

1 **Identification of a Novel Gene *argJ* involved in Arginine Biosynthesis Critical for Persister**

2 **Formation in *Staphylococcus aureus***

3

4 Rebecca Yee¹, Peng Cui², Tao Xu², Wanliang Shi¹, Jie Feng¹, Wenhong Zhang², Ying Zhang^{1*}

5 ¹ Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health,

6 Johns Hopkins University, Baltimore, MD, USA

7 ² Key Laboratory of Medical Molecular Virology, Huashan Hospital, Fudan University,

8 Shanghai, China

9

10 *Corresponding author: Ying Zhang; Email: yzhang@jhsph.edu

11

12 **Abstract**

13

14 *Staphylococcus aureus* can cause both acute and recurrent persistent infections such as
15 peritonitis, endocarditis, abscess, osteomyelitis, and chronic wound infections. An effective
16 treatment to eradicate the persistent disease is still lacking as the mechanisms of *S. aureus*
17 persistence are poorly understood. In this study, we performed a comprehensive and unbiased
18 high-throughput mutant screen using *S. aureus* USA300 and identified *argJ*, encoding an
19 acetyltransferase in the arginine biosynthesis pathway, whose mutation produced a significant
20 defect in persister formation in multiple drugs and stresses. Genetic complementation and
21 arginine supplementation restored persistence in the ArgJ mutant. Quantitative real-time PCR
22 analysis showed that the *arg* genes were over-expressed under drug stressed conditions and in
23 stationary phase cultures. In addition, the ArgJ mutant had attenuated virulence in both *C.*
24 *elegans* and mouse models of infection. Our studies identify a novel mechanism of persistence
25 mediated by arginine metabolism in *S. aureus*. These findings will not only provide new insights
26 about the mechanisms of *S. aureus* persistence but also offer novel therapeutic targets that may
27 help to develop more effective treatment of persistent *S. aureus* infections.

28

29

30

31

32 **Introduction**

33

34 Persisters are metabolically quiescent cells that are tolerant to antibiotics or stresses but
35 can revert back to a growing state upon antibiotic stress removal and remain susceptible to the
36 same antibiotic ¹. Persister cells are implicated in persistent infections ² and can cause relapse in
37 various bacterial infections. While *S. aureus* often causes acute infections, it can also cause
38 chronic recurrent infections such as peritonitis, endocarditis, osteomyelitis, wound and soft
39 tissue infections, and infections from indwelling medical devices ³.

40 Most studies on persister cell mechanisms have been conducted using *Escherichia coli* (*E.*
41 *coli*) as a model organism. In *E.coli*, the toxin-antitoxin (TA) systems such as HipBA and MazF
42 cause persister formation by inhibiting protein synthesis through phosphorylation of Glu-tRNA
43 synthase and cleaving of mRNA, respectively ⁴. Unlike *E. coli*, it has been shown that *S. aureus*
44 persister formation does not involve TA systems but is dependent on ATP production ⁵.
45 Additionally, we have also previously shown that pathways involved in protein synthesis,
46 efflux/transporter and metabolism and energy production are heavily involved in persister cell
47 formation in *S. aureus* ⁶. We have shown that upon prolonged exposure to rifampicin, over one-
48 hundred genes that play a role in rifampicin persistence were identified, where approximately
49 one-third of the genes play a role in the metabolism of amino acids, lipids, vitamins,
50 carbohydrates and purine biosynthesis ⁶.

51 To find core genes and pathways that play a role in persister cell formation with different
52 drugs, we performed an unbiased high-throughput screen using gentamicin against a mutant
53 library of *S. aureus* clinical isolate USA 300 ⁷. We identified the *argJ* gene as a core gene that
54 plays an important role in persister formation under various antibiotics and stresses. We report
55 for the first time the importance of ArgJ for *S. aureus* persister cell formation and also virulence
56 and survival in *C. elegans* and mice.

57

58 **Results**

59

60 *argJ* is a novel persistence gene

61 To identify genes and pathways involved in persister formation, we performed a genome-
62 wide screen using the saturated Nebraska transposon mutant library (NTML) ⁷ to isolate mutants
63 with defective persistence which is defined as a decrease in the number of persister cells relative
64 to the parental strain USA300. We exposed stationary phase cultures of the mutant library to
65 gentamicin (60 µg/ml, 10X MIC) (Fig. 1A). Over the course of six days, the screen identified the
66 ArgJ mutant that failed to grow on tryptic soy agar (TSA) plates after gentamicin exposure.
67 While it is known that the *argJ* gene is required for the arginine biosynthesis cycle ^{8,9} and

68 encodes an acetyltransferase that synthesizes N-acetylglutamate and ornithine (Fig. 1B), the
69 importance of ArgJ in antibiotic and stress tolerance has not been explored.

70 To establish the importance of ArgJ in stress tolerance, we first excluded the possibility
71 that altered growth dynamics is a confounding factor. Our growth curve study suggested that the
72 ArgJ mutant and USA300 had similar growth patterns (Fig 2A) and similar colony forming unit
73 per milliliter (CFU/ml) in normal growth medium even up to 8 days (Fig 2B). Next, to confirm
74 that a mutation in ArgJ causes a defect in persister formation in stressed conditions, we
75 performed a persister assay by exposing stationary phase cultures of the ArgJ mutant and
76 USA300 control strain to different antibiotics and stresses. At different time points, the cells
77 were washed and then enumerated for CFU. As early as day 2 post-gentamicin exposure, the
78 ArgJ mutant harbored 1×10^7 CFU/ml as opposed to USA300 with 1×10^9 CFU/ml. By day 6, the
79 ArgJ mutant had 1×10^6 CFU/ml compared to USA300 with 1×10^9 CFU/ml, a significant
80 difference of about 3-logs (Fig. 2C). Similarly, by day 6 of rifampicin exposure, there was also a
81 significant three-log difference in CFU between the ArgJ mutant and USA300 (Fig. 2D).

82 To confirm the specific role of ArgJ in persistence, we also measured the persister levels
83 in mutants with mutations in other proteins of the Arg pathways (e.g. ArgB and ArgF) and TrpA,
84 protein involved in tryptophan biosynthesis, as a control. Our results indicated that after
85 gentamicin exposure of 6 days, there were no significant differences in CFU/ml among the ArgB,
86 ArgF, TrpA mutants and the control strain USA300 (Fig. 2E). We, therefore, concluded that a
87 mutation in ArgJ is specific in causing a defect in persister formation in *S. aureus*.

88 In our separate recent study, we showed that mutations in metabolic pathways in *S.*
89 *aureus* have defective persistence to different antibiotics, low pH, and heat stress⁶. To explore if
90 ArgJ mediates persister cell formation in other stresses besides antibiotics, we subjected the ArgJ
91 mutant to heat stress at 58°C. The difference in heat tolerance between the ArgJ mutant and
92 USA300 was statistically significant. After 80 minutes, the ArgJ mutant had a mean of 1.1×10^3
93 CFU/ml while USA300 had 4.6×10^4 CFU/ml (Fig. 2F). Additionally, the ArgJ mutant was also
94 significantly less tolerant to low pH (pH = 4) compared to USA300. Unlike the other stress
95 exposures, the starting bacterial inoculum concentration for acid pH exposure was standardized
96 to 1×10^5 CFU/ml in order to prevent neutralization of the acid pH due to neutralization of acid
97 pH by a high bacterial inoculum¹⁰. Nonetheless, after 24 hours of exposure in a low pH
98 environment, the ArgJ mutant had only about 4.6 CFU/ml left while the USA300 had about $4.4 \times$
99 10^3 CFU/ml, indicating that the ArgJ mutant is more susceptible to low pH (Fig. 2G).

100

101 *Complementation of ArgJ mutant partially restored persistence*
102 *phenotype*

103 To confirm that the mutation in *argJ* is responsible for the defective persistence, we
104 complemented the ArgJ mutant with the wildtype *argJ* gene from the USA300. We used an *S.*

105 *aureus*- *E. coli* shuttle vector pRAB11 to insert the wildtype *argJ* gene back into the mutant¹¹.
106 After 6 days of gentamicin exposure, the ArgJ mutant with an empty vector had 6.4×10^3
107 CFU/ml whereas the ArgJ complemented strain and USA300 had 7.1×10^4 CFU/ml and $2.0 \times$
108 10^7 CFU/ml, respectively (Fig. 4A). Similarly, after 6 days of rifampicin exposure, the ArgJ
109 mutant with an empty vector had 3.1×10^3 CFU/ml whereas the ArgJ complemented strain had
110 5.0×10^6 CFU/ml, only one-log fold less than USA300 with 1.7×10^7 CFU/ml. These findings
111 indicate that a genetic mutation in ArgJ confers a defect in persister formation.
112

113 *Arginine biosynthesis via the Arg pathway is important for persistence*

114

115 To determine if the arginine pathway is important for persistence, we supplemented L-
116 arginine into TSB growth medium. The ArgJ mutant grown without any L-arginine
117 supplementation had 1.2×10^4 CFU/ml under gentamicin stress. However, when L-arginine (30
118 mM) was supplemented into the growth medium of the ArgJ mutant, the amount of cells on day
119 6 post-gentamicin exposure was 6.0×10^6 CFU/ml, which is similar to the parent strain USA300
120 with 2.8×10^6 CFU/ml (Fig. 3C), indicating that L-arginine supplementation complemented the
121 defect in persistence in the ArgJ mutant. Because arginine is a positively-charged amino acid, we
122 wanted to confirm that persistence restoration is specific to arginine and not achieved by other
123 positively-charged amino acids. Thus, we supplemented the growth medium with two positively-
124 charged amino acids L-histidine and L-lysine. Our results suggest that histidine and lysine did
125 not restore the persistence of the ArgJ mutant indicating that L-arginine is specifically important
126 for persistence (Fig. 3C).
127

128 *Activity of arginine pathway genes in relation to persistence*

129 *S. aureus* has the ability to synthesize arginine using secondary carbon sources such as
130 glutamate (via the Arg pathway) or proline (via PutA and ProC) (Fig. 1B)¹². It has been
131 suggested that arginine production under normal growth conditions is mainly due to the proline
132 precursor pathway¹². However, the activity of the Arg pathway under stress conditions such as
133 stationary phase and antibiotic exposure is unknown. To evaluate if the Arg pathway is induced
134 under stress conditions, we performed qRT-PCR to compare the levels of gene expression of
135 genes from the Arg pathway (*argCG*) versus genes involved in arginine synthesis from a proline
136 precursor (*proC* and *putA*). Since the ArgJ mutant showed defective persistence (Fig. 2)
137 compared to USA300, we compared the gene expression fold-change of USA300 and the ArgJ
138 mutant. Genes *argC* and *argG* were at least 2-fold more over-expressed in USA300 than the
139 ArgJ mutant (Fig. 4A) in stationary phase (when persister cells enrich due to limiting nutrients)
140 compared to log phase (when growing cells are heavily populated). Under gentamicin treatment,
141 we also observed the same genes, *argC* and *argG*, having at least 2-fold higher expression in
142 USA300 than in the ArgJ mutant (Fig. 4B). Collectively, our data suggest that arginine

143 production through the ArgJ pathway is more expressed in stationary and drug-treated cells than
144 log phase cells and untreated cells, respectively.

145

146 *ArgJ plays a role in virulence in vivo*

147 There is a general lack of research establishing the relationship between the mechanisms
148 of persister cell formation and virulence in different bacterial pathogens including *S. aureus*².
149 Given that our results suggest the importance of ArgJ in persistence, we decided to explore the
150 role of ArgJ in virulence. In order to test for virulence, we used a nematode *C. elegans* model,
151 an accepted model for bacterial pathogenesis research¹³. To test the hypothesis that the ArgJ
152 mutant has attenuated virulence, we examined the survival of *C. elegans* after *S. aureus* infection.
153 Our results showed that *C. elegans* killing was highly attenuated after infection with the ArgJ
154 mutant as opposed to USA300. The first death caused by USA300 was observed at day 4 as
155 opposed to day 6 for the ArgJ mutant. By day 8, there was a 76% survival in *C. elegans* exposed
156 to the ArgJ mutant as opposed to the 56% survival in worms exposed to USA300 (Fig. 5A). No
157 change in survival was seen in worms exposed to nonpathogenic *E. coli* strain.

158 To further confirm the role of ArgJ in virulence, we then utilized an *S. aureus* peritonitis
159 mouse model¹⁴. Briefly, Swiss-Webster mice were infected by intraperitoneal injection with 7 x
160 10^7 CFU of the ArgJ mutant, the ArgJ complemented strain and USA300. After 3 day post-
161 infection, the CFU counts in the spleens and kidneys were enumerated. Our results indicate that
162 mice infected with the ArgJ mutant harbored an average of 5 CFU/g of spleen while mice
163 infected with USA300 and the ArgJ complemented strain had 3.5×10^4 CFU/g of spleen and 1.6×10^3 CFU/g
164 of the spleen, respectively (Fig 5B). Similarly, all mice infected with the ArgJ
165 mutant resulted in no bacteria in the kidney while mice infected with USA300 and the ArgJ
166 complemented strain had 1.0×10^4 CFU/g and 3.6×10^3 CFU/g of the kidney, respectively (Fig
167 5C), indicating that an ArgJ mutation caused statistically significant attenuation of virulence in
168 mice.

169

170 **Discussion**

171

172 While there is renewed interest in persister biology recently, the molecular mechanisms
173 of persistence are largely derived from the model organism *E. coli* and the mechanisms crucial to
174 *S. aureus* persister formation remain poorly understood. After we performed a comprehensive
175 genetic screen to identify persister genes and pathways in the clinically relevant strain USA300,
176 we identified ArgJ as important for persistence to multiple drugs and also stresses. To our
177 knowledge, this is the first study that provided insights into the physiological impact of ArgJ and
178 its related Arg pathway in stress tolerance and persistence in bacterial systems.

179

180 Supplementation of arginine but not other amino acids into the growth media conferred
181 increased persistence of the ArgJ mutant to gentamicin. Our data suggest that arginine increases

182 tolerance and formation of persister cells and that ArgJ regulates persistence in *S. aureus* is
183 further supported by our qRT-PCR results. It is important to note that under normal growth
184 conditions, our results are consistent with previous findings that suggest arginine synthesis from
185 the proline precursor pathway (using PutA and ProC) is the canonical pathway (Fig. 2B)¹².
186 However, the ArgJ-mediated Arg pathway appears to play a role in stationary phase and during
187 stress conditions (Fig. 5).

188 While the molecular mechanisms by which the arginine biosynthesis pathway mediates
189 persistence remains to be determined, there are several possibilities. One proposed mechanism of
190 ArgJ-mediated persistence is through the direct generation of arginine. The bacterial cell can
191 then catabolize the arginine through the arginine deiminase pathway to synthesize ammonia
192 which mitigates against hydroxyl radicals produced during antibiotic action that promote cell
193 death¹⁵. Persister cells are known to have increased capacity to deal with reactive oxygen
194 species². Additionally, the downstream products of arginine production such as ornithine and
195 polyamines are shown to increase the cell's fitness and survival¹⁶. Polyamines also modulate the
196 translation and expression of key proteins in biofilms, an exopolysaccharide structure that
197 contains persister cells¹⁷. Because persisters are non-growing cells with decreased energy state²,
198 we speculate that an ArgJ mutation causes defective persistence because the mutant bacteria
199 need to resort to a more energy unfavorable pathway to produce arginine. In *S. aureus*, ArgJ is
200 preferred over ArgE, which produces the same end products of ornithine and acetate, due to
201 favorable energy kinetics⁹. Thus, under growth-limiting conditions where the cells are more
202 energetically inactive, ArgJ may be preferentially expressed to facilitate persister survival. Hence,
203 the altered cellular energetic state could impede the cells to reach dormancy and allow the ArgJ
204 mutant to be killed more easily by antibiotics and stresses.

205 ArgJ is a bifunctional enzyme involved in de novo as well as recycling pathway for
206 arginine biosynthesis (Fig 1B). The role of ArgJ in the de novo pathway of arginine synthesis is
207 to catalyze the first step of the linear arginine production, synthesizing N-acetylglutamate from
208 glutamate and acetyl-CoA as the acetyl donor. In the recycling pathway, ArgJ helps generate
209 ornithine by trans-acetylation of the acetyl group from N(2)-acetylornithine to glutamate. Our
210 finding that mutations in de novo pathway genes (*argB*, *argF*) did not cause a defect in
211 persistence (Fig. 3) indicates that the de novo arginine biosynthesis pathway is not important for
212 persistence in *S. aureus* but rather the recycling function of ArgJ may be important for
213 persistence. Further biochemical and genetic studies such as site-directed mutagenesis on the
214 binding and active sites of the ArgJ protein to separate the bifunctional activity of the protein are
215 needed to confirm the importance of the recycling pathway in persistence.

216 In addition to ArgJ, 6 of the genes that we have identified playing a role in gentamicin
217 persistence were also transferases (*miaA*, *trmB*, *SAUSA300_0689*, *1111*, *1669*, *2232*) (data
218 unpublished). Acetyl-transferases can help drive bistable gene expression and changes in DNA
219 and protein modifications in tolerating stress and adapting to environmental changes^{2,18}. Studies
220 have shown that acetylated proteins in prokaryotes play a role in stress response through
221 chemotaxis and cell cycle control¹⁹. Protein homology analyses suggest that the binding site of

222 acetyltransferase SAUSA300_2232, also identified as a gene important for persister formation,
223 has a similar amino acid sequence to ArgJ. More studies will be needed to explore the role of
224 these transferases in epigenetic control of persistence in *S. aureus*.

225
226 Our complementation studies showed that the *argJ* gene is important for maintaining persistence
227 in *S. aureus*. However, the complemented ArgJ mutant achieved partial restoration of persistence.
228 In fact, in virtually all *S. aureus* complementation studies, none could achieve full
229 complementation. *S. aureus* possesses different restriction modification systems that may destroy
230 exogenous plasmids,²⁰ has endonucleases targeting specific sequences²¹ and can methylate
231 exogenous DNA²² causing inactivation of exogenous DNA. These could serve as possible
232 explanations for the partial complementation of ArgJ mutant in this study.

233
234 While this study revealed novel insights into the mechanisms of *S. aureus* persister formation,
235 the results from the screen is dependent on the conditions of our assays². Persisters can be
236 affected by variables pertaining to the drugs administered such as the drug concentrations, drug
237 exposure time, inoculum size and the age of the culture¹⁰. However, the reported persister genes
238 in this study (Table S1) have been identified twice from two independent screens with both
239 rifampicin and gentamicin and can thus be considered reproducible core genes involved in
240 persister formation in *S. aureus*.

241 In conclusion, we identified a comprehensive list of genes and pathways that play a role
242 in establishing persistence in *S. aureus*. For the first time, we identified a novel mechanism of
243 persistence in *S. aureus* mediated by ArgJ in maintaining persistence to different antibiotics and
244 stresses and also virulence in-vivo. For *S. aureus*, tackling persistence may be a solution to
245 reducing the rate of drug resistance. Our findings not only improve our understanding of
246 mechanisms of persistence but also provide insights into novel therapeutic targets for developing
247 new and more effective drugs that eradicate persistent *S. aureus* infections.

248

249 **Experimental Procedures**

250 *Culture media, chemicals, and antibiotics*

251 *S. aureus* strains were cultivated in tryptic soy broth (TSB) and tryptic soy agar (TSA)
252 and *E. coli* strains were cultivated in Luria-Bertani (LB) broth or agar at 37°C with the
253 appropriate antibiotics. Citric acid monohydrate, the antibiotics ampicillin, chloramphenicol,
254 rifampicin, gentamicin, erythromycin and amino acids L-Arginine, L-Histidine, L-Lysine were
255 obtained from Sigma-Aldrich Co. Stock solutions were prepared and sterilized through filtration
256 or autoclaved, if necessary, and used at indicated concentrations.

257

258 *Library screen to identify mutants with defective persistence*

259 The Nebraska Transposon mutant library (NTML) that consists of 1,920 mutants of *S.*
260 *aureus* USA300 was kindly provided by BEI Resources ⁷. The mutants of the library were
261 grown in TSB containing erythromycin (50 µg/ml), the antibiotic selective marker of the mutants,
262 at 37°C in 384-well plates. Gentamicin (60 µg/ml) was added to overnight stationary phase
263 cultures in the wells. The plates were incubated at 37°C and the library was replica transferred to
264 TSA plates to score for mutants that failed to grow over the course of at least 6 days.
265

266 *Persister assays to measure susceptibility to various antibiotics and*
267 *stresses*

268 Overnight stationary phase cultures were exposed to selected drugs or stresses and colony
269 forming units per milliliter (CFU/ml) were measured through serial dilutions and plating onto
270 TSA plates. The antibiotic exposure was carried out over the course of 6 days at 37°C as
271 previously described ¹⁰. To measure the susceptibilities in low pH stress, the overnight culture
272 was diluted 1:100 and incubated in buffered acid solution with pH = 4 at 37°C. To measure the
273 susceptibility to heat, undiluted overnight cultures were placed in a 58°C water bath. At different
274 time points, 100 µl of bacterial suspension was removed and washed in 1X PBS and enumerated
275 for CFU/ml. For amino acid supplementation, overnight bacterial cultures were refreshed 1:100
276 into TSB with a supplementation of the indicated amino acids to the growth media and grown for
277 16 hours at 37°C before use. This step was repeated again before persister assays were performed.
278

279 *Complementation of ArgJ mutant*

280 The wildtype *argJ* gene from *S. aureus* USA300 was amplified by PCR. The primers
281 contained restriction sites KpnI and EcoRI. The forward primer used had the sequence 5'
282 GCAGGTACCATGAAACATCAAGAAACGAC 3' and the reverse primer used had the
283 sequence 5' GCCGAATTCTTATGTTGATATGATGCGTT 3'. The PCR parameters used were
284 as follows: 94°C for 15 min, followed by 35 cycles of 94°C for 30 s, 55°C for 30 s, and 72°C for
285 2 min, and a final extension at 72°C for 10 min. The PCR products were digested with KpnI and
286 EcoRI and cloned into *S. aureus*-*E. coli* shuttle vector pRAB11 ¹¹. Ligation mixtures were
287 transformed into chemically competent *E. coli* DH5α cells (Invitrogen) and spread onto LB agar
288 plates containing ampicillin (100 µg/ml) and grown overnight at 37°C. Upon confirmation of the
289 transformants by DNA sequencing, plasmid DNA was isolated using Lysostaphin (Sigma-
290 Aldrich) lysis (2mg/ml) followed by purification with QIAprep Spin Miniprep Kit. The plasmid
291 was introduced into *S. aureus* RN4220 ²³ by electroporation (voltage = 2.5 kV, resistance = 100
292 Ω, capacity = 25 µF) using MicroPulser Electroporation Apparatus (Bio-Rad) followed by
293 plating onto TSA plates containing chloramphenicol (10 µg/ml) and incubation overnight at
294 37°C. To induce for ArgJ expression, bacterial cultures were grown in TSB containing
295 chloramphenicol overnight then refreshed 1:100 into TSB only. When the cells reached OD600
296 of 0.5, the cells were induced with anhydrotetracycline (25 ng/ml) overnight with shaking at 220

297 rpm in 37°C. Overnight cells were washed twice with 1X PBS and resuspended in MOPS buffer
298 to perform persister assays as described above.
299

300 ***RNA preparation and real-time PCR (qRT-PCR)***

301 Samples were prepared for RNA extraction based on the instructions described in the
302 "Enzymatic Lysis and Proteinase K Digestion of Bacteria" protocol of the RNAProtect Bacteria
303 Reagent Handbook with the addition of incubation with lysostaphin before purification using the
304 RNeasy mini kit (Qiagen). cDNA was synthesized from 1 µg of RNA with random primers using
305 QuantiTech Reverse Transcription Kit (Qiagen). Quantitative RT-PCR (qRT-PCR) was
306 performed in a 20 µl reaction mixture using SYBR Green PCR Master Mix (Life Technologies)
307 and 0.2 µM (each) of gene-specific primers (Table S2). Amplification and detection of specific
308 products were performed using StepOnePlus Real-Time PCR Systems (Applied Biosystems).
309 The PCR parameters used were as follows: 95°C for 10 min, followed by 40 cycles of 95°C for
310 15 s and 60°C for 1 min. Relative gene expression levels were calculated using the comparative
311 threshold cycle (C_T) method ($2^{-\Delta\Delta CT}$ method) with 16s rRNA as the internal control gene for
312 normalization of gene expression to basal levels.
313

314 ***Nematode-killing assay***

315 *S. aureus* nematode-killing assay was performed as described ¹³. Briefly, *S. aureus* strains
316 were grown overnight at 30°C in TSB containing the appropriate antibiotics as needed. One spot
317 of overnight *S. aureus* culture (70 µl) was dropped onto nematode growth agar containing 5-
318 Fluoro-2'-deoxyuridine (100 µM). The prepared plates were incubated at 37°C overnight and
319 then allowed to equilibrate to room temperature (20°C) for 60 minutes before being seeded with
320 *C. elegans* N2 Bristol worms (*Caenorhabditis* Genetics Center). The worms were synchronized
321 to the same growth stage by treatment with alkaline hypochlorite solution as described ²⁴. Worms
322 of the adult stage were recovered in 15 ml tubes with M9 buffer. The worms were washed twice
323 to remove the residual bacteria in their diet by centrifugation at 1500 rpm for 2 minutes at room
324 temperature in a table top centrifuge. Bleaching solution with 5% hypochlorite was then added
325 and incubated with the worms for 9 minutes to lyse the adult stages but keeping the eggs intact.
326 The lysing reaction was stopped when M9 buffer was added. Bleach was removed by
327 centrifugation at 1500 rpm for 1 minute followed by three more washes with M9 buffer. To
328 induce hatching of eggs, M9 buffer was added to the pellet and incubated at 20°C with gentle
329 agitation and proper aeration. After 24 hours, worms were pelleted with a 2-minute spin at 1500
330 rpm at room temperature and seeded onto OP50 seeded plates. L4 stage worms were obtained
331 after 48 hours at 20°C. In each assay, 10-20 L4-stage nematodes were added to each plate and
332 each assay was carried out at least twice. The plates were incubated at 20°C and scored for live
333 and dead worms every 24 hours. A worm was considered dead when it failed to respond to touch.
334

335 ***Mouse intraperitoneal challenge***

336 Overnight cultures of *S. aureus* were subcultured into fresh TSB (1:100) and grown for 2.5 hours
337 with shaking (220 rpm) at 37°C. The cells were washed with 1X PBS. Adult (7-8 weeks old)
338 female Swiss-Webster mice (Charles River Laboratories) were infected via intraperitoneal
339 injection with an inoculum size of 7×10^7 CFU. Mice were housed in cages under standard BSL-
340 2 housing conditions. Mice infected after 3 days were euthanized and spleens and kidneys were
341 homogenized for CFU enumeration.

342
343

344 *Acknowledgements*

345 We gratefully acknowledge BEI Resources for the provision of the NTML mutant library.
346 We thank Jiou Wang and his laboratory for the provision of *C. elegans* and discussions
347 regarding the design of nematode killing assays. RY was supported by NIH training grant
348 T32 AI007417. YZ was supported by NIH grants AI099512 and AI108535.

349

350 *Author Contributions*

351 R.Y., P.C., J.F., W.S., and W.Z. contributed to the design of the study. R.Y., P.C., J.F., and Y.Z.
352 helped with the acquisition, analysis and interpretation of the data. R.Y. and Y.Z. wrote the paper.

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

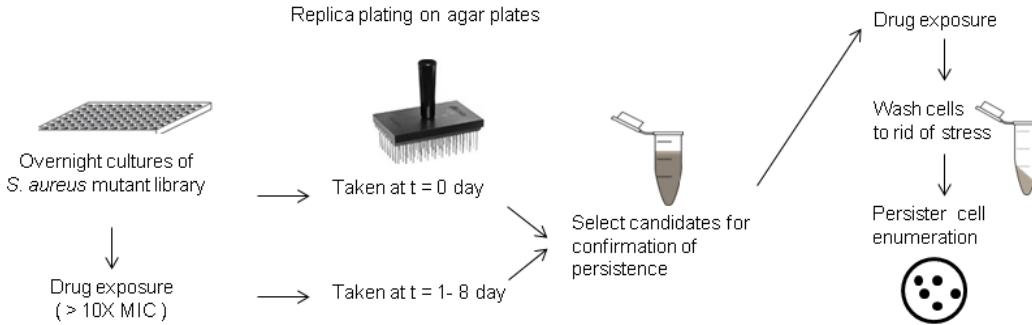
369

370

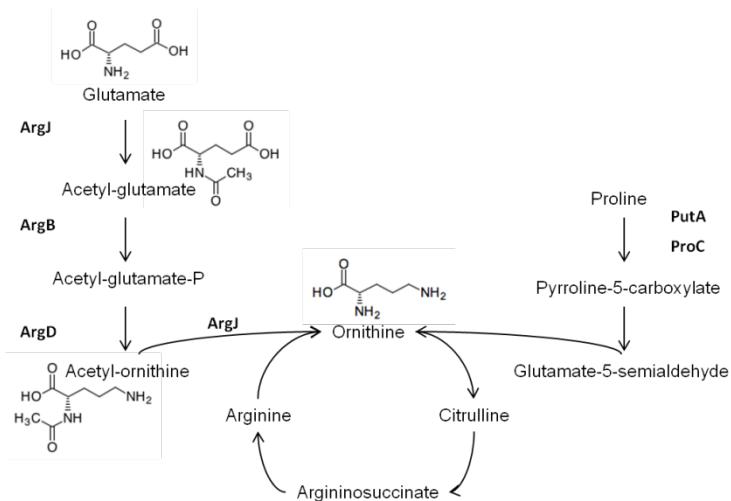
371

372

373

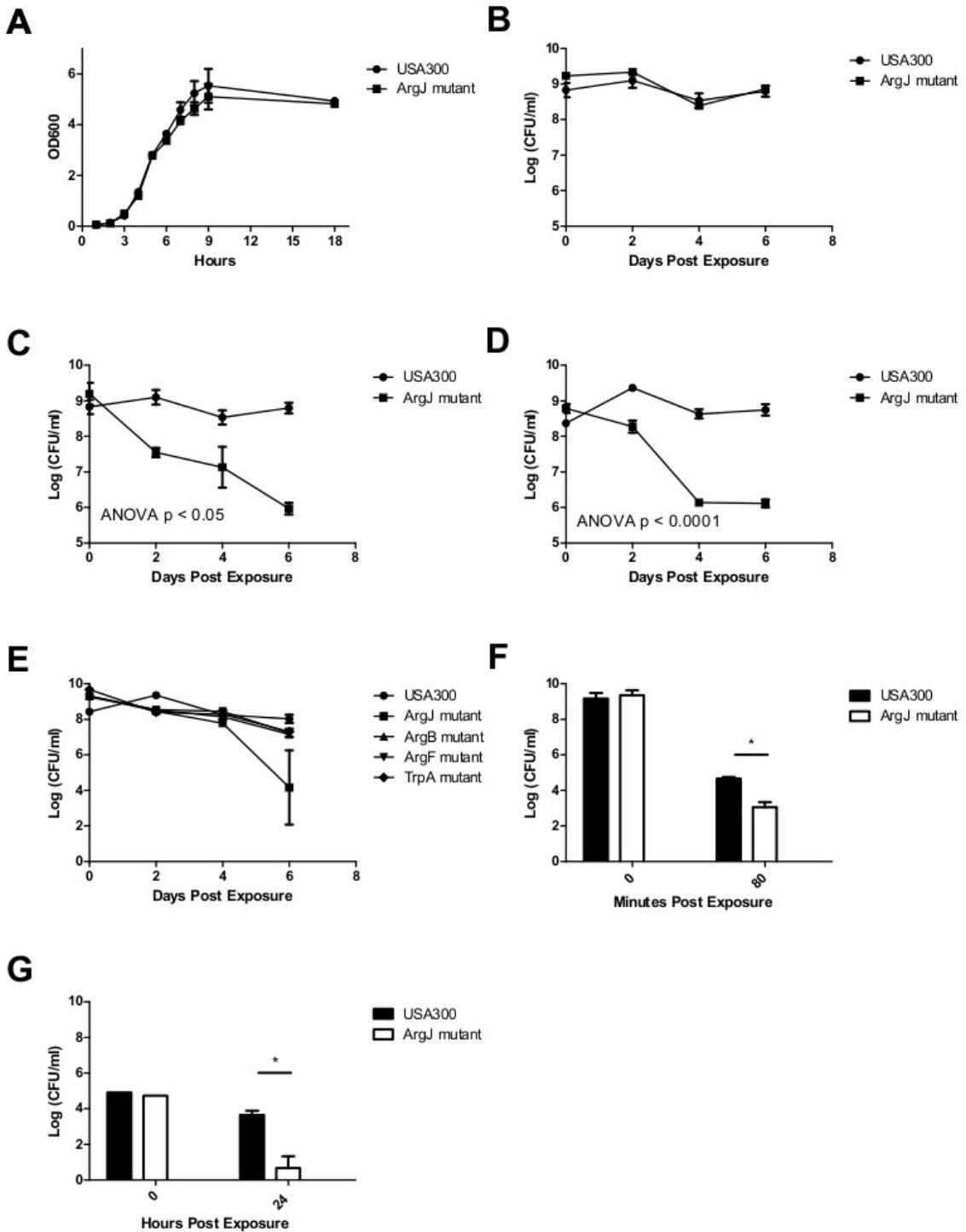

374

375


376

377

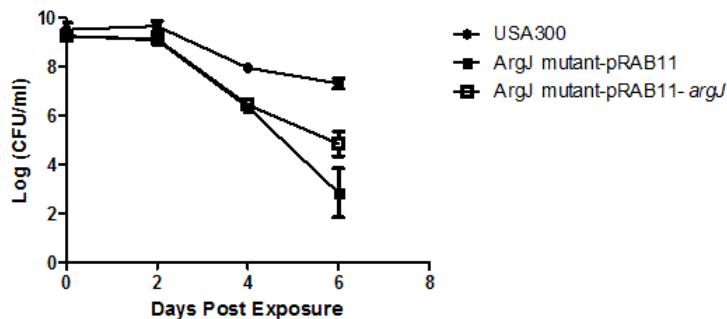
A


378

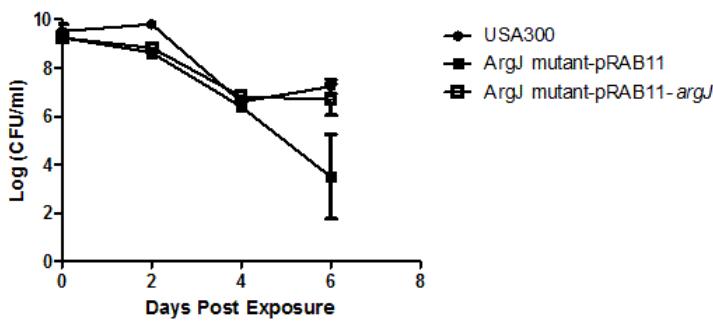
379

Figure 1. Summary of the genetic screen (A) Work flow of genetic screen. (B) The arginine biosynthesis pathway in *S. aureus*.

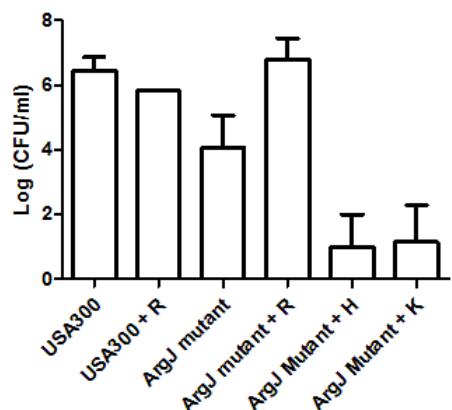
380



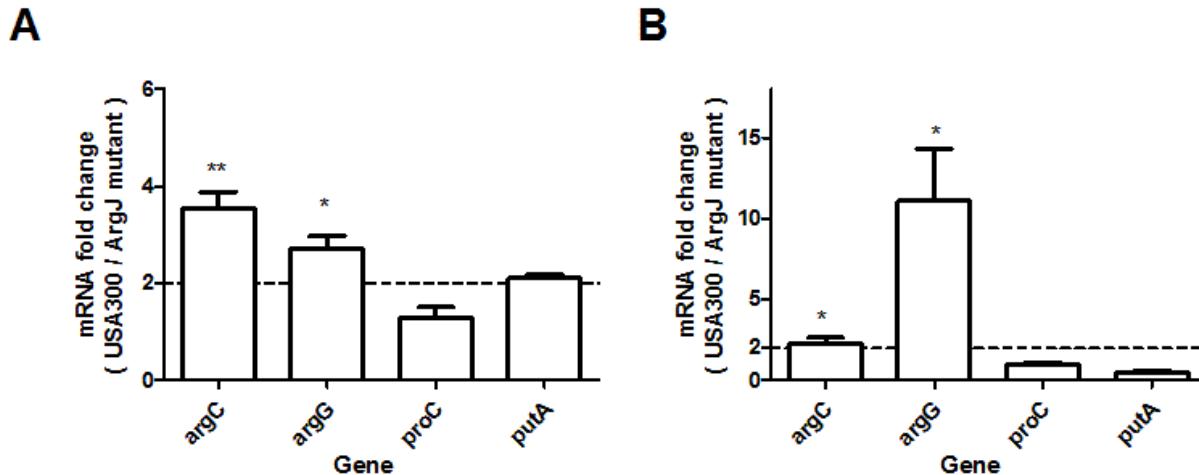
381
382 **Figure 2. Phenotypes of parental strain USA300 and the ArgJ mutant.** (A & B) Parental
383 strain USA300 and the ArgJ mutant had no difference in growth dynamics. The ArgJ mutant
384 showed defective persistence in both drugs (C) gentamicin ($60 \mu\text{g/ml}$, $>10\text{X MIC}$) and (D)
385 rifampicin ($2 \mu\text{g/ml}$, $>10\text{X MIC}$). (E) Strain with mutations in ArgB, ArgF, and TrpA did not
386 show a defect in persistence. More killing was seen in the ArgJ mutant by (F) heat stress of 58°C


387 and (G) low pH of 4.0. Data are representative of three independent experiments. * = $p < 0.05$ by
388 two-way ANOVA or Student's t-test.

389


A

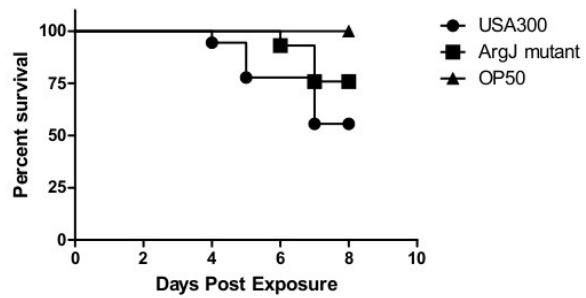
B


C

390

391 **Figure 3. Persistence in antibiotics can be restored in the ArgJ mutant.** (A) The ArgJ
392 mutant was transformed with the wildtype *argJ* gene using shuttle vector pRAB11. Upon 6 day
393 exposure of (A) gentamicin and (B) rifampicin, the ArgJ mutant complemented with *argJ* gene

394 showed partial restoration of persistence compared to the empty vector. (C) The supplementation
395 of L-arginine (30 mM) can restore gentamicin persistence. The effect of amino acid
396 supplementation to rescue ArgJ's persistence phenotype is specific to the amino acid arginine.
397 Amino acids with similar chemical properties to arginine (eg. histidine and lysine) did not restore
398 persistence. Data are representative of three independent experiments.



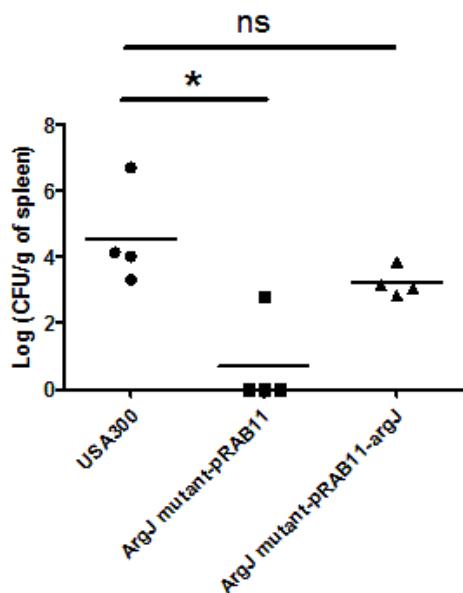
399
400 **Figure 4. Arginine biosynthesis through the Arg pathway plays a role in persistence.** In
401 stationary phase (B) or gentamicin-treated (C) cultures, there is at least 2-fold more expression of
402 Arg pathway genes *argC* and *argG* in USA300 compared to the ArgJ mutant. Differences among
403 the expression of the *arg* genes and both the expression of *proC* and *putA* are also statistically
404 significant. Data are representative of three independent experiments. ** = $p < 0.005$, * = $p <$
405 0.05 by Student's t-test.

406
407
408
409
410
411
412
413
414

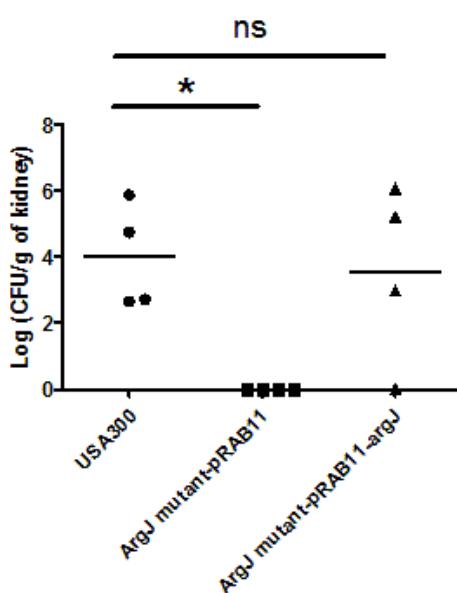
415

A

416


417

418


419

420

B

C

421

Figure 5. The ArgJ mutant has attenuated virulence in-vivo.

423

(A) The ArgJ mutant showed attenuated killing of *C. elegans* compared to parent strain USA300.

424

Three days post-infection, mice (n=4) infected with the ArgJ mutant had a lower bacterial load in both the (B) spleens and (C) kidneys. Genetic complementation with the wildtype *argJ* gene restores virulence in the ArgJ mutant. (* = p < 0.05 by Student's t-test).

427

428

429

430

431 References

432 1 Bigger, J. W. Treatment of staphylococcal infections with penicillin by intermittent sterilisation. *Lancet* **244**, 4 (1944).

433 2 Zhang, Y. Persisters, Persistent Infections and the Yin-Yang Model. *Emerging Microbes and Infection* **3**, 10 (2014).

434 3 Archer, N. K. *et al.* Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. *Virulence* **2**, 445-459, doi:10.4161/viru.2.5.17724 (2011).

435 4 Smith, P. A. & Romesberg, F. E. Combating bacteria and drug resistance by inhibiting mechanisms of persistence and adaptation. *Nature chemical biology* **3**, 549-556, doi:10.1038/nchembio.2007.27 (2007).

436 5 Conlon, B. P., Rowe, S. E., Gandt, A. B., Nuxoll, A. S. & Donegan, N. P. Persister formation in Staphylococcus aureus is associated with ATP depletion. *1*, 16051, doi:10.1038/nmicrobiol.2016.51 (2016).

437 6 Yee, R., Cui, P., Shi, W., Feng, J. & Zhang, Y. Genetic Screen Reveals the Role of Purine Metabolism in Staphylococcus aureus Persistence to Rifampicin. *Antibiotics* **4**, 627 (2015).

438 7 Fey, P. D. *et al.* A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. *MBio* **4**, e00537-00512, doi:10.1128/mBio.00537-12 (2013).

439 8 Diep, B. A. *et al.* Complete genome sequence of USA300, an epidemic clone of community-acquired meticillin-resistant Staphylococcus aureus. *Lancet* **367**, 731-739, doi:10.1016/s0140-6736(06)68231-7 (2006).

440 9 Xu, Y., Labedan, B. & Glansdorff, N. Surprising arginine biosynthesis: a reappraisal of the enzymology and evolution of the pathway in microorganisms. *Microbiol Mol Biol Rev* **71**, 36-47, doi:10.1128/mmbr.00032-06 (2007).

441 10 Li, Y. & Zhang, Y. PhoU is a persistence switch involved in persister formation and tolerance to multiple antibiotics and stresses in Escherichia coli. *Antimicrobial agents and chemotherapy* **51**, 2092-2099, doi:10.1128/aac.00052-07 (2007).

442 11 Helle, L. *et al.* Vectors for improved Tet repressor-dependent gradual gene induction or silencing in Staphylococcus aureus. *Microbiology* **157**, 3314-3323, doi:10.1099/mic.0.052548-0 (2011).

443 12 Nuxoll, A. S. *et al.* CcpA regulates arginine biosynthesis in Staphylococcus aureus through repression of proline catabolism. *PLoS pathogens* **8**, e1003033, doi:10.1371/journal.ppat.1003033 (2012).

444 13 Darby, C. Interactions with microbial pathogens. *WormBook : the online review of C. elegans biology*, 1-15, doi:10.1895/wormbook.1.21.1 (2005).

445 14 Rauch, S. *et al.* Abscess formation and alpha-hemolysin induced toxicity in a mouse model of Staphylococcus aureus peritoneal infection. *Infection and immunity* **80**, 3721-3732, doi:10.1128/iai.00442-12 (2012).

446 15 Lindgren, J. K. *et al.* Arginine deiminase in Staphylococcus epidermidis functions to augment biofilm maturation through pH homeostasis. *Journal of bacteriology* **196**, 2277-2289, doi:10.1128/jb.00051-14 (2014).

447 16 Wortham, B. W., Patel, C. N. & Oliveira, M. A. Polyamines in bacteria: pleiotropic effects yet specific mechanisms. *Advances in experimental medicine and biology* **603**, 106-115, doi:10.1007/978-0-387-72124-8_9 (2007).

448 17 Wortham, B. W., Oliveira, M. A., Fetherston, J. D. & Perry, R. D. Polyamines are required for the expression of key Hms proteins important for Yersinia pestis biofilm formation. *Environmental microbiology* **12**, 2034-2047, doi:10.1111/j.1462-2920.2010.02219.x (2010).

477 18 Hu, L. I., Lima, B. P. & Wolfe, A. J. Bacterial protein acetylation: the dawning of a new age.
478 *Molecular microbiology* **77**, 15-21, doi:10.1111/j.1365-2958.2010.07204.x (2010).

479 19 Okanishi, H., Kim, K., Masui, R. & Kuramitsu, S. Acetylome with structural mapping reveals the
480 significance of lysine acetylation in *Thermus thermophilus*. *Journal of proteome research* **12**,
481 3952-3968, doi:10.1021/pr400245k (2013).

482 20 Monk, I. R. & Foster, T. J. Genetic manipulation of Staphylococci-breaking through the barrier.
483 *Frontiers in cellular and infection microbiology* **2**, 49, doi:10.3389/fcimb.2012.00049 (2012).

484 21 Stobberingh, E. E., Schiphof, R. & Sussenbach, J. S. Occurrence of a class II restriction
485 endonuclease in *Staphylococcus aureus*. *Journal of bacteriology* **131**, 645-649 (1977).

486 22 Xu, S. Y., Corvaglia, A. R., Chan, S. H., Zheng, Y. & Linder, P. A type IV modification-dependent
487 restriction enzyme SauUSI from *Staphylococcus aureus* subsp. *aureus* USA300. *Nucleic acids*
488 *research* **39**, 5597-5610, doi:10.1093/nar/gkr098 (2011).

489 23 Kreiswirth, B. N. *et al.* The toxic shock syndrome exotoxin structural gene is not detectably
490 transmitted by a prophage. *Nature* **305**, 709-712 (1983).

491 24 Porta-de-la-Riva, M., Fontrodona, L., Villanueva, A. & Ceron, J. Basic *Caenorhabditis elegans*
492 methods: synchronization and observation. *Journal of visualized experiments : JoVE*, e4019,
493 doi:10.3791/4019 (2012).

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510 **Table S1. Genes that play a role in gentamicin persistence**

Gene	Function	Accessory Number
Phage Proteins		
	phiSLT ORF80-like protein	SAUSA300_1419
	phi77 ORF044-like protein	SAUSA300_1926
	phiPVL ORF39-like protein	SAUSA300_1962
	phi77 ORF014-like protein	SAUSA300_1966
	phi77 ORF011-like protein	SAUSA300_1969
	putative phage infection protein	SAUSA300_2578
Toxin-Antitoxin Modules		
	PemK family protein	SAUSA300_2026
	addiction module antitoxin	SAUSA300_2352
Digestive Enzymes		
<i>splE</i>	serine protease SplE	SAUSA300_1754
	amidohydrolase family protein	SAUSA300_2517
	hydrolase family protein	SAUSA300_2518
DNA replication		
<i>polA</i>	DNA polymerase I superfamily	SAUSA300_1636
<i>xerC</i>	tyrosine recombinase xerC	SAUSA300_1145
	ComE operon protein 1	SAUSA300_1549
	Holliday junction resolvase-like protein	SAUSA300_1573
Membrane		
<i>epiC</i>	lantibiotic epidermin biosynthesis	SAUSA300_1765
<i>fmtB</i>	glucosamine-1-phosphate synthesis	SAUSA300_2109
<i>fmtC</i>	phosphatidylglycerol lysyltransferase	SAUSA300_1255
	tandem lipoprotein	SAUSA300_0416
	YibE/F-like protein	SAUSA300_0443
Transferases		
<i>miA</i>	tRNA delta(2)-isopentenylpyrophosphate transferase	SAUSA300_1195
<i>rsbW</i>	anti-sigma-B factor, serine-protein kinase	SAUSA300_2023
<i>trmB</i>	tRNA (guanine-N(7)-)methyltransferase	SAUSA300_1694
	glycosyl transferase	SAUSA300_0689
	ribosomal RNA large subunit	SAUSA300_1111
	methyltransferase N	SAUSA300_1669
	aminotransferase, class V	SAUSA300_2232
	Acetyltransferase	

Transcription		
<i>codY</i>	transcriptional repressor CodY	SAUSA300_1148
<i>rsbU</i>	sigma-B regulation protein	SAUSA300_2025
<i>scrR</i>	sucrose operon repressor	SAUSA300_1995
	transcriptional regulator	SAUSA300_0195
	iron-dependent repressor	SAUSA300_0621
	transcriptional regulator, Fur family	SAUSA300_1842
	lactose phosphotransferase system repressor	SAUSA300_2156
	putative transcriptional regulator	SAUSA300_2259
Cell growth		
<i>fnbB</i>	fibronectin binding protein B	SAUSA300_2440
Signaling		
<i>glpF</i>	glycerol uptake facilitator	SAUSA300_1191
	sensor histidine kinase	SAUSA300_0646
Pathogenesis		
<i>mecA</i>	penicillin-binding protein 2'- pathogen	SAUSA300_0032
<i>sak</i>	Staphylokinase- meta	SAUSA300_1922
	superantigen-like protein	SAUSA300_0395
	truncated beta-hemolysin	SAUSA300_1918
Transporter		
<i>brnQ</i>	amino acid transport carrier protein	SAUSA300_0306
<i>gltS</i>	sodium/glutamate symporter	SAUSA300_2291
<i>lspA</i>	lipoprotein signal peptidase	SAUSA300_1089
	ABC transporter permease protein	SAUSA300_0797
	putative transporter - membrane	SAUSA300_2139
	amino acid ABC transporter	SAUSA300_2359
	ABC transporter	SAUSA300_2633
Translation		
<i>rpsA</i>	30S ribosomal protein S1	SAUSA300_1365
Metabolism		
<u>Amino Acid</u>		
<i>alr</i>	alanine racemase	SAUSA300_2027
	arginine biosynthesis bifunctional protein	
<i>argJ</i>	ArgJ	SAUSA300_0185
<i>argR</i>	arginine repressor	SAUSA300_1469
<u>Carbohydrate</u>		
<i>arcC</i>	carbamate kinase - metabolic	SAUSA300_2567

<i>ilvN</i>	acetolactate synthase 1 regulatory subunit	SAUSA300_2008
	UDP-N-acetylglucosamine	
<i>murA</i>	1-carboxyvinyltransferase	SAUSA300_2055
	3-hydroxyacyl-CoA dehydrogenase	SAUSA300_ 0226
	zinc-binding dehydrogenase	SAUSA300_ 0244
	branched-chain alpha-keto acid	
	dehydrogenase subunit E2	SAUSA300_ 0995

Energy

<i>atpH</i>	F0F1 ATP synthase subunit delta	SAUSA300_2061
<i>pdhB</i>	pyruvate dehydrogenase E1 component, beta subunit	SAUSA300_0994
<i>sucA</i>	2-oxoglutarate dehydrogenase, E1 component	SAUSA300_ 1306
	2-oxoglutarate ferredoxin oxidoreductase	SAUSA300_ 1183

Lipid

<i>glpK</i>	glycerol kinase	SAUSA300_ 1192
	choloylglycine hydrolase family protein	SAUSA300_ 0269

Nucleotide

<i>purB</i>	adenylosuccinate lyase	SAUSA300_1889
<i>purM</i>	phosphoribosylaminoimidazole synthetase	SAUSA300_0973
<i>pyrF</i>	orotidine 5'-phosphate decarboxylase	SAUSA300_1097
	inosine-uridine preferring nucleoside hydrolase	SAUSA300_ 2234

511

512

513

514

515

516

517

518

519

520

521

522 **Table S2.** Oligonucleotide primers used for qRT-PCR

Gene	Forward Primer (5' to 3')	Reverse Primer (5' to 3')
<i>argB</i>	AATCGAGGCCACACTTGTAAATG	CTGCAATGAGCGTGTGTTAG
<i>argC</i>	TTCAGAATGGCAATCGTTGATA	GGGAAACAGCCAGGATTAGAAA
<i>argG</i>	AAGCATTAGAAACGATTACGTTAACG	CAAATTGCTTCTCAATGATTGGTT
<i>argJ</i>	TGGTGGTATGCACATCGGTTT	AGACGATGAGTAAATCCATCCAAAG
<i>proC</i>	TGCCAAAATCCAGTTGCTAGAA	GCCAGTAACAGAGTGTCCAACTTG
<i>putA</i>	CCTTATGGCGATGATTGGTTT	CCAGCAGGTTTCACAAATTCTT
<i>16s</i>	CCGCATGGTCAAAAGTGAAA	GCAGCGCGGATCCATCTAT

523

524

525

526

527

528

529

530