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Summary

Many evolutionarily successful bacteria attain high
growth rates across growth-permissive conditions. They
express metabolic networks that synthesise all cellular
components at a high rate. Metabolic reaction rates are
bounded by the concentration of the catalysing enzymes
and cells have finite resources available for enzyme syn-
thesis. Therefore, bacteria that grow fast should express
needed metabolic enzymes at precisely tuned concen-
trations. To maintain fast growth in a dynamic environ-
ment, cells should adjust gene expression of metabolic
enzymes. The activity of many of the associated tran-
scription factors is regulated by their binding to in-
tracellular metabolites. We study optimal metabolite-
mediated regulation of metabolic-gene expression that
preserves maximisation of metabolic fluxes across vary-
ing conditions. We logically derive the underlying con-
trol logic of this type of optimal regulation, which we
term ‘Specific Flux (q) Optimization by Robust Adap-
tive Control’ (qORAC), and illustrate it with several ex-
amples. We show that optimal metabolic flux can be
maintained in the face of K changing parameters only
if the number of transcription-factor-binding metabo-
lites is at least equal to K. qORAC-regulation of
metabolism can generally be achieved with basic bio-
chemical interactions, indicating that metabolism can
operate close to optimality. The theory that we present
is directly applicable to synthetic biology, biotech-
nology and fundamental studies of the regulation of
metabolism.

∗RP is Lead author.

Highlights
• A general framework called qORAC is presented

which dynamically steers a given metabolic path-
way to maximal steady state specific flux in chang-
ing external conditions, and which follows logi-
cally from the assumptions.

• We show that maximising specific flux has a
unique solution for a large class of enzymatic rate
laws.

• The qORAC framework uses metabolite-binding
transcription factors to influence gene expression.
The metabolites are called sensors.

• The metabolic pathway may be made robust to
changes in K parameters if there are K sensors
to control gene expression.

Introduction
Microbes need to grow fast to outcompete others, and
therefore need to maintain high growth rates in chang-
ing environments. Their specific fluxes (metabolic rates
per unit of expended enzyme) thus need to be kept max-
imal. Since catalytic enzymes are a limited resource,
this requires cells to be economical, synthesise the right
enzymes, in the right amounts, and adapt to fluctuating
nutrient levels.

Experimental evidence is mounting that cells are in-
deed able to tune enzyme levels to maximise the growth
rate (Figure 1; Walsh and Koshland (1985); van der
Vlag et al. (1994); Jensen et al. (1995); Andersen et al.
(2001); Solem et al. (2003); Koebmann et al. (2005);
Dekel and Alon (2005); Keren et al. (2016)). Efficient
enzyme allocation has also recently been shown to un-
derlie a surprising number of other general physiologi-
cal phenomena such as the bacterial growth laws (Scott
et al., 2010, 2014; Bosdriesz et al., 2015), overflow
metabolism (the Crabtree or Warburg effect; Molenaar
et al. (2009); Basan et al. (2015); Weiße et al. (2015)),
and catabolite repression (You et al., 2013). Except per-
haps for the case of optimal ribosomal synthesis (Scott
et al., 2014; Bosdriesz et al., 2015), it is not clear in any
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of these examples how cells achieve the optimisation,
i.e., how to find a new optimum when conditions have
changed.

Gene expression regulation is largely achieved by
transcription factors that are either affected by signal
transduction cascades, or by direct binding of metabo-
lites, as readouts of cellular states. Even though the
latter mode of regulation, using metabolites as sen-
sors (Kotte et al., 2010; Kochanowski et al., 2013), is
widely accepted in the field, the identity of such in-
ternal cues is only known in a handful of cases (Fig-
ure 2). In E. coli, fructose-1,6-bisphosphate (FBP), a
glycolytic intermediate, binds to the transcription fac-
tor Cra to regulate genes involved in glycolysis (You
et al., 2013; Kotte et al., 2014); in yeast, the galactose
catabolic pathway is induced by intracellular galactose
(Sellick et al., 2008); uncharged tRNAs bind to ppGpp
to mediate amino acid metabolism and ribosome syn-
thesis (Scott et al., 2014; Bosdriesz et al., 2015); the
amino acid L-Tryptophan regulates the transcription of
several enzymes involved in its biosynthetic pathway
(Gollnick et al., 2005); perhaps the best known ex-
ample is the lactose operon, which is induced by al-
lolactose, an intermediate of the pathway (Gilbert and
Müller-Hill, 1966). There is even very recent exper-
imental evidence that E. coli’s central metabolism is
in fact controlled by just three such sensor metabolites
(cyclic AMP (cAMP), FBP and fructose-1-phosphate
(F1P); Kochanowski et al. (2017)).

What has remained unexplained so far is why cer-
tain sensor metabolites play this role and others do not,
why there are just a few of them, and more importantly,
what type of enzyme synthesis rates the gene network
must produce in order to steer a metabolic pathway in
the direction of maximal specific flux when conditions
change.

We will show that all three problems admit a gen-
eral answer by deriving one unified framework, which
we call qORAC (for Specific Flux (q) Optimisation by
Robust Adaptive Control). We will show that for prac-
tically any given pathway, it is possible to derive the
enzyme synthesis rates which the gene network must
produce to steer the pathway to its optimum, on the ba-
sis of internal metabolic sensor information alone. We
moreover show that it is possible to make predictions on
the identity of metabolite sensors, and we prove that a
pathway that is robust to changes in K external or inter-
nal parameters must be influenced by (at least) K sen-
sor metabolites. The control dynamics follow logically
from the assumptions and are thus in that sense unique.
They do not depend on the species, kinetics, allosteric
control or parameter settings; the actual implementation
of the control dynamics of course does.

We will discuss how all of the current known exam-
ples of metabolites acting as sensors cited above may be
interpreted within the qORAC framework. We thereby

show that it is indeed possible for gene networks to steer
given pathways dynamically and robustly to high spe-
cific fluxes. The theory thus shows that surprising re-
cent findings such as the pervasive optimisation of en-
zyme levels in yeast (Keren et al., 2016), or the small
number of sensor metabolites found in E. coli’s central
metabolism (Kochanowski et al., 2017), are in fact to be
expected.

Results

A biological example: the galactose path-
way in yeast

We will first explain the cellular control problem that
we will solve, by considering the well-understood bio-
logical example of the galactose uptake system in yeast
(Figures 1A, 2B). We wish to maximise the steady state
flux through this pathway. A finite pool of enzymes has
to be distributed across the four different enzymatic re-
actions to optimise metabolic flux. Depending on the
external galactose concentration, more or less enzyme
should be invested in the first transporter step, from
Galout to Galin. This leaves a correspondingly smaller
or larger pool of enzymes for the rest of the pathway.
Keeping enzyme concentrations fixed for the moment,
increasing Galout will cause Galin to increase as well,
so this should be indicative for a change in conditions
and thus a signal for the adaptation of enzyme concen-
trations: the transporter enzyme concentration should
decrease, and the other enzymes should increase con-
comittantly.

The question is now how to find the optimal alloca-
tion of enzyme concentrations after such a change, just
on the basis of the value Galin. Galin plays the role of
metabolic sensor, relaying information to the gene net-
work by binding to a transcription factor, in this case
gal3p. The gene network should then induce the right
genes at the right rate to change the enzyme concentra-
tions in the pathway such that they finally reach their
optimal steady state level, at which the specific flux
through the pathway is maximal.

Having found optimal input-output relations for the
gene circuit, with concentrations of sensor metabolites
as input and enzyme concentrations as output, the ques-
tion remains whether a gene network may be found that
can implement those relations. Since the gene network
for the galactose pathway in yeast is known, this may
be done by fitting parameters in this network (Berkhout
et al., 2013). In this paper, however, we show that the
problem of finding optimal input-output relations for
a given metabolic pathway has a general solution, and
may be generated for quite arbitrary pathways such as
the ones shown in Figure 2A-E.
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Optimal specific flux in a pathway: steady-
state input-output relationships
We consider the dynamics of internal metabolic concen-
trations x = (x1, . . . , xn) in a metabolic network,

ẋ = Nv(x;xE)− µx. (1)

Here, N is the stoichiometry matrix, v(x;xE) are the
reaction fluxes, xE are fixed external concentrations,
and µ is the growth rate of the culture. It is gener-
ally assumed that the dilution rate of concentrations by
growth, −µx, is negligible for metabolism. We take the
same view here, and consider

ẋ = Nv(x;xE). (2)

We aim to maximise the specific flux through this net-
work, by maximising vr/eT , in steady state, where vr
is some chosen output flux. Mathematically, the optimi-
sation problem we study is

max
x,e

 vr
eT

| Nv = 0,
∑
j

ej = eT

 . (3)

In words, we wish to maximise a given output flux per
unit of total expended enzyme necessary to sustain this
flux through the entire network, at steady state. This is
equivalent to minimising the amount of enzyme neces-
sary to sustain a given steady state flux vr = Vr,

min
x,e

{∑
j ej

vr
| Nv = 0, vr = Vr

}
. (4)

Since reaction functions generally are of the form vj =
ejfj(x;xE) (Cornish-Bowden, 1995), we may pre-
scribe vr = 1 (after all, if we can solve that problem
then we can solve it for vr = Vr as well by multiplying
all the enzyme concentrations by Vr). This allows us to
rewrite (4) to

min
x

∑
j

vj
fj(x;xE)

| Nv = 0, vr = 1

 , (5)

Observe that the enzyme concentration vector e has
disappeared from the problem. It has recently been
shown that the flux profiles that solve (5) (and therefore
also the original problem (3)) are always subnetworks
with a particularly simple structure, called Elementary
Flux Modes (EFMs; Wortel et al., 2014; Müller et al.,
2014). Such EFMs are one-degree-of-freedom flux vec-
tors satisfying Nv = 0 that cannot be simplified fur-
ther by deleting reactions without violating the steady
state assumption (Schuster and Hilgetag, 1994; Schus-
ter et al., 2002). A given EFM is thus characterised
by λ(V1, . . . , Vm), where λ is a free parameter and the

flux vector (V1, . . . , Vm) is fixed. If we want to opti-
mise specific flux within a given EFM with flux vector
(V1 . . . , Vm), we still need to find a vector x for

min
x

∑
j

λVj

fj(x;xE)

 . (6)

This motivates the introduction of the objective function

O(x) :=
∑
j

λVj

fj(x;xE)
, (7)

which is to be minimised, for given external concentra-
tions xE , by suitably choosing internal concentrations
x. This function is convex for pathways with many
kinds of reaction kinetics (Liebermeister & Noor, 2015,
unpublished, http://de.arxiv.org/abs/1501.02454v1),
and in the SI we show that the optimum is in fact
unique for an even larger class of rate laws (see also
Figure S4). The objective function has a lower value
if the values of fj(x;xE) are higher. Maximising
specific flux may thus be reinterpreted as maximising
the value of fj , which is essentially the saturation level
of enzyme j, for all enzymes simultaneously. This can
be done by making as little enzyme as possible, so that
the enzymes are used at their maximal capacity.

If we find the vector xo which minimises O(x), then
we can infer the corresponding optimal enzyme concen-
trations eo by setting

eoj =
λVj

fj(xo;xE)
. (8)

It is clear that we may choose λ = 1 in O(x): hav-
ing found the minimiser of O(x) for λ = 1, we have
found it for all λ: the corresponding enzyme levels eoj
just scale with λ. In hindsight, we may also for instance
normalise the enzyme concentrations such that they sum
to total concentration eoT = 1.

Using sensors to find the optimal enzyme
concentrations
The discussion so far makes clear that the optimal en-
zyme concentrations that maximise specific flux are de-
fined in terms of external concentrations xE : for each
choice of xE , the objective function (7) needs to be
minimised to find xo, and subsequently eo. If we
wish to design or construct gene regulatory networks
that produce the right concentrations of enzymes in
steady state, robustly with respect to changes in external
concentrations but without direct knowledge of those
changes, we see this cannot yet be done. As discussed
in the Introduction, we now focus on the situation where
the gene network relies only on internal information to
steer metabolic gene expression. Let us thus consider
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a set of internal sensor metabolites, which should play
the role of relaying dynamic information about changes
in the environment to the gene network, such as Galin
does to gal3p.

The design criterion for this gene network is that it
should induce optimal enzyme synthesis rates in steady
state for a whole range of external concentrations, just
on the basis of sensor values. The crucial point is now
that the gene network must therefore assume that cur-
rent sensor values are in steady state and have optimal
values, even when in fact they are not and are still dy-
namically changing. On the basis of these sensor val-
ues, the gene network then should predict the optimal
steady-state enzyme levels, and causes enzyme levels to
change accordingly. The immediate conclusion of this
construction is that if the pathway is indeed in steady
state, then so are the sensor values, and the gene net-
work necessarily gives rise to optimal enzyme concen-
trations. Hence, in all likelihood, the pathway is then
also in an optimal state.

Let us now construct this estimated optimum on the
basis of sensor values. Steady-state optimisers xo may
be characterised as minima of O(x), and are depen-
dent on xE . Hence, xo is a critical point of O(x) =
O(x1, . . . , xn), satisfying

0 =
∂O

∂xi
=

∂

∂xi

Vj

fj(x;xE)
, i = 1, . . . , n. (9)

Solving (9) means prescribing xE and solving for xo.
However, if we can solve (9) by prescribing some sen-
sor values, xS , but now solving not only for the re-
maining internal concentrations but also for the (now
unknown) external concentrations, we have found the
optimum as predicted by the sensor values, under the
assumption that the pathway is in steady state. We will
denote this predicted optimum by ξ(xS). With ξ(xS),
we can define corresponding predicted optimal enzyme
levels, analogous to (8),

eoj =
Vj

fj(ξ(xS))
. (10)

Hence, if we construct a gene network that gives rise
to these optimal enzyme concentrations at steady state,
we have made a system which automatically reaches the
optimum if it is in steady state. The above construction
is logically the only construction that allows for robust
adaptive control, given the design criterion we have de-
manded the gene network to fulfil.

A simple dynamic implementation of this method can
be constructed when we assume that the enzyme dy-
namics is described by the difference in the rates of en-
zyme synthesis and dilution,

ėj = Ej − µej . (11)

Since the enzyme synthesis rates are generally much
lower than metabolic rates, we can not neglect dilu-
tion by growth in their differential equation. We as-
sume that the cell is growing at a fixed rate µ which
is minimally affected by changes in the enzyme levels
that optimise specific flux of our desired EFM, and that
enzyme degradation is negligible. Then, by setting

Ej = µ
Vj

fj(ξ(xS))
, (12)

we have ensured that at steady state the enzyme levels
are optimal. Note that the construction does not ensure
that the combined dynamical system actually converges
to this optimal steady state. The complete construction
is termed qORAC, and is summarised in Box 1. A sim-
ple example of a small linear pathway is specified in full
detail in the SI.

Box 1 (qORAC): The following differential-
algebraic system of equations implements Specific
Flux (q) Optimisation by Robust Adaptive Con-
trol (qORAC) through an EFM with flux vector
(V1, . . . , Vm) in a cell culture growing at growth
rate µ. Let I be the index set of internal metabolite
concentrations, E the index set of external concen-
trations, and S the index set of sensor concentra-
tions. Then we consider

ẋi =
m∑
j=1

Nijejfj(xI ;xE), i ∈ I, (13)

ėj = Ej(xS)− µej , j = 1, . . . ,m, (14)

Ej(xS) = µ
Vj/fj(ξ(xS))∑m
l=1 Vl/fl(ξ(xS))

, (15)

where ξ(xS) is the predicted optimum, and is the
(time-dependent) solution of

ξS = xS , (16)
∂O

∂ξi
(ξ) = 0, i ∈ I. (17)

The rescaling of Ej(xS) in (15) by the sum of all
the inverses of 1/fj implies that total enzyme con-
centration is chosen to be equal to 1. Other rescal-
ings give identical results, up to the chosen scal-
ing factor. The choice above, however, is partic-
ularly useful, since it produces positive synthesis
rates both for positive and negative metabolic rates
through the pathway, and it ensures that it is well-
defined also at thermodynamic equilibrium (see SI
for details).
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The number of sensors equals the number
of external parameters
The qORAC construction assumes that it is possible to
find internal sensor metabolites that allow a reconstruc-
tion of the optimum for different values of external con-
centrations xE : we need to solve (9) by prescribing
xS and finding all the remaining variables (including
the external ones). The solution for ∂O(x)/∂xi = 0
for fixed sensor values is well-defined mathematically
if the Implicit Function Theorem (IFT) holds (see SI
for a more detailed exposition). Any choice of sensor
metabolites for which the IFT holds is a candidate for
the proposed adaptive control. An immediate conse-
quence of the IFT is that the number of sensor metabo-
lite concentrations must equal the number of changing
external metabolite concentrations to which the system
needs to be robust. This makes intuitive sense: to track
changes (and hence achieve robustness) in K external
metabolites, the gene network should be influenced by
(at least) K (independent) internal sensors. Note also
that we may not only substitute external concentrations
by sensors: we could also have substituted internal pa-
rameters, such as temperature, pH, or Km values in rate
laws, to make the system robust with respect to them.

Examples of qORAC: a surprisingly versa-
tile and robust framework
Illustrations of the qORAC framework are given in Fig-
ures 3, 4, S1–S3 (full details and code of simulations
may be found in the SI).

A simple network, with two inputs and one output,
is shown in Figure 3. The network requires two inter-
nal sensor metabolites, chosen to be the ones nearest the
external input concentrations. Upon changes in external
concentrations, the sensor concentrations change, caus-
ing changes in enzyme synthesis, which finally result
in adaptation to the new optimum. The enzyme syn-
thesis relations are also illustrated. Note the simplicity
of these functional relationships, suggesting that simple
gene networks could be constructed that can approxi-
mate them well. To illustrate the general applicability
of qORAC, consider the complicated branched example
network in Figure S1. It has two inputs and two outputs
and two allosteric interactions; by employing four sen-
sors, it can be made robust to changes in all four external
concentrations.

The qORAC control does not guarantee that a
metabolic pathway is actually steered towards the op-
timum. In an example in which one of the periodically
changing parameters is a Km parameter of a rate law,
the choice of sensors matters critically (Figure 4). With
one choice, the system robustly steers to the optimal
specific flux steady state, but with another choice it does
not. In both cases, the technical requirements to use the

internal metabolites as sensors are met.
The qORAC framework is able to start from nearly

any initial condition. As an extreme example, with
no enzymes present, and only the sensor concentration
and no other internal metabolite, the qORAC-controlled
pathway still steers to optimum (Figure S2). Similarly,
if the sensor concentrations are ‘wrong’, such that they
predict a metabolic flow in the opposite direction to the
one dictated by external concentrations, the combined
controlled system nevertheless converges to the correct
optimum (Figure S3).

Concrete biological examples

In each of the pathways introduced in Figure 2A-E,
the sensor metabolite(s) and transcription factor(s) have
been identified. Specifying the kinetics for each enzy-
matic step in the pathway now directly gives the corre-
sponding objective function (7) and the qORAC frame-
work can be set up. In two of these examples there is
previous work on optimal metabolic rates, so we con-
sider these in more detail.

The case of galactose uptake (Figure 2B) in yeast has
been studied theoretically in detail by Berkhout et al.
(2013), including fitting the parameters in the experi-
mentally known gene network to approximate the the-
oretically predicted optimal input-output relations. Re-
cent experimental evidence moreover shows that yeast
cells are indeed able to tune the levels of these enzymes
to optimise growth rate (Figure 1A).

For optimal ribosomal synthesis (Figure 2D), there
is also previous theoretical work related to optimality.
Maximal growth rates in E. coli are closely related to
the expression of optimal concentrations of ribosomes:
the translation machinery, including ribosomes, forms
the largest protein fraction at maximal growth rate (Li
et al., 2014), and is therefore most likely under tight
control. Two recent models were able to reproduce the
optimal synthesis of ribosomal concentration to max-
imise biomass synthesis rate (Scott et al., 2014; Bos-
driesz et al., 2015). The model by Scott et al. (2014)
may be viewed as a direct phenomenological implemen-
tation of qORAC for a linear chain

nutrients → amino acids → biomass

in which the amino acid concentrations are used as sen-
sor. In the Bosdriesz et al. (2015) model, there is more
biological detail. The main difference between our ap-
proach and (Scott et al., 2014; Bosdriesz et al., 2015) is
that in qORAC the input-output relations are predicted
directly and only from the structure and kinetics of the
pathway, rather than being chosen by the modellers.
The qualitative nature of the input-output relations is of
course identical.
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Discussion
Experimental evidence is accumulating that metabolic
pathways are indeed able to optimise their enzyme
resources to maximise growth rate. We addressed
what type of enzyme synthesis rates, influenced by
metabolite-binding transcriptions factors, result in max-
imisation of specific fluxes in metabolic pathways, a re-
quirement for growth rate maximisation. We demanded
robustness of optimality in the face of environmental
changes. We presented the qORAC framework, which
implements such control for Elementary Flux Modes,
the minimal steady state pathways that maximise spe-
cific flux (Müller et al., 2014; Wortel et al., 2014).

We use the term Specific Flux (q) Optimisation by
Robust Adaptive Control (qORAC) to describe the reg-
ulatory mechanism. ‘Robust’ signifies that attaining op-
timal states is independent of (environmental) parame-
ter values – the system is robust to them. ‘Adaptive’
means that the control system steers the metabolic sys-
tem to optimality without direct knowledge of external
changes, contrary to the more widely studied problem
of ‘optimal control’, in which the steering mechanism
works using external changes as inputs to the controller
(Krstic et al., 1995).

An important finding of our work is that the num-
ber of sensor metabolites must be (at least) equal to the
number of parameters for which the metabolic pathway
is robustly optimal. In other words, if the metabolic
pathway always achieves states of maximal specific
flux regardless of the values of three (independently-
changing) environmental parameters, such as, for ex-
ample, osmolarity, temperature and some nutrient con-
centration, then the number of sensors is expected to be
three. This is a general result that follows from the asso-
ciated mathematics of this control problem. Finding the
sensors experimentally is difficult, and the number of
known sensors is still quite small. However, it is telling
that the whole of central metabolism in E. coli seems to
be controlled by just three sensors, FBP, cAMP and F1P
(Kochanowski et al., 2017).

The location of suitable sensors does not follow im-
mediately from the optimisation problem. In general,
one needs to make sure that the Implicit Function The-
orem applies to the optimum equations (9), and this
is not a trivial matter. However, a different argument
shows that sensors near the beginning or ends of the
pathway would work in most cases. The reason is
that for all metabolites in between a set of fixed con-
centrations, their optimal value is uniquely determined
by minimising the corresponding optimisation problem
(i.e. finding the minimum of a suitable objective func-
tion O(x;xS) with x the set of metabolites between
the sensors xS). The remaining variables, including
the external concentrations, then need to be determined
using the optimum equations (17). This is easiest ex-

actly when the sensor is close to the external metabo-
lite. Also from a biological standpoint this makes sense:
such sensors obviously provide the most information of
any change in external concentrations.

An important question is whether the adaptive control
can be achieved by molecular circuits, given our under-
standing of biochemical kinetics and molecular interac-
tions. The explicit example from galactose metabolism
in yeast (Berkhout et al., 2013) gives hope that this
might be true in general. If the necessary gene network
is small, then the optimal circuit is likely also evolvable.
We cannot give definite answers about this, but the com-
putational analyses of different circuits, of which some
are shown in this paper, indicate that optimal circuits
show remarkably simple dynamics and input-output re-
lations. One would expect that biochemical systems are
capable of evolving those, and that synthetic biologists
are capable of designing them.

The parameterisation of the optimising circuit is
completely determined by the kinetics and the wiring of
the metabolic pathway that it controls, since the objec-
tive function (7) contains all this information. This in-
terdependence between the controller and the controlled
is sometimes called the ‘internal model principle’ in en-
gineering (Francis and Wonham, 1976) which roughly
states that the control system should have knowledge
of the dynamic behaviour of the system in order to be
able to control it. Additional control mechanisms may
then prevent for instance undesired oscillations or slow
responses.

Technological advances have spurred recent interest
in studying control properties of gene regulatory net-
works in cellular metabolism. One line of work in-
volves characterising a particular gene control system
and studying its theoretical properties. Examples are the
perfect adaptation in the chemotaxis network in E. coli
(Barkai and Leibler, 1997; Yi et al., 2000), the robust-
ness properties of the heat-shock response system (El-
Shamad et al., 2005) and of the circadian clock (Stelling
et al., 2004). Several authors have considered dynamic
optimisation of resources in pathways from a mostly
computational perspective, e.g. to minimise the time
of adaptive response (Pavlov and Ehrenberg, 2013),
deFBA (Waldherr et al., 2015), and for other objectives
than maximal specific flux, such as detecting equilib-
rium regimes of pathways (Oyarzún et al., 2012), ro-
bustness to flux perturbations (Oyarzún and Stan, 2012),
and noise propagation (Oyarzún et al., 2015). In many
studies, the control is not adaptive, but optimal; the ob-
jective is then usually to maximise the long term pro-
duction of biomass (van den Berg et al., 1998; Pavlov
and Ehrenberg, 2013; Giordano et al., 2016, e.g.).

The approach taken here differs principally from pre-
vious works in the following respect. The objective
(maximal specific flux) is defined in advance, and the
optimal input-output relations are characterised later.
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The framework is also analytic rather than computa-
tional: the input-output relations are obtained by solv-
ing the optimum equations (9) for the pathway under
study, rather than by using an optimisation routine.

The choice of sensors sometimes matters for the con-
trol to steer the pathway to optimum (Figure 4). This ex-
ample already indicates that, although the qORAC con-
trol follows logically from the design objective, it is
not easy to decide which intermediate metabolites make
it controllable. We cannot expect completely general
mathematical theorems. Apparently, some choices of
sensors do work, and others do not, for the same path-
way, using the same initial conditions.
qORAC has direct applications in synthetic biol-

ogy. To achieve maximal production rates in a
biotechnological-product producing pathway requires a
controller that qORAC provides. The only ingredient
to design such a controller are the enzymatic rate laws
in the pathway. qORAC then immediately makes pre-
dictions about the optimal enzyme synthesis rates, as a
function of one or more intermediate metabolites. As
the synthetic biology field advances, synthetic circuits
with the required input-output relationships for the con-
stituent enzymes of the pathway can be designed and
built. qORAC therefore does not only contribute to the
general understanding of steering mechanisms to op-
timal states, but provides direct operational relevance
for microbiology, synthetic biology and biotechnologi-
cal applications.
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Figure legends

Figure 1 Experimental evidence indicating that mi-
crobes tune their enzyme levels to maximise growth
rate In each example, the wild type (WT) is shown to
express enzyme concentrations at which the growth rate
µ is approximately maximal. Data adapted from: A,
Keren et al. (2016); B, Andersen et al. (2001); Solem
et al. (2003); Koebmann et al. (2005), C, Jensen et al.
(1995); D, (van der Vlag et al., 1994). Abbrevia-
tions: GAL1, galactokinase; GAL2, Galactose perme-
ase; GAL7, Galactose-1-phosphate uridyl transferase;
LDH, lactate dehydrogenase; PFK, phosphofructoki-
nase; LAS, las operon; GAPDH, glyceraldehyde 3-
phosphate dehydrogenase; Glc, glucose; Succ, succi-
nate. In (Keren et al., 2016) there are many other exam-
ples, including several proteins that do not show levels
at which growth rate is optimised.

Figure 2 Biological examples of qORAC. Five well-
characterised metabolic pathways in which a metabo-
lite binds to a transcription factor (TF) to influence
gene expression. The qORAC framework applies to
each of them: in each case, the qORAC formalism
gives rise to the enzyme synthesis rates that steer the
metabolic pathway to maximal metabolic rates that are
robust to changes in the external concentration (exter-
nal with respect to the pathway). (A) The lac operon
in E. coli, with sensor Allolactose binding to LacI;
(B) The galactose uptake system in yeast, with sen-
sor internal galactose binding to gal3p; (C) The con-
trol of glycolytic enzymes via sensors FBP (binding to
Cra), and cAMP (binding to Crp); (D) The control of
catabolism vs biomass synthesis, with unsaturated tR-
NAs (due to a lack of amino acids) binding to ppGpp;
(E) The control of the L-Tryptophan biosynthesis path-
way by the amino acid binding to TrpR; (F) The general
scheme of a qORAC-steered pathway. Abbreviations:
Lacout, external lactose; Allolac, allolactose; αKG, α-
ketoglutarate; Galout, external galactose; Galin, inter-
nal galactose; Gal-1P, galactose-1-phosphate; Glc-1P,
glucose-1-phosphate; UDP-Glc, uridine-diphosphate-
glucose; UDP-Gal, uridine-diphosphate-galactose; Glu,
glucose; FBP, fructose-1,6-biphosphate; PEP, phospho-
enolpyruvate; PYR, pyruvate; cAMP, cyclic AMP; ATP,
adenosine-triphosphate; ppGpp, guanosine tetraphos-
phate; Cho, chorismate; Ant, Anthranilate; NAnt,
N-(5’-phosphoribosyl)-anthranilate; ECP1P, Enol-1-0-
carboxy-phenylamino-1-deoxyribulose phosphate; Ind,
Indole-3-glycerol-P; L-Tryp, L-tryptophan.

Figure 3 Example qORAC dynamics. The dynamics
are illustrated for the network shown in A. The green
box depicts a varying external concentration, the blue
box denotes the sensor concentration. B: the optimal
input-output relations, showing enzyme synthesis rates
as a function of changing sensor concentration C ′. In
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plots C1 to C4, the external C concentration is changed
after 50 time units, and again after 100 time units. C1:
The optimum predicted by the sensor (blue lines) con-
verges to dynamic metabolite concentrations (red) and
fixed external metabolite concentration (green), even
when the external concentration changes at t = 50 and
t = 100. The sensor is shown in dashed red-blue. C2:
enzyme dynamics equilibrate after each change in exter-
nal conditions, and reach their optimal levels. C3: the
steered metabolic pathway reaches the optimum after
each external change, as the distance to the (periodically
changing) optimum reaches zero after some time. C4:
flux dynamics equilibrate, showing that the pathway has
reached steady state each time the external conditions
change. Full equations, parameters and code are given
in the SI.

Figure 4 qORAC for an internal parameter. In this
example qORAC is illustrated for a Km parameter in
the third reaction, K3. In A1 and B1, the same path-
way is drawn, but with different choices of sensors (in
blue). A2: metabolite dynamics in which first exter-
nal concentrations are varied (green) and at the end
also K3 is varied. A3: K3 (in green) is varied at
time t = 2500, and the predicted optimal value (in or-
ange) subsequently converges, illustrating robust adap-
tive control. In B1, sensor x3 is swapped with x4. The
dynamics of metabolites (B2) and predicted K3 values
(B3) do start to change. However, the dynamics con-
verge to a singular point, and the dynamical system can
not continue. This second choice of sensors does not
yield a gene expression control system which steers the
pathway to optimal specific flux.
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