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Abstract

The 3D structure of chromatin plays a key role in genome function, including gene
expression, DNA replication, chromosome segregation, and DNA repair. Furthermore
the location of genomic loci within the nucleus, especially relative to each other and
nuclear structures such as the nuclear envelope and nuclear bodies strongly correlates with
aspects of function such as gene expression. Therefore, determining the 3D position of
the 6 billion DNA base pairs in each of the 23 chromosomes inside the nucleus of a human
cell is a central challenge of biology. Recent advances of super-resolution microscopy in
principle enable the mapping of specific molecular features with nanometer precision
inside cells. Combined with highly specific, sensitive and multiplexed fluorescence
labeling of DNA sequences this opens up the possibility of mapping the 3D path of the
genome sequence in situ.

Here we develop computational methodologies to reconstruct the sequence configura-
tion of all human chromosomes in the nucleus from a super-resolution image of a set
of fluorescent in situ probes hybridized to the genome in a cell. To test our approach,
we develop a method for the simulation of DNA in an idealized human nucleus. Our
reconstruction method, ChromoTrace, uses suffix trees to assign a known linear ordering
of in situ probes on the genome to an unknown set of 3D in-situ probe positions in the
nucleus from super-resolved images using the known genomic probe spacing as a set of
physical distance constraints between probes. We find that ChromoTrace can assign
the 3D positions of the majority of loci with high accuracy and reasonable sensitivity
to specific genome sequences. By simulating appropriate spatial resolution, label mul-
tiplexing and noise scenarios we assess our algorithms performance. Our study shows
that it is feasible to achieve genome-wide reconstruction of the 3D DNA path based on
super-resolution microscopy images.

Author Summary

The 3D structure of DNA in the nucleus is known to be important for many aspects of 1

DNA function, such as how gene expression is regulated. However, current techniques to 2
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localise or determine 3D DNA structure are often indirect. The advent of super-resolution 3

microscopy, at a resolution of 20 nm or better can directly visualize fluorescent probes 4

bound to specific DNA in the nucleus. However it is not trivial to associate how many 5

specific stretches of DNA lie relative to each other, making reliable and precise 3D 6

mapping of large stretches of the genome difficult. Here, we propose a method that 7

leverages the fact that we know the sequence of the genome and the resolution of the 8

super-resolution microscope. Our method, ChromoTrace, uses a computer science data 9

structure, suffix trees, that allow one to simultaneous search the entire genome for 10

specific sub-sequences. To show that our method works, we build a simulation scheme for 11

simulating DNA as ensembles of polymer chains in a nucleus and explore the sensitivity 12

of our method to different types of error. ChromoTrace can robustly and accurately 13

reconstruct 3D paths in our simulations. 14
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Introduction 15

The primary nucleic acid sequence of the human genome is not sufficient to understand 16

its functions and their regulation. Fitting the 6 billion basepairs or approximately 2 m of 17

double-helical DNA into an approximately 10 µm radius nucleus requires tight packing 18

of DNA into chromatin, where about 150 bp of DNA are wrapped around cylindrical 19

nucleosome core particles, which in turn can be tightly packed due to interspersed flexible 20

linker DNA [1]. In addition, each chromosomal DNA molecule occupies a discrete 3D 21

volume inside the nucleus and the arrangement of these chromosome territories is non- 22

random and changes with cell differentiation [2, 3]. This remarkable spatial management 23

of 23 large linear polymer molecules controls crucial functions of the genome, such as 24

gene expression, DNA replication, chromosome segregation, and DNA repair. 25

26

Structural biology techniques, such as electron microscopy, crystallography, and NMR 27

have given atomic level insights into the physical structure of the DNA double helix 28

and the nucleosome [4]. In vitro, also higher order structures such as nucleosomes 29

stacked into 11 or 30 nm chromatin fibres can be observed and studied at high resolution. 30

However, the existence of regular higher order nucleosome structures in vivo has not 31

been demonstrated under physiological conditions. To date, little direct information is 32

available about the functionally crucial 3D folding and structure of chromatin between 33

the scale of single nucleosomes (approximately 5 nm) and the diffraction limit of light 34

(200 nm), which can only resolve entire chromosome territories with a size of a few µm. 35

36

In situ, classically two general types of higher order chromatin organization have been 37

distinguished at a coarser level, euchromatin which tends to be less compact and displays 38

high gene density and activity, and heterochromatin, with a higher degree of compaction 39

and lower gene density and activity [5]. Due to the arrangement of chromatin from indi- 40

vidual chromosomes in territories, the majority of DNA-DNA interactions occur in cis, 41

while trans interactions are more rare and mostly observed on the surface of or on loops 42

outside of territories [6–8]. Within territories and across the whole nucleus euchromatin 43

and heterochromatin are generally spatially separated [9], leading to heterochromatin 44

rich and gene expression poor domains at the nuclear periphery and around nucleoli. 45

Gene expression is intrinsically linked to the 3D structure of chromosomes, chromatin 46

packing densities and the accessibility of DNA by e.g. the transcriptional machinery. 47

48

In the last 10 years, biochemical DNA crosslinking technologies based on chromo- 49

some conformation capture (3C), have been developed to address the issue of higher 50

order chromatin structure in an indirect manner [10]. These methods have been widely 51

used to measure the average linear proximity of genome sequences to each other in cell 52

populations with good throughput and at kb resolution. The resulting contact frequency 53

maps analyzed with computational models have indirectly inferred principles of genome 54

organization [11]. A major result of these studies, is that chromosomes are organized into 55

domains of 400-800 kb that are topologically associated. These TADs are the smallest 56

structuring units of chromatin above the 150 bp nucleosome level that can be reliably 57

detected biochemically so far. Although good correlations between contact frequency and 58

regulatory elements has been shown for several genes [12], such crosslinking technologies 59

cannot determine the 3D position and physical distances of genomic loci inside the 60

nucleus directly. 61

62

Recent developments in light microscopy techniques, collectively called super-resolution 63

microscopy, can determine the position of single fluorescent molecules with a precision of 64

a few nanometers, much below the diffraction barrier. This allows the characterization 65

of previously unobserved details of biological structures and processes [13–16]. First 66
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studies have already explored the use of super-resolution microscopy to investigate 67

chromatin structure [17–19], such as the organization of distinct epigenetic states in 68

Drosophila cells [20] that suggested distinct folding mechanisms and packing densities 69

that correlate with gene expression. Dissection of nucleosome organization inside the 70

nucleus in single cells using super-resolution shows that higher nucleosome compaction 71

corresponds to heterochromatin while lower compaction associates with active chromatin 72

regions and RNA polymerase II, and that the spatial distribution, size and compaction 73

of nucleosome correlate to cell pluripotency [18]. While these studies provide first new 74

intriguing insights into chromatin organization they have so far largely focused on single 75

loci without a complete 3D reconstruction of a chromosome or the genome. 76

77

However, the resolving power of super-resolution microscopy raises the tantalizing possi- 78

bility to directly reconstruct the 3D path of large parts of the chromosomal DNA molecule. 79

Super-resolution microscopy can resolve unprecedentedly small volume elements (ap- 80

proximately 20 x 20 x 20 nm [21]) inside the total nuclear volume (approximately 81

8× 10−6µm3), which will on average contain only up to 2 kb or a few nucleosomes. This 82

fundamental increase in information of the relative positioning of defined loci in the 83

genome can now be leveraged computationally. 84

85

This increase in resolution, which enables to distinguish around 60 million volume 86

elements inside a single nucleus, can be combined with any sensitive and site specific 87

fluorescence in situ hybridization (FISH) probe design that allows for spectral and/or 88

temporal multiplexing. Several methods that fulfill these criteria have recently been 89

developed, and fall within two general probe design categories; either a primary imager 90

strand with fluorophore-containing DNA is hybridized to the genome directly [22] or 91

a primary genome-sequence specific DNA probe that facilitates transient binding of 92

the fluorophore-containing secondary imager strand is used (DNA-PAINT) [23]. Our 93

reconstruction algorithm should in principle allow the mapping of the genome sequence 94

in 3D with a resolution of tens of nucleosomes, depending on their local packing density. 95

96

Carrying out such large-scale genome mapping studies by systematic super-resolution 97

microscopy will critically depend upon choosing the best design of the necessary chro- 98

mosome or genome wide fluorescent probe libraries and use sufficient resolution in the 99

employed 3D super-resolution imaging technology. To prove that such studies are feasible 100

and guide their probe design and microscope technology choices, we have developed 101

an algorithm, called ChromoTrace, that uses an efficient combinatorial search to test 102

the theoretical possibility of complete three-dimensional reconstruction of chromosomal 103

scale regions of DNA inside nuclei of single human cells (Fig 1). To thoroughly test our 104

algorithm, we have developed a simulation to model DNA within a geometry similar 105

to that of the human nucleus. Our modeled 3D architecture provides a challenging 106

environment to test our approach, and our ChromoTrace reconstruction algorithm then 107

maps the simulated 3D label positions back to the reference genome. By simulating 108

realistic resolution, label multiplexing and noise scenarios we assessed the algorithm 109

performance for different experimental scenarios. Our results show that ChromoTrace 110

can map the positions of the labeled probes back to the reference genome with very 111

high precision and recall. Importantly, our study shows for the first time that it is 112

feasible to achieve genome-wide reconstruction of the 3D DNA path based on current 113

super-resolution microscopy and DNA labeling technology and defines the required 114

quality of experimental data to achieve a certain bp resolution and reconstruction com- 115

pleteness. This will be invaluable to guide experimental efforts to generate such data 116

sets systematically. 117

118
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Fig1. Representation of a chromosome labeling scheme. (A) Linear DNA displayed as 119

a ribbon with six genome regions labelled in three different colors. (B) 3D view of a 120

reconstructed polymer chains. Each globe represents a nucleous and each colored strand 121

within them a polymer chain simulation of a chromosome. The left globe contains only 122

a single chromosome. 123

Materials and Methods 124

Simulation of DNA in the nucleus 125

In our simulations we consider each chromosome as a general polymer chain and the 126

whole genome as an ensemble of polymer chains. Each of the polymer chains is modelled 127

as a self avoiding walk (SAW) through a 3D lattice graph. A 3D lattice graph is a three 128

dimensional grid of equally spaced points (from here referred to as nodes), where only 129

the nearest neighbours are connected by an edge and a SAW is a path through a lattice 130

which does not intersect itself. We choose to use SAWs as they are commonly used to 131

model chain-like structures including solvents and polymers, such as DNA [24]. In the 132

following text we use the term color equally to either represent different fluorophores, 133

ratiometric labeling with fluorophore mixtures or barcodes, or temporally separated 134

localizations of one or several fluorophores. We generate SAWs through a simple random 135

process. To generate a SAW we pick a random starting node in the lattice that satisfies 136

three conditions. 137

1. The point is not already part of a SAW. 138

2. The point is inside the nucleus. 139

3. The point is outside the nucleolus. 140

From here the SAW is extended by picking one of the adjacent nodes at random each 141

with equal probability. If the point satisfies the above three conditions then it is added 142

to the SAW; otherwise another adjacent node is picked at random and the conditions 143

checked. This process continues until the SAW reaches the desired length or the SAW 144

becomes stuck and unable to pick any adjacent node. Should the SAW become stuck, we 145

restart this process from another node on the current SAW. Assume the current SAW is 146

of length i, we truncate the SAW to length max(0, 0.8i) and begin the process again 147

until the SAW reaches the desired length. 148

ChromoTrace Algorithm 149

In this section we describe ChromoTrace, a new algorithm to identify the 3D structure of 150

chromosomes from a set of labeled points. We begin with an intuitive description of the 151

algorithm and then present the process more formally. The input given to the algorithm 152

is a segmentation file, consisting of a list of (x, y, z) coordinates with associated colors 153

and a labeling file, consisting of a list of genomic locations with associated colors and a 154

distance threshold. The goal of the algorithm is to correctly map the (x, y, z) coordinates 155

to their genomic locations. A brief outline of the ChromoTrace algorithm is given below. 156

1. Build a suffix tree of the labeling data. 157

2. Build distance graph of the segmentation data. 158

(a) Find all maximal trivial paths in the distance graph. 159

(b) For each maximal trivial path. 160
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i. Search the suffix tree and attempt to identify the genomic locations of 161

trivial paths. 162

ii. Extend located paths one character at a time until the extension becomes 163

ambiguous. 164

iii. Attempt to resolve ambiguous extensions. 165

iv. Repeat from Step 2)b)i) until no paths can be extended. 166

(c) Remove located paths from suffix tree and distance graph. 167

(d) Repeat this process from Step 2)a) until no new maximal trivial paths can be 168

found 169

Data Structures 170

Suffix Trees A suffix tree is a well understood indexing data structure [25,26] that 171

allows for very fast searching of a subsequence within a sequence. A suffix tree efficiently 172

stores every subsequence of the indexed sequence, for a sequence of length n it has 173

exactly n leaves and has total size proportional to n. The subsequence of the indexed 174

sequence are spelled out as paths from the root of the suffix tree (Fig 2). 175

176

Fig2. Suffix tree of the sequence BGRY BGRY BGRY . Every subsequence of the 177

sequence is spelled out on edges from the root, at the top of the tree, to a leaf node, at 178

the bottom of the tree. 179

Distance Graph Key to our algorithm is the construction of a graph from the (x, y, z)
coordinates in the segmentation file. Each (x, y, z) coordinate will be represented as a
node in the graph and two nodes are connected if and only if the Euclidean distance
between them is less than a threshold T. T is a user defined value that should be
modified depending on spacing of the probe design and resolution of the image. A
path in a graph is a sequence of edges, e1, e2, . . . , em, connecting a sequence of nodes
v1, v2, . . . , vm+1. We define a trivial path in the distance graph as a path such that every
node connected by the path except for v1 and vm+1 are required to have exactly two
adjacent nodes. A trivial path is maximal if it cannot be extended at either end. More
formally we define a trivial path as a path e1, e2, . . . , em such that it’s node sequence
v1, v2, . . . , vm+1 satisfies the following:

|vi| = 2 for 1 < i < m+ 1

where |vi| denotes the number of adjacent nodes of vi. A trivial path is therefore maximal 180

if it is also true that for i equal to 1 and m that |vi| 6= 2 or the path forms a cycle. 181

Algorithm 182

After building the suffix tree and processing the segmentation file to build the distance 183

graph we must search the graph to find all of the maximal trivial paths. The set of 184

maximal trivial paths can be found by first storing the number of neighbours each node 185

has and then processing this list. Given the set of maximal trivial paths it is simple to 186

extract the sequence of colors each trivial path represents and to search for this sequence 187

in the suffix tree. If the sequence occurs uniquely in the suffix tree we associate this 188

path with the genomic location found in the suffix tree. Once we have a set of paths 189

mapped to a genomic location we also know which color is expected at the next position 190

in the path. Using this information we explore the distance graph and extend the path 191

with the expected color if there is only one adjacent node with this color. Once we have 192

extended in this way as much as possible there may exist paths where the expected 193
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extension is ambiguous. More specifically we may have a path where there are two or 194

more adjacent nodes that are labelled with the expected color. In this situation we find 195

the next L expected colors and search the distance graph for this combination. if there 196

exists an unambiguous extension we add this to the path, otherwise we stop. L is a user 197

defined input where larger values of L will make the algorithm slower but likely increase 198

recall. We repeat this extension process iteratively until no paths can be extended. All 199

of the mapped loci are then removed from the distance graph and suffix tree and the 200

algorithm started again. This entire process is repeated until no more paths can be 201

extended and no more trivial paths found. 202

Results 203

Simulations of DNA paths in the nucleus 204

To simulate the results of super-resolved detection of large-scale probe hybridizations, 205

we need to build a model of reasonable packing densities of DNA in the human nucleus. 206

The precise local density of DNA in the human nucleus is surprisingly unclear due to 207

the uncertainty regarding the in vivo structure of chromatin. To tackle this problem 208

with reasonable computational complexity at the scale relevant for super-resolution 209

microscopy our simulation uses an intermediate grained self-avoiding-walk (SAW) model 210

for DNA on a grid of points. We use the SAW model to represent DNA as it has been 211

widely used in literature to simulate the structure of polymer chains [24]. The focus 212

of the simulations is to create a challenging environment to test our algorithm and 213

not on creating a realistic simulation of chromatin, although we do use experimentally 214

determined properties where possible. 215

216

The nucleus is delimited by the nuclear envelope and contains the nucleolus and DNA. 217

To approximate the structure of the nucleus we used a 3D sphere of 500 µm3 volume, 218

with an internal sphere of 50 µm3 volume devoid of polymer chains that represents the 219

nucleolus. In this space we generated 46 polymer chains (two copies for the 22 autosomes 220

and the two sex chromosomes X and Y). Each polymer chain was generated with a length 221

proportional to the chromosome size and the polymer chains were forced to remain inside 222

the simulated nucleus but not allowed to enter the simulated nucleolus. We assume 223

random packing of polymer chains and an average density corresponding to the highest 224

values estimated in human cells, to estimate the sequence reconstruction challenge at 225

a single cell level. Fig 3 shows the packing density and folding characteristics for the 226

ensemble of polymer chains generated by SAWs. Interestingly, although we assumed 227

random packing and no biologically driven heterogeneity in density, the simulation 228

results in a variety of SAW conformations showing broad similarities to known chromatin 229

conformations (i.e., open, fractal and compact). For the remaining text we refer to 230

polymer chains as DNA, refer to each chain by the chromosome it represents in our 231

model and the entire ensemble as a genome. 232

233

Fig3. 3D view of the simulated genome. (A) An ensemble of polymer chains, each 234

chain, representing two copies for the 22 autosomes and the two sex chromosomes X 235

and Y, is drawn with a different color. Individual polymer chains show a random 236

configuration with a high degree of compactness inside the nucleus. (B) One polymer 237

chain is highlighted showing a variety of polymer conformations with some similarities to, 238

open, fractal and compact chromatin conformations. Each polymer chain is proportional 239

to the size of a chromosome and is labelled as such. 240
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Testing the mapping of chromosomal DNA sequence to 3D posi- 241

tions of labeled loci 242

With our ability to simulate DNA in a nucleus, as general polymer chains, we then 243

explored under which experimental conditions, and with what computational methods, 244

the 3D positions of fluorescently labeled genomic loci could be mapped back to the 245

linear chromosomal DNA sequences. Computationally the inputs to the method is a 246

description of the linear labeling of the genome with different colors and the results of 247

the super-resolution image determination, providing a set of the 3D coordinates (x, y, z) 248

and color classification but without the indication of the locus (Fig 4A). The colors 249

where assigned to loci at random, each color having equal probability. The goal of the re- 250

construction algorithm is to assign each of the in situ loci with a specific (x, y, z) position. 251

252

Fig4. Illustration of the ChromoTrace algorithm. (A) The 3D coordinates that would 253

be obtained from super-resolution microscope imaging are converted into an distance 254

graph. Given the pre-specified linear labeling sequence of green-red-blue-blue-green a 255

trivial path is detected. Note that in the microscopy image the connection between 256

points is unknown and only the colors remain. (B) Diagram of the extension algorithm 257

exploring the ambiguous extension phase. 258

259

If we had the same number of colors as loci this task would be trivial, however, the 260

experimental constraints mean that we will have vastly more loci than different colors. 261

Further challenges will occur due to errors in the labeling and imaging experiment. We 262

proposed to solve this problem using the fact that the linear sequence of the probe design 263

dramatically constrains the search space for solutions. Furthermore we can use efficient 264

string based data structures, such as a suffix tree, to efficiently explore compatible places 265

of the design space relative to the 3D space. We named this combined combinatorial 266

exploration followed by expansion the ChromoTrace method (Methods). 267

268

Our simulations puts us in a position to explore these experimental and technical 269

constraints in a controlled manner, since we can vary the probe design both in terms 270

of number of colors and spacing along the linear genome sequence. Since we know 271

the underlying ground truth of sequence identity and probe color, we can test the 272

hypothesis that the high resolution of 3D position determination and high reliability 273

of color classification provided by super-resolution microscopy should provide enough 274

information to find unique solutions for mapping back probe positions to the linear DNA 275

sequence. 276

277

We created probe designs using a regular fixed spacing between probes (in our simulations 278

we use 10.8 kb spacing), resulting in an effective spatial imaging resolution of 4.3 x10−5 279

µm3 volume which is well within the limits of super-resolution. We then convert the 280

3D positions of the simulated imaging data to a graph of potential adjacencies, using a 281

threshold distance of T which relates to the maximum distance between two sequential 282

probe positions in space (10.8 kb) assuming an average compaction of DNA. The resulting 283

distance graph should in theory contain most of the true paths of the probes along 284

the genome plus spurious links of physically close but non-adjacent probes. We then 285

created a suffix tree containing the expected probe colors along the genome, capturing 286

the two possible directions of reading the labels (p to q and q to p direction) resulting 287

in a reversible suffix tree with path information for both forward and reverse genome 288

directions. The algorithm then iteratively explores the distance graph to find regions 289

with a unique solution of matching potentially physically adjacent color combinations 290

with the genome sequence (Fig 4A). Once such anchor regions are found, the algorithm 291

has a vastly reduced search space and extends them into the distance graph until it 292
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hits regions with high combinatorial complexity (Fig 4B), such as highly compact regions. 293

294

To test the performance of ChromoTrace for determining the DNA path through the 295

nucleus we first loaded the labeling file into the reversible suffix tree and jointly searched 296

the suffix tree and distance graph (x, y, z) to find unique sequences of colors found in 297

both. We chose a value for the distance threshold as the value which maximises the 298

number of trivial paths that we find. We performed this analysis for all 100 synthetic 299

nuclear sets, for all 22 probe designs, for all chromosomes separately as well as for the 300

whole genome. Each design is created using a different number of colors ranging from 301

3 to 24. We choose to use precision (specificity) and recall (or sensitivity) to assess 302

algorithm performance. Recall is the ratio of the number of correctly mapped probes to 303

the total number of probes and precision is the ratio of the number of correctly mapped 304

probes to the total number of mapped probes. Since the ground truth is known a priori 305

in our simulation there is no ambiguity in how to measure performance. 306

307

Analyzing these 55,000 reconstruction attempts shows that the algorithm is highly 308

precise (mean of 0.99 across all simulations), however the recall rate is much more 309

variable (Fig 5A). This variability can largely be explained by two factors i) the number 310

of colors available in the probe design ii) the density of probe positions in 3D space. 311

For individual chromosomes the mean recall rate is approximately 0.99 when using a 312

10 color probe design, however for the same probe design genome wide the mean recall 313

rate drops to 0.64 (Fig 5A). This reflects the increased number of ambiguous sequence 314

paths available when the spatial search space is more densely packed, due to labeled 315

sequences from physically close chromosomes. 316

317

Fig5. Reconstruction performance for the main simulations. The reconstruction algo- 318

rithms performance is shown in terms of the relationship between precision and recall 319

given the number of colors in the probe design. (A) Recall against precision genome 320

wide (triangles) and for chromosome 20 (circles). Precision is good for both genome and 321

chromosome scale regions for all the different probe designs whereas recall is much more 322

dependent on the number of available colors and improves as the number of colors is 323

increased. (B) Total number of contacts in 100 kb windows against the area under the 324

precision-recall curve given the number of colors in the probe design. 325

326

To assess the reconstruction performance in dependence of the spatial probe position 327

density (i.e. DNA compaction) we show the area under the precision-recall curve values 328

(PR AUC) against the total number of intra-chromosomal contacts in 100 kb windows 329

across all autosomes and for all probe designs (Fig 5B). The contacts are defined as 330

the total number of occupied spaces around each labeled probe, taking into account 331

the grid of points directly surrounding each probe. There is a clear trend for increased 332

PR AUC values for probe designs with a greater number of colors irrespective of DNA 333

density. Across all probe designs there is a marked drop in performance as the DNA den- 334

sity increases, and this drop is much sharper for probe designs with fewer colors (Fig 5B). 335

336

For optimum reconstruction it is important to address performance in terms of the 337

completeness of the reconstructed paths. We assessed the length of reconstructed paths 338

in the context of the number of colors available for the labeling design (Fig 6). As 339

expected we see a clear trend towards increased mean and variance of path lengths as 340

the number of colors is increased. Furthermore, the minimum path length across all 341

simulations for each labeling design was 6. The necessity of ChromoTrace to find unique 342

anchors points (trivial paths) before extending further out into the distance graph results 343

in paths never being smaller than 6 points long which is an expected observation when 344
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considering the random placement of colors across the simulation space and the global 345

compaction of the chromosomes. 346

347

Fig6. Distribution of path lengths. The relationship between the number of col- 348

ors and the length of the paths found by ChromoTrace is shown in this plot. A violin 349

plot is shown for each number of colors and the relation to the logarithm (log base 10) 350

of the path length. More colors lead to longer paths and after 10 colors the path length 351

does not increase as recall becomes greater than 0.99. Within the violin plot the first 352

and third quartiles are shown. 353

Robustness and error tolerance 354

Real experimental super-resolution data will contain noise, likely from two major sources, 355

firstly missing probes due to hybridization failure and secondly mislabeled probes, either 356

due to chemical mislabeling or crosstalk between different dyes in the super-resolution 357

microscope. To assess the performance of the reconstruction algorithm in the presence 358

of errors we simulated 99 datasets for each error mode, containing error rates ranging 359

from 1% to 99%, across all 22 probe designs for the 100 simulated nuclear sets, for all 360

chromosomes separately as well as for the whole genome (a total of over 5.4 Million 361

simulations). The errors were added to our simulations at random with the appropriate 362

error rate. 363

364

For all probe designs the proportion of mislabeled probes has a dramatic effect on 365

the reconstruction precision and we observe a clear decrease in precision as the propor- 366

tion of probes with the wrong color is increased (Fig 7A). At 10% mislabeled probes 367

for the 24 color probe designs the mean precision is 0.94 (SD=0.003), dropping to 0.92 368

(SD=0.006) for 11 colors and to 0.7 (SD=0.003) for 3 colors. Recall rates are even more 369

strongly effected by the proportion of mislabeled probes, starting from a maximum 370

recall rate of approximately 0.99 for the 24 color probe designs with no mislabeled 371

probes, recall rates drop sharply for all probe designs as the proportion of mislabeled 372

probes increases (Fig 7B). At 10% mislabeled probes for the 24-color probe designs the 373

mean recall is 0.85 (SD=0.012), dropping to 0.59 (SD=0.002) for 11 colors and to 0.1 374

(SD=0.01) for 3 colors. At above 60% of mislabeled probes both precision and recall is 375

too low to be useful. The rapid drop in performance for recall compared to precision is 376

not unexpected considering that ChromoTrace uses exact matching. 377

378

Fig7. Robustness to missing and mislabeled probes. Relationship between amount of 379

error for two different modes (missing and mislabeled probes) and the overall reconstruc- 380

tion performance given the number of colors in the probe design is displayed in panels A 381

through D. The number of colors in the probe design is indicated using different shades of 382

black-blue. Panels A and C show the proportion of error against precision for mislabeled 383

and missing probe errors respectively and panels B and D show the proportion of error 384

against recall. 385

386

For missing probes the relationship between recall and percentage of errors is very 387

similar (Fig 7B and 7D). This is not surprising since either removing or replacing 388

probes with a wrong color in a sequence of colors is likely to stop the extension of 389

correct paths at a similar rate. Precision however, only starts to drop at a much higher 390

percentage of missing, compared to mislabeled probes (Fig 7A and 7C). This suggests 391

that the chance of creating an error in path extension when removing probes is lower 392

than if mislabeled probes are present. If DNA paths were linear in 3D space this would be 393

entirely expected as the distance threshold between sequential probes would ensure that 394

most paths are not incorrectly extended across missing probe locations, while mislabeled 395
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probes will not only terminate extension but also cause mismatches to the genome 396

sequence. These results suggest that removing relatively large numbers of probes is 397

unlikely to cause incorrect path extensions across a majority of the simulated DNA space. 398

399

Encouragingly even for the probe designs with the lowest numbers of colors (3) precision 400

remains at approximately 0.8 with a missing probe rate of 25%. Furthermore, precision 401

is also relatively robust to mislabeled probe errors, remaining above 0.75 with more than 402

15% of mislabeled probes for probe designs with greater than 7 colors. As expected recall 403

is far more sensitive to error and there is only a marginal difference observed between 404

the two error modes. 405

Differences in DNA packing density 406

It is unclear how much of the available volume chromatin occupies locally within the 407

nucleus under physiological conditions, but the literature suggests nucleosome concen- 408

trations of 140 ± 28 µM with nucleosomes every 185 bp in HeLa cells leading to a 409

packing density of 10 % when assuming a nucleosome volume of 1296 nm3 [27]. To be 410

conservative, our simulation used a higher than average density of DNA, with 34% of 411

the available local volume occupied by DNA (545 thousand points per genome from 412

a 1.59 million point grid). An increased density of the SAWs will result in a harder 413

reconstruction problem, because a higher number of occupied adjacent spaces within 414

the simulation leads to an increase in the number of ambiguous choices for path extension. 415

416

To assess the effect of lowering the DNA density we performed additional simula- 417

tions by omitting the nucleolus and doubling the radius of the nucleus resulting in filling 418

approximately 6.9% of the nuclear volume with DNA (982 thousand points per genome 419

from a 14.1 million point grid). Unsurprisingly these SAWs are less densely packed, 420

an effect that can be visualized by looking at the proportion of adjacent spaces that 421

are occupied, given the distance threshold T, for all labeled genomic locations in the 422

simulations (Fig 8). While in our original simulations the median proportion of occupied 423

spaces around each probe position from the labeling design is 0.52 (Fig 8B), in the 424

lower density simulations this is decreased to 0.37 (Fig 8A). 425

426

Fig8. Differences in simulation packing densities. Reconstruction performance when 427

decreasing the packing density of the simulations. (A-B) For all positions across the 428

simulations, the proportion of directly adjacent spaces that are occupied for the new 429

(blue) and original (red) simulations respectively. The distribution is left shifted for 430

the new simulations compared to the original and the median number of occupied 431

spaces is reduced reflecting a decrease in density. (C) Genome wide performance of the 432

reconstruction algorithm for the new (triangles) and original (circles) simulations in 433

terms of precision and recall given the number of colors in the probe design. 434

435

To test how this effects the reconstruction performance, we generated 100 synthetic 436

nuclear sets using the approach described above and produced 22 different probe designs 437

containing 3 to 24 colors for the lower density simulations. We then reconstructed using 438

the ChromoTrace algorithm for all synthetic data sets for each chromosome separately 439

and for the whole genome. As expected performance, in terms of both precision and 440

recall, is significantly improved for the less densely packed simulations (Fig 8C). The 441

genome wide mean precision remains high (greater than 0.99) for all probe designs. The 442

difference in recall is much more pronounced with mean recall rates of 0.99, 0.92 and 443

0.12, compared to 0.97, 0.48 and 0.08, for probe designs with 24, 11 and 3 colors for 444

the lower density compared to the higher density simulations respectively. Importantly 445

when comparing the lower to the higher density simulations the recall rate is improved 446
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by a mean factor of 3 across all different color probe designs (Fig 8C). This marked 447

improvement in sensitivity reflects the decreased number of occupied adjacent 3D spaces 448

around each individual probe position and consequently a reduced number of ambiguous 449

sequence path extension choices when lowering the density of the simulated DNA paths 450

(Fig 8A and 8B). Overall across all probes designs the lower density simulations have a 451

genome wide mean recall rate of 0.84 compared to 0.58 for the higher density simulations. 452

Simulating Localization Event Profiles 453

Until this point we have been using simulations containing uniform spacing between 454

adjacently labeled positions (loci), however the distance between adjacent labels in real 455

super resolution experiments will be variable. The main factors effecting this variability 456

are likely to be the lack of absolute uniformity of sequence specific probe spacing along 457

the genome, the super-resolution image localization precision and the probability of 458

effective probe hybridization. To create a more accurate simulation of real experimental 459

data we developed a full simulation of a super resolution experiment. Starting from 460

probe level localization we simulated the results of image acquisition, followed by event 461

clustering leading to observed 3D positions. Importantly this leads to a more varied set 462

of distances between observed loci positions (Supplementary Information 1). 463

464

Briefly, starting with the 100 SAWs and the 10 color probe designs, we used each 465

3D coordinate as the starting point in 3D space and placed 10 probes equally spaced 466

along a single direction (x, y, or z) based on the direction of travel along the walk. The 467

midpoint of each group of probes is the original starting position and each probe was 468

given a 0.3 probability of being missing. Next, for each probe, we simulated a number of 469

localization events (LE’s) drawn from a poisson distribution with a mean of 5 and added 470

error in all directions independently, drawing from normal distributions with standard 471

deviations of 5 nm, 5 nm, and 15 nm for x, y and z, respectively. For clustering these 472

LE profiles we used the DBSCAN (Density-based spatial clustering of application with 473

noise) algorithm [28]. To define the final 3D coordinates for each locus we took the 474

mean coordinate from each direction separately across all LE’s for each cluster that was 475

defined by DBSCAN. These along with their relevant 10 color labeling designs were used 476

as the input to ChromoTrace. 477

478

We investigated the result of applying this process to the starting simulations in terms of 479

three different types of error. Firstly, the overall percent of missing loci is approximately 480

6% for both genomes and chromosomes (Fig 9B), as seen previously the number of 481

missing loci has an extremely adverse effect on the reconstruction performance partic- 482

ularly in terms of recall (see Robustness and error tolerance). Next we looked at 483

the percentage of LE’s that were clustered into the wrong locus by DBSCAN, we see 484

that the mean percentage of loci containing erroneous LE’s is approximately 5.8% for 485

both genomes and chromosomes (Fig 9C). The observed position of loci in 3D space 486

whose clusters contain erroneous LE’s are likely to be far less accurate than those whose 487

LE’s are consistent. Moving individual loci around in space is likely to adversely effect 488

the performance of ChromoTrace due to points falling outside of the chosen distance 489

threshold T used in the distance graph. Finally we looked at the percentage of DBSCAN 490

defined clusters that contained LE’s from multiple loci and observe a mean percentage 491

of approximately 1.9% for genomes and chromosomes (Fig 9D). It is reasonable to 492

assume that as the number of unique loci contributing LE’s to a defined DBSCAN 493

cluster increases so the accuracy of the final observed loci coordinates is likely to decrease. 494

495

Fig9. Segmented simulated LE profiles. (A) The reconstruction performance, re- 496

call versus precision when running ChromoTrace for whole genome and individual 497
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chromosomes. (B) The percent of missing probes across all 100 simulations for all of the 498

polymer chains and a single chain. (C) The percent of LE’s that were clustered into the 499

wrong locus for the whole genome and chromosome 20. (D) the percent of clusters that 500

contained LE’s from multiple starting loci. 501

502

We ran ChromoTrace across all 100 simulated super resolution experiments for whole 503

genome reconstruction and for individual chromosomes. Overall the performance in 504

terms of recall was significantly lower than for the original simulations however precision 505

remained high (Fig 9A). The mean precision for both genomes and chromosomes is 506

higher than 0.95 and the mean recall is 0.14 and 0.40 genome wide and for chromosome 20 507

respectively. The improved recall rates for reconstructing individual chromosomes reflects 508

both the decreased complexity of the distance graph space and importantly a decrease 509

in the number of potential LE’s from different loci that could be incorrectly clustered 510

together by DBSCAN. Here we have chosen challenging parameters for the problem of 511

LE profile loci labeling, profile segmentation and observe a significant decrease in the 512

reconstruction performance achieved by ChromoTrace. However, for chromosome scale 513

genomic regions we are still able to reconstruct approximately 40% of the 3D structure 514

and make very few mistakes with precision remaining above 0.95. The parameters used 515

for simulating these LE profiles are by no means optimal and could certainly be improved 516

when designing real experiments, for example, the number of different color labels could 517

be increased and the rate of missingness improved by using highly specific and locally 518

multiplexed probes. Furthermore the use of DBSCAN in our hands was ’out of the 519

box’ and we did not attempt to optimise the clustering of individual LE’s from different 520

loci. Improving the clustering of LE’s using DBSCAN or more sophisticated custom 521

algorithms would certainly improve the accuracy of estimated loci coordinates. 522

Discussion 523

We have simulated chromosomal DNA molecules and used a challenging density in 524

the simulated nucleus, however, our simulation is coarse grained and does not at this 525

time take into account a number of known properties of chromatin. One important 526

feature not considered is the known structural heterogeneity of chromatin packing of 527

different genomic sequences, for example eu- and heterochromatic domains or TADs. It 528

is therefore necessary to consider how such structural heterogeneity would affect the 529

reconstruction problem. For a given packing density, such structures should lead to one 530

of two outcomes, firstly that the entire chromosome (or probed region of interest) is 531

overall more compact than simulated, leading to a significantly smaller volume of the 532

chromosome territory. This would effectively reduce the amount of resolvable spatial 533

information present for the reconstruction. Such a result would be disappointing in 534

terms of the reconstruction algorithm, but fascinating in terms of how such chromosomal 535

domains are created and maintained. However, the extended conformation of many 536

chromosomes seen previously [29], along with the distribution of their contacts to the 537

nuclear lamina [28], suggest that overall compaction is an unlikely configuration, except 538

for specific cases such as mitotic chromosomes or the inactive X chromosome. The 539

second outcome is that the more highly packed regions are interspersed with more 540

extended regions. The extended regions would be easier to reconstruct, as the bet- 541

ter resolved 3D information will be more accurately able to place these regions to a 542

unique position on the genome. At the extreme of this model one would have a se- 543

ries of resolvable linkers with interspersed globules of packed chromatin that would 544

not be resolvable. In such a scenario integration with the HiC data or other contact 545

maps, whose resolution is good in these more dense regions [30] would be very interesting. 546

547
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On the other hand, when the density of simulated DNA in the nucleus is lower, the recon- 548

struction improves dramatically in terms of recall. In experimental HiC data if unusual 549

numbers of contacts are observed relative to chromosome size it may be indicative of 550

biological processes effecting chromatin condensation [31]. It is feasible to resolve a large 551

fraction of chromosomal scale regions with a resolution of 10.8 kb and reconstruction 552

at this level would provide very high-resolution chromosomal scale chromatin maps 553

(including the internal structure of TADs, TAD boundaries and inter-TAD regions). 554

Even if the very fine details of high density chromatin structures remain challenging with 555

the currently available imaging technology, the spatial information provided by even 556

partial reconstruction of the chromatin path is certain to increase our understanding 557

of how chromosome folding and partitioning is related to active processes such as gene 558

expression [32,33]. 559

560

The other important consideration is the number of distinct fluorescence colors that the 561

reconstruction requires. The number of flourophores compatible with 3D super-resolution 562

microscopy and in-situ hybridization conditions is currently limited to about three dyes 563

that can be reliably spectrally separated if imaged at the same time. Since DNA in situ 564

probes can be coupled to more than one flurophore, combinatorial labeling can create 565

different color ratios. In our simulations, up to 10 colors for simultaneous detection 566

could easily be generated in this manner, however this will also introduce noise due to 567

chemical labeling errors (the chance by which a probe will be labeled with a different 568

color ratio than intended) which would lead to wrong probe assignments. However, 569

since any given color will have only a finite set of possible neighboring mistakes with 570

associated error rates, a substitution matrix of possible errors can be integrated into 571

both the extension phase and exploration phase of the suffix tree [26], changing the 572

formulation of the problem into a likelihood model of seeing the 3D position of probes 573

given a certain path labeling. In addition, recent advances in labeling techniques such as 574

the ’Exchange-PAINT’ method now allow sequential hybridization and image capture, 575

allowing to separate 10 pseudocolors or more based on a single dye in time [21]. This 576

labeling technology requires long super-resolution image acquisition times, but could 577

massively increase the number of probes available for the reconstruction algorithm. For 578

example, a binary code with 2 colors and 10 labeling rounds could distinguish in the 579

region of 210 labels, which would make reconstruction almost trivial. It is therefore very 580

likely that a well-designed combination of spectral and temporal multiplexing of fluores- 581

cent dyes, will make it possible to generate image data with sufficiently large numbers of 582

differently ’colored’ probes. Therefore it should be possible to optimise data acquisition 583

times with different numbers of colors to allow high resolution reconstruction of the 584

chromatin paths for individual chromosomes within the nucleus. Our comprehensive 585

simulation framework will be valuable in guiding the optimal design of such probes, since 586

it allows to simulate the effect of different designs on the reconstruction performance 587

rapidly in silico. 588

Conclusion 589

In this paper we proposed a novel algorithm, ChromoTrace, to, in theory, leverage super- 590

resolution microscopy of thousands to millions of in situ genome sequence probes to 591

provide accurate physical reconstructions of 3D chromatin structure at the chromosomal 592

scale in single human cells. To test this algorithm we have made simulations of DNA 593

paths in realistic nuclear geometries, and explored different labeling strategies of in 594

situ probes. Our study shows that near complete resolution of a chromosome with 595

10 kb resolution can be achieved with realistic microscope resolution and fluorescent 596

probe multiplexing parameters. Extensions to this method such as leveraging between 597

nucleus consistency effects and using a likelihood-based scheme will allow even more 598
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sophisticated modeling of experimental error sources in the future [34]. 599

600

There is currently no suitable experimental data to substantiate this work; this is 601

firmly a theoretical exploration of the possibility to achieve this and the constraints any 602

experimental method would need to satisfy for a successful reconstruction. For example, 603

it is clear that minimizing mislabeling is more important than minimizing missing 604

probes. Our simulations are based on known and realistic experimental parameters, 605

where available. We have tested our method under challenging DNA density levels and 606

aggressive error models of missing, misreported data and LE precision. Our algorithm 607

and assumptions are compatible with leading super-resolution techniques; in particular 608

our method assumes isotropic resolution of the probes, which has been shown using 609

methods such as direct stochastical optical reconstruction microscopy combined with 610

interference [21, 35]. Nevertheless real experimental data will likely have properties that 611

we have not anticipated. Some of these properties, such as systematic error behavior, or 612

changes in resolution across the nucleus might hinder our reconstruction. On the other 613

hand, properties such as structured heterogeneity in packing density and cell-to-cell 614

structure conservation are likely to improve our ability to reconstruct. Our reconstruc- 615

tions based on single cell image data are initially most likely to work in a patchwork 616

manner across a chromosome, and will be very complementary to the contact based maps 617

based on HiC or promoter-capture HiC [36]. Combining super resolution imaging and 618

contact mapping should provide fundamentally new insights into chromatin organization 619

and function within the nucleus. 620
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Supplementary Information 621

Supplementary Information 1. Simulation of Localization Profiles. A descrip-
tion of the methods used to simulate localization profiles produced by SRM along with
the basic processing used to create the input files for Chromotrace.
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