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Abstract

Eukaryotic chromatin is partitioned into domains called TADs that are broadly conserved
between species and virtually identical among cell types within the same species. Previous
studies in mammals have shown that the DNA binding protein CTCF and cohesin contribute
to a fraction of TAD boundaries. Apart from this, the molecular mechanisms governing this
partitioning remain poorly understood. Using our new software, HiCExplorer, we annotated
high-resolution (570 bp) TAD boundaries in flies and identified eight DNA motifs enriched at
boundaries. Known insulator proteins bind five of these motifs while the remaining three
motifs are novel. We find that boundaries are either at core promoters of active genes or at
non-promoter regions of inactive chromatin and that these two groups are characterized by
different sets of DNA motifs. Most boundaries are present at divergent promoters of
constitutively expressed genes and the gene expression tends to be coordinated within
TADs. In contrast to mammals, the CTCF maotif is only present on 2% of boundaries in flies.
We demonstrate that boundaries can be accurately predicted using only the motif
sequences, along with open chromatin, suggesting that DNA sequence encodes the 3D
genome architecture in flies. Finally, we present an interactive online database to access
and explore the spatial organization of fly, mouse and human genomes, available at

http://chorogeome.ie-freiburg.mpg.de.

Introduction

The partitioning of chromosomes into topologically associating domains (TADs) is an
emerging concept that is reshaping our understanding of gene regulation in the context of
physical organization of the genome (Dixon et al. 2016; Lieberman-Aiden et al. 2009; Rao et
al. 2014; Sexton et al. 2012; Hou et al. 2012). However, the mechanisms by which chromatin
acquires its 3-dimensional conformation are not fully understood. TADs were first described
in mouse ESC cell lines (Nora et al. 2012) as regions of preferential DNA contact. Since
then, TADs have been discovered in other mouse and human cell lines (Dixon et al. 2012)
as well as in other mammals (dog and macaque (Vietri Rudan et al. 2015), in flies (Sexton et
al. 2012; Ramirez et al. 2015; Hou et al. 2012), worms (Crane et al. 2015) and yeast
(Mizuguchi et al. 2014). TAD-like structures have also been reported in plants (Arabidopsis
thaliana) (Wang et al. 2015) and bacteria (Caulobacter crescentus) (Le et al. 2013).
Interestingly, TADs seem to be virtually identical between cell lines of the same organism

(Dixon et al. 2012; Ramirez et al. 2015; Rao et al. 2014) and they are conserved between
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species (Vietri Rudan et al. 2015). Recent publications show that TADs correspond to
cytogenetic bands (Ulianov et al. 2015; Eagen et al. 2015). The functional importance of
domains and their proper separation was highlighted by (Lupianez et al. 2015) who
demonstrated that disruption of TAD boundaries cause changes in gene-enhancer
interactions that lead to developmental abnormalities in mouse embryos. This is consistent
with the idea that TADs compartmentalize regulation by inhibiting enhancer-promoter

interactions with neighboring TADs (Smallwood & Ren 2013).

To understand TAD formation, researchers had focused on the proteins found at TAD
boundaries (Dixon et al. 2012; Sexton et al. 2012; Hou et al. 2012). In mammalian cells, the
the CCCTC-binding factor (CTCF) protein has been shown to be enriched at chromatin
loops, which also demarcate a subset of TAD boundaries (referred to as “loop domains”)
(Rao et al. 2014). A proposed mechanism, based on the extrusion of DNA by cohesin,
suggests that the DNA binding motif of CTCF and its orientation determine the start and end
of the loop (Sanborn et al. 2015; Nichols & Corces 2015). In line with this hypothesis,
deletions of the CTCF DNA-motif effectively removed or altered the loop (Sanborn et al.
2015). Interestingly, mutations of the CTCF binding motif at TAD boundaries are particularly
abundant in cancer, causing dysregulation of oncogenes (Hnisz et al. 2016). However,
CTCF-cohesin loops only explain a fraction (less than 39%) of human TADs boundaries
(Rao et al. 2014), while plants and bacteria lack CTCF homologs but also show TAD-like
compartments. Thus, it is possible that additional proteins are involved in the formation of
TADs.

In contrast to mammals, the genetic manipulation tools available in flies have allowed the
characterization of several proteins that, like CTCF, are capable of inhibiting
enhancer-promoter interactions. Throughout the manuscript, we will refer to these proteins
as “insulator proteins” and their binding motifs as “Insulators” or “Insulator motifs”. In flies,
apart from CTCF, the following DNA-binding insulator proteins have been associated to
boundaries (Sexton et al. 2012; Van Bortle et al. 2014): Boundary Element Associated
Factor-32 (Beaf-32), Suppressor of Hairy-wing (Su(hw)) and GAGA factor (GAF). Also, Zest
white 5 (Zw5) has been proposed to bind boundaries (Zolotarev et al. 2016a). These
insulator proteins recruit co-factors critical for their function such as Centrosomal Protein-190
(CP190) and Mod(mdg4) (Ong & Corces 2014). Recently, novel insulators have been
described as binding partners of CP190: the zinc finger protein interacting with CP190

(ZIPIC), Pita (Maksimenko et al. 2015) which appear to have human homologs and localizes
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to TAD boundaries (Zolotarev et al. 2016a), and the Insulator binding factors 1 and 2 (Ibf1
and Ibf2) (Cuartero et al. 2014). All the previously characterized boundary associated
proteins bind to the DNA at specific motifs, suggesting that the 3D conformation of chromatin

can be encoded by these motifs.

In this study, we sought to identify the DNA encoding behind TADs boundaries in flies. First,
we developed new software (HiCExplorer) to obtain boundary positions at 0.5 kilobase
resolution based on published Hi-C sequencing data from Drosophila melanogaster Kc167
cell line (Li et al. 2015; Cubefas-Potts et al. 2016). Using these high-resolution TAD
boundaries we identify eight significantly enriched DNA-motifs. Reassuringly, five of these
motifs are known to be bound by the insulator proteins: Beaf-32, CTCF, the heterodimer Ibf1
and Ibf2, Su(Hw) and ZIPIC. , The three remaining DNA-motifs have not been associated to
boundaries before. Interestingly, one of the motifs is bound by the motif-1 binding protein
(M1BP) (Li & Gilmour 2013), a protein associated to constitutively expressed genes whose

role as insulator remains unexplored.

Using machine learning methods based on the acquired DNA motif information, we could
accurately distinguish boundaries from non-boundaries and identify new TAD boundaries
that were missed when using only Hi-C data. This suggests that the chromosomal folding in

flies can be explained predominantly by the DNA sequence alone.

We implemented the methods for Hi-C data processing, TAD calling and visualization into an

easy to use tool called HiCExplorer (hicexplorer.readthedocs.io). To facilitate exploration of

available Hi-C data, we also provide an interactive online database containing processed
high-resolution Hi-C data sets from fly, mouse and human genome, available at

http://chorogeome.ie-freiburg.mpg.de.

Results

High resolution TAD boundaries in flies

We obtained Hi-C data for Kc167 cells from (Li et al. 2015; Cubefas-Potts et al. 2016) and
processed them to obtain corrected Hi-C contact matrices at restriction fragment resolution
(see methods). These datasets contain the most detailed contact maps in flies, compared to
other datasets (see methods), due to high sequencing depth (over 246 million valid read

pairs) and the use of Dpnll, a restriction enzyme with short restriction fragment size (mean
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~570 bp). We found 2,852 TADs having a median size of 26 kb (Fig. 1A, S1A). We
corroborated the precision of our boundaries by comparing their overlap with CP190 peaks
(p-value = 1.8E-20, Fig. 1B) and the separation of histone marks (Fig. 1C, S1B). Similar to
(Sexton et al. 2012), we classified TADs using modENCODE histone marks as active
(enriched for either H3K36me3, H3K4me3 and H4K16ac), polycomb group silenced (PcG)
(enriched for H3K27me3), HP1 (enriched for H3K9me3) and inactive (not enriched for any of
the marks, see methods and Fig. S1C). A significant fraction of the genome (43%) is
covered by large inactive TADs having a mean length of 63 kb (Fig. 1D). In contrast, active
chromatin TADs have an average length of 23 kb and occupy 29% of the genome. PcG
chromatin occupies 25% of the genome with TADs that are on average 61 kb. The largest
TADs are found for HP1 repressed chromatin, which occupies each 3% of the genome and
have a length of 74 kb. We also find that active TADs tend to be assembled one after the
other due to their higher number (Fig. 1E). Interestingly, the TAD separation score varied
significantly (p-value < 7.8E-5, Wilcoxon rank-sum test) between the TAD types (Fig. 1F).
The stronger boundaries (low TAD-separation score) are found between active and inactive
or PcG TADs. while the weakest boundaries are found between PcG TADs. Similarly, we
find that the TAD-separation score between larger TADs (mostly inactive) is significantly
larger than the TAD separation score for smaller TADs (mostly active) (p-value = 9.9E-7,

Wilcoxon rank-sum test).

While most of our boundaries overlap with those from previous studies (Sexton et al. 2012;
Cubenas-Potts et al. 2016), our method allowed us to identify a larger set of boundaries (Fig.
S1D-H) which mostly divide active TADs from previous studies. We observed that the
majority of the boundaries (77%) are located at gene promoters (henceforth referred to as
promoter-boundaries. Fig. 1G). Promoter-boundaries are different from non-promoter
boundaries (27%), since they associate significantly with active chromatin (Fig. 1H), have
lower TAD separation score (representing strong boundaries Fig. 11), and show higher
DNAse sensitivity (Fig. 1J).

Boundaries are marked by specific gene orientation and transcription

Next, we correlated our promoter boundaries with gene orientation and transcription. Most
promoter-boundaries (70%, p-value = 2.5E-88 fisher's exact test), are associated with
divergently oriented genes while genes in convergent or tandem orientation tend to be inside

the TADs . To correlate TADs with gene transcription, we analysed the RNA-Seq data of 14
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stages of Drosophila development along with the expression in the Kc167 cell line obtained
from modENCODE (Fig. S2A, see methods). We found that, in general, 95.6% of genes
associated with TAD boundaries are expressed in Kc167 cells compared to only 75.3% of
genes which don’t have a boundary (p-value = 2.19E-80, Fisher’s test). Higher correlation
was observed between gene expression inside TADs than between neighboring TADs (Fig.
2A, S2C). When we investigated the expression of genes at TAD boundaries we found that
these genes show significantly higher expression than the expressed genes which don’t
have a TAD boundary at their promoters (Fig 2B, p-value = 6.08E-21, t-test). Boundary
associated genes also show a more stable expression expression across development than
other genes (Fig 2C, S2B), suggesting that these genes are ubiquitously transcribed.
Furthermore, we find that for a pair of genes lying next to each other, the variability in their
gene expression tend to be correlated during development if these genes are within same
TAD, while this correlation is lost if there is a TAD boundary in between (Fig 2D, see
methods). This is true for gene-pairs in any orientation (convergent, divergent or tandem, Fig
S2D).

Taken together, these results suggest that specific gene orientation and level of transcription

could be associated with TAD formation.

A comprehensive list of boundary associated DNA motifs

We followed the strategy outlined in (Fig 3A) to create a comprehensive list of motifs
frequently found at boundaries. First, we performed de-novo motif calling using MEME-chip
(Ma et al. 2014) (see methods) on our promoter-boundaries and non-promoter boundaries.
To filter out motifs that are frequently found at promoters or open chromatin but are not
specific to boundaries, we did an enrichment analysis using two different methods: Ame
(McLeay & Bailey 2010) and TRAP (Thomas-Chollier et al. 2011). As a second approach,
we tested boundaries for the motifs of known insulator proteins and core-promoter motifs
from (Ohler et al. 2002). In contrast to de-novo motif detection, searching for known motifs
allows additional sensitivity to detect low frequency motifs. After filtering for only consistent
results, we could identify 5 motifs enriched at promoter-boundaries and 3 motifs enriched at

non-promoter boundaries (Fig 3B).

The promoter boundary motifs we identified belong to the list of core-promoter motifs 1, 2, 6,
7 and 8 from (Ohler et al. 2002). Motif-1 is recognized by the recently described 'motif-1

binding protein' (M1BP), a protein found at the promoters of transiently paused Pol-Il of
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constitutively expressed genes (Li & Gilmour 2013). Motif-2 (also called DRE motif) is
recognized by the insulator protein Beaf-32 and DREF (Gurudatta et al. 2013). Motif-7 (also
called DMv3) is recognized by the insulator protein ZIPIC. The binding proteins for motif-6
(also known as DMv5) and motif-8 (also known as DMv2) are, to the best of our knowledge,
not known. De-novo motif calling also identified other core-promoter motifs but they were not
found enriched at boundaries. The three motifs that we find enriched on non-promoter
boundaries, correspond to the binding sites of Su(Hw) and CTCF and Ibf (Fig 3B). We could
not find an enrichment for motifs of other insulator proteins like GAF, Pita and Zw5. For
clarity, we will refer to the boundary motifs by the name of the insulator protein that binds to

them, except for motif-6 and 8.

As an independent validation, we find that our three novel boundary motifs (M1BP motif,
motif-6 and motif-8) are also enriched at the binding site of CP190, Rad21 (part of cohesin
complex) and Cap-H2 (condensin Il complex) (Table S1). Additionally, we repeated our
analysis using the TAD boundaries from (Sexton et al. 2012) and (Li et al. 2015;

Cubenas-Potts et al. 2016) and found similar enrichments (Table S2).

To better understand the distribution of the motifs on boundaries we performed hierarchical
clustering of the binding affinity (TRAP score) for the eight motifs enriched at boundaries
(Fig. 3C left panel). We then plotted the ChIP-seq signal of the DNA binding proteins (Fig.
3C second panel), along with CP190, Cap-H2, Rad21 (Fig. 3C third panel) and RNA Pol-Il,
over the clusters. The results show that the boundary motifs are usually associated with their
corresponding proteins, except for motifs 6 and 8 for which the binding proteins are not
known (Fig 3C second panel). Examples of the boundaries with their motifs and

corresponding proteins can be seen in Fig. S3C-G.

We discovered that in addition to the Beaf-32 motif, a novel M1BP motif is most frequently
found at boundaries. In combination those two motifs are enriched at 55% of promoter
boundaries, and are associated with their corresponding proteins. Promoter boundaries also
tend to be associated with condensin Il (Cap-H2), cohesin (Rad21), RNA polymerase Il and
housekeeping enhancers. On the other hand Ibf1, CTCF and Su(Hw) are the most common
proteins associated with non-promoter boundaries, and tend to be associated with enhanced
binding of CP190 co-factor (Fig. 3C, 3D). Similar to this result, we observe that the binding

sites of promoter and non-promoter boundary proteins are correlated (Fig. S3H).
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Since M1BP binds paused RNA Pol-ll promoters (Li & Gilmour 2013), we checked whether
other promoter-boundary motifs are also associated with paused RNA Pol-1l. Indeed, we find
that besides M1BP, promoters containing the ZIPIC motif or motif 6 also associate with
paused Pol-Il (Fig. 3E).

We then searched for association of all the transcription factors from modENCODE
consortium (Celniker et al. 2009) as well as from the comprehensive collection of ChlP-seq
data from (Li et al. 2015; Cubenas-Potts et al. 2016) with our boundary motifs. Similar to Fig.
3C, all motifs are enriched for binding sites of their corresponding proteins. Interestingly, our
screen for proteins associated to boundary motifs showed that Nup98, a component of the
nuclear pore complex, is associated with motif-6 and Pita (Fig. 3D and S3l). Further
validation using de-novo motif calling on Nup98 peaks and identified motif 6 and Pita motif

as the most enriched motifs (q = 3.4E-4 and 3.3E-09, respectively).

We observed that ChiP-seq peaks of DNA binding proteins are often found in regions not
containing their motif (Fig. 3D). For example, ZIPIC peaks can be seen together with motif 6
or CTCF although ZIPIC motif does not overlap with any of them (Fig. 4A). Similar
observations can be made for CTCF ChIP-seq experiments (Fig. S3J, see discussion),
suggesting that motif sequences should be considered along with ChlP-Seq binding sites as

more reliable functional predictors of an insulator protein.

Motif combinations reflect boundary strength and chromatin types

Next we looked at motif combinations at boundary, in relation to boundary strength. Using
ChIP-Seq analysis, it has been reported that boundary strength increases with the number of
proteins bound at the boundary (Van Bortle et al. 2014). When we looked for motif
combinations at boundaries that overlap with their corresponding protein, we we didn’t
observe any significant differences in boundary strength between boundaries containing
one, two or three motifs (we only found a handful of boundaries having more than three
motifs). Instead, we found that specific motifs or their combinations are associated with
boundary strength (Fig. 4A). Boundaries containing the motif for Ibf, Su(Hw) or the
combination of the two motifs are weaker than average while the combination of the Beaf-32

motif with either Pita, ZIPIC or motif-6 result in the strongest boundaries.

We also looked at the association of motifs with active, inactive, PcG and Hp1 TADs from

Fig. 1D. We observe that the promoter-boundary motifs (Fig 4B) are mostly found between
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active TADs or between active and inactive (including PcG) TADs. Conversely, the
non-promoter boundary motifs are rarely found between active TADs, and mostly separate
active from inactive TADs or are between inactive TADs (Fig. 4B). We find the same trend
when analysing the ChIP-chip intensity of the active histone mark H3K36me3 and the
repressive histone mark H3K27me3 surrounding the boundaries (Fig. S4A). Most
promoter-boundary motifs separate active-inactive marks, while most non-promoter

boundary motifs lie within inactive marks.

Additionally, we analyzed the chromatin state (Filion et al. 2010) that overlaps with the
boundary motifs and found that promoter-boundary motifs lie mostly within active chromatin

while non-promoter boundary motifs lie within both active and inactive chromatin (Fig. 3C).

Boundaries can be predicted using motifs

To better characterize boundaries at promoters we used three standard classification
methods and ranked features by their relevance to distinguish boundaries from other
promoters (see methods). The features included the TRAP score of all motifs studied along
with other known insulator motifs. We also used DNase hypersensitive sites (DHS) as a
feature to identify open promoters, considering that protein binding to a motif requires an
accessible promoter. The ranking of feature importance showed that indeed open promoters
are required for boundaries. For the motifs, the feature importance ranking follows the
abundance of the motifs at boundaries: Beaf-32 and M1BP appear to be most important,
followed by motif-6, ZIPIC and motif-8. Some features, like GAF and Pita were found to be

negatively associated with boundaries at promoters (Fig. S5A).

Although regularized models used here are less prone to overfitting compared to other
machine learning methods, we further protect against overfitting by 10-fold cross validation
during training. We then tested model accuracy on an independent test dataset. The
predicted data from the classifiers showed good results, with a sensitivity and specificity over
71% (Fig. 5B). For the small fraction of non-promoter boundary motifs, we used open
chromatin regions distant from promoters to train our classifiers using the non-promoter
boundary motifs as features. We achieved prediction accuracy similar to the
promoter-boundaries (Fig. 5C,D). Interestingly, we find GAF to be negatively associated with

both promoter and non-promoter boundaries (Fig S5C).
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We could evidence that the machine learning predictions can complement the Hi-C derived
boundaries at the promoters, as some boundaries predicted by our model are missed by our
boundary detection method based on the TAD-separation score. The predictions also detect
putative boundaries that are very close to each other and can not be resolved using Hi-C
data (Fig. 5E).

Resources to identify and explore TADs and associated genomic
features

During our research we developed processing and analysis tools for chromosome
conformation. Our tool-suite, called HiCExplorer, simplifies the Hi-C data pre-processing,
contact matrix transformation, and TAD calling into a few easy steps. HiCExplorer is open

source and and available at https://github.com/maxplanck-ie/HiCExplorer. Importantly,

HiCExplorer can be used with other pipelines and processing tools as we have built-in
import/export functions covering commonly used Hi-C data formats. To facilitate analysis, we
have integrated HiCExplorer into the Galaxy platform (Goecks et al. 2010). With HiCExplorer
we made available our efforts to create meaningful and accurate visualizations of Hi-C data
with other data sources, whose examples can be seen throughout this manuscript. Further
information can be found at the associated documentation

(http://hicexplorer.readthedocs.io), which includes a full analysis workflow and detailed

description of the tools.

Since most users will not routinely perform an expensive and technically challenging Hi-C
experiment, it will be highly beneficial to be able to visualize their genes or regions of interest

along with associated TAD boundaries, to understand gene regulation. We provide a

resource called the Chorogenome (http://chorogenome.ie-freiburg.mpg.de/), which includes
Drosophila, Mouse and Human Hi-C datasets, already processed by HiCExplorer, along with
associated gene annotations, histone marks and other TAD/boundary annotations. This can
be used to quickly visualize any gene or region in context of TADs. The underlying program

called HiCBrowser (https://github.com/maxplanck-ie/HiCBrowser), is also freely available to

be used as a standalone browser, where users can include their own genomic tracks. With

these resources, we hope to make Hi-C analysis a routine part of genomics workflows.
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Discussion

In this study, we used high resolution (Dpnll restriction enzyme) and deeply sequenced
(~246 million reads) Hi-C data from (Li et al. 2015; Cubenas-Potts et al. 2016) to map the
genomic positions of TAD boundaries within ~600 bp in D. melanogaster. We characterize
TAD size, boundary strength, chromatin marks, gene orientation and transcription at the
TADs. We perform motif calling at boundaries, validating the presence of known insulators,
along with core promoter motif 6, motif 8 and M1BP motif, which have not been associated
to boundaries before. We show that DNA motifs and open chromatin are sufficient to
accurately predict a major fraction of fly boundaries. Finally, we present a set of useful tools

and a resource for visualization and annotation of TADs in different organisms.

Our study verifies various properties of fly boundaries indicated in previous publications. We
detect that most boundaries associate with promoters and active chromatin (Hou et al. 2012)
and that various known insulator proteins are enriched at boundaries (Hou et al. 2012;
Sexton et al. 2012). However, some of our results contradict previous observations. For
example, we find that genes at boundaries have higher expression and low variability of
expression throughout fly development in contrast with (Hou et al. 2012) who suggest that
gene density and not the transcriptional state is important for boundary formation. We detect
that genes at boundaries are divergently transcribed, in contrast to (Hou et al. 2012), that
CTCF is not a major boundary associated insulator in Flies, in contrast to (Hou et al. 2012;
Sexton et al. 2012; Van Bortle et al. 2012) and that the number of insulators at boundaries
correlate very little with boundary strength, in contrast to (Van Bortle et al. 2014). Most of
these contradicting results are due to two important differences of our study with previous

studies:

A) The use of higher resolution boundaries: Most of our boundaries overlap with the known
boundary protein CP190 (Fig 1B, Fig S1F) and the boundaries uniquely detected in our

study have a lower TAD separation score than those unique to other studies (Fig. S1G).

B) Analysis of combination of DNA motifs, along with ChIP-Seq peaks, rather than ChIP-Seq
peaks alone: We show that correlating boundaries with ChlP-Seq peaks alone is not a good
measure when it comes to determinants of boundary formation. Many DNA binding proteins
show co-localization in ChlP-Seq data, without presence of the corresponding DNA motifs

(Fig. 3D, S3J). This is possible due to cross-linking artifacts and indirect binding, which is, in
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fact, aggravated at boundaries, which tend to contact each other in 3D space (Liang et al.
2014).

Another argument for considering Motifs is the contradicting case of CTCF at boundaries. In
contrast to earlier studies (Sexton et al. 2012; Hou et al. 2012), we find that CTCF motif is
rarely associated to boundaries. We could observe a significant enrichment of CTCF at
boundaries in ChIP-Seq data from (Wood et al. 2011). However this enrichment disappears
if we use the CTCF ChIP-seq data from (Li et al. 2015). On the other hand, if we analyse
CTCF peaks containing the CTCF motif, both ChlP-seq datasets show significant
enrichment (Fig. S3J). For CTCF, and in general for ChlP-seq experiments in flies, 'phantom
peaks' are known to occur at active promoters (Jain et al. 2015). Thus, to avoid misleading
results our analyses are based on motif presence when possible and for ChlP-Seq datasets,
we try to use significance threshold along with motif binding intensity for analysis (instead of

taking a significance cutoff alone).

We observe that boundary strength is affected by the chromatin states of flanking TADs and
particular motif combinations, but is not affected by the number of co-occurring boundary
motifs. While the boundary strength is higher between active and inactive/PcG TADs,
boundaries separating two TADs within the same state (eg. active-active, inactive-inactive)
are weaker (Fig. S1F). We observe that boundaries containing combinations of the motifs for
Beaf-32 and either Pita, motif 6 or ZIPIC are stronger; however, the mechanism by which
combinations of insulators alter the boundary strength still remains unclear. In this regard the
relation between Nup98 and with both the Pita motif and motif-6 (Fig. 3D and S3H) suggest

that association with nuclear pore proteins may result in stronger boundaries.

Our results indicate that the two sets of boundary motifs (promoter & non-promoter)
specialize in the compartmentalization of different types of chromatin. Boundaries containing
core promoter motifs are either flanking, or surrounded by active chromatin regions (Fig. 4B).
In contrast, the boundaries containing non-promoter motifs tend to be within or at the
borders of inactive or repressed chromatin (Fig 4B). For example, repressed TADs at Hox
gene clusters are delimited by CTCF, Su(Hw) or Ibf1/2. This finding is in line with previous
reports showing an enrichment of CTCF at the borders of H3K27me3 domains (Van Bortle et
al. 2012; Sexton et al. 2012) and an enrichment of Beaf-32 in active chromatin (Sexton et al.
2012). An interesting speculation is that the diverse range of architectural proteins in flies

have provided scope for precise control of gene regulation by allocating boundary motifs
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(and therefore proteins) at different places. For example, we observe that GAF motif, whose
presence is negatively associated with TAD boundaries (Fig. S5 A,C), is rather detected
alone at “loop domains” (Fig. S5E). It's also important to consider the possibility that different
boundary types might involve different mechanisms of formation. Furthermore, the
identification of the new boundary motif 6 and motif 8 hints that there might be unidentified
insulator proteins that recognize these motifs. This indicates that there is further scope to

expand the list of insulator proteins in flies..

An important aspect of this study is the demonstration that TAD boundaries can be predicted
with high-accuracy using motif binding affinity along with open chromatin, in absence of any
other information about the presence of protein or histone marks (Fig. 5B, C). Motif binding
affinity can also serve as a linear predictor of boundary strength (Fig S3B, D). These results

suggest that DNA sequence is the major determinant of boundary location.

The observation that the majority of TAD boundaries are at the promoters of constitutively
expressed genes favors the idea that transcription is linked to TAD formation in flies. One
hypothesis, in line with the extrusion model (Sanborn et al. 2015; Fudenberg et al. 2016), is
that an immobilized RNA Pol-ll, anchored by the insulators, extrudes the DNA during
transcription to form these domains (Fig. S6 A-B). Multiple such units working in gene-dense
regions can form a rosette-like structure indicative of transcription factories (Fig. S6 C-D)
(Cook 2010; Sutherland & Bickmore 2009). Promoters of divergently transcribed genes
serve as good candidates for boundaries, by anchoring RNA Pol-ll machines in both
directions (Fig. S6 E). This mechanism, might seem more plausible in case of Flies, which
have gene-dense chromosomes containing closely organized divergent promoters of
housekeeping genes. However, recent observations do indicate that transcriptional
activation might be linked to TAD formation in mammals (Germier et al. 2017). Further
experiments would be required to visualize and quantify the relationship between

transcription and TAD formation in different species.

Methods

Hi-C processing

Different Hi-C data available for D. melanogaster was downloaded from GEO and processed

using the HiCExplorer (http://hicexplorer.readthedocs.io/). The following data was used:
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Source Restriction No. of usable GEO Reference
enzyme reads accession
Whole embryos Dpnll 133.483.965 GSE34453 (Sexton et al.
2012)
Kc167 Dpnll 135.274.348 GSE63515 (Li et al. 2015)
Kc167 Dpnll 110.807.526 GSE80701 (Cubenas-Potts
et al. 2016)
Kc167 Hindlll 71.278.991 GSE38468 (Hou et al.
2012)
S2 Hindlll 680.121.887 GSE58821 (Ramirez et al.
2015)
Clone-8 Hindlll 131.426.003 GSE58821 (Ramirez et al.
2015)
third instar Hindlll 9.404.794 GSE72512 (Eagen et al.
larvae salivary 2015)
glands

The Hi-C sequencing reads were downloaded from GEO and each mate was aligned
separately using bwa mem with parameters -E50 -L0. The E parameter is the gap extension
penalty, which is set high to avoid gapped alignments. This is because a fraction of the
reads from a Hi-C experiment contain sequences from two distinct genomic positions. By
increasing the gap extension penalty we promote the aligner to map the two parts of the
read separately instead of trying to map the read to a single location. The L parameter is the
penalty for 5’ and 3’ clipping which we set to zero to favor such clipping for the same reason

as before.

To create the contact matrices, HiCExplorer divides the genome into bins of unequal size
demarcated by the genomic positions of the restriction site and a matrix was created having
these bins as rows and columns. The mapped reads were processed to count the number of
times any two bins were connected by the Hi-C reads pairs. The following reads were
discarded: read pairs that were not uniquely mapped or had a mapping score lower than 15,
were within 800 bp to each other, were duplicated, contained a dangling end indicative of
defective re-ligation or when one of the fragment mates was farther than 1500 bp from the

restriction site.
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In our processing of the data we observed that restriction enzymes do not cut with the same
efficiency at all sites or sometimes do not cut at all. Because of this, after the creation of the
contact matrices, rows and columns with zero or few total counts were removed. For this, we
analyzed the distribution of total counts per rows. This distribution is bimodal which we
interpret as two distributions combined. The distribution with lower counts contains all bins
with zero reads, mostly from repetitive regions, and also the bins with low number of reads
probably from inefficient digestion of restriction sites. As a cut-off to decide the minimum
count of reads assigned to a bin we use the value corresponding to the valley between the
two distributions. After filtering low count bins, the matrices were corrected following the

iterative procedure from (Imakaev et al. 2012).

For the 4-cutter Dpnll restriction enzyme the average fragment length after removing low

coverage bins is 570 bp. For the 6-cutter Hindlll the average was 4500 bp.

Identification of boundaries

TAD boundaries were identified using an improved version of TAD-separation score method
from (Ramirez et al. 2015) which is similar to TopDom (Shin et al. 2016). The method works

by first transforming the Hi-C contact matrix into a z-score matrix A= (a,). For this, each
contact frequency in the matrix is transformed into a z-score based on the distribution of all
contacts at the same genomic distance. For a bin /, the contacts between an upstream and
downstream region of length w are in the the z-score submatrix of A[a,f,;], such that
o, € {{-w, .., I} and B, € {/, ..., [+w}. This submatrix corresponds to the 'diamond' seen
in Fig. S1A. For each matrix bin we compute the TAD-separation score (w) as the mean the

Ao, B,]values.

To reduce noise the TAD-separation score is computed for different values of w that are
averaged afterwards per bin. Genomic bins with a low TAD-separation score with respect to
neighboring regions (local minima) are indicative of TAD boundaries (Fig. S1A). To discard
false positives we compare, for each local minima, the distribution of the z-score for the
submatrices Ao, B,] having / € {i, i—w, i+w}, where i is the bin of the local minima, and
i—wand i+w are the bins at distance w upstream and downstream of i respectively. We

use the Wilcoxon rank-sum test to compare the values of A [a,, B,] with the values of each of
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the other matrices and the lowest of the two p-values is used. Finally, we correct the

p-values using the Bonferroni method.

To call boundaries, we used the following parameters:
w € {10000, 12000, 18000, 25000, 40000} and p-value < 0.001. We also used a minimum
local minima depth of 0.01. Depth of local minima (referred to as delta) can be considered

similar to “fold change” of any minimum, with respect to the neighboring TAD-score average.

In contrast to other published methods to call TADs, this procedure has several advantages:
i) Each boundary is associated to a TAD-separation score and a p-value, that are useful to
characterize strong vs. weak boundaries, ii) the TAD score can be easily visualized (e. g. as
an genome browser track), which is always useful for visual inspection, and iii) the
computation of boundaries takes only minutes, scaling linearly with the length of the
genome). Our method differs from the TopDom method in the following aspects: i) We
compute TAD-separation scores using a z-score matrix while TopDom uses the corrected
counts matrix, ii) we use multiple length (w) sizes to compute our TAD-separation score
while TopDom uses a single wvalue, iii) we compute p-values using the 'diamond' A [a,, ;]
submatrices values in contrast to the 'diamond and triangle’ distributions used in TopDom.
The triangle distribution contain the intra z-score values between bin /—w and /, and the

intra z-score values between bin / and [+ w.

Validation of boundary quality

We used the following functional signatures to validate the quality of our boundaries :

Distance to known insulator co-factor CP190: Since all studied insulators proteins bind to
CP190 (Ong & Corces 2014; Zolotarev et al. 2016a; Cuartero et al. 2014), a sensible quality
measure is the overlap of boundaries with CP190 ChIP-seq peaks. For this, we computed
the distance of the boundaries to CP190 peaks using bedtools (Quinlan & Hall 2010)
closestBed (Fig. 1B, S1H). For comparison, we randomized our boundary positions using
bedtools shuffleBed (Fig. S1H) and estimated the new distances to CP190. ShuffleBed
simply assigns a new random position for each boundary anywhere in the genome
(excluding heterochromatic and unplaced regions. Finally, we computed the background
probability of obtaining the observed overlap between CP190 peaks and Hi-C boundaries

using bedtools Fisher’s test.
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Separation of histone marks: As boundaries are expected to separate histone marks we
used the method described by (Rao et al. 2014) to quantify the correlation of marks within
TADs and between TADs. For this, each TAD was scaled to 15kb, flanked with a 15kb
region and divided into 1 kb bins. For each bin the mean histone ChIP-chip value was
recorded, thus generating a matrix of 2,852 TADs (rows) and 45 bins (columns). For this we
used computeMatrix from deepTools. The pair-wise pearson correlation value of each

column was then computed to produce a matrix of size 45 x 45.

Classification of TADs

The following histone marks for Kc167 from modEncode (Celniker et al. 2009) were used:
H3K36me3, H3K4me3, H3K9me3 and H3K27me3. Other marks that correlate closely to
these marks were not included. For example, H3K9me2 correlates closely with H3K9me3,
H3K4me2 with H3K4me3 etc. The average intensity of the marks over the TAD length was
computed using multiBigwigSummary from deepTools2 (Ramirez et al. 2016). The resulting
matrix was clustered by computing euclidean distances between the histone marks and
applying hierarchical clustering using the complete method. Five clusters were detected (Fig.
S4B) that correspond to the presence of H3K36me3, H3K9me3, H3K4me3, H3K27me3 or
none. Analysis of the TADs containing H3K36me3 and H3K4me1 in the genome revealed
that that H3K36me3 is present at exons of active genes while H3K4me1 is mostly present at
introns and intergenic regions of active genes and less abundant at exons. Thus, noticing
that these two marks are complementary for active regions we classified TADs having
predominantly these marks as ‘active’. For the other clusters we used the same categories
as (Filion et al. 2010): the cluster of TADs with H3K9me3 was labeled as ‘HPT’
(Heterochromatin Protein 1); the cluster with H3K27me3 was labelled ‘repressed’ or ‘PcG’

(Polycomb group) and the cluster with no mark was labelled as inactive.

Analysis of transcription at boundaries

In order to analyse transcription at boundaries, we downloaded ribo-depleted RNA-Seq data
from modENCODE (Celniker et al. 2009). Data was mapped to the Drosophila (dm3)
genome using HISAT2 (v2.0.4) (Pertea et al. 2016) and the reads were summarized per
gene using featureCounts (v1.5.0.p1) (Liao et al. 2014) using options -p --primary -Q 10. We
used data from Kc167 cells, along with 14 different developmental stages, ranging from
embryo to adult. We only used data produced in 2014 in order to avoid batch effects and

further confirmed the data quality by clustering the samples by euclidean distance (Fig S2A).
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We normalized each sample by library size, averaged the counts for replicates, and finally

used log transformed counts for all the analysis.

Genes were considered expressed if they have a normalized log-count of 1 or more.
Variability was assessed using coefficient of variation of a gene across all developmental
stages along with Kc167 cells. For gene-pairs in any orientation (convergent, divergent or
tandem) we calculated the correlation (spearman and pearson) of coef. of variation of
gene-1 with gene-2 across development and plotted the results. We further tested whether
overall, genes within TADs tend to be more correlated in expression than genes between
TADs. For this we used a subset of consecutively arranged TADs that have more than one
gene inside them. We then used ANOVA to test for differences between and within TADs, as
seen in Fig S2C, many TADs pairs are significantly different from each other, while very few

TADs are significantly different if we randomly assign genes to TADs.

|dentification of boundary motifs

We took the list of boundaries and expanded them by 500 bp on each side. To avoid false
positives, repetitive regions from the sequences of those boundaries were replaced by ‘N’s
and any region with more than 10% of ‘N’s was removed. We used MEME-chip (Ma et al.
2014) to identify enriched DNA motifs; MEME-chip internally computes motifs using two
methods, DREME (Bailey 2011) and MEME (Bailey & Elkan 1994). DREME aims to quickly
identify short motifs while MEME identifies larger overrepresented sequences (at the
expense of significantly longer processing times). We used the consensus of DREME and
MEME to call motifs.

To obtain the position-weight matrices of insulator motifs we ran MEME-chip (Ma et al. 2014)
on the peaks called using MACS2 (Feng et al. 2012). We selected the highest scoring motif
for each case which invariably corresponded to the motif reported for the protein. We used
ChIP-Seq data for Beaf-32, CTCF and Su(Hw) from (Wood et al. 2011) GAF from
(Cuberfias-Potts et al. 2016); Ibf1/2 from (Cuartero et al. 2014); Pita and ZIPIC from
(Maksimenko et al. 2015); and Zw5 from (Gaszner et al. 1999).

Enrichment of motifs using control background

For promoter boundaries, a control background composed of all drosophila gene promoters

was used to test the enrichment. We downloaded drosophila genes (dm3 assembly) from
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UCSC table browser (Karolchik et al. 2004) and selected the sequences 200 bp upstream

and 50 bp downstream of the transcription start site as core promoter sequences.

We classified these promoter sequences as boundary if they were within 500 bp of a
boundary, or non-boundary (control background) if they were farther than 2,000 bp from a
boundary. Repetitive regions from the sequences of those promoters were replaced by ‘N’s
and any region with more than 10% of ‘N’s was removed. In total, 10,529 background

promoters and 1,944 boundary promoters were used.

We used two different methods to assess the enrichment of the de-novo and known motifs in
boundary promoters with respect the control background, namely Ame (McLeay & Bailey
2010) from the MEME-suite and a method based on the predicted binding affinity given by
TRAP (Thomas-Chollier et al. 2011) that works as follows: for each motif, the log(TRAP
score) distribution was computed for both the background and the boundary promoters. The
Wilcoxon rank-sum test was then used to test for differences in the distributions. The
P-values obtained were corrected using FDR. For Ame we use total hits as scoring method
and Fisher’s test for estimating enrichments. We tested all de-novo motifs identified either by
MEME or by DREME and all known motifs associated to insulators and CP190 cofactors as

well as all core-promoter motifs.

We also used as control active genes in Kc167. To make this control, we selected those
genes that overlapped with the yellow and red chromatin states from (Filion et al. 2010) that
are indicative of active chromatin in Drosophila Kc cells. The enrichment results were similar

to the ones using a more broader list of genes for background.

For the boundaries that are not at promoters we used non-promoter open chromatin
sequences obtained from DNase-seq from (Celniker et al. 2009) as control . In this case we

used 1,665 background open chromatin regions and 655 non-promoter boundaries.

Pausing index

Pausing index for all D. melanogaster promoters was computed as the ratio of Pol-ll
ChlP-seq coverage at promoter over coverage at gene body. We used the ChIP-seq data for
RNA Pol-Il from (Li et al. 2015). The promoter region was defined as in the previous section

(200 bp downstream, 50 bp upstream of transcription start site). The gene body was defined
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as the region between 50 bp downstream of the transcription start site and the gene end. We

used the maximum coverage for the promoters and the median coverage for the gene body.

ChlP-seq data sources

Source GEO accession Reference

Kc167 Beaf-32 GSM762845 (Wood et al. 2011)
Kc167 CP190 GSM762836 (Wood et al. 2011)
Kc167 CTCF GSM1535983 (Li et al. 2015)
Kc167 Su(Hw) GSM762839 (Wood et al. 2011)
Kc167 Cap-H2 GSM1318356 (Van Bortle et al. 2014)
Kc167 Chromator GSM1318357 (Van Bortle et al. 2014)
Kc167 Rad21 GSM1318352 (Van Bortle et al. 2014)
Kc167 Pita GSM2133768 (Cubefas-Potts et al. 2016)
Kc167 ZIPIC GSM2133769 (Cubefias-Potts et al. 2016)
Kc167 GAF GSM2133762 (Cubefias-Potts et al. 2016)
Kc167 Ibf 1 GSM2133766 (Cubefias-Potts et al. 2016)
Kc167 Ibf 2 GSM2133767 (Cuberias-Potts et al. 2016)
Embryo Zw5 GSM2042227 (Zolotarev et al. 2016b)
S2 M1BP GSM1208162 (Li & Gilmour 2013)
Kc167 RNA Pol-II GSM1536014 (Li et al. 2015)

S2 DNase-seq GSM1000406 (Arnold et al. 2013)
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Processing of ChlP-seq data

For each ChlP-seq data used, we downloaded the respective fastq files and aligned them in
the dm3 assembly using Bowtie2 (Langmead & Salzberg 2012). MACS2 was used to
identify peaks for each of the proteins (Feng et al. 2012). For the respective data sources we
downloaded input sequences and aligned them as the ChlP-seq data. bamCompare and
bamCoverage from deepTools2 (Ramirez et al. 2016) were used to create normalized

coverage bigwig files.

MEME-chip (Ma et al. 2014) was used to identify motifs based on the MACS2 peaks. The

resulting motifs can be seen in Table 1.

Clustering of motifs

We used the promoters (200 bp upstream 50 bp downstream) annotated as boundaries and
computed the log(TRAP score) for the Beaf-32 motif, motif-1 (M1BP), motif-6, motif-7
(ZIPIC) and motif-8. The scores for each motif were converted to bigwig files and clustered

using hierarchical clustering from deepTools2 (Ramirez et al. 2016).

All boundaries that were further than 2000 bp of a promoter were centered at the nearest
CP190 ChIP-seq peaks within 2000 bp, otherwise the boundary position was not modified.
Log(TRAP score) for CTCF, Ibf and Su(Hw) were computed for these regions and clustered

as previously described.

We used hierarchical clustering based on euclidian distance and the ward method. The
cluster number used was 13 for promoter boundaries and 9 for non-promoter boundaries. In
each case, the group compose only low TRAP scores was removed. After clustering, the
groups were manually ordered and to produce the left panel of Fig. 2C. Scale of each
heatmap was manually adjusted based on the range of TRAP scores found at the clusters
for each motif (Fig. S3A). The log2 ratio of ChlP-seq / input for the different proteins was
used for the center and right panels of Fig. 2C. Each heatmap is centered on the boundary
and extended +-5000 bp. Scale of the heatmaps were adjusted based on the log2

ChlIP/input for the protein in the respective cluster (Fig. S3B).
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Motif presence

For figure 3, we considered a motif as present at a boundary if the TRAP score was equal or
higher than the minimum log(TRAP score) identified for the clusters in Fig. 3C (the
distribution of the log(TRAP scores) can be seen in Fig. S3A). The thresholds used were:
ZIPIC motif -4.7, Beaf-32 -5, M1BP -4.5, motif-6 -3, motif-8 -2, Ibf -4, CTCF -4, Su(Hw) -3.
For GAF, Pita and Zw5 motifs we used FIMO (Grant et al. 2011) with the following
parameters: ‘--max-strand --thresh 1e-3'. For analysis of motif combinations at boundaries,
we also require that the motifs are accompanied by the corresponding ChiP-seq peaks. For
motif-6 and motif-8 whose binding proteins are not known, we require that the motif is on an
accessible region. For this we use the peaks from the DNAse-seq data (Celniker et al.
2009).

Boundary prediction and feature ranking

We performed boundary prediction at all drosophila promoters using motif TRAP scores for
various transcription factors and DNAse-Seq signals as features. We utilized methods
ranging from simple to complex (linear models, logistic regression, random forest and
stochastic gradient boosting), with the primary purpose to rank the features by importance in
boundary prediction. Pre-filtering was done to remove highly correlated features (pearson R
> 40%). Linear model and random forest was performed using the package Caret (Kuhn et
al. 2016), while logistic regression was performed using package g/lmnet (Friedman et al.
2010) inR.

Linear model was used with stepwise feature selection algorithm to predict boundary score
from features by selecting the combination of features that minimizes the Akaike Information
Criteria (AIC). Logistic regression, Random forest and gradient boosting were used to
classify the promoters into boundary and non-boundary, with additional feature selection
performed using lasso, for logistic regression. We performed 10-fold cross validation while
training all classification models. To evaluate model accuracy, the data was randomly
divided into training (60%) and test (40%) datasets and the sensitivity and specificity was
calculated for test predictions. Lasso and gradient boosting models show highly similar
sensitivity and specificity when used on new test dataset, compared to when same dataset

was used for prediction, suggesting they are robust and less prone to overfitting.
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Linear model predicted the boundary scores on the test dataset with overall spearman
correlation of 37.6%, while logistic regression and random forest performed predictions with
around 73 to 78% accuracy. After obtaining the best model in each scenario, we ranked the
features by their importance in prediction, using the varlmp function from caret. varimp
selects a variable importance predictor based on the model type, which is calculated for

each parameter in the model (https:/topepo.qithub.io/caret/variable-importance.html).

Briefly, the importance score for linear model is the absolute value of the t-statistic for the
model parameter, for lasso, it's the absolute value of final coefficients, for gbm it's the
relative influence score as described in (Friedman 2001), and for random forest it's the
difference between the classification error-rate for the out-of-bag portion of data and a
permuted predictor variable, averaged over all trees and normalized by the standard
deviation of the differences

(https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#varimp). All

importance scores are then scaled between 0 and 100 to compare them together.

Supplementary Material

e Supplementary Table S1: List of promoter boundaries with annotations for
TAD-separation score, motif and ChlP-seq enrichment.

e Supplementary Table S2: List of non-promoter boundaries with annotations for
TAD-separation score, motif and ChlP-seq enrichment.

e Supplementary Table S3: List of TADs annotated with their classification.
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Figure 1. High-resolution TAD boundaries in flies. A. Example region of 350 kb showing
Hi-C TADs from Kc167 cells. The top panel shows a heatmap of corrected counts from the
Hi-C contact matrix obtained from (Li et al. 2015; Cubefias-Potts et al. 2016). The size of the
bins is variable (mean 570 bp) and depends on the genomic location of the Dpnll restriction
sites. The chromatin state track contains the five classifications from (Filion et al. 2010):
Active chromatin, red and yellow; inactive chromatin, black; PcG, blue; HP1, green. The TAD
separation score track (see methods) depicts a normalized measure of the contacts between
two flanking regions. The gray lines show scores for flanking regions of different size ranging
from 10 kb to 40 kb and the blue line shows the mean score. The TAD-separation score was
used to identify local minima indicative of TAD boundaries. The estimated boundaries are
shown as vertical lines. The following four tracks show normalized ChIP-seq coverage for
the insulators CP190, Beaf-32, and Su(Hw) on Kc167 from (Wood et al. 2011) and CTCF
from (Li et al. 2015) that are known to be associated to boundaries (Sexton et al. 2012; Van
Bortle et al. 2014). The following tracks contain ChlP-chip data for histone modifications from
modEncode (Celniker et al. 2009). This particular region was selected because many
different TADs could be seen; other regions can be browsed at
http://chorogenome.ie-freiburg.mpg.de:5001. B. Histogram of the distance of a boundary to
the nearest CP190 (common insulator protein co-factor) peak. C. Correlation of histone
marks within and between TADs. Each pixel in the matrix represent the pearson correlation
of the histone mark in all TADs at different distances (see methods). D. TAD classification
based on histone marks. The numbers below each TAD type represent respectively: mean
length, percentage of genome occupied by the TAD and number of TADs of that type. E.
Boxplot of consecutive TAD of each type. F. TAD-separation score between: active and
inactive or PcG, active-active, inactive-inactive and PcG-PcG. The differences between the
groups are all significant (p-value < 7.8E-5, Wilcoxon rank-sum test). G. Classification of
TAD boundaries. TAD boundaries are classified at promoter if they are within 1000 bp of the
annotated TSS. H. Histone marks at non-promoter and promoter boundaries. Further marks
can be seen in Fig. S11. I. TAD-separation score for non-promoter and promoter boundaries
(p-value=8.52E-35, Wilcoxon rank-sum test). J. DNase accessibility at non-promoters and

promoter boundaries.
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Figure 2. TAD boundaries are marked by specific gene orientation and transcription A.
Correlation of mean expression across developmental stages inside TADs vs outside.
Region inside TADs was scaled to 15 kb. Each pixel in the matrix contains the pearson
correlation at different distances. B-C. Mean expression (in Kc167 cells) and variability of
expression (during development) for genes whose promoters are at a TAD boundary vs.
genes whose promoters are not at boundaries. D. Coefficient of variation (across
developmental stages) between pairs of adjacent genes either separated by a TAD

boundary (left) or not separated by a boundary (right).

31


https://doi.org/10.1101/115063
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/115063; this version posted March 8, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

Figure 3

available under aCC-BY-NC-ND 4.0 Internati

onal license.

A 7% . )
promoter test for enrichment using
Kook promoter background
High-resolution de novo
boundaries motif calling
2,852 239
\ non-promoter test fo enrichment using
boundaries non-promoter DHS
s &5 s &
B motifs identifed at boundaires Ame TRAP D {}.9 \,Q qé’. oo e-é} «59 &
SR FFITEFFLLF
re motif « A EFFES
0 {emag;t L ,L;ICACACI- 7.84E-85 5.20E-87 ZPic chie i
Beaf-32 ChIP
core motif 2 {L ICAT M18P ChiP
(Beaf-32) A A . 1.63E-64 3.27E-70 Nupg8 Chip
’ Ibf ChiP
core motif 6 ;;‘A ATACQ 1.47E-48 8.65E-66 CTCF ChIP
AA@ AA Su(Hw) ChiP
core motif 7 ; : L. Chin
(ZIPIC) » CA- ._ 5.09E-37 1.07E-30 Cap-H2 ChiP
. i Rad21 ChiP
rem tif 2 A
corGmatits ﬂl CAACACC 8.86E-08  7.27e-16
E
5 CTCF flcT CCASFCTM 7.53E-06  6.36E-02 3 120 w1
© £ | T
E \ 2 80 1 1
Su(Hw) " CATACTTI 1.52E-06  3.87E-10 S 0|~ T T D .
[] e s o
§ . =R=N=1"1-
Ibf = ATIs AA 9.03E-02  2.03E-05 SRRC A QR g
.J AT0T Aalax SELEES
&
C o #
o B g o © @ w F )
8 3 ¥ 2 - O L {condensin Ii}(cohesin) housekeeping
N & £ B BB E 3 Zipic Beaf-32 MIBP  Ibfl  CTCF  Su Hw CP190 Cap-H2 Rad2l RMAPolll  enhancer
== ] |
— 1
:
w 5 = . | = _____l _______________ i S Aot S e ESR S o I R N B
E -  —— , —— 1 8
] :
=2
o —
g E; : !
| i
COECEE T T e .
10 kbp log2(ChiP { input) log2(ChIP / input)
| direct DNA binding indirect DNA binding
DNA motifs ChiP-seq

32


https://doi.org/10.1101/115063
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/115063; this version posted March 8, 2017. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figure 3. Eight motifs are enriched at boundaries: A. Overview of the strategy used to
identify de-novo motifs. B. Motifs enriched at promoter and non-promoter boundaries (along
with corrected p-values). Two methods were used to estimate enrichment (see methods):
Ame (McLeay & Bailey 2010) and TRAP (Thomas-Chollier et al. 2011). C. Clustering of
boundaries by motif binding affinity (see methods). Each row represents one boundary. Left
panel: clustering of motif binding affinity using the TRAP score (Thomas-Chollier et al. 2011).
Higher scores indicate stronger predicted binding. Dashed lines delineate the clusters.
Following panels: Using the motif clustering results we show the heatmaps corresponding to
ChlIP-seq enrichments for insulators protein binding the DNA (second panel), other proteins
that bind indirectly (third panel) and RNA Pol-1l. Last panel shows housekeeping enhancers
from (Zabidi et al. 2015). For boundaries at promoters, heatmaps are centered at the gene
promoter, for non-promoter boundaries, heatmaps are centered at the nearest CP190 peak
within 2000 bp. ChlP-seq signal was computed in 50 bp bins for 5000 bp from the center.
The scale of each heatmap was adjusted based on the distribution of the TRAP or ChIP-seq
values in the respective cluster (Fig. S3 A and B). D. Relationship between motif presence
and ChIP-seq peak fold change at boundaries. Each cell in the matrix contains the mean fold
change of all respective ChlP-seq peaks having the motif. For each row, the maximum fold
change was scaled to 1. E. Pausing index at different boundary-promoters containing one of

the boundary motifs. Non-boundary promoters are plotted as control.
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Figure 4. Promoter and non promoter motifs show marked differences. A.
TAD-separation score at boundaries grouped by the motif presence. For this analysis we
considered a motif to be present if the motif overlaps with a ChlP-seq peak (see methods).

The bars show the overlap between the indicated motifs below. The boxplots show the
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distribution of the respective TAD-separation score. The sets highlighted in blue have a
TAD-separation score distribution significantly larger than the overall TAD-separation score.
The p-values (Wilcoxon rank-sum test) are show above the figure. Similarly, the sets
highlighted in red have a distribution significantly smaller. Only motif combinations having
more than 10 instances are shown. Motif combinations with three or more motifs were rare.
The intersections were plotted using UpSetR (Lex et al. 2014). An overview of the motif
overlaps can be seen in Fig. S4A. B. Frequency of flanking TAD types (as classified in Fig.
1D) per boundary motif. C. Frequency of the chromatin state from (Filion et al. 2010).
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Figure 5. Machine learning prediction of boundaries. A. Feature importance for promoter

boundaries computed using four different methods: linear model, logistic regression, gradient
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boost model (gbm) and random forest. Importance scores of each method were scaled from
0 to 100. Except for DNAse-seq, each feature represents the binding affinity (TRAP score) of
the respective motif. B. Sensitivity and specificity for promoter boundaries measured for
logistic regression, gradient boost model and random forest. The output of the linear model
can be seen in Supplementary Fig. S3B. C. Feature rankings, as in (A), for non-promoter
boundaries. D. Sensitivity and specificity for non-promoter boundaries. E. Examples of
high-resolution boundaries and predicted boundaries. The high-resolution boundaries (based
on the TAD-separation score) are depicted as black triangles on top of the Hi-C heatmap.
The predicted boundaries are shown as dotted vertical lines. The tracks below the the Hi-C
contact map contain the instances of the motifs that overlap with promoters. To aid the
visualization of the short motifs, their genomic location was extended by 500 bp in each
direction. The last track depicts regions of open chromatin based on DNase-seq from
modEncode (Celniker et al. 2009).
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