biology* 2: 218–228.

611 MIRARAB, S., R. REAZ, M.S. BAYZID, T. ZIMMERMANN, M. S. SWENSON, and T. WARNOW. 2014.
612 ASTRAL: Genome-scale coalescent-based species tree estimation. *Bioinformatics* 30: 541–548.

613 NEI, M., and T. GOJOBORI. 1986. Simple methods for estimating the numbers of synonymous and
614 nonsynonymous nucleotide substitutions. *Molecular Biology and Evolution* 3: 418–426.

615 OHNO, S., U. WOLF, and N.B. ATKIN. 1968. Evolution from fish to mammals by gene duplication.
616 *Hereditas* 59: 169–187.

617 PEASE, J.B., D.C. HAAK, M.W. HAHN, and L.C. MOYLE. 2016. Phylogenomics Reveals Three Sources of
618 Adaptive Variation during a Rapid Radiation. *PLoS Biology* 14: 1–24.

619 PRICE, M.N., P.S. DEHAL, and A.P. ARKIN. 2010. FastTree 2 - Approximately maximum-likelihood trees
620 for large alignments. *PLoS ONE* 5: .

621 ROKAS, A., B.L. WILLIAMS, N. KING, and S.B. CARROLL. 2003. Genome-scale approaches to resolving
622 incongruence in molecular phylogenies. *Nature* 425: 798–804.

623 SAITOU N, N.M. 1987. The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic
624 Trees'. *Molecular Biology and Evolution* 4: 406–425.

625 SCHLUETER, J.A., P. DIXON, C. GRANGER, D. GRANT, L. CLARK, J.J. DOYLE, and R.C. SHOEMAKER.
626 2004. Mining EST databases to resolve evolutionary events in major crop species. *Genome* 47: 868–
627 876.

628 SMITH, S.A., and M.J. DONOGHUE. 2008. Rates of molecular evolution are linked to life history in
629 flowering plants. *Science (New York, N.Y.)* 322: 86–89.

630 SMITH, S.A., and C.W. DUNN. 2008. Phyutility: A phyloinformatics tool for trees, alignments and
631 molecular data. *Bioinformatics* 24: 715–716.

632 SMITH, S.A., M.J. MOORE, J.W. BROWN, and Y. YANG. 2015. Analysis of phylogenomic datasets reveals
633 conflict, concordance, and gene duplications with examples from animals and plants. *BMC*
634 *evolutionary biology* 15: 150.

635 SOLTIS, D.E., S.A. SMITH, N. CELLINESE, K.J. WURDACK, D.C. TANK, S.F. BROCKINGTON, N.F.
636 REFULIO-RODRIGUEZ, ET AL. 2011. Angiosperm phylogeny: 17 genes, 640 taxa. *American Journal*
637 *of Botany* 98: 704–730.

638 SOLTIS, P., D. SOLTIS, and M. ARAKAKI. 2006. Polygonales. *Tree of Life Web Project*. Available at:
639 http://tolweb.org/non-core_Caryophyllales/20968/2006.06.07 [Accessed January 1, 2016].

640 SOLTIS, P.S., X. LIU, D.B. MARCHANT, C.J. VISGER, and D.E. SOLTIS. 2014. Polyploidy and novelty:
641 Gottlieb's legacy. *Philosophical transactions of the Royal Society of London. Series B, Biological*
642 *sciences* 369: 1–12.

643 STAMATAKIS, A. 2014. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large
644 phylogenies. *Bioinformatics* 30: 1312–1313.

645 TANK, D.C., J.M. EASTMAN, M.W. PENNELL, P.S. SOLTIS, D.E. SOLTIS, C.E. HINCHLIFF, J.W. BROWN, ET
646 AL. 2015. Nested radiations and the pulse of angiosperm diversification : increased diversification
647 rates often follow whole genome duplications.

648 TAYLOR, C.M., R.E. GEREAU, and G.M. WALTERS. 2005. Revision of *Ancistrocladus* Wall .
649 (*Ancistrocladaceae*). *Annals of the Missouri Botanical Garden* 92: 360–399.

650 WAN ZAKARIA, W.-N.-A., K.-K. LOKE, M.-M. ZULKAPLI, F.-'IMADI M. SALLEH, H.-H. GOH, and N.M.

651 NOOR. 2016. RNA-seq Analysis of *Nepenthes ampullaria*. *frontiers in Plant Science* 6: .

652 YANG, Y., M.J. MOORE, S.F. BROCKINGTON, D.E. SOLTIS, G.K.-S. WONG, E.J. CARPENTER, Y. ZHANG,
653 ET AL. 2015. Dissecting molecular evolution in the highly diverse plant clade Caryophyllales using
654 transcriptome sequencing. *Molecular biology and evolution*.

655 YANG, Y., M.J. MOORE, S.F. BROCKINGTON, A. TIMONEDA-MONFORT, T. FENG, H.E. MARX, J.F.
656 WALKER, and S.A. SMITH. 2016. An efficient field and laboratory workflow for plant. *BioArchive*.

657 YANG, Y., and S.A. SMITH. 2013. Optimizing de novo assembly of short-read RNA-seq data for
658 phylogenomics. *BMC genomics* 14: 328.

659 YANG, Y., and S.A. SMITH. 2014. Orthology inference in nonmodel organisms using transcriptomes and
660 low-coverage genomes: Improving accuracy and matrix occupancy for phylogenomics. *Molecular
661 Biology and Evolution* 31: 3081–3092.

662 YANG, Z. 2007. PAML 4: Phylogenetic analysis by maximum likelihood. *Molecular Biology and
663 Evolution* 24: 1586–1591.

664

665

666

667

668

669

670

671

672

673

674

675

676

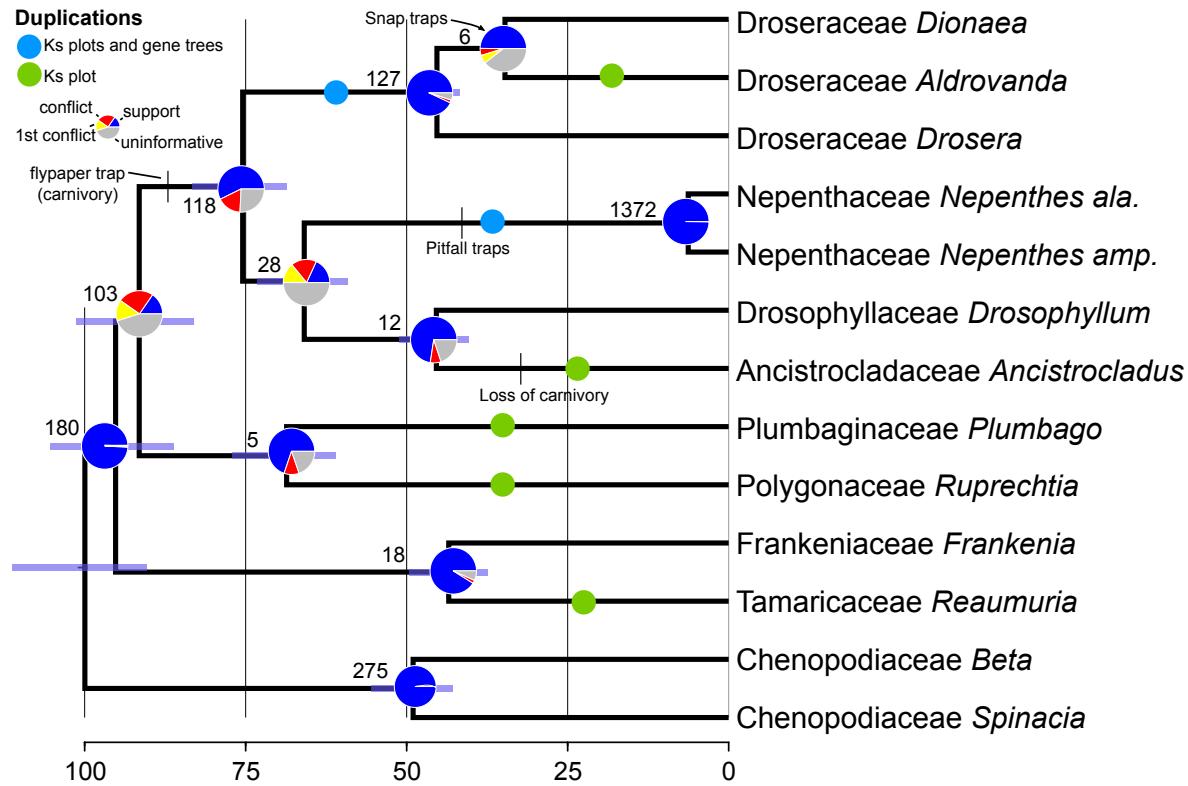
677

678

679

680

681

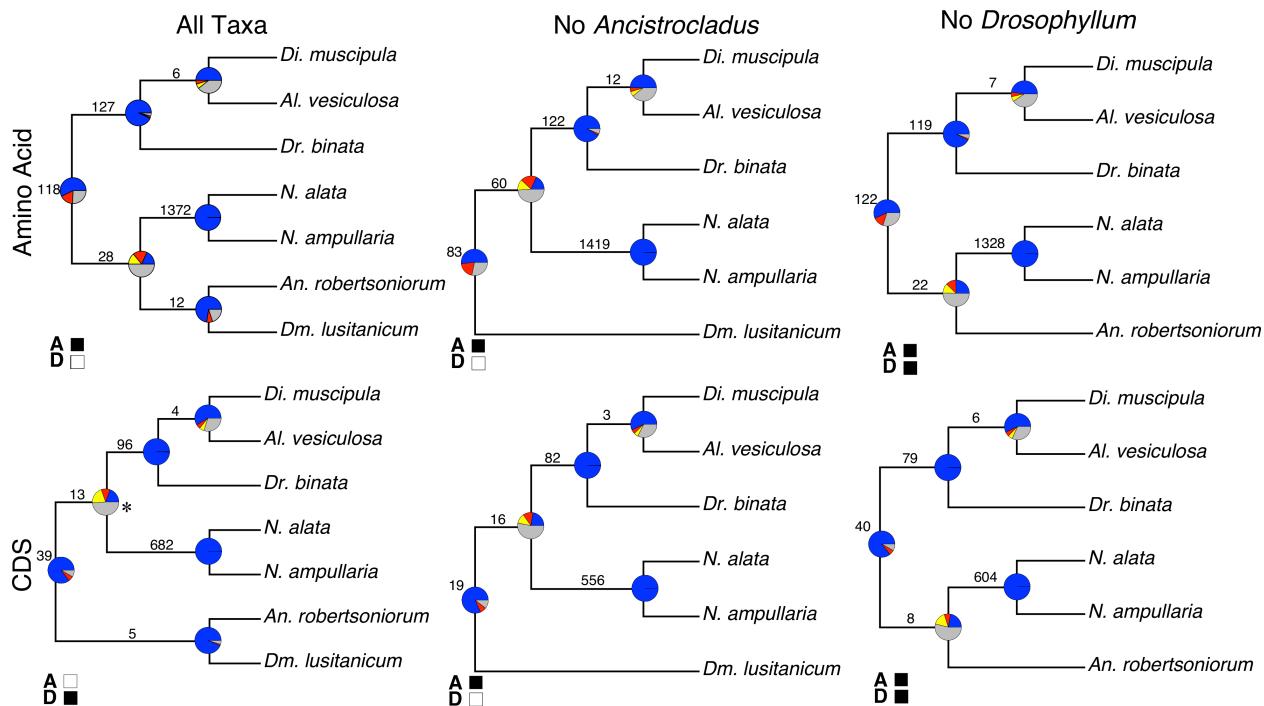

682

683

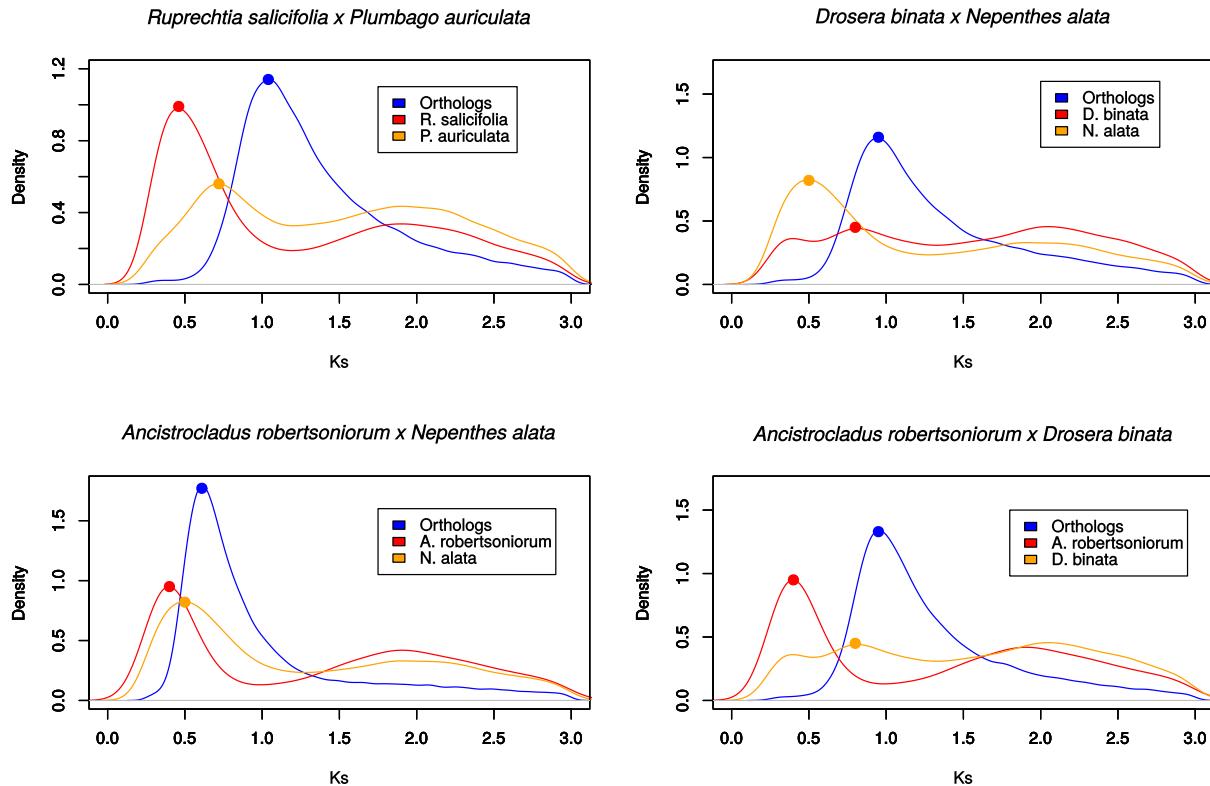
684

685 FIGURES

686


687

688


689 **Figure 1. Inferred and dated species tree from the three-gene Bayesian dating analysis.** Numbers on
690 each branch represent inferred shared unique to clade gene duplications, and branch lengths are
691 proportional to time. Circles on branches represent inferred genome duplications, position supported only
692 by Ks plots (Green) and position supported by Ks plots along with shared gene duplications (Blue). Pie
693 charts show gene tree conflict evaluations at each node, proportion concordant (Blue), proportion
694 conflicting (Red), dominant alternative topology (Yellow) and unsupported with SH-Like less than 80
695 (Grey). Ancestral states on branches taken from *Heubl et. al 2006*.

696

697

698
699 **Figure 2. The influence of taxon sampling and sequence type on inferred tree topology.** Respective
700 topologies are from the RAxML supermatrix analysis, filled boxes are used to represent concordance with
701 a different method of species tree reconciliation “A” represents Astral (MQSST) and “D” represents
702 Distance matrix reconstruction. Star near the node indicates BS support of 0, all other nodes have BS
703 support of 100. Numbers on each branch represent inferred gene duplications. Pie charts show gene tree
704 conflict evaluations at each node, proportion concordant (Blue), proportion conflicting (Red), dominant
705 alternative topology (Yellow) and unsupported with SH-Like less than 80 (Grey).
706
707

708

709

710 **Figure 3. Representative Ks plots.** Density plots representing the peak of the Ks values inferred from
711 reciprocal orthologs (Blue) and those inferred from the within species paralogs (Red and Orange), with
712 the density calculated for Ks values (≥ 0.25).

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727 **ONLINE SUPPLEMENTAL MATERIAL**

728

729 **Supplementary Figure 1:** Species tree from RAxML analysis of the ALLTAX AA supermatrix.

730 **Supplementary Figure 2:** Inferred species trees from the Maximum Quartet Supported Species
731 Tree analyses as implemented in Astral.

732 **Supplementary Figure 3:** Distribution of synonymous substitutions (Ks values) among
733 conflicting gene tree topologies.

734 **Supplementary Figure 4:** Comparison of synonymous substitutions (Ks values) between
735 inferred paralogs, presented through a histogram (60 bins) with the density plot mapped on top.

736 **Supplementary Figure 5:** Synonymous substitution (Ks) plots presented as both histogram and
737 density plot for pairwise Droseraceae comparisons.

738 **Supplementary Figure 6:** Contamination check of the transcriptomes through the assembly of a
739 maximum likelihood MatK gene tree.

740 **Supplementary Table 1:** Taxa used for the analyses, sources of data, collections and location of
741 the collections.

742 **Supplementary Table 2:** List of species and genbank accession for the MatK sequences used in
743 the contamination analysis.

744 **Supplementary Table 3:** Sequences used for annotating homologous gene trees associated with
745 carnivory.

746 **Supplementary Table 4:** List of largest gene families, divided to size of family found in the
747 carnivorous and non-carnivorous taxa used in the study.

748 **Supplementary Table 5:** Comparison of gene family size between carnivorous and non-
749 carnivorous taxa identified in carnivory from *Bemm et. al 2016*.

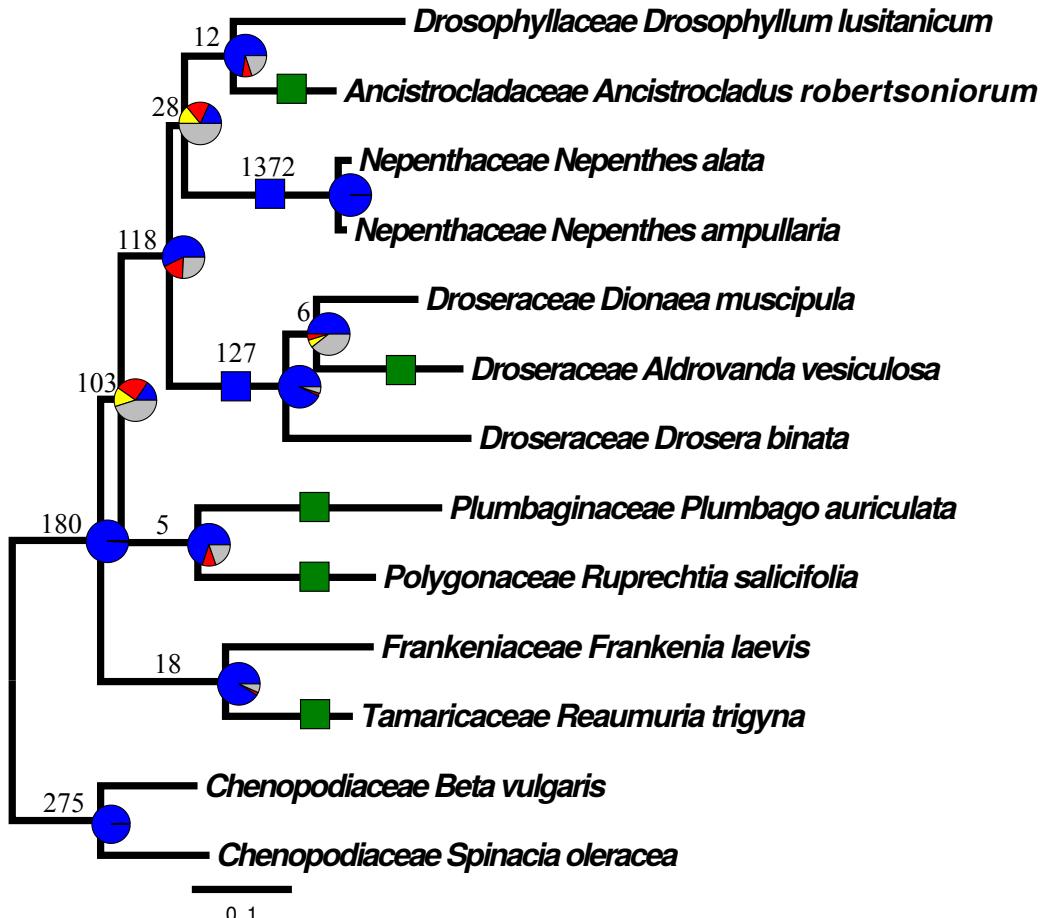
750 **Supplementary Table 6:** Composition of datasets used for the phylogenomic analyses.

751

752

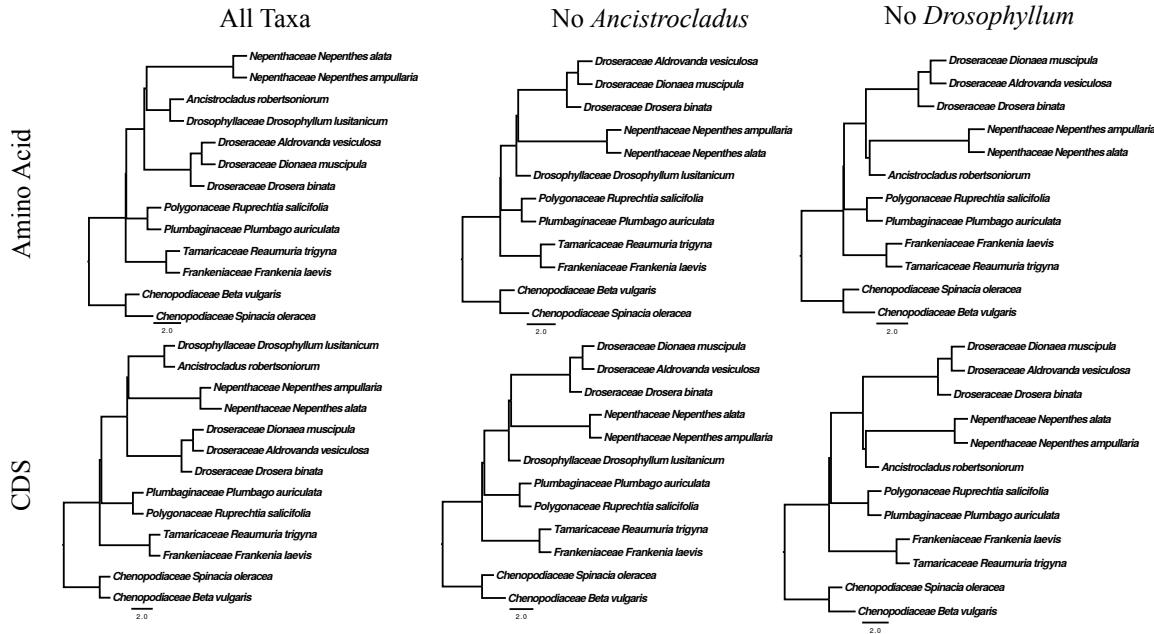
753

754


755

756

757

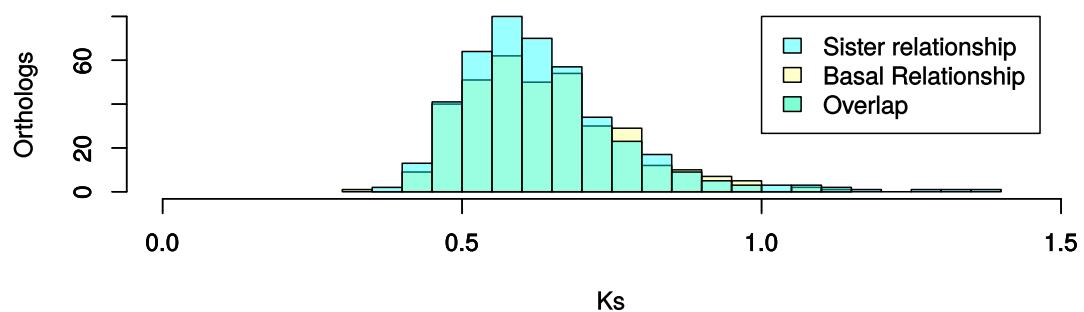

758

759 **Supplementary Figure 1 - Species tree from RAxML analysis of the ALLTAX AA**
760 **supermatrix.** Numbers on each branch represent inferred shared unique to clade gene
761 duplications. Squares along branches represent inferred genome duplications, position supported
762 only by Ks plots (Green) and position supported by Ks plots along with shared gene duplications
763 (Blue). Pie charts show gene tree conflict evaluations at each node, proportion concordant
764 (Blue), proportion conflicting (Red), dominant alternative topology (Yellow) and unsupported
765 with SH-Like less than 80 (Grey). Ancestral states on branches taken from *Heubl et. al 2006*.
766

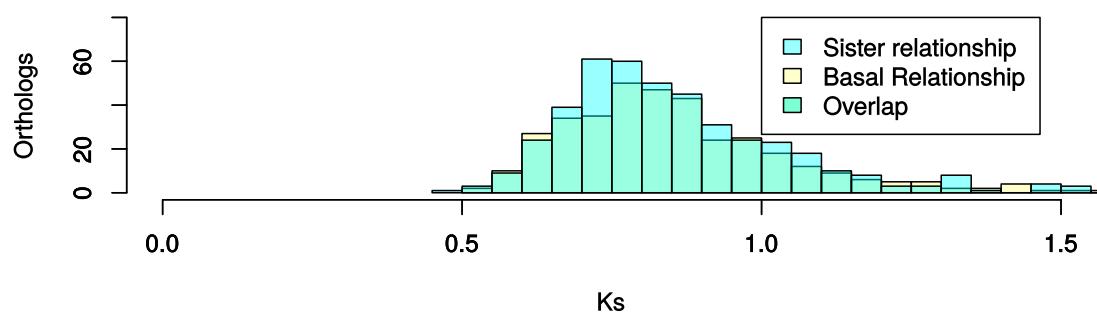
767
768
769
770
771
772
773

774 **Supplementary Figure 2: Inferred species trees from the Maximum Quartet Supported
775 Species Tree analyses as implemented in Astral.** The figure shows the different topologies that
776 result from different combinations of molecules and species sampling inferred using the
777 Maximum Quartet Supported Species Tree (MQSST) as implemented in Astral.
778

779
780
781
782
783
784
785
786
787
788
789
790
791
792
793

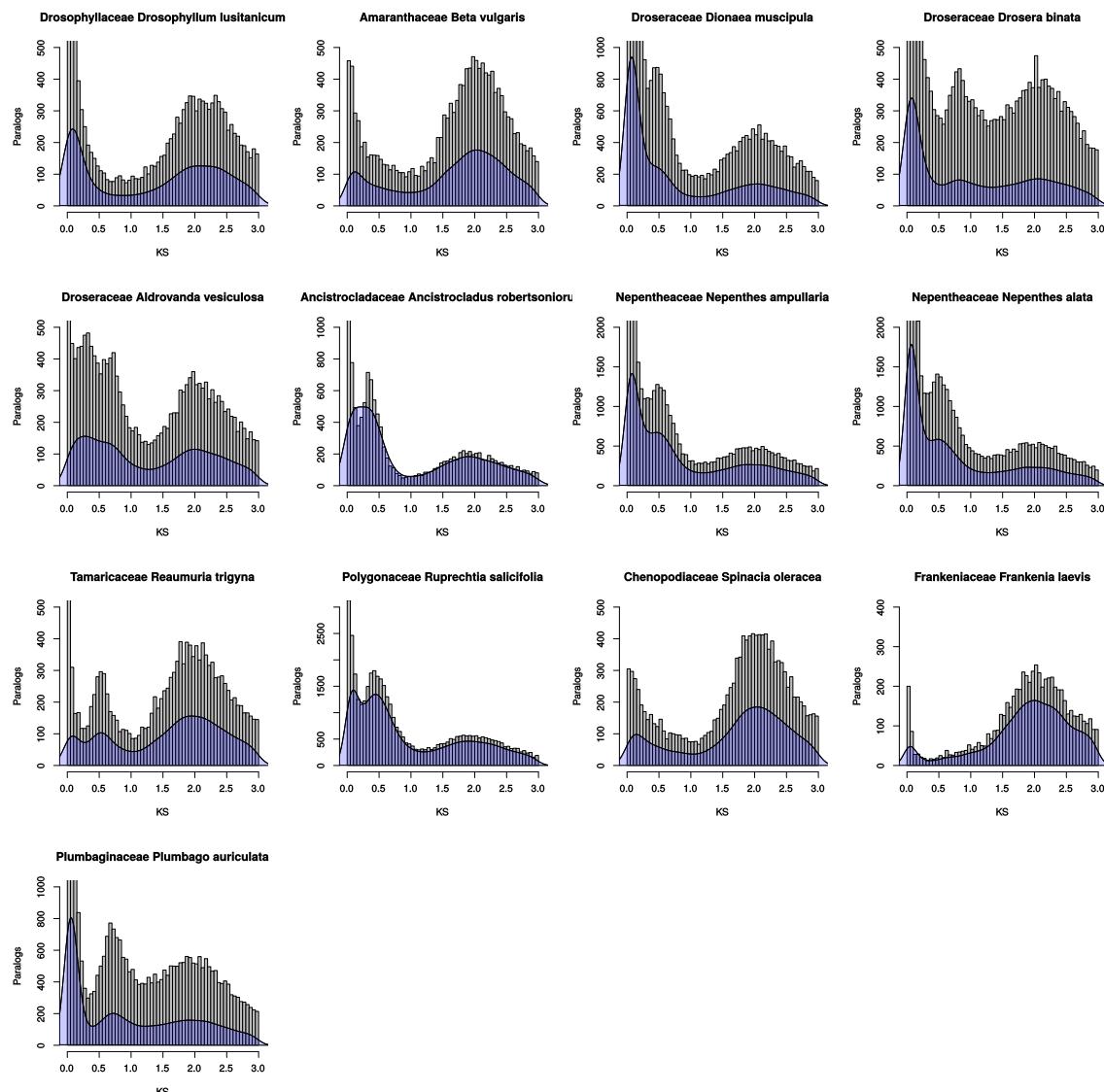

794

795


796 **Supplementary Figure 3: Distribution of synonymous substitutions (Ks values) among**
797 **conflicting gene tree topologies.** Figure shows the distribution of synonymous substitutions
798 between *Nepenthes alata* and *Ancistrocladus robertsoniorum* and the distribution of synonymous
799 substitutions between *Drosophyllum lusitanicum* and *Nepenthes alata*. The values were acquired
800 for the *A. robertsoniorum*, *D. lusitanicum* and *N. alata* sequences obtained from gene trees that
801 show conflicting topologies of *Drosophyllum* and *Ancistrocladus* sister to *Nepenthes* and
802 *Drosophyllum* and *Ancistrocladus* basal to the rest of the carnivorous Caryophyllales. The mean
803 Ks values for the comparison of *A. robertsoniorum* and *N. alata* were 0.63592 (sister to the other
804 lineages) and 0.6358 (sister to only Nepenthaceae). The mean Ks values for the comparison of *D.*
805 *lusitanicum* and *N. alata* were 0.85467 (sister to the other lineages) and 0.85861 (sister to
806 Nepenthaceae only).

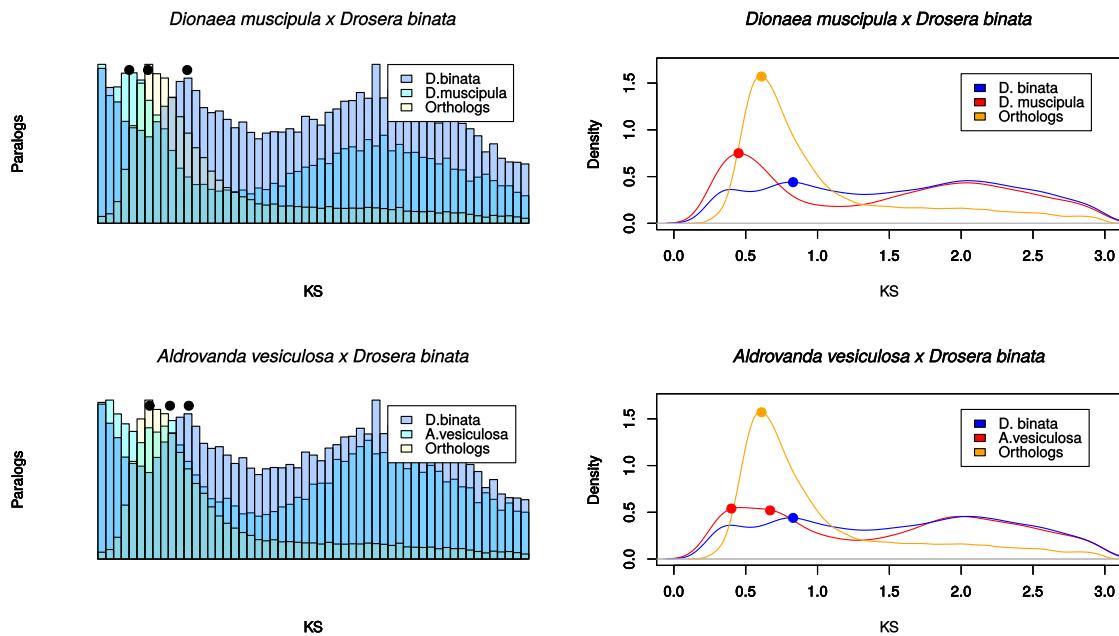
807

Ancistrocladus robertsoniorum x Nepenthes alata


Drosophyllum lusitanicum x Nepenthes alata

808

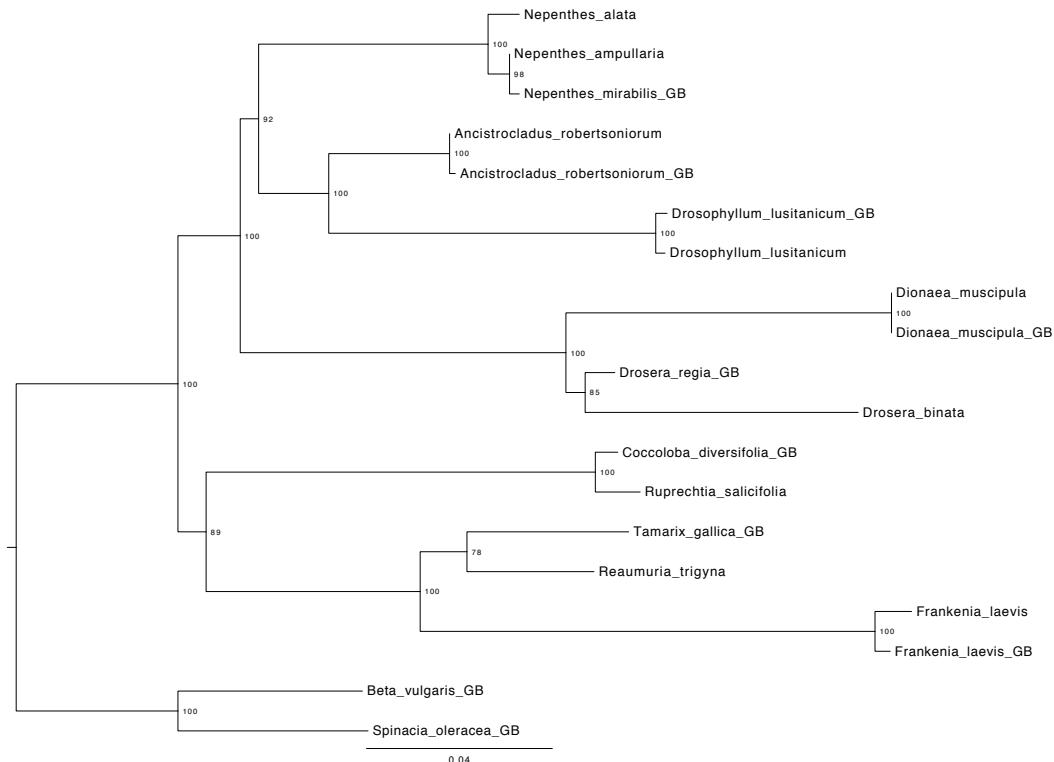
809
810
811


812 **Supplementary Figure 4: Comparison of synonymous substitutions (Ks values) between**
813 **inferred paralogs, presented through a histogram (60 bins) with the density plot mapped**
814 **on top.** Comparison of the within species inferred paralogs Ks values as presented in a histogram
815 of 60 breaks and through a superimposed density plot in blue. The Y-axis is for the histograms
816 representing the paralogs with the given Ks value and the Y-axis for the superimposed density
817 plots is not shown. The X-axis represents the Ks value and is the same between the histogram
818 and the density plot.

819

820
821
822

823 **Supplementary Figure 5: Synonymous substitution (Ks) plots presented as both histogram**
824 **and density plot for pairwise Droseraceae comparisons.** The figure depicts Ks plots between
825 *Drosera binata* and other members of the Droseraceae. Dots are placed on the highest points of
826 the peaks.



827
828
829
830
831
832
833
834
835
836
837
838
839

840
841
842
843

844 **Supplementary Figure 6: Contamination check of the transcriptomes through the assembly**
845 **of a maximum likelihood MatK gene tree.** The figure shows representative family samples
846 from GenBank (ending in GB) compared the MatK sequence inferred using BLAST from the
847 assembled transcriptome data used in the analyses. The analysis was run for 200 BS replicates
848 with the respective values at the nodes.

849

850
851
852
853
854
855
856
857
858
859
860

861

862

863 **Supplementary Table 1** - Taxa used for the analyses, sources of data, collections and location
864 of the collections.

865

Taxon Code	Source	# Sequences	Collection #	Sequencing type	Taxon Name and Authority	RNA	Made for this study	Collection Locality
Beta	http://bvseq.molgen.mpg.de/index.shtml	29088	N/A	N/A	<i>Beta vulgaris</i> (Linnaeus, Carl von)	N/A	No	N/A
Spol	http://bvseq.molgen.mpg.de/index.shtml	23688	N/A	N/A	<i>Spinacia oleracea</i> (Linnaeus, Carl von)	N/A	No	N/A
WPYJ	http://dx.doi.org/10.5061/dryad.33m48	17678	N/A	N/A	<i>Frankenia laevis</i> (Linnaeus, Carl von)	N/A	No	N/A
Retr	SRX105466 & SRX099851	26934	N/A	N/A	<i>Reaumuria trigyna</i> (Maximowicz, Carl Johann (Ivanovič))	N/A	No	N/A
RuprSFB	SAMN05936389	65889	N/A	HiSeq 2000 Paired End	<i>Ruprechtia salicifolia</i> (Meyer, Carl Anton (Andreevič) von)	Purelink	Yes	Cultivated at Cambridge University Botanic Garden
MJM3360	SAMN05936390	63905	Michael J. Moore et al. 3360 (OC)	HiSeq 4000 Paired end	<i>Plumbago auriculata</i> (Lamarck, Jean Baptiste Antoine Pierre de Monnet de)	Purelink	Yes	The Kampong: between tennis court and main house.
DrolusSFB	SAMN05936387	44804	N/A	HiSeq 2000 Paired End	<i>Drosophyllum lusitanicum</i> ((L.) Link)	Purelink	Yes	
MJM2940	SAMN05936890	58310	Michael J. Moore & J. Lee 2940 (OC)	HiSeq2500V 4 Paired End	<i>Ancistrocladus robertsoniorium</i> (J. Leonard)	Purelink	Yes	Missouri Botanical Garden, cultivated in Climatron for many years.
NepSFB	SAMN05936153, SAMN05936157, SAMN05936158	96679	N/A	HiSeq 2000 Paired End	<i>Nepenthes alata</i> (Blanco, Francisco Manuel)	Purelink	Yes	Cultivated at Cambridge University Botanic Garden.
Neam	SRR2866506, SRR2866512, SRR2866533	84007	N/A	HiSeq 2000 Paired End	<i>Nepenthes ampullaria</i> (Jack, William)	N/A	No	N/A
Dino	SRX1376794	88684	N/A	N/A	<i>Dionaea muscipula</i> (Ellis, John)	N/A	No	N/A
MJM1652	SRR1979677	26040	N/A	N/A	<i>Aldrovanda vesiculosa</i> (Linnaeus, Carl von)	N/A	No	N/A
DrobinSFB	SAMN05936370, SAMN05936384, SAMN05936385	65080	N/A	HiSeq 2000 Paired End	<i>Drosera binata</i> (Labillardière, Jacques Julien Houtou de)	Purelink	Yes	Cultivated at Cambridge University Botanic Garden.

866

867 **Supplementary Table 2** - List of species and GenBank accession for the MatK sequences used
868 in the contamination analysis.
869

Species	GenBank Accession
<i>Drosera regia</i>	gi 8568032 gb AF204848.1
<i>Dionaea muscipula</i>	gi 8568030 gb AF204847.1
<i>Nepenthes mirabilis</i>	gi 14193614 gb AF315920.1
<i>Tamarix gallica</i>	gi 8568058 gb AF204861.1
<i>Frankenia laevis</i>	gi 47498931 gb AY514853.1
<i>Coccocloba diversifolia</i>	gi 297372635 emb FN597640.1
<i>Ancistrocladus robertsoniorum</i>	gi 285803889 gb GQ470539.1
<i>Drosophyllum lusitanicum</i>	gi 47498945 gb AY514860.1
<i>Beta vulgaris</i>	gi 47498889 gb AY514832.1
<i>Spinacia oleracea</i>	gi 11497503:1783-3300
<i>Drosera regia</i>	gi 8568032 gb AF204848.1
<i>Dionaea muscipula</i>	gi 8568030 gb AF204847.1
<i>Nepenthes mirabilis</i>	gi 14193614 gb AF315920.1

870
871
872
873

874 **Supplementary Table 3** - Samples used for identifying homologous clusters of genes identified
875 to be important in carnivory from *Bemm et. al 2016*. Including species name, GenBank accession
876 and function of sequences.
877

Species	GenBank Accession	Function
<i>Arabidopsis thaliana</i>	gi 42568444 ref NP_199851.2	Purple Acid Phosphotase 27
<i>Arabidopsis thaliana</i>	gi 1032282051 gb OAO96379.1	Cysteine peptidase C1A (SAG12)
<i>Arabidopsis thaliana</i>	gi 15230262 ref NP_191285.1	Beta-Glucanase (BGL2)
<i>Arabidopsis thaliana</i>	gi 1032291674 gb OAP06001.1	Serine Carboxypeptidase 49 (SCPL49)
<i>Arabidopsis thaliana</i>	gi 1032297141 gb OAP11467.1	Ribonuclease T2 (RNS1)
<i>Dionaea muscipula</i>	gi 563616779 gb AHB62682.1	Chitinase Class I (VF CHITINASE I)
<i>Cucumis sativus</i>	gi 167533 gb AAA33129.1	Plant Peroxidase
<i>Arabidopsis thaliana</i>	gi 186500492 ref NP_001118321.1	Plant Lipid Transfer Protein
<i>Zea mays</i>	gi 413947720 gb AFW80369.1	Peptide-N4-Asparagine Amidase A
<i>Camellia sinensis</i>	gi 558483701 gb AHA56682.1	Pathogenesis-related protein
<i>Arabidopsis thaliana</i>	gi 42562696 ref NP_175606.2	LysM-containing protein
<i>Cynara cardunculus</i>	gi 976927626 gb KVI11230.1	Aspartic peptidase

878
879
880
881

882 **Supplementary Table 4. List of largest gene families, divided to size of family found in the**
883 **carnivorous and non-carnivorous taxa used in the study.**

884

Gene family name	Size of family	Copies in non-carnivorous taxa	Copies per non-carnivorous taxa	Copies in carnivorous taxa	Copies per carnivorous taxa	Putative function
cluster1_1rr_2rr.fa.mafft.aln	3498	1927	275.28	1571	261.8	putative leucine-rich repeat receptor-like protein kinase At2g19210
cluster3rr_1rr.f.a.mafft.aln	3000	1513	216.1	1487	247.8	pentatricopeptide repeat-containing protein At4g02750
cluster2_1rr_1r.r.fa.mafft.aln	2479	1350	192.8	1129	188.1	probable LRR receptor-like serine/threonine-protein kinase At2g24230
cluster4_1rrrr.f.a.mafft.aln	2479	1321	188.7	1158	193	pentatricopeptide repeat-containing protein At5g15280
cluster6_1rrrr.f.a.mafft.aln	1201	658	188.7	543	193	geraniol 8-hydroxylase-like [Citrus sinensis]
cluster7rr_2rr.f.a.mafft.aln	1039	536	76.6	503	83.8	CBL-interacting protein kinase 07 [Vitis vinifera]
cluster10rrrr.fa.mafft.aln	762	348	49.7	348	69	29 kDa ribonucleoprotein A, chloroplastic [Eucalyptus grandis]
cluster8rrrr.fa.mafft.aln	757	386	55.1	371	61.8	UDP-glycosyltransferase 84A22 [Camellia sinensis]
cluster12rrrr.fa.mafft.aln	730	348	49.7	382	63.7	probable envelope ADP,ATP carrier protein, chloroplastic [Beta vulgaris subsp. vulgaris]
cluster13rrrr.fa.mafft.aln	638	315	45	323	53.8	probable protein phosphatase 2C 12 [Theobroma cacao]
cluster21_1rr_1rr.fa.mafft.aln	638	307	43.8	331	55.2	transcription factor MYB44-like [Beta vulgaris subsp. vulgaris]
cluster17rr_1rr.fa.mafft.aln	619	310	44.28	309	51.5	probable DEAD-box ATP-dependent RNA helicase 48 isoform X1 [Fragaria vesca subsp. vesca]
cluster22_2rrrr.fa.mafft.aln	619	314	44.8	305	50.8	Ras-related protein RGP1 [Anthurium amnicola]
cluster11rrrr.fa.mafft.aln	602	317	45.3	285	47.5	1-amino cyclopropane-1-carboxylate oxidase homolog 1-like [Vitis vinifera]
cluster18rrrr.fa.mafft.aln	595	341	48.7	254	42.3	GDSL esterase/lipase At1g71691 [Ziziphus jujuba]

885

886

887

888

889

890

891 **Supplementary Table 5.** Comparison of gene family size between carnivorous and non-
892 carnivorous taxa identified in carnivory from *Bemm et. al 2016*.
893
894

Name in analysis	Size of family	Copies in non-carnivorous taxa	Average copies per non-carnivorous taxa	Average copies in carnivorous taxa	Average copies per carnivorous taxa	Putative function
cluster98rrrr.fa.mafft.aln	199	103	14.7	96	16	Purple Acid Phosphotase 27
cluster82rrrr.fa.mafft.aln	234	113	16.1	121	20.1	Cysteine peptidase C1A (SAG12)
cluster32rrrr.fa.mafft.aln	416	214	30.5	202	33.6	Beta-Glucanase (BGL2)
cluster7000rrrr.fa.mafft.aln	8	3	0.4	5	0.8	Serine Carboxypeptidase 49 (SCPL49)
cluster898rrrr.fa.mafft.aln	50	26	3.71	24	4	Ribonuclease T2 (RNS1)
cluster319_2rrrr.fa.mafft.aln	62	37	5.2	25	4.1	Chitinase Class I (VF CHITINASE I)
cluster24rrrr.fa.mafft.aln	527	324	46.2	204	33.83	Plant Peroxidase
cluster263rrrr.fa.mafft.aln	108	47	6.7	61	10.1	Plant Lipid Transfer Protein
cluster1669rrrr.fa.mafft.aln	25	13	1.8	12	2	Peptide-N4-Asparagine Amidase A
cluster556rrrr.fa.mafft.aln	69	44	6.2	25	4.1	Pathogenesis-related protein
cluster6240rrrr.fa.mafft.aln	9	7	1	2	0.3	LysM-containing protein
cluster439rrrr.fa.mafft.aln	70	28	4	42	7	Aspartic peptidase

895
896
897
898
899
900
901
902
903
904
905
906

907
908

909 **Supplementary Table 6. Composition of datasets used for the phylogenomic analyses.**

	ALLTAX	NODROS	NOANC
amino acid (AA) homologs	10531	10152	9999
coding DNA sequence homologs	10766	9910	9388
amino acid (AA) orthologs	1637	1616	1614
coding DNA sequence orthologs	1237	1211	1117

910
911
912
913
914
915