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Abstract  

Eukaryotic chromatin is partitioned into domains called TADs that are broadly conserved            

between species and virtually identical among cell types within the same species. Previous             

studies in mammals have shown that the DNA binding protein CTCF and cohesin contribute              

to a fraction of TAD boundaries. Apart from this, the molecular mechanisms governing this              

partitioning remain poorly understood. Using our new software, HiCExplorer, we annotated           

high-resolution (570 bp) TAD boundaries in flies and identified eight DNA motifs enriched at              

boundaries. Known insulator proteins bind five of these motifs while the remaining three             

motifs are novel. We find that boundaries are either at core promoters of active genes or at                 

non-promoter regions of inactive chromatin and that these two groups are characterized by             

different sets of DNA motifs. Most boundaries are present at divergent promoters of             

constitutively expressed genes and the gene expression tends to be coordinated within            

TADs. In contrast to mammals, the CTCF motif is only present on 2% of boundaries in flies.                 

We demonstrate that boundaries can be accurately predicted using only the motif            

sequences, along with open chromatin, suggesting that DNA sequence encodes the 3D            

genome architecture in flies. Finally, we present an interactive online database to access             

and explore the spatial organization of fly, mouse and human genomes, available at             

http://chorogeome.ie-freiburg.mpg.de ​. 

Introduction 

The partitioning of chromosomes into topologically associating domains (TADs) is an           

emerging concept that is reshaping our understanding of gene regulation in the context of              

physical organization of the genome ​(Dixon et al. 2016; Lieberman-Aiden et al. 2009; Rao et               

al. 2014; Sexton et al. 2012; Hou et al. 2012)​. However, the mechanisms by which chromatin                

acquires its 3-dimensional conformation are not fully understood. TADs were first described            

in mouse ESC cell lines ​(Nora et al. 2012) as regions of preferential DNA contact. Since                

then, TADs have been discovered in other mouse and human cell lines ​(Dixon et al. 2012)                

as well as in other mammals (dog and macaque ​(Vietri Rudan et al. 2015)​, in flies ​(Sexton et                  

al. 2012; Ramírez et al. 2015; Hou et al. 2012)​, worms ​(Crane et al. 2015) and yeast                 

(Mizuguchi et al. 2014)​. TAD-like structures have also been reported in plants (Arabidopsis             

thaliana) ​(Wang et al. 2015) and bacteria (​Caulobacter crescentus​) ​(Le et al. 2013)​.             

Interestingly, TADs seem to be virtually identical between cell lines of the same organism              

(Dixon et al. 2012; Ramírez et al. 2015; Rao et al. 2014) and they are conserved between                 
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species ​(Vietri Rudan et al. 2015)​. Recent publications show that TADs correspond to             

cytogenetic bands ​(Ulianov et al. 2015; Eagen et al. 2015)​. The functional importance of              

domains and their proper separation was highlighted by ​(Lupiáñez et al. 2015) who             

demonstrated that disruption of TAD boundaries cause changes in gene-enhancer          

interactions that lead to developmental abnormalities in mouse embryos. This is consistent            

with the idea that TADs compartmentalize regulation by inhibiting enhancer-promoter          

interactions with neighboring TADs ​(Smallwood & Ren 2013)​.  

 

To understand TAD formation, researchers had focused on the proteins found at TAD             

boundaries ​(Dixon et al. 2012; Sexton et al. 2012; Hou et al. 2012)​. In mammalian cells, the                 

the CCCTC-binding factor (CTCF) protein has been shown to be enriched at chromatin             

loops, which also demarcate a subset of TAD boundaries (referred to as “loop domains”)              

(Rao et al. 2014)​. A proposed mechanism, based on the extrusion of DNA by cohesin,               

suggests that the DNA binding motif of CTCF and its orientation determine the start and end                

of the loop ​(Sanborn et al. 2015; Nichols & Corces 2015)​. In line with this hypothesis,                

deletions of the CTCF DNA-motif effectively removed or altered the loop ​(Sanborn et al.              

2015)​. Interestingly, mutations of the CTCF binding motif at TAD boundaries are particularly             

abundant in cancer, causing dysregulation of oncogenes ​(Hnisz et al. 2016)​. However,            

CTCF-cohesin loops only explain a fraction (less than 39%) of human TADs boundaries             

(Rao et al. 2014)​, while plants and bacteria lack CTCF homologs but also show TAD-like               

compartments. Thus, it is possible that additional proteins are involved in the formation of              

TADs.  

 

In contrast to mammals, the genetic manipulation tools available in flies have allowed the              

characterization of several proteins that, like CTCF, are capable of inhibiting           

enhancer-promoter interactions. Throughout the manuscript, we will refer to these proteins           

as “insulator proteins” and their binding motifs as “Insulators” or “Insulator motifs”. In flies,              

apart from CTCF, the following DNA-binding insulator proteins have been associated to            

boundaries ​(Sexton et al. 2012; Van Bortle et al. 2014)​: Boundary Element Associated             

Factor-32 (Beaf-32), Suppressor of Hairy-wing (Su(hw)) and GAGA factor (GAF). Also, Zest            

white 5 (Zw5) has been proposed to bind boundaries ​(Zolotarev et al. 2016a)​. These              

insulator proteins recruit co-factors critical for their function such as Centrosomal Protein-190            

(CP190) and Mod(mdg4) ​(Ong & Corces 2014)​. Recently, novel insulators have been            

described as binding partners of CP190: the zinc finger protein interacting with CP190             

(ZIPIC), Pita ​(Maksimenko et al. 2015) which appear to have human homologs and localizes              
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to TAD boundaries ​(Zolotarev et al. 2016a)​, and the Insulator binding factors 1 and 2 (Ibf1                

and Ibf2) ​(Cuartero et al. 2014)​. All the previously characterized boundary associated            

proteins bind to the DNA at specific motifs, suggesting that the 3D conformation of chromatin               

can be encoded by these motifs.  

 

In this study, we sought to identify the DNA encoding behind TADs boundaries in flies. First,                

we developed new software (HiCExplorer) to obtain boundary positions at 0.5 kilobase            

resolution based on published Hi-C sequencing data from ​Drosophila melanogaster ​Kc167           

cell line ​(Li et al. 2015; Cubeñas-Potts et al. 2016)​. Using these high-resolution TAD              

boundaries we identify eight significantly enriched DNA-motifs. Reassuringly, five of these           

motifs are known to be bound by the insulator proteins: Beaf-32, CTCF, the heterodimer Ibf1               

and Ibf2, Su(Hw) and ZIPIC. , The three remaining DNA-motifs have not been associated to               

boundaries before. Interestingly, one of the motifs is bound by the motif-1 binding protein              

(M1BP) ​(Li & Gilmour 2013)​, a protein associated to constitutively expressed genes whose             

role as insulator remains unexplored.  

 

Using machine learning methods based on the acquired DNA motif information, we could             

accurately distinguish boundaries from non-boundaries and identify new TAD boundaries          

that were missed when using only Hi-C data. This suggests that the chromosomal folding in               

flies can be explained predominantly by the DNA sequence alone. 

 

We implemented the methods for Hi-C data processing, TAD calling and visualization into an              

easy to use tool called HiCExplorer (​hicexplorer.readthedocs.io ​). To facilitate exploration of           

available Hi-C data, we also provide an interactive online database containing processed            

high-resolution Hi-C data sets from fly, mouse and human genome, available at            

http://chorogeome.ie-freiburg.mpg.de ​. 

Results 

High resolution TAD boundaries in flies  

We obtained Hi-C data for Kc167 cells from ​(Li et al. 2015; Cubeñas-Potts et al. 2016) and                 

processed them to obtain corrected Hi-C contact matrices at restriction fragment resolution            

(see methods). These datasets contain the most detailed contact maps in flies, compared to              

other datasets (see methods), due to high sequencing depth (over 246 million valid read              

pairs) and the use of DpnII, a restriction enzyme with short restriction fragment size (mean               
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~570 bp). We found ​2,852 ​TADs having a median size of 26 kb (Fig. 1A, S1A). We                 

corroborated the precision of our boundaries by comparing their overlap with CP190 peaks             

(​p​-value = 1.8E-20, Fig. 1B) and the separation of histone marks (Fig. 1C, S1B). Similar to                

(Sexton et al. 2012)​, we classified TADs using modENCODE histone marks as active             

(enriched for either H3K36me3, H3K4me3 and H4K16ac), polycomb group silenced (PcG)           

(enriched for H3K27me3), HP1 (enriched for H3K9me3) and inactive (not enriched for any of              

the marks, see methods and Fig. S1C). A significant fraction of the genome (43%) is               

covered by large inactive TADs having a mean length of 63 kb (Fig. 1D). In contrast, active                 

chromatin TADs have an average length of 23 kb and occupy 29% of the genome. PcG                

chromatin occupies 25% of the genome with TADs that are on average 61 kb. The largest                

TADs are found for HP1 repressed chromatin, which occupies each 3% of the genome and               

have a length of 74 kb. We also find that active TADs tend to be assembled one after the                   

other due to their higher number (Fig. 1E). Interestingly, the TAD separation score varied              

significantly (​p​-value < 7.8E-5, Wilcoxon rank-sum test) between the TAD types (Fig. 1F).             

The stronger boundaries (low TAD-separation score) are found between active and inactive            

or PcG TADs. while the weakest boundaries are found between PcG TADs. Similarly, we              

find that the TAD-separation score between larger TADs (mostly inactive) is significantly            

larger than the TAD separation score for smaller TADs (mostly active) (​p​-value = ​9.9E-7 ​,              

Wilcoxon rank-sum test).  

 

While most of our boundaries overlap with those from previous studies ​(Sexton et al. 2012;               

Cubeñas-Potts et al. 2016)​, our method allowed us to identify a larger set of boundaries (Fig.                

S1D-H) which mostly divide active TADs from previous studies. We observed that the             

majority of the boundaries (77%) are located at gene promoters (henceforth referred to as              

promoter-boundaries. Fig. 1G). Promoter-boundaries are different from non-promoter        

boundaries (27%), since they associate significantly with active chromatin (Fig. 1H), have            

lower TAD separation score (representing strong boundaries Fig. 1I), and show higher            

DNAse sensitivity (Fig. 1J). 

 

Boundaries are marked by specific gene orientation and transcription 

Next, we correlated our promoter boundaries with gene orientation and transcription. Most            

promoter-boundaries (70%, ​p-​value = 2.5E-88 fisher's exact test), are associated with           

divergently oriented genes while genes in convergent or tandem orientation tend to be inside              

the TADs . To correlate TADs with gene transcription, we analysed the RNA-Seq data of 14                
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stages of Drosophila development along with the expression in the Kc167 cell line obtained              

from modENCODE (Fig. S2A, see methods). We found that, in general, 95.6% of genes              

associated with TAD boundaries are expressed in Kc167 cells compared to only 75.3% of              

genes which don’t have a boundary (​p​-value = 2.19E-80, Fisher’s test). Higher correlation             

was observed between gene expression inside TADs than between neighboring TADs (Fig.            

2A, S2C). When we investigated the expression of genes at TAD boundaries we found that               

these genes show significantly higher expression than the expressed genes which don’t            

have a TAD boundary at their promoters (Fig 2B, ​p​-value = 6.08E−21, t-test). Boundary              

associated genes also show a more stable expression expression across development than            

other genes (Fig 2C, S2B), suggesting that these genes are ubiquitously transcribed.            

Furthermore, we find that for a pair of genes lying next to each other, the variability in their                  

gene expression tend to be correlated during development if these genes are within same              

TAD, while this correlation is lost if there is a TAD boundary in between (Fig 2D, see                 

methods). This is true for gene-pairs in any orientation (convergent, divergent or tandem, Fig              

S2D).  

 

Taken together, these results suggest that specific gene orientation and level of transcription             

could be associated with TAD formation. 

A comprehensive list of boundary associated DNA motifs 
 
We followed the strategy outlined in (Fig 3A) to create a comprehensive list of motifs               

frequently found at boundaries. First, we performed ​de-novo motif calling using MEME-chip            

(Ma et al. 2014) (see methods) on our promoter-boundaries and non-promoter boundaries.            

To filter out motifs that are frequently found at promoters or open chromatin but are not                

specific to boundaries, we did an enrichment analysis using two different methods: Ame             

(McLeay & Bailey 2010) and TRAP ​(Thomas-Chollier et al. 2011)​. As a second approach,              

we tested boundaries for the motifs of known insulator proteins and core-promoter motifs             

from ​(Ohler et al. 2002)​. In contrast to ​de-novo motif detection, searching for known motifs               

allows additional sensitivity to detect low frequency motifs. After filtering for only consistent             

results, we could identify 5 motifs enriched at promoter-boundaries and 3 motifs enriched at              

non-promoter boundaries (Fig 3B).  

 

The promoter boundary motifs we identified belong to the list of core-promoter motifs 1, 2, 6,                

7 and 8 from ​(Ohler et al. 2002)​. Motif-1 is recognized by the recently described 'motif-1                

binding protein' (M1BP), a protein found at the promoters of transiently paused Pol-II of              
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constitutively expressed genes ​(Li & Gilmour 2013)​. Motif-2 (also called DRE motif) is             

recognized by the insulator protein Beaf-32 and DREF ​(Gurudatta et al. 2013)​. Motif-7 (also              

called DMv3) is recognized by the insulator protein ZIPIC. The binding proteins for motif-6              

(also known as DMv5) and motif-8 (also known as DMv2) are, to the best of our knowledge,                 

not known. ​De-novo motif calling also identified other core-promoter motifs but they were not              

found enriched at boundaries. The three motifs that we find enriched on non-promoter             

boundaries, correspond to the binding sites of Su(Hw) and CTCF and Ibf (Fig 3B). We could                

not find an enrichment for motifs of other insulator proteins like GAF, Pita and Zw5. For                

clarity, we will refer to the boundary motifs by the name of the insulator protein that binds to                  

them, except for motif-6 and 8. 

 

As an independent validation, we find that our three novel boundary motifs (M1BP motif,              

motif-6 and motif-8) are also enriched at the binding site of CP190, Rad21 (part of cohesin                

complex) and Cap-H2 (condensin II complex) (Table S1). Additionally, we repeated our            

analysis using the TAD boundaries from ​(Sexton et al. 2012) and ​(Li et al. 2015;               

Cubeñas-Potts et al. 2016)​ and found similar enrichments (Table S2). 

 
To better understand the distribution of the motifs on boundaries we performed hierarchical             

clustering of the binding affinity (TRAP score) for the eight motifs enriched at boundaries              

(Fig. 3C left panel). We then plotted the ChIP-seq signal of the DNA binding proteins (Fig.                

3C second panel), along with CP190, Cap-H2, Rad21 (Fig. 3C third panel) and RNA Pol-II,               

over the clusters. The results show that the boundary motifs are usually associated with their               

corresponding proteins, except for motifs 6 and 8 for which the binding proteins are not               

known (Fig 3C second panel). Examples of the boundaries with their motifs and             

corresponding proteins can be seen in Fig. S3C-G.  

 

We discovered that in addition to the Beaf-32 motif, a novel M1BP motif is most frequently                

found at boundaries. In combination those two motifs are enriched at 55% of promoter              

boundaries, and are associated with their corresponding proteins. Promoter boundaries also           

tend to be associated with condensin II (Cap-H2), cohesin (Rad21), RNA polymerase II and              

housekeeping enhancers. On the other hand Ibf1, CTCF and Su(Hw) are the most common              

proteins associated with non-promoter boundaries, and tend to be associated with enhanced            

binding of CP190 co-factor (Fig. 3C, 3D). Similar to this result, we observe that the binding                

sites of promoter and non-promoter boundary proteins are correlated (Fig. S3H). 
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Since M1BP binds paused RNA Pol-II promoters ​(Li & Gilmour 2013)​, we checked whether              

other promoter-boundary motifs are also associated with paused RNA Pol-II. Indeed, we find             

that besides M1BP, promoters containing the ZIPIC motif or motif 6 also associate with              

paused Pol-II (Fig. 3E). 

 

We then searched for association of all the transcription factors from modENCODE            

consortium ​(Celniker et al. 2009) as well as from the comprehensive collection of ChIP-seq              

data from ​(Li et al. 2015; Cubeñas-Potts et al. 2016) with our boundary motifs. Similar to Fig.                 

3C, all motifs are enriched for binding sites of their corresponding proteins. Interestingly, our              

screen for proteins associated to boundary motifs showed that Nup98, a component of the              

nuclear pore complex, is associated with motif-6 and Pita (Fig. 3D and S3I). Further              

validation using ​de-novo motif calling on Nup98 peaks and identified motif 6 and Pita motif               

as the most enriched motifs (q = 3.4E-4 and 3.3E-09, respectively).  

 

We observed that ChIP-seq peaks of DNA binding proteins are often found in regions not               

containing their motif (Fig. 3D). For example, ZIPIC peaks can be seen together with motif 6                

or CTCF although ZIPIC motif does not overlap with any of them (Fig. 4A). Similar               

observations can be made for CTCF ChIP-seq experiments (Fig. S3J, see discussion),            

suggesting that motif sequences should be considered along with ChIP-Seq binding sites as             

more reliable functional predictors of an insulator protein.  

Motif combinations reflect boundary strength and chromatin types 
 
Next we looked at motif combinations at boundary, in relation to boundary strength. Using              

ChIP-Seq analysis, it has been reported that boundary strength increases with the number of              

proteins bound at the boundary ​(Van Bortle et al. 2014)​. When we looked for motif               

combinations at boundaries that overlap with their corresponding protein, we we didn’t            

observe any significant differences in boundary strength between boundaries containing          

one, two or three motifs (we only found a handful of boundaries having more than three                

motifs). Instead, we found that specific motifs or their combinations are associated with             

boundary strength (Fig. 4A). Boundaries containing the motif for Ibf, Su(Hw) or the             

combination of the two motifs are weaker than average while the combination of the Beaf-32               

motif with either Pita, ZIPIC or motif-6 result in the strongest boundaries. 

 

We also looked at the association of motifs with active, inactive, PcG and Hp1 TADs from                

Fig. 1D. We observe that the promoter-boundary motifs (Fig 4B) are mostly found between              
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active TADs or between active and inactive (including PcG) TADs. Conversely, the            

non-promoter boundary motifs are rarely found between active TADs, and mostly separate            

active from inactive TADs or are between inactive TADs (Fig. 4B). We find the same trend                

when analysing the ChIP-chip intensity of the active histone mark H3K36me3 and the             

repressive histone mark H3K27me3 surrounding the boundaries (Fig. S4A). Most          

promoter-boundary motifs separate active-inactive marks, while most non-promoter        

boundary motifs lie within inactive marks.  

 

Additionally, we analyzed the chromatin state ​(Filion et al. 2010) that overlaps with the              

boundary motifs and found that promoter-boundary motifs lie mostly within active chromatin            

while non-promoter boundary motifs lie within both active and inactive chromatin (Fig. 3C). 

Boundaries can be predicted using motifs 

To better characterize boundaries at promoters we used three standard classification           

methods and ranked features by their relevance to distinguish boundaries from other            

promoters (see methods). The features included the TRAP score of all motifs studied along              

with other known insulator motifs. We also used DNase hypersensitive sites (DHS) as a              

feature to identify open promoters, considering that protein binding to a motif requires an              

accessible promoter. The ranking of feature importance showed that indeed open promoters            

are required for boundaries. For the motifs, the feature importance ranking follows the             

abundance of the motifs at boundaries: Beaf-32 and M1BP appear to be most important,              

followed by motif-6, ZIPIC and motif-8. Some features, like GAF and Pita were found to be                

negatively associated with boundaries at promoters (Fig. S5A). 

 

Although regularized models used here are less prone to overfitting compared to other             

machine learning methods, we further protect against overfitting by 10-fold cross validation            

during training. We then tested model accuracy on an independent test dataset. The             

predicted data from the classifiers showed good results, with a sensitivity and specificity over              

71% (Fig. 5B). For the small fraction of non-promoter boundary motifs, we used open              

chromatin regions distant from promoters to train our classifiers using the non-promoter            

boundary motifs as features. We achieved prediction accuracy similar to the           

promoter-boundaries (Fig. 5C,D). Interestingly, we find GAF to be negatively associated with            

both promoter and non-promoter boundaries (Fig S5C). 
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We could evidence that the machine learning predictions can complement the Hi-C derived             

boundaries at the promoters, as some boundaries predicted by our model are missed by our               

boundary detection method based on the TAD-separation score. The predictions also detect            

putative boundaries that are very close to each other and can not be resolved using Hi-C                

data (Fig. 5E).  

Resources to identify and explore TADs and associated genomic         

features 

During our research we developed processing and analysis tools for chromosome           

conformation. Our tool-suite, called HiCExplorer, simplifies the Hi-C data pre-processing,          

contact matrix transformation, and TAD calling into a few easy steps. HiCExplorer is open              

source and and available at ​https://github.com/maxplanck-ie/HiCExplorer. Importantly,       

HiCExplorer can be used with other pipelines and processing tools as we have built-in              

import/export functions covering commonly used Hi-C data formats. To facilitate analysis, we            

have integrated HiCExplorer into the Galaxy platform ​(Goecks et al. 2010)​. With HiCExplorer             

we made available our efforts to create meaningful and accurate visualizations of Hi-C data              

with other data sources, whose examples can be seen throughout this manuscript. Further             

information can be found at the associated documentation        

(​http://hicexplorer.readthedocs.io), which includes a full analysis workflow and detailed         

description of the tools. 

 

Since most users will not routinely perform an expensive and technically challenging Hi-C             

experiment, it will be highly beneficial to be able to visualize their genes or regions of interest                 

along with associated TAD boundaries, to understand gene regulation. We provide a            

resource called the Chorogenome (​http://chorogenome.ie-freiburg.mpg.de/​), which includes       

Drosophila, Mouse and Human Hi-C datasets, already processed by HiCExplorer, along with            

associated gene annotations, histone marks and other TAD/boundary annotations. This can           

be used to quickly visualize any gene or region in context of TADs. The underlying program                

called HiCBrowser (​https://github.com/maxplanck-ie/HiCBrowser​), is also freely available to        

be used as a standalone browser, where users can include their own genomic tracks. With               

these resources, we hope to make Hi-C analysis a routine part of genomics workflows. 
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Discussion 

In this study, we used high resolution (DpnII restriction enzyme) and deeply sequenced             

(~246 million reads) Hi-C data from ​(Li et al. 2015; Cubeñas-Potts et al. 2016) to map the                 

genomic positions of TAD boundaries within ~600 bp in ​D. melanogaster​. We characterize             

TAD size, boundary strength, chromatin marks, gene orientation and transcription at the            

TADs. We perform motif calling at boundaries, validating the presence of known insulators,             

along with core promoter motif 6, motif 8 and M1BP motif, which have not been associated                

to boundaries before. We show that DNA motifs and open chromatin are sufficient to              

accurately predict a major fraction of fly boundaries. Finally, we present a set of useful tools                

and a resource for visualization and annotation of TADs in different organisms. 

 

Our study verifies various properties of fly boundaries indicated in previous publications. We             

detect that most boundaries associate with promoters and active chromatin ​(Hou et al. 2012)              

and that various known insulator proteins are enriched at boundaries ​(Hou et al. 2012;              

Sexton et al. 2012)​. However, some of our results contradict previous observations. For             

example, we find that genes at boundaries have higher expression and low variability of              

expression throughout fly development in contrast with ​(Hou et al. 2012) who suggest that              

gene density and not the transcriptional state is important for boundary formation. We detect              

that genes at boundaries are divergently transcribed, in contrast to ​(Hou et al. 2012)​, that               

CTCF is not a major boundary associated insulator in Flies, in contrast to ​(Hou et al. 2012;                 

Sexton et al. 2012; Van Bortle et al. 2012) and that the number of insulators at boundaries                 

correlate very little with boundary strength, in contrast to ​(Van Bortle et al. 2014)​. Most of                

these contradicting results are due to two important differences of our study with previous              

studies:  

 

A) ​The use of higher resolution boundaries​: Most of our boundaries overlap with the known               

boundary protein CP190 (Fig 1B, Fig S1F) and the boundaries uniquely detected in our              

study have a lower TAD separation score than those unique to other studies (Fig. S1G). 

 

B) ​Analysis of combination of DNA motifs, along with ChIP-Seq peaks, rather than ChIP-Seq              

peaks alone​: We show that correlating boundaries with ChIP-Seq peaks alone is not a good               

measure when it comes to determinants of boundary formation. Many DNA binding proteins             

show co-localization in ChIP-Seq data, without presence of the corresponding DNA motifs            

(Fig. 3D, S3J). This is possible due to cross-linking artifacts and indirect binding, which is, in                
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fact, aggravated at boundaries, which tend to contact each other in 3D space ​(Liang et al.                

2014)​. 

 

Another argument for considering Motifs is the contradicting case of CTCF at boundaries. In              

contrast to earlier studies ​(Sexton et al. 2012; Hou et al. 2012)​, we find that CTCF motif is                  

rarely associated to boundaries. We could observe a significant enrichment of CTCF at             

boundaries in ChIP-Seq data from ​(Wood et al. 2011)​. However this enrichment disappears             

if we use the CTCF ChIP-seq data from ​(Li et al. 2015)​. On the other hand, if we analyse                   

CTCF peaks containing the CTCF motif, both ChIP-seq datasets show significant           

enrichment (Fig. S3J). For CTCF, and in general for ChIP-seq experiments in flies, 'phantom              

peaks' are known to occur at active promoters ​(Jain et al. 2015)​. Thus, to avoid misleading                

results our analyses are based on motif presence when possible and for ChIP-Seq datasets,              

we try to use significance threshold along with motif binding intensity for analysis (instead of               

taking a significance cutoff alone). 

 

We observe that boundary strength is affected by the chromatin states of flanking TADs and               

particular motif combinations, but is not affected by the number of co-occurring boundary             

motifs. While the boundary strength is higher between active and inactive/PcG TADs,            

boundaries separating two TADs within the same state (eg. active-active, inactive-inactive)           

are weaker (Fig. S1F). We observe that boundaries containing combinations of the motifs for              

Beaf-32 and either Pita, motif 6 or ZIPIC are stronger; however, the mechanism by which               

combinations of insulators alter the boundary strength still remains unclear. In this regard the              

relation between Nup98 and with both the Pita motif and motif-6 (Fig. 3D and S3H) suggest                

that association with nuclear pore proteins may result in stronger boundaries. 

 

Our results indicate that the two sets of boundary motifs (promoter & non-promoter)             

specialize in the compartmentalization of different types of chromatin. Boundaries containing           

core promoter motifs are either flanking, or surrounded by active chromatin regions (Fig. 4B).              

In contrast, the boundaries containing non-promoter motifs tend to be within or at the              

borders of inactive or repressed chromatin (Fig 4B). For example, repressed TADs at Hox              

gene clusters are delimited by CTCF, Su(Hw) or Ibf1/2. This finding is in line with previous                

reports showing an enrichment of CTCF at the borders of H3K27me3 domains ​(Van Bortle et               

al. 2012; Sexton et al. 2012) and an enrichment of Beaf-32 in active chromatin ​(Sexton et al.                 

2012)​. An interesting speculation is that the diverse range of architectural proteins in flies              

have provided scope for precise control of gene regulation by allocating boundary motifs             
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(and therefore proteins) at different places. For example, we observe that GAF motif, whose              

presence is negatively associated with TAD boundaries (Fig. S5 A,C), is rather detected             

alone at “loop domains” (Fig. S5E). It’s also important to consider the possibility that different               

boundary types might involve different mechanisms of formation. Furthermore, the          

identification of the new boundary motif 6 and motif 8 hints that there might be unidentified                

insulator proteins that recognize these motifs. This indicates that there is further scope to              

expand the list of insulator proteins in flies.. 

 

An important aspect of this study is the demonstration that TAD boundaries can be predicted               

with high-accuracy using motif binding affinity along with open chromatin, in absence of any              

other information about the presence of protein or histone marks (Fig. 5B, C). Motif binding               

affinity can also serve as a linear predictor of boundary strength (Fig S3B, D). These results                

suggest that DNA sequence is the major determinant of boundary location.  

 

The observation that the majority of TAD boundaries are at the promoters of constitutively              

expressed genes favors the idea that transcription is linked to TAD formation in flies. One               

hypothesis, in line with the extrusion model ​(Sanborn et al. 2015; Fudenberg et al. 2016)​, is                

that an immobilized RNA Pol-II, anchored by the insulators, extrudes the DNA during             

transcription to form these domains (Fig. S6 A-B). Multiple such units working in gene-dense              

regions can form a rosette-like structure indicative of transcription factories (Fig. S6 C-D)             

(Cook 2010; Sutherland & Bickmore 2009)​. Promoters of divergently transcribed genes           

serve as good candidates for boundaries, by anchoring RNA Pol-II machines in both             

directions (Fig. S6 E). This mechanism, might seem more plausible in case of Flies, which               

have gene-dense chromosomes containing closely organized divergent promoters of         

housekeeping genes. However, recent observations do indicate that transcriptional         

activation might be linked to TAD formation in mammals ​(Germier et al. 2017)​. Further              

experiments would be required to visualize and quantify the relationship between           

transcription and TAD formation in different species. 

Methods 

Hi-C processing 

Different Hi-C data available for ​D. melanogaster ​was downloaded from GEO and processed             

using the HiCExplorer (http://hicexplorer.readthedocs.io/). The following data was used: 
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Source Restriction 
enzyme 

No. of usable 
reads 

GEO 
accession 

Reference 

Whole embryos DpnII 133.483.965 GSE34453  (Sexton et al. 

2012) 

Kc167 DpnII 135.274.348 GSE63515  (Li et al. 2015) 

Kc167 DpnII 110.807.526 GSE80701 (Cubeñas-Potts 
et al. 2016) 

Kc167 HindIII 71.278.991 GSE38468  (Hou et al. 
2012) 

S2 HindIII 680.121.887 GSE58821 (Ramírez et al. 
2015) 

Clone-8 HindIII 131.426.003 GSE58821 (Ramírez et al. 
2015) 

third instar 

larvae salivary 

glands 

HindIII 9.404.794 GSE72512 (Eagen et al. 
2015) 

 

The Hi-C sequencing reads were downloaded from GEO and each mate was aligned             

separately using bwa mem with parameters -E50 -L0​. The E parameter is the gap extension               

penalty, which is set high to avoid gapped alignments. This is because a fraction of the                

reads from a Hi-C experiment contain sequences from two distinct genomic positions. By             

increasing the gap extension penalty we promote the aligner to map the two parts of the                

read separately instead of trying to map the read to a single location. The L parameter is the                  

penalty for 5’ and 3’ clipping which we set to zero to favor such clipping for the same reason                   

as before.  

 

To create the contact matrices, HiCExplorer divides the genome into bins of unequal size              

demarcated by the genomic positions of the restriction site and a matrix was created having               

these bins as rows and columns. The mapped reads were processed to count the number of                

times any two bins were connected by the Hi-C reads pairs. The following reads were               

discarded: read pairs that were not uniquely mapped or had a mapping score lower than 15,                

were within 800 bp to each other, were duplicated, contained a dangling end indicative of               

defective re-ligation or when one of the fragment mates was farther than 1500 bp from the                

restriction site.  
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In our processing of the data we observed that restriction enzymes do not cut with the same                 

efficiency at all sites or sometimes do not cut at all. Because of this, after the creation of the                   

contact matrices, rows and columns with zero or few total counts were removed. For this, we                

analyzed the distribution of total counts per rows. This distribution is bimodal which we              

interpret as two distributions combined. The distribution with lower counts contains all bins             

with zero reads, mostly from repetitive regions, and also the bins with low number of reads                

probably from inefficient digestion of restriction sites. As a cut-off to decide the minimum              

count of reads assigned to a bin we use the value corresponding to the valley between the                 

two distributions. After filtering low count bins, the matrices were corrected following the             

iterative procedure from ​(Imakaev et al. 2012)​. 

 

For the 4-cutter DpnII restriction enzyme the average fragment length after removing low             

coverage bins is 570 bp. For the 6-cutter HindIII the average was 4500 bp. 

Identification of boundaries 

TAD boundaries were identified using an improved version of TAD-separation score method            

from ​(Ramírez et al. 2015) which is similar to TopDom ​(Shin et al. 2016)​. The method works                 

by first transforming the Hi-C contact matrix into a z-score matrix ​A . For this, each           a )= ( ij     

contact frequency in the matrix is transformed into a z-score based on the distribution of all                

contacts at the same genomic distance. For a bin , the contacts between an upstream and         l        

downstream region of length are in the the z-score submatrix of ​A , such that    w         α , ][ l βl    

and This submatrix corresponds to the 'diamond' seenl , ..., l} αl ∈ { − w    l, ..., l }.βl ∈ {   + w         

in Fig. S1A. For each matrix bin we compute the TAD-separation score as the mean the           w)(      

A values.α , ][ l βl   

 

To reduce noise the TAD-separation score is computed for different values of that are            w    

averaged afterwards per bin. Genomic bins with a low TAD-separation score with respect to              

neighboring regions (local minima) are indicative of TAD boundaries (Fig. S1A). To discard             

false positives we compare, for each local minima, the distribution of the z-score for the               

submatrices ​A having , where is the bin of the local minima, and α , ][ l βl   i, i , i }l ∈ {  − w  + w   i          

and are the bins at distance upstream and downstream of respectively. Wei − w  i + w       w     i    

use the Wilcoxon rank-sum test to compare the values of ​A with the values of each of          α , ][ i βi       
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the other matrices and the lowest of the two ​p​-values is used. Finally, we correct the                

p​-values using the Bonferroni method. 

 

To call boundaries, we used the following parameters: 

{10000, 12000, 18000, 25000, 40000} and ​p​-value < 0.001. We also used a minimumw ∈               

local minima depth of 0.01. Depth of local minima (referred to as delta) can be considered                

similar to “fold change” of any minimum, with respect to the neighboring TAD-score average. 

 

In contrast to other published methods to call TADs, this procedure has several advantages:              

i) Each boundary is associated to a TAD-separation score and a ​p​-value, ​that are useful to                

characterize strong vs. weak boundaries, ii) the TAD score can be easily visualized (e. g. as                

an genome browser track), which is always useful for visual inspection, and iii) the              

computation of boundaries takes only minutes, scaling linearly with the length of the             

genome). Our method differs from the TopDom method in the following aspects: i) We              

compute TAD-separation scores using a z-score matrix while TopDom uses the corrected            

counts matrix, ii) we use multiple length sizes to compute our TAD-separation score       w) (       

while TopDom uses a single value, iii) we compute ​p-​values using the 'diamond' ​A     w         α , ][ l βl  

submatrices values in contrast to the 'diamond and triangle’ distributions used in TopDom.             

The triangle distribution contain the intra z-score values between bin and and the          l − w   ,l     

intra z-score values between bin  and l .l + w  

Validation of boundary quality 

We used the following functional signatures  to validate the quality of our boundaries :  

 

Distance to known insulator co-factor CP190: Since all studied insulators proteins bind to             

CP190 ​(Ong & Corces 2014; Zolotarev et al. 2016a; Cuartero et al. 2014)​, a sensible quality                

measure is the overlap of boundaries with CP190 ChIP-seq peaks. For this, we computed              

the distance of the boundaries to CP190 peaks using bedtools ​(Quinlan & Hall 2010)              

closestBed (Fig. 1B, S1H). For comparison, we randomized our boundary positions using            

bedtools ​shuffleBed (Fig. S1H) and estimated the new distances to CP190. ​ShuffleBed            

simply assigns a new random position for each boundary anywhere in the genome             

(excluding heterochromatic and unplaced regions. Finally, we computed the background          

probability of obtaining the observed overlap between CP190 peaks and Hi-C boundaries            

using bedtools Fisher’s test. 
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Separation of histone marks: As boundaries are expected to separate histone marks we             

used the method described by ​(Rao et al. 2014) to quantify the correlation of marks within                

TADs and between TADs. For this, each TAD was scaled to 15kb, flanked with a 15kb                

region and divided into 1 kb bins. For each bin the mean histone ChIP-chip value was                

recorded, thus generating a matrix of ​2,852 TADs (rows) and 45 bins (columns). For this we                

used computeMatrix from deepTools. The pair-wise pearson correlation value of each           

column was then computed to produce a matrix of size 45 x 45. 

Classification of TADs 

The following histone marks for Kc167 from modEncode ​(Celniker et al. 2009) were used:              

H3K36me3, H3K4me3, H3K9me3 and H3K27me3. Other marks that correlate closely to           

these marks were not included. For example, H3K9me2 correlates closely with H3K9me3,            

H3K4me2 with H3K4me3 etc. The average intensity of the marks over the TAD length was               

computed using multiBigwigSummary from deepTools2 ​(Ramírez et al. 2016)​. The resulting           

matrix was clustered by computing euclidean distances between the histone marks and            

applying hierarchical clustering using the complete method. Five clusters were detected (Fig.            

S4B) that correspond to the presence of H3K36me3, H3K9me3, H3K4me3, H3K27me3 or            

none. Analysis of the TADs containing H3K36me3 and H3K4me1 in the genome revealed             

that that H3K36me3 is present at exons of active genes while H3K4me1 is mostly present at                

introns and intergenic regions of active genes and less abundant at exons. Thus, noticing              

that these two marks are complementary for active regions we classified TADs having             

predominantly these marks as ‘active’. For the other clusters we used the same categories              

as ​(Filion et al. 2010)​: the cluster of TADs with H3K9me3 was labeled as ‘HP1’               

(Heterochromatin Protein 1); the cluster with H3K27me3 was labelled ‘repressed’ or ‘PcG’            

(Polycomb group) and the cluster with no mark was labelled as inactive.  

Analysis of transcription at boundaries 

In order to analyse transcription at boundaries, we downloaded ribo-depleted RNA-Seq data            

from modENCODE ​(Celniker et al. 2009)​. Data was mapped to the Drosophila (dm3)             

genome using HISAT2 (v2.0.4) ​(Pertea et al. 2016) and the reads were summarized per              

gene using featureCounts (v1.5.0.p1) ​(Liao et al. 2014) using options ​-p --primary -Q 10​. We               

used data from Kc167 cells, along with 14 different developmental stages, ranging from             

embryo to adult. We only used data produced in 2014 in order to avoid batch effects and                 

further confirmed the data quality by clustering the samples by euclidean distance (Fig S2A).              
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We normalized each sample by library size, averaged the counts for replicates, and finally              

used log transformed counts for all the analysis. 

 

Genes were considered expressed if they have a normalized log-count of 1 or more.              

Variability was assessed using coefficient of variation of a gene across all developmental             

stages along with Kc167 cells. For gene-pairs in any orientation (convergent, divergent or             

tandem) we calculated the correlation (spearman and pearson) of coef. of variation of             

gene-1 with gene-2 across development and plotted the results. We further tested whether             

overall, genes within TADs tend to be more correlated in expression than genes between              

TADs. For this we used a subset of consecutively arranged TADs that have more than one                

gene inside them. We then used ANOVA to test for differences between and within TADs, as                

seen in Fig S2C, many TADs pairs are significantly different from each other, while very few                

TADs are significantly different if we randomly assign genes to TADs. 

Identification of boundary motifs 

We took the list of boundaries and expanded them by 500 bp on each side. To avoid false                  

positives, repetitive regions from the sequences of those boundaries were replaced by ‘N’s             

and any region with more than 10% of ‘N’s was removed. We used MEME-chip ​(Ma et al.                 

2014) to identify enriched DNA motifs; MEME-chip internally computes motifs using two            

methods, DREME ​(Bailey 2011) and MEME ​(Bailey & Elkan 1994)​. DREME aims to quickly              

identify short motifs while MEME identifies larger overrepresented sequences (at the           

expense of significantly longer processing times). We used the consensus of DREME and             

MEME to call motifs. 

 

To obtain the position-weight matrices of insulator motifs we ran MEME-chip ​(Ma et al. 2014)               

on the peaks called using MACS2 ​(Feng et al. 2012)​. We selected the highest scoring motif                

for each case which invariably corresponded to the motif reported for the protein. We used               

ChIP-Seq data for Beaf-32, CTCF and Su(Hw) from ​(Wood et al. 2011) GAF from              

(Cubeñas-Potts et al. 2016)​; Ibf1/2 from ​(Cuartero et al. 2014)​; Pita and ZIPIC from              

(Maksimenko et al. 2015)​; and Zw5 from ​(Gaszner et al. 1999)​. 

 

Enrichment of motifs using control background 

For promoter boundaries, a control background composed of all drosophila gene promoters            

was used to test the enrichment. We downloaded drosophila genes (dm3 assembly) from             
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UCSC table browser ​(Karolchik et al. 2004) and selected the sequences 200 bp upstream              

and 50 bp downstream of the transcription start site as core promoter sequences. 

 

We classified these promoter sequences as boundary if they were within 500 bp of a               

boundary, or non-boundary (control background) if they were farther than 2,000 bp from a              

boundary. Repetitive regions from the sequences of those promoters were replaced by ‘N’s             

and any region with more than 10% of ‘N’s was removed. In total, 10,529 background               

promoters and 1,944 boundary promoters were used. 

 

We used two different methods to assess the enrichment of the ​de-novo and known motifs in                

boundary promoters with respect the control background, namely Ame ​(McLeay & Bailey            

2010) from the MEME-suite and a method based on the predicted binding affinity given by               

TRAP ​(Thomas-Chollier et al. 2011) that works as follows: for each motif, the log(TRAP              

score) distribution was computed for both the background and the boundary promoters. The             

Wilcoxon rank-sum test was then used to test for differences in the distributions. The              

P-values obtained were corrected using FDR. For Ame we use total hits as scoring method               

and Fisher’s test for estimating enrichments. We tested all ​de-novo motifs identified either by              

MEME or by DREME and all known motifs associated to insulators and CP190 cofactors as               

well as all core-promoter motifs.  

 

We also used as control active genes in Kc167. To make this control, we selected those                

genes that overlapped with the yellow and red chromatin states from ​(Filion et al. 2010) that                

are indicative of active chromatin in Drosophila Kc cells. The enrichment results were similar              

to the ones using a more broader list of genes for background. 

 

For the boundaries that are not at promoters we used non-promoter open chromatin             

sequences obtained from DNase-seq from ​(Celniker et al. 2009) as control . In this case we                

used 1,665 background open chromatin regions and 655 non-promoter boundaries. 

 

Pausing index 

Pausing index for all ​D. melanogaster promoters was computed as the ratio of Pol-II              

ChIP-seq coverage at promoter over coverage at gene body. We used the ChIP-seq data for               

RNA Pol-II from ​(Li et al. 2015)​. The promoter region was defined as in the previous section                 

(200 bp downstream, 50 bp upstream of transcription start site). The gene body was defined               
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as the region between 50 bp downstream of the transcription start site and the gene end. We                 

used the maximum coverage for the promoters and the median coverage for the gene body. 

ChIP-seq data sources 

 

Source GEO accession Reference 

Kc167 Beaf-32 GSM762845 (Wood et al. 2011) 

Kc167 CP190 GSM762836  (Wood et al. 2011) 

Kc167 CTCF GSM1535983  (Li et al. 2015) 

Kc167 Su(Hw) GSM762839  (Wood et al. 2011) 

Kc167 Cap-H2 GSM1318356  (Van Bortle et al. 2014) 

Kc167 Chromator GSM1318357  (Van Bortle et al. 2014) 

Kc167 Rad21 GSM1318352  (Van Bortle et al. 2014) 

Kc167 Pita GSM2133768  (Cubeñas-Potts et al. 2016) 

Kc167 ZIPIC GSM2133769  (Cubeñas-Potts et al. 2016) 

Kc167 GAF GSM2133762  (Cubeñas-Potts et al. 2016) 

Kc167 Ibf 1 GSM2133766  (Cubeñas-Potts et al. 2016) 

Kc167 Ibf 2 GSM2133767  (Cubeñas-Potts et al. 2016) 

Embryo Zw5 GSM2042227  (Zolotarev et al. 2016b) 

S2 M1BP GSM1208162  (Li & Gilmour 2013) 

Kc167 RNA Pol-II GSM1536014  (Li et al. 2015) 

S2 DNase-seq GSM1000406  (Arnold et al. 2013) 
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Processing of ChIP-seq data 

For each ChIP-seq data used, we downloaded the respective fastq files and aligned them in               

the dm3 assembly using Bowtie2 ​(Langmead & Salzberg 2012)​. MACS2 was used to             

identify peaks for each of the proteins ​(Feng et al. 2012)​. For the respective data sources we                 

downloaded input sequences and aligned them as the ChIP-seq data. ​bamCompare and            

bamCoverage from deepTools2 ​(Ramírez et al. 2016) were used to create normalized            

coverage bigwig files. 

 

MEME-chip ​(Ma et al. 2014) was used to identify motifs based on the MACS2 peaks. The                

resulting motifs can be seen in Table 1. 

Clustering of motifs  

We used the promoters (200 bp upstream 50 bp downstream) annotated as boundaries and              

computed the log(TRAP score) for the Beaf-32 motif, motif-1 (M1BP), motif-6, motif-7            

(ZIPIC) and motif-8. The scores for each motif were converted to bigwig files and clustered               

using hierarchical clustering from deepTools2 ​(Ramírez et al. 2016)​. 

 

All boundaries that were further than 2000 bp of a promoter were centered at the nearest                

CP190 ChIP-seq peaks within 2000 bp, otherwise the boundary position was not modified.             

Log(TRAP score) for CTCF, Ibf and Su(Hw) were computed for these regions and clustered              

as previously described.  

 

We used hierarchical clustering based on euclidian distance and the ward method. The             

cluster number used was 13 for promoter boundaries and 9 for non-promoter boundaries. In              

each case, the group compose only low TRAP scores was removed. After clustering, the              

groups were manually ordered and to produce the left panel of Fig. 2C. Scale of each                

heatmap was manually adjusted based on the range of TRAP scores found at the clusters               

for each motif (Fig. S3A). The log2 ratio of ChIP-seq / input for the different proteins was                 

used for the center and right panels of Fig. 2C. Each heatmap is centered on the boundary                 

and extended +-5000 bp. Scale of the heatmaps were adjusted based on the log2              

ChIP/input for the protein in the respective cluster (Fig. S3B).  
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Motif presence 

For figure 3, we considered a motif as present at a boundary if the TRAP score was equal or                   

higher than the minimum log(TRAP score) identified for the clusters in Fig. 3C (the              

distribution of the log(TRAP scores) can be seen in Fig. S3A). The thresholds used were:               

ZIPIC motif -4.7, Beaf-32 -5, M1BP -4.5, motif-6 -3, motif-8 -2, Ibf -4, CTCF -4, Su(Hw) -3.                 

For GAF, Pita and Zw5 motifs we used FIMO ​(Grant et al. 2011) with the following                

parameters: ‘ ​--max-strand --thresh 1e-3​’. For analysis of motif combinations at boundaries,           

we also require that the motifs are accompanied by the corresponding ChIP-seq peaks. For              

motif-6 and motif-8 whose binding proteins are not known, we require that the motif is on an                 

accessible region. For this we use the peaks from the DNAse-seq data ​(Celniker et al.               

2009)​. 

Boundary prediction and feature ranking 

We performed boundary prediction at all drosophila promoters using motif TRAP scores for             

various transcription factors and DNAse-Seq signals as features. We utilized methods           

ranging from simple to complex (linear models, logistic regression, random forest and            

stochastic gradient boosting), with the primary purpose to rank the features by importance in              

boundary prediction. Pre-filtering was done to remove highly correlated features (pearson R            

> 40%). Linear model and random forest was performed using the package ​Caret (​Kuhn et               

al. 2016 ​), while logistic regression was performed using package ​glmnet ​(Friedman et al.             

2010)​  in R. 

 

Linear model was used with stepwise feature selection algorithm to predict boundary score             

from features by selecting the combination of features that minimizes the Akaike Information             

Criteria (AIC). Logistic regression, Random forest and gradient boosting were used to            

classify the promoters into boundary and non-boundary, with additional feature selection           

performed using lasso, for logistic regression. We performed 10-fold cross validation while            

training all classification models. To evaluate model accuracy, the data was randomly            

divided into training (60%) and test (40%) datasets and the sensitivity and specificity was              

calculated for test predictions. Lasso and gradient boosting models show highly similar            

sensitivity and specificity when used on new test dataset, compared to when same dataset              

was used for prediction, suggesting they are robust and less prone to overfitting. 
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Linear model predicted the boundary scores on the test dataset with overall spearman             

correlation of 37.6%, while logistic regression and random forest performed predictions with            

around 73 to 78% accuracy. After obtaining the best model in each scenario, we ranked the                

features by their importance in prediction, using the ​varImp function from ​caret​. ​varImp             

selects a variable importance predictor based on the model type, which is calculated for              

each parameter in the model (​https://topepo.github.io/caret/variable-importance.html ​).      

Briefly, the importance score for linear model is the absolute value of the ​t​-statistic for the                

model parameter, for lasso, it’s the absolute value of final coefficients, for gbm it’s the               

relative influence score as described in ​(Friedman 2001)​, and for random forest it’s the              

difference between the classification error-rate for the out-of-bag portion of data and a             

permuted predictor variable, averaged over all trees and normalized by the standard            

deviation of the differences    

(​https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm#varimp ​). All  

importance scores are then scaled between 0 and 100 to compare them together. 

Supplementary Material 

● Supplementary Table S1: List of promoter boundaries with annotations for          

TAD-separation score, motif and ChIP-seq enrichment. 

● Supplementary Table S2: List of non-promoter boundaries with annotations for          

TAD-separation score, motif and ChIP-seq enrichment. 

● Supplementary Table S3: List of TADs annotated with their classification. 
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Figure 1. High-resolution TAD boundaries in flies. A​. Example region of 350 kb showing              

Hi-C TADs from Kc167 cells. The top panel shows a heatmap of corrected counts from the                

Hi-C contact matrix obtained from ​(Li et al. 2015; Cubeñas-Potts et al. 2016)​. The size of the                 

bins is variable (mean 570 bp) and depends on the genomic location of the DpnII restriction                

sites. The chromatin state track contains the five classifications from ​(Filion et al. 2010)​:              

Active chromatin, red and yellow; inactive chromatin, black; PcG, blue; HP1, green. The TAD              

separation score track (see methods) depicts a normalized measure of the contacts between             

two flanking regions. The gray lines show scores for flanking regions of different size ranging               

from 10 kb to 40 kb and the blue line shows the mean score. The TAD-separation score was                  

used to identify local minima indicative of TAD boundaries. The estimated boundaries are             

shown as vertical lines. The following four tracks show normalized ChIP-seq coverage for             

the insulators CP190, Beaf-32, and Su(Hw) on Kc167 from ​(Wood et al. 2011) and CTCF               

from ​(Li et al. 2015) that are known to be associated to boundaries ​(Sexton et al. 2012; Van                  

Bortle et al. 2014)​. The following tracks contain ChIP-chip data for histone modifications from              

modEncode ​(Celniker et al. 2009)​. This particular region was selected because many            

different TADs could be seen; other regions can be browsed at           

http://chorogenome.ie-freiburg.mpg.de:5001. B. Histogram of the distance of a boundary to          

the nearest CP190 (common insulator protein co-factor) peak. C. ​Correlation of histone             

marks within and between TADs. Each pixel in the matrix represent the pearson correlation              

of the histone mark in all TADs at different distances (see methods). ​D. ​TAD classification               

based on histone marks. The numbers below each TAD type represent respectively: mean             

length, percentage of genome occupied by the TAD and number of TADs of that type. ​E.                

Boxplot of consecutive TAD of each type. ​F. ​TAD-separation score between: active and             

inactive or PcG, active-active, inactive-inactive and PcG-PcG. The differences between the           

groups are all significant (​p​-value < 7.8E-5, Wilcoxon rank-sum test). ​G. Classification of             

TAD boundaries. TAD boundaries are classified at promoter if they are within 1000 bp of the                

annotated TSS. ​H. ​Histone marks at non-promoter and promoter boundaries. Further marks            

can be seen in Fig. S1I. ​I. TAD-separation score for non-promoter and promoter boundaries              

(​p​-value=8.52E-35, ​Wilcoxon rank-sum test​). J. ​DNase accessibility at non-promoters and          

promoter boundaries. 
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Figure 2. TAD boundaries are marked by specific gene orientation and transcription ​A.             
Correlation of mean expression across developmental stages inside TADs vs outside.           

Region inside TADs was scaled to 15 kb. Each pixel in the matrix contains the pearson                

correlation at different distances. ​B-C. Mean expression (in Kc167 cells) and variability of             

expression (during development) for genes whose promoters are at a TAD boundary vs.             

genes whose promoters are not at boundaries. ​D. ​Coefficient of variation (across            

developmental stages) between pairs of adjacent genes either separated by a TAD            

boundary (left) or not separated by a boundary (right). 
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Figure 3. Eight motifs are enriched at boundaries: A. Overview of the strategy used to               

identify ​de-novo motifs. B. Motifs enriched at promoter and non-promoter boundaries (along            

with corrected ​p​-values). Two methods were used to estimate enrichment (see methods):            

Ame ​(McLeay & Bailey 2010) and TRAP ​(Thomas-Chollier et al. 2011)​. ​C. ​Clustering of              

boundaries by motif binding affinity (see methods). Each row represents one boundary. Left             

panel: clustering of motif binding affinity using the TRAP score ​(Thomas-Chollier et al. 2011)​.              

Higher scores indicate stronger predicted binding. Dashed lines delineate the clusters.           

Following panels: Using the motif clustering results we show the heatmaps corresponding to             

ChIP-seq enrichments for insulators protein binding the DNA (second panel), other proteins            

that bind indirectly (third panel) and RNA Pol-II. Last panel shows housekeeping enhancers             

from ​(Zabidi et al. 2015)​. For boundaries at promoters, heatmaps are centered at the gene               

promoter, for non-promoter boundaries, heatmaps are centered at the nearest CP190 peak            

within 2000 bp. ChIP-seq signal was computed in 50 bp bins for 5000 bp from the center.                 

The scale of each heatmap was adjusted based on the distribution of the TRAP or ChIP-seq                

values in the respective cluster (Fig. S3 A and B). ​D​. Relationship between motif presence               

and ChIP-seq peak fold change at boundaries. Each cell in the matrix contains the mean fold                

change of all respective ChIP-seq peaks having the motif. For each row, the maximum fold               

change was scaled to 1. ​E​. Pausing index at different boundary-promoters containing one of              

the boundary motifs. Non-boundary promoters are plotted as control. 
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Figure 4. Promoter and non promoter motifs show marked differences. A.           

TAD-separation score at boundaries grouped by the motif presence. For this analysis we             

considered a motif to be present if the motif overlaps with a ChIP-seq peak (see methods).                

The bars show the overlap between the indicated motifs below. The boxplots show the              
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distribution of the respective TAD-separation score. The sets highlighted in blue have a             

TAD-separation score distribution significantly larger than the overall TAD-separation score.          

The ​p​-values (Wilcoxon rank-sum test) are show above the figure. Similarly, the sets             

highlighted in red have a distribution significantly smaller. Only motif combinations having            

more than 10 instances are shown. Motif combinations with three or more motifs were rare.               

The intersections were plotted using UpSetR ​(Lex et al. 2014)​. An overview of the motif               

overlaps can be seen in Fig. S4A. ​B. ​Frequency of flanking TAD types (as classified in Fig.                 

1D) per boundary motif. ​C.​ Frequency of the chromatin state from ​(Filion et al. 2010)​. 
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Figure 5. Machine learning prediction of boundaries. A​. Feature importance for promoter            

boundaries computed using four different methods: linear model, logistic regression, gradient           
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boost model (gbm) and random forest. Importance scores of each method were scaled from              

0 to 100. Except for DNAse-seq, each feature represents the binding affinity (TRAP score) of               

the respective motif. ​B. Sensitivity and specificity for promoter boundaries measured for            

logistic regression, gradient boost model and random forest. The output of the linear model              

can be seen in Supplementary Fig. S3B. ​C. Feature rankings, as in (A), for non-promoter               

boundaries. ​D. Sensitivity and specificity for non-promoter boundaries. ​E. Examples of           

high-resolution boundaries and predicted boundaries. The high-resolution boundaries (based         

on the TAD-separation score) are depicted as black triangles on top of the Hi-C heatmap.               

The predicted boundaries are shown as dotted vertical lines. The tracks below the the Hi-C               

contact map contain the instances of the motifs that overlap with promoters. To aid the               

visualization of the short motifs, their genomic location was extended by 500 bp in each               

direction. The last track depicts regions of open chromatin based on DNase-seq from             

modEncode ​(Celniker et al. 2009)​. 
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