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Abstract 

Background 

Phenome-wide association studies (PheWAS) are a high-throughput approach to evaluate 

comprehensive associations between genetic variants and a wide range of phenotypic measures. 

PheWAS has varying sample sizes for quantitative traits, and variable numbers of cases and controls for 

binary traits across the many phenotypes of interest, which can affect the statistical power to detect 

associations. The motivation of this study is to investigate the various parameters which affect the 

estimation of statistical power in PheWAS, including sample size, case-control ratio, minor allele 

frequency, and disease penetrance. 

Results 

We performed a PheWAS simulation study, where we investigated variations in statistical power based 

on different parameters, such as overall sample size, number of cases, case-control ratio, minor allele 

frequency, and disease penetrance. The simulation was performed on both binary and quantitative 

phenotypic measures. Our simulation on binary traits suggests that the number of cases has more impact 

than the case to control ratio; also, we found that a sample size of 200 cases or more maintains 

the statistical power to identify associations for common variants. For quantitative traits, a sample size of 

1000 or more individuals performed best in the power calculations. We focused on common genetic 

variants (MAF>0.01) in this study; however, in future studies, we will be extending this effort to perform 

similar simulations on rare variants. 

Conclusions 

This study provides a series of PheWAS simulation analyses that can be used to estimate statistical 

power for some potential scenarios.  These results can be used to provide guidelines for appropriate 

study design for future PheWAS analyses. 

Keywords 

PheWAS – EHR – ICD-9 codes – Power analysis – Simulation Study 
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Background 

Phenome-wide association study (PheWAS) has been implemented in a variety of different studies, like 

within the eMERGE network[1–5], using electronic health record (EHR) information that includes 

international classification of disease version 9 (ICD-9) code based diagnoses, laboratory test 

measurements and demographic information[6–8]. Other PheWAS have used data from epidemiological 

studies[9,10], as well as clinical trials[8,9] such as the AIDS clinical trial group (ACTG), which consist of 

measurements for different clinical domains like pharmacology, metabolism, virology, and 

immunology[11,12]. Cohorts like these with a large number of measurements for every individual have 

made PheWAS a practical approach when scanning over hundreds and thousands of phenotypes in a 

high-throughput way. PheWAS generates genetic association hypotheses for further study and provides 

insights through cross-phenotype associations. 

 

Unlike genome-wide association studies (GWAS) where one phenotype is investigated in a study 

population, PheWAS uses a wide range of phenotypes collected for a variety of reasons for each dataset, 

often with minimal curation. Thus, in PheWAS, the data collected for different measurements can vary 

considerably in sample size, including the numbers of cases for diagnoses, depending on the rarity of the 

diagnosis.  This makes the estimation of statistical power for PheWAS a challenge. For example, in 

electronic health record (EHR) data, one of the most commonly used data types to define case-control 

status is through ICD-9 codes; these codes provide information on disease diagnosis, procedures, and 

medications in the form of three- to five-digit codes. The longitudinal ICD-9 data collected over many 

years varies between patients due to multiple factors, such as differences in the frequency of patient 

visits, differences in length of records due to different start and end dates, and incomplete patient medical 

history. These factors generate sparseness and missing information in the data and, hence, variability in 

the number of cases, the case-control ratio, and the overall sample size in case-control study designs. 

These factors can then affect downstream association testing. Three issues exist for measures with low 

sample sizes: 1) low statistical power to identify or replicate genetic associations and, 2) potentially 

biased estimates in analyses with low sample size, and 3) an increase in multiple hypothesis testing 
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burden through including low powered phenotypes that may not provide insights but increase the number 

of statistical tests. 

 

The goal of this study is to investigate differences in the power estimates by testing different parameters 

commonly used in a PheWAS analysis.  We investigated these parameters using a simulation approach 

to characterize and determine the effect of case numbers or case-control ratio in a case-control study, as 

well as the sample size for quantitative trait PheWAS. With our findings from the simulation analysis, we 

provided recommendations to consider for future PheWAS study design. 

 

Methods 

Simulation Design 

To investigate the power of the PheWAS approach and the sample size requirements, we simulated an 

additive genetic model with a range of effect sizes, case-control ratios, and minor allele frequencies. The 

simulation design assumes no confounding effects due to the environmental exposure and covariates. 

Genotypes were simulated as SNPs, which were drawn according to Hardy Weinberg Equilibrium (HWE) 

probabilities. Since multiple disease and phenotypes were investigated in an EHR-based PheWAS, the 

prevalence of the diseases could differ in the study population. In our simulated datasets, we used a 

constant disease prevalence, which is represented as ß0 in the regression model and set to 0.1[13]. We 

represented the effect sizes in terms of penetrance functions, which is a combination of genotypes and 

the risk of diseases. The penetrance function is useful in estimating the probability of disease given the 

genotype in a specific population. It is used to assign the case disease status to samples whose 

genotypes are influencing the disease risk and vice versa for controls. We used a custom script written in 

R[14] to generate random population-based samples with genotypes in HWE and their phenotypes using 

different input parameters as shown in figure 1. We simulated both binary and quantitative trait 

phenotypes. For quantitative trait phenotype, the same penetrance function was used to generate the 

normalized distribution of phenotypes where genotypes of samples at the upper and lower end of the 

distribution are associated with phenotype values. All the samples in the simulated datasets were drawn 

at random, so there is no relatedness among the individuals. 
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For binary phenotypes, we generated the simulated datasets by varying the following parameter settings: 

cases, case-control ratios, SNP minor allele frequencies, and disease penetrance. In this simulation 

study, we only investigated a study population with an unbalanced and unmatched cases and controls. 

For example, we simulated a dataset with a random set of 30 individuals. The parameter settings for this 

simulated dataset were as follows: case-control ratio=1:2, cases=10, controls=20, disease penetrance 

=0.15, and SNP MAF=0.01. The simulated dataset was generated for four SNPs and 10 phenotypes, 

including one SNP-phenotype model, with signal and other models were simulated as noise. The noise 

was added to evaluate any systematic bias in the power estimates. The noise SNPs were generated by 

randomly assigning the genotypes in the study population but keeping the MAF the same as the signal 

SNP. We randomly assigned the cases for the noise phenotypes. Under each parameter setting, we 

generated 1000 datasets and then calculated associations using logistic regression. Please refer to figure 

1 for all the different combinations of parameter values used for simulation.  

 

For the continuous or quantitative trait simulations, we investigated the power estimates similarly by 

varying the sample size, minor allele frequencies, and disease penetrance. The simulated dataset was 

generated for four SNPs and one phenotype, with one signal SNP-phenotype model, and the rest was the 

noise data. We generated 3 noise SNPs as in the binary phenotype simulations. Again, we generated 

1000 datasets for each parameter setting and then used linear regression to calculate associations with 

the quantitative trait. Please refer to figure 1 for all the different combinations of parameter settings used 

for the quantitative trait simulations. All the association testing for binary and quantitative phenotypes was 

performed using PLATO[15]. 

 

We calculated the power estimates by counting the number of associations below an alpha value based 

on total number of tests within each set of 1,000 simulated datasets for all parameter settings. For binary 

traits, we used α = 0.00025 (0.01/40) and for the quantitative trait, we used α = 0.004 (0.01/4). 

 

Results 
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Binary trait simulations 

We designed a simulation approach with different combinations of genotype and phenotype parameters 

and then performed association testing so as to investigate the factors that could influence the power to 

detect the signal.  

 

In figure 2, we show trends in the estimates of power at α = 0.00025 for the parameters used in the 

simulations. First, we observed an increase in power with an increase in penetrance irrespective of any 

change in other parameters, and this is expected as highly penetrant diseases are more likely to be 

identified even with small numbers of samples (this is due to high effect size). We also determined that 

the ratio between cases and controls does not have much impact on the power. The number of cases is 

what primarily influences the power to detect genetic associations. For example, as shown in figure 2, the 

case-control ratio has a negligible effect on power, whereas with the increase in case numbers, we see 

the increase in the power to identify an association. These simulations also show the importance of minor 

allele frequency threshold when calculating associations on genotype models with an additive effect. 

Here, we find that all of the simulation models showed increased performance, with minor allele 

frequency greater than 5%. The model with lower frequency variants (MAF between 1% and 5%) did not 

reach 100% power until the case threshold of 1000 samples, and it was only represented in the model 

simulated with high disease penetrance. We observed that the common variants (MAF > 1%) have signal 

when there are 200 or more cases. The Type 1 error for the parameter settings used to design simulation 

dataset is well controlled (Supplementary figure 1) and we show an example of Type 1 error for one 

parameter set simulated data with cases = 200 in figure 3.  

 

Quantitative trait simulations 

We also performed similar simulation analyses on quantitative traits (such as clinical lab variables) to 

identify a sample size threshold for multi-phenotype -based studies like PheWAS. For quantitative traits, 

we used different sample sizes for the simulation, ranging from 10 to 25,000, as these are based on 

estimates of sample sizes we observed in EHRs or clinical trials datasets[16,17]. As shown in figure 4, we 

observed almost no power until the dataset had approximately 1000 samples for a phenotype with a 
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penetrance of 0.15 and; as expected, we saw the increase in power with higher penetrance, even in 

smaller sample sizes. Around the sample size of 1000, we see an increase in power, with a slight 

variation with different minor allele frequencies. Again, variants with rare minor alleles did not perform well 

until we had reached a sample size of 1000 and a penetrance of 0.3. These quantitative trait simulations 

suggest that a threshold of 1000 samples for models with MAF greater than 5% in PheWAS is 

recommended. Also, for the variants with MAF < 5% require either association analyses with much larger 

sample sizes or a different statistical approach to evaluate rare variants. As shown in figure 5, the Type I 

error for quantitative trait simulations are also well controlled.  

 

Discussion 

PheWAS provides the genomic landscape for multiple phenotypes, but a challenge of PheWAS is the 

range of sample sizes and case numbers inherent when using a wide range of data instead of a single 

phenotype like in GWAS. For example, there are 14,025 possible ICD-9 diagnosis codes and 3,824 

procedure codes used by EHR systems within healthcare provider organizations. With the introduction of 

ICD-10, the number of ICD-based codes has further increased to approximately 66,000. Testing 14,025 

diagnosis codes for association with up to one million or more genetic variants results in a very high 

multiple testing burden. Usually, a large fraction of codes have very low case numbers due to the rarity of 

the diagnoses, and thus, they may not be sufficiently powered for association detection. For example, 

Geisinger Health System (GHS) is one of the largest healthcare providers in central Pennsylvania, with 

an EHR system including ~1.2 million unique patients. Using the EHR data in Geisinger for ~100,000 

consented participants in the MyCode Community Health Initiative[16], we evaluated the extent of the 

variability in the number of ICD-9 codes by case count. In order to account for misdiagnosis, we defined a 

patient as a case for an ICD-9 code only when a patient had three or more independent visits where that 

specific code was represented in the patient’s record.  Out of 14,025 codes for data collected between the 

years 1996 and 2015 for ICD-9 codes alone, 33% were not present at all and ~30% ICD-9 based 

diagnoses had less than 10 patients with that code (case count < 10). In figure 6, we show the trends on 

ICD-9 codes with cases at different thresholds and even after dropping out more than 60% of the ICD-9 

codes, there are still 3,568 ICD-9 codes with 10 or more patients labeled as cases. This can increase the 
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number of ICD-9 code based phenotypes for association testing, and it adds to the multiple hypothesis 

burden. In our binary trait simulations, we show that we need 200 or more cases to have enough power to 

detect genetic associations for common variants (MAF > 0.01). So, at that threshold, there are 831 ICD-9 

codes with at least 200 patients with status as the case (as shown in figure 2). Based on our simulations, 

we recommend using 200 as a case threshold for the common variant PheWAS analysis. 

 

Using the findings from these simulations, we addressed three issues related to low sample size and its 

impact on PheWAS approach. First, the impact of low sample size is evident in quantitative trait 

simulations, which suggests that the sample size of 1000 individuals for each phenotype is important to 

consider in the study design. However, in binary trait simulations, we observed that overall sample size 

does not affect the power, but instead specifically the number of cases that drives power estimates. 

Secondly, low Type 1 error across all parameter settings (Figure 3, Figure 5, Supplementary Figure 1) 

shows no systematic bias in the regression method. However, low sample size or low case numbers will 

not have enough statistical power to detect the associations. Lastly, we demonstrate that using the 

above-suggested thresholds of case numbers for binary traits and sample size for quantitative traits can 

help with the selection of phenotypes and reduce the number of tests and; hence, this can reduce the 

multiple hypothesis testing burden. 

 

Limitations 

Using the simulation approach, we were able to identify the parameters impacting the power to determine 

genetic associations and we provided recommendations for PheWAS analysis design. However, there 

can be other factors that can influence the power of PheWAS analysis.  We primarily ran all the 

simulations based on a regression model (linear or logistic regression), but there are now many other 

statistical methods for phenome-wide association analysis[18]. Further extensions of these simulation 

studies to explore other statistical methods will be important. We limited our investigation in this study to 

an additive effect of genotypes. However, there are other factors that can influence the power estimates; 

these include environmental exposure, confounding covariates (age, sex, and ancestry), and underlying 
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genotype effects (dominant and interaction). In the future, we will plan to include such effects in our 

simulation design. 

 
Conclusions 

PheWAS have become a common tool to explore the genotype-phenotype landscape of large biobanks 

linked to comprehensive phenotype/trait data collections as in EHRs, clinical trials, or epidemiological 

cohort studies. This high-throughput analysis approach has been met with much success in recent 

years[4,6,10]. However, the community has been lacking guidance for making study design decisions 

regarding sample size, case to control ratios, and minor allele frequency thresholds.  At present, there is 

not a PheWAS Power Calculator available to researchers. Thus, we implemented a large-scale simulation 

study to provide some guidelines for understanding the statistical power of PheWAS analyses under 

different scenarios. We believe these simulation results provide the needed power estimates for future 

PheWAS analysis decisions. 
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Figures 
 

 
 
Figure 1. Simulation workflow. We designed a simulation approach to test different testing parameters 

for a PheWAS analysis and their effect on the power estimates. For each combination of the testing 

parameters, we generated 1,000 simulated datasets. Then, we performed association testing using 
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logistic and linear regression for binary and quantitative phenotypes respectively. The power estimates 

were calculated for each combination of parameter setting at significance level of α = 0.00025 (Binary 

trait) and α = 0.004 (Quantitative trait)  

 

 

 

Figure 2. Binary Trait Power Results. The power estimates of the simulations are represented in the 

gradient color. Each panel represents the power estimate for a specific parameter setting. For each 

panel, minor allele frequencies are represented on the y-axis; the disease penetrance appear on the y-

axis; the case numbers appear on the top, and the respective case-control ratios are on the right side of 

the box. 
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Figure 3. Binary Trait Type I Errors. The plot shows the Type I errors for different parameter settings at 

cases = 200. Each panel represents the different case-control ratio used for the simulation dataset. The 

Type I error on the y-axis is calculated based on the number of false positive association below 

significance level of α = 0.00025. The disease penetrance is represented on the x-axis and each colored 

point represent different MAF used in the simulations. 

 

 

Figure 4. Quantitative Trait Power Results. Power estimates of the simulations are represented in the 

gradient color. Each panel represents the sample size of the simulated dataset, and for each panel, the 

minor allele frequencies are represented on the y-axis; the disease penetrance is on the y-axis. 
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Figure 5. Quantitative Trait Type I errors. The plot shows the Type I errors for different parameter 

settings for quantitative trait simulations. Each panel represents the different sample sizes. The Type I 

error on the y-axis is calculated based on the number of false positive association below significance level 

of α = 0.00025. The disease penetrance is represented on the x-axis and each colored point represent 

different MAF used in the simulations. 
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Figure 6.  A number of ICD-9 codes, by case threshold, are generated from EHR data of 100,000 

Geisinger's MyCode participants. The x-axis represents the different case thresholds we used in the 

binary data simulations. The y-axis, it shows the number of ICD-9 codes for each case threshold 

(>=cases) in 100,000 MyCode participants. For each ICD-9 code, the cases are defined as the individuals 

with three or more visits to the clinic. 
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Supplementary Figure 1. Binary Trait Type I Errors. The plot shows the Type I errors for different 

parameter settings. Each panel represents the different case number on the top and case-control ratio on 

the right which was used for the simulation dataset. The Type I error on the y-axis is calculated based on 

the number of false positive association below significance level of α = 0.00025. The disease penetrance 

is represented on the x-axis and each colored point represent different MAF used in the simulations. 
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