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Abstract

Background

Phenome-wide association studies (PheWAS) are a high-throughput approach to evaluate
comprehensive associations between genetic variants and a wide range of phenotypic measures.
PheWAS has varying sample sizes for quantitative traits, and variable numbers of cases and controls for
binary traits across the many phenotypes of interest, which can affect the statistical power to detect
associations. The motivation of this study is to investigate the various parameters which affect the
estimation of statistical power in PheWAS, including sample size, case-control ratio, minor allele

frequency, and disease penetrance.

Results

We performed a PheWAS simulation study, where we investigated variations in statistical power based
on different parameters, such as overall sample size, number of cases, case-control ratio, minor allele
frequency, and disease penetrance. The simulation was performed on both binary and quantitative
phenotypic measures. Our simulation on binary traits suggests that the number of cases has more impact
than the case to control ratio; also, we found that a sample size of 200 cases or more maintains

the statistical power to identify associations for common variants. For quantitative traits, a sample size of
1000 or more individuals performed best in the power calculations. We focused on common genetic
variants (MAF>0.01) in this study; however, in future studies, we will be extending this effort to perform

similar simulations on rare variants.

Conclusions
This study provides a series of PheWAS simulation analyses that can be used to estimate statistical
power for some potential scenarios. These results can be used to provide guidelines for appropriate

study design for future PheWAS analyses.
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Background

Phenome-wide association study (PheWAS) has been implemented in a variety of different studies, like
within the eMERGE network[1-5], using electronic health record (EHR) information that includes
international classification of disease version 9 (ICD-9) code based diagnoses, laboratory test
measurements and demographic information[6—8]. Other PheWAS have used data from epidemiological
studies[9,10], as well as clinical trials[8,9] such as the AIDS clinical trial group (ACTG), which consist of
measurements for different clinical domains like pharmacology, metabolism, virology, and
immunology[11,12]. Cohorts like these with a large number of measurements for every individual have
made PheWAS a practical approach when scanning over hundreds and thousands of phenotypes in a
high-throughput way. PheWAS generates genetic association hypotheses for further study and provides

insights through cross-phenotype associations.

Unlike genome-wide association studies (GWAS) where one phenotype is investigated in a study
population, PheWAS uses a wide range of phenotypes collected for a variety of reasons for each dataset,
often with minimal curation. Thus, in PheWAS, the data collected for different measurements can vary
considerably in sample size, including the numbers of cases for diagnoses, depending on the rarity of the
diagnosis. This makes the estimation of statistical power for PheWAS a challenge. For example, in
electronic health record (EHR) data, one of the most commonly used data types to define case-control
status is through ICD-9 codes; these codes provide information on disease diagnosis, procedures, and
medications in the form of three- to five-digit codes. The longitudinal ICD-9 data collected over many
years varies between patients due to multiple factors, such as differences in the frequency of patient
visits, differences in length of records due to different start and end dates, and incomplete patient medical
history. These factors generate sparseness and missing information in the data and, hence, variability in
the number of cases, the case-control ratio, and the overall sample size in case-control study designs.
These factors can then affect downstream association testing. Three issues exist for measures with low
sample sizes: 1) low statistical power to identify or replicate genetic associations and, 2) potentially

biased estimates in analyses with low sample size, and 3) an increase in multiple hypothesis testing
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burden through including low powered phenotypes that may not provide insights but increase the number

of statistical tests.

The goal of this study is to investigate differences in the power estimates by testing different parameters
commonly used in a PheWAS analysis. We investigated these parameters using a simulation approach
to characterize and determine the effect of case numbers or case-control ratio in a case-control study, as
well as the sample size for quantitative trait PheWAS. With our findings from the simulation analysis, we

provided recommendations to consider for future PheWAS study design.

Methods

Simulation Design

To investigate the power of the PheWAS approach and the sample size requirements, we simulated an
additive genetic model with a range of effect sizes, case-control ratios, and minor allele frequencies. The
simulation design assumes no confounding effects due to the environmental exposure and covariates.
Genotypes were simulated as SNPs, which were drawn according to Hardy Weinberg Equilibrium (HWE)
probabilities. Since multiple disease and phenotypes were investigated in an EHR-based PheWAS, the
prevalence of the diseases could differ in the study population. In our simulated datasets, we used a
constant disease prevalence, which is represented as R in the regression model and set to 0.1[13]. We
represented the effect sizes in terms of penetrance functions, which is a combination of genotypes and
the risk of diseases. The penetrance function is useful in estimating the probability of disease given the
genotype in a specific population. It is used to assign the case disease status to samples whose
genotypes are influencing the disease risk and vice versa for controls. We used a custom script written in
R[14] to generate random population-based samples with genotypes in HWE and their phenotypes using
different input parameters as shown in figure 1. We simulated both binary and quantitative trait
phenotypes. For quantitative trait phenotype, the same penetrance function was used to generate the
normalized distribution of phenotypes where genotypes of samples at the upper and lower end of the
distribution are associated with phenotype values. All the samples in the simulated datasets were drawn

at random, so there is no relatedness among the individuals.
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For binary phenotypes, we generated the simulated datasets by varying the following parameter settings:
cases, case-control ratios, SNP minor allele frequencies, and disease penetrance. In this simulation
study, we only investigated a study population with an unbalanced and unmatched cases and controls.
For example, we simulated a dataset with a random set of 30 individuals. The parameter settings for this
simulated dataset were as follows: case-control ratio=1:2, cases=10, controls=20, disease penetrance
=0.15, and SNP MAF=0.01. The simulated dataset was generated for four SNPs and 10 phenotypes,
including one SNP-phenotype model, with signal and other models were simulated as noise. The noise
was added to evaluate any systematic bias in the power estimates. The noise SNPs were generated by
randomly assigning the genotypes in the study population but keeping the MAF the same as the signal
SNP. We randomly assigned the cases for the noise phenotypes. Under each parameter setting, we
generated 1000 datasets and then calculated associations using logistic regression. Please refer to figure

1 for all the different combinations of parameter values used for simulation.

For the continuous or quantitative trait simulations, we investigated the power estimates similarly by
varying the sample size, minor allele frequencies, and disease penetrance. The simulated dataset was
generated for four SNPs and one phenotype, with one signal SNP-phenotype model, and the rest was the
noise data. We generated 3 noise SNPs as in the binary phenotype simulations. Again, we generated
1000 datasets for each parameter setting and then used linear regression to calculate associations with
the quantitative trait. Please refer to figure 1 for all the different combinations of parameter settings used
for the quantitative trait simulations. All the association testing for binary and quantitative phenotypes was

performed using PLATO[15].

We calculated the power estimates by counting the number of associations below an alpha value based

on total number of tests within each set of 1,000 simulated datasets for all parameter settings. For binary

traits, we used a = 0.00025 (0.01/40) and for the quantitative trait, we used a = 0.004 (0.01/4).

Results
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Binary trait simulations
We designed a simulation approach with different combinations of genotype and phenotype parameters
and then performed association testing so as to investigate the factors that could influence the power to

detect the signal.

In figure 2, we show trends in the estimates of power at a = 0.00025 for the parameters used in the
simulations. First, we observed an increase in power with an increase in penetrance irrespective of any
change in other parameters, and this is expected as highly penetrant diseases are more likely to be
identified even with small numbers of samples (this is due to high effect size). We also determined that
the ratio between cases and controls does not have much impact on the power. The number of cases is
what primarily influences the power to detect genetic associations. For example, as shown in figure 2, the
case-control ratio has a negligible effect on power, whereas with the increase in case numbers, we see
the increase in the power to identify an association. These simulations also show the importance of minor
allele frequency threshold when calculating associations on genotype models with an additive effect.
Here, we find that all of the simulation models showed increased performance, with minor allele
frequency greater than 5%. The model with lower frequency variants (MAF between 1% and 5%) did not
reach 100% power until the case threshold of 1000 samples, and it was only represented in the model
simulated with high disease penetrance. We observed that the common variants (MAF > 1%) have signal
when there are 200 or more cases. The Type 1 error for the parameter settings used to design simulation
dataset is well controlled (Supplementary figure 1) and we show an example of Type 1 error for one

parameter set simulated data with cases = 200 in figure 3.

Quantitative trait simulations

We also performed similar simulation analyses on quantitative traits (such as clinical lab variables) to
identify a sample size threshold for multi-phenotype -based studies like PheWAS. For quantitative traits,
we used different sample sizes for the simulation, ranging from 10 to 25,000, as these are based on
estimates of sample sizes we observed in EHRSs or clinical trials datasets[16,17]. As shown in figure 4, we

observed almost no power until the dataset had approximately 1000 samples for a phenotype with a
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penetrance of 0.15 and; as expected, we saw the increase in power with higher penetrance, even in
smaller sample sizes. Around the sample size of 1000, we see an increase in power, with a slight
variation with different minor allele frequencies. Again, variants with rare minor alleles did not perform well
until we had reached a sample size of 1000 and a penetrance of 0.3. These quantitative trait simulations
suggest that a threshold of 1000 samples for models with MAF greater than 5% in PheWAS is
recommended. Also, for the variants with MAF < 5% require either association analyses with much larger
sample sizes or a different statistical approach to evaluate rare variants. As shown in figure 5, the Type |

error for quantitative trait simulations are also well controlled.

Discussion

PheWAS provides the genomic landscape for multiple phenotypes, but a challenge of PheWAS is the
range of sample sizes and case numbers inherent when using a wide range of data instead of a single
phenotype like in GWAS. For example, there are 14,025 possible ICD-9 diagnosis codes and 3,824
procedure codes used by EHR systems within healthcare provider organizations. With the introduction of
ICD-10, the number of ICD-based codes has further increased to approximately 66,000. Testing 14,025
diagnosis codes for association with up to one million or more genetic variants results in a very high
multiple testing burden. Usually, a large fraction of codes have very low case numbers due to the rarity of
the diagnoses, and thus, they may not be sufficiently powered for association detection. For example,
Geisinger Health System (GHS) is one of the largest healthcare providers in central Pennsylvania, with
an EHR system including ~1.2 million unique patients. Using the EHR data in Geisinger for ~100,000
consented participants in the MyCode Community Health Initiative[16], we evaluated the extent of the
variability in the number of ICD-9 codes by case count. In order to account for misdiagnosis, we defined a
patient as a case for an ICD-9 code only when a patient had three or more independent visits where that
specific code was represented in the patient’s record. Out of 14,025 codes for data collected between the
years 1996 and 2015 for ICD-9 codes alone, 33% were not present at all and ~30% ICD-9 based
diagnoses had less than 10 patients with that code (case count < 10). In figure 6, we show the trends on
ICD-9 codes with cases at different thresholds and even after dropping out more than 60% of the ICD-9

codes, there are still 3,568 ICD-9 codes with 10 or more patients labeled as cases. This can increase the
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number of ICD-9 code based phenotypes for association testing, and it adds to the multiple hypothesis
burden. In our binary trait simulations, we show that we need 200 or more cases to have enough power to
detect genetic associations for common variants (MAF > 0.01). So, at that threshold, there are 831 ICD-9
codes with at least 200 patients with status as the case (as shown in figure 2). Based on our simulations,

we recommend using 200 as a case threshold for the common variant PheWAS analysis.

Using the findings from these simulations, we addressed three issues related to low sample size and its
impact on PheWAS approach. First, the impact of low sample size is evident in quantitative trait
simulations, which suggests that the sample size of 1000 individuals for each phenotype is important to
consider in the study design. However, in binary trait simulations, we observed that overall sample size
does not affect the power, but instead specifically the number of cases that drives power estimates.
Secondly, low Type 1 error across all parameter settings (Figure 3, Figure 5, Supplementary Figure 1)
shows no systematic bias in the regression method. However, low sample size or low case numbers will
not have enough statistical power to detect the associations. Lastly, we demonstrate that using the
above-suggested thresholds of case numbers for binary traits and sample size for quantitative traits can
help with the selection of phenotypes and reduce the number of tests and; hence, this can reduce the

multiple hypothesis testing burden.

Limitations

Using the simulation approach, we were able to identify the parameters impacting the power to determine
genetic associations and we provided recommendations for PheWAS analysis design. However, there
can be other factors that can influence the power of PheWAS analysis. We primarily ran all the
simulations based on a regression model (linear or logistic regression), but there are now many other
statistical methods for phenome-wide association analysis[18]. Further extensions of these simulation
studies to explore other statistical methods will be important. We limited our investigation in this study to
an additive effect of genotypes. However, there are other factors that can influence the power estimates;

these include environmental exposure, confounding covariates (age, sex, and ancestry), and underlying
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genotype effects (dominant and interaction). In the future, we will plan to include such effects in our

simulation design.

Conclusions

PheWAS have become a common tool to explore the genotype-phenotype landscape of large biobanks
linked to comprehensive phenotype/trait data collections as in EHRSs, clinical trials, or epidemiological
cohort studies. This high-throughput analysis approach has been met with much success in recent
years[4,6,10]. However, the community has been lacking guidance for making study design decisions
regarding sample size, case to control ratios, and minor allele frequency thresholds. At present, there is
not a PheWAS Power Calculator available to researchers. Thus, we implemented a large-scale simulation
study to provide some guidelines for understanding the statistical power of PheWAS analyses under
different scenarios. We believe these simulation results provide the needed power estimates for future

PheWAS analysis decisions.
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Figure 1. Simulation workflow. We designed a simulation approach to test different testing parameters
for a PheWAS analysis and their effect on the power estimates. For each combination of the testing

parameters, we generated 1,000 simulated datasets. Then, we performed association testing using
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logistic and linear regression for binary and quantitative phenotypes respectively. The power estimates
were calculated for each combination of parameter setting at significance level of a = 0.00025 (Binary

trait) and a = 0.004 (Quantitative trait)
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Figure 2. Binary Trait Power Results. The power estimates of the simulations are represented in the
gradient color. Each panel represents the power estimate for a specific parameter setting. For each
panel, minor allele frequencies are represented on the y-axis; the disease penetrance appear on the y-
axis; the case numbers appear on the top, and the respective case-control ratios are on the right side of

the box.
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Figure 4. Quantitative Trait Power Results. Power estimates of the simulations are represented in the
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Figure 5. Quantitative Trait Type | errors. The plot shows the Type | errors for different parameter
settings for quantitative trait simulations. Each panel represents the different sample sizes. The Type |
error on the y-axis is calculated based on the number of false positive association below significance level

of a = 0.00025. The disease penetrance is represented on the x-axis and each colored point represent

different MAF used in the simulations.
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Figure 6. A number of ICD-9 codes, by case threshold, are generated from EHR data of 100,000
Geisinger's MyCode participants. The x-axis represents the different case thresholds we used in the
binary data simulations. The y-axis, it shows the number of ICD-9 codes for each case threshold
(>=cases) in 100,000 MyCode participants. For each ICD-9 code, the cases are defined as the individuals

with three or more visits to the clinic.
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Supplementary Figure 1. Binary Trait Type | Errors. The plot shows the Type | errors for different

parameter settings. Each panel represents the different case number on the top and case-control ratio on
the right which was used for the simulation dataset. The Type | error on the y-axis is calculated based on
the number of false positive association below significance level of a = 0.00025. The disease penetrance

is represented on the x-axis and each colored point represent different MAF used in the simulations.
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