

1 **Emergence and persistence of the Chikungunya virus East-Central-South-African genotype in**
2 **Northeastern Brazil**
3 Antonio Charlys da Costa^{1‡}, Julien Thézé^{2‡}, Shirley Cavalcante Vasconcelos Komninakis^{3,4}, Rodrigo
4 Lopes Sanz-Duro³, Marta Rejane Lemos Felinto⁵, Lúcia Cristina Corrêa Moura⁵, Ivoneide Moreira de
5 Oliveira Barroso⁶, Lucineide Eliziario Correia Santos⁶, Mardjane Alves de Lemos Nunes⁷, Adriana
6 Avila Moura^{7,8}, José Lourenço², Xutao Deng^{9,10}, Eric L. Delwart^{9,10}, Maria Raquel dos Anjos Silva
7 Guimaraes⁶, Oliver G. Pybus², Ester C. Sabino¹, Nuno R. Faria²

8

9 1. Department of Infectious Disease, School of Medicine & Institute of Tropical Medicine, University
10 of São Paulo, Brazil

11 2. Department of Zoology, University of Oxford, Oxford, Brazil

12 3. Retrovirology Laboratory, Federal University of São Paulo, São Paulo, Brazil

13 4. School of Medicine of ABC (FMABC), Clinical Immunology Laboratory, Santo Andre, Brazil

14 5. Laboratório Central de Saúde Pública Dra. Telma Lobo, Secretaria de Estado da Saúde da Paraíba,
15 Brazil

16 6. Hospital Unimed Maceió, Alagoas, Brazil

17 7. Hospital Escola Dr. Helvio Auto, Alagoas, Brazil

18 8. Universidade Federal de Alagoas, Maceió, Brazil

19 9. Blood Systems Research Institute, San Francisco, CA, USA

20 10. Department of Laboratory Medicine, University of California, San Francisco, CA, USA

21

22 ‡contributed equally

23 Correspondence to: nuno.faria@zoo.ox.ac.uk and sabinoec@gmail.com

24

25

26

27 **Article summary line**
28 Transmission of the Chikungunya virus East-Central-South-African genotype has been ongoing in the
29 Northeast region of Brazil since mid-2014.

30

31 **Keywords**

32 Chikungunya virus, Northeast region Brazil, genetic epidemiology

33

34 **Summary**

35 We investigate an outbreak of exanthematous illness in Maceió, Alagoas, using molecular
36 surveillance. Of 273 samples, 76% tested RT-qPCR positive for Chikungunya virus. Phylogenetic
37 analysis reveals that the outbreak was caused by the East-Central-South-African genotype, and that
38 this lineage has likely persisted since mid-2014 in Northeast Brazil.

39

40 **Article**

41 Chikungunya virus (CHIKV) was first detected in the Americas in December 2013 (1). Transmission of
42 this alphavirus (family *Togaviridae*) is mediated by infected anthropophilic vectors, such as *Aedes*
43 *aegypti* and *Ae. albopictus*. CHIKV infection causes fever, rash and arthralgia; headache,
44 conjunctivitis and joint swelling are also common. Complications of infection include Guillain-Barré
45 syndrome and polyarthralgia that can last for months. The clinical symptoms of CHIKV infection are
46 similar to those of dengue (DENV) and Zika viruses (ZIKV), complicating diagnosis in regions where
47 these arboviruses co-circulate.

48

49 Between 30 March and 3 May 2016, a molecular investigation was conducted following an increase
50 in emergency consultations due to exanthematous illness at two private hospitals in Maceió, capital
51 city of Alagoas State, Brazil. Samples were obtained from 273 patients with on average 37 years old
52 (from 1 to 86 years old); 64% (n=175/273) were female and 73% (n=198/273) of patients resided in

53 Maceió municipality. The study was approved by the Faculdade de Medicina da Universidade de São
54 Paulo Review Board, and informed consent was obtained from all subjects.

55

56 To avoid misdiagnosis based on clinical symptoms only (2), viral RNA was extracted from 140 µL of
57 serum samples using QIAamp viral RNA kit (Qiagen) and RT-qPCR analyses were performed for DENV
58 serotypes 1-4 (3), ZIKV (4) and CHIKV (5). Two additional CHIKV RT-qPCR+ samples from Paraíba
59 were included in subsequent analysis. To identify the cause of the outbreak, each plasma sample
60 was subjected to centrifugation at 15,000 x g for 10 minutes, filtered through a 0.45 µm filter
61 (Millipore), then subjected to nuclease treatment, viral RNA extraction (Maxwell) and cDNA
62 synthesis (Promega). A single round of DNA synthesis was performed using DNA Polymerase I Large
63 (Klenow) Fragment (Promega). Subsequently, a Nextera XT Sample Preparation Kit (Illumina) was
64 used construct a DNA library, with each sample identifiable using dual barcodes. The library was
65 deep-sequenced using the MiSeq Sequencer (Illumina) with 300 base paired ends. BLASTx was used
66 to identify viral sequences through their protein sequence similarity to annotated viral proteins in
67 GenBank search, as described previously (6).

68

69 Of 273 samples tested, 76% (n=208) were CHIKV-RNA+ and 24% (n=66) were ZIKV-RNA+. Also,
70 13.2% of sampled (36/273) were co-infected of CHIKV and ZIKV, similar to recent findings from
71 Salvador, Bahia (7). No DENV cases were detected in this population. Ct-values of CHIKV RNA+
72 samples were lower (n=208, average Ct-value=24.6) than those for ZIKV (n=66, average Ct-
73 value=33.5).

74

75 A genetic analysis of all publicly available CHIKV genomes >1500nt in length (n=659 as of 17 Feb
76 2017) reveals that the East-Central-South-Africa (ECSA) genotype of CHIK was the causative agent of
77 the outbreak in Maceió, Alagoas. This genotype had only been previously identified as circulating in
78 Feira de Santana and Salvador, the two most densely populated regions in Bahia State, in 2014 and

79 2015 respectively (7, 8). The viral mutation E1-A226V that confers increased transmission in *Aedes*
80 *albopictus* (9) was not detected in the ECSA-Brazil clade. The most recent common ancestor of the
81 ECSA-Brazilian clade was dated around Jul 2014 (Apr-Aug 2014), in agreement with the date of
82 arrival of the probable index case who travelled from Angola to Feira de Santana (10).

83

84 The first CHIKV case in Alagoas was notified in August 2015, over a year after CHIKV was detected
85 in Bahia; the epidemic peak in Alagoas was reached in May 2016, 9 months after its first detection
86 there (Figure). In Feira de Santana, the time-series of CHIKV notified cases suggests a sharp increase
87 in incidence shortly after the virus was first introduced in the municipality in mid-2014. If the
88 ecological conditions and transmission dynamics of CHIKV in Feira de Santana are similar to those
89 of to ZIKV in this city (11), then it is probable that the second wave of CHIKV transmission in 2015
90 depleted most susceptible individuals, which would explain the thirteen-fold decline in the number of
91 CHIKV cases in 2016.

92

93 The novel Maceió CHIKV sequences generated in this study (n=33) fall in a single well supported
94 monophyletic clade (Bootstrap support = 0.89, clade posterior support = 1.00), suggesting that the
95 outbreak was caused by a single founder virus that arrived in Alagoas around Jun 2015 (Jan-Oct
96 2015); the first CHIKV cases to be notified there were in Aug 2015 (Figure 1). It is possible that a
97 second ECSA-CHIVK transmission wave will hit Alagoas and Paraíba in 2017.

98

99 Before this study, only 12 Brazilian partial or complete genomes have been reported. Of these, 6
100 belonged to the Asian genotype, and 6 to the ECSA genotype. Of the former 6, 5 represent imported
101 cases and only one isolate (Accession Number: KP164567) represents an autochthonous case (from
102 Amapá State, which borders French Guiana). Therefore, almost all (98%) of the 40 autochthonous
103 CHIKV cases in Brazil sequenced thus far (33 of which are reported in this study), 98% belong to the
104 ECSA genotype. Further, autochthonous ECSA-CHIKV isolates represent strains sampled in NE-Brazil.

105 This suggests a pattern of CHIKV infection in NE Brazil that may be distinct to that in the rest of the
106 Americas, where the Asian genotype predominates. NE-Brazil has had the highest number of ZIKV
107 infections and microcephaly cases in Brazil (12). Combined genomic and epidemiological surveillance
108 is needed to study potential interactions between ZIKV, CHIKV, and DENV infection and the risk of
109 severe microcephaly and other illnesses (13).

110

111 **Acknowledgments**

112 We are grateful to all participants in this study, and to Luciano Monteiro da Silva and Suzana Santos
113 for support. We are also grateful to Lívia Pinhal and Wanderson Kleber de Oliveira, Brazilian Ministry
114 of Health, for sharing epidemiological data. We also thank Illumina, Inc, Sage Science, Inc, Promega
115 Biotecnologia do Brasil, Ltda, Greiner Bio-One Brasil Produtos Médicos Hospitalares Ltda for the
116 donation of reagents and plastics for this project. This work was supported by FAPESP #
117 2016/01735-2 and 2012/03417-7. NRF is funded by a Sir Henry Dale Fellowship (Wellcome Trust /
118 Royal Society Grant 204311/Z/16/Z). This research received funding from the ERC under the
119 European Union's Seventh Framework Programme (FP7/2007-2013), grant agreement number
120 614725-PATHPHYLODYN and the United States Agency for International Development Emerging
121 Pandemic Threats Program-2 PREDICT-2 (Cooperative Agreement No. AID-OAA-A-14-00102).

122

123 **References**

- 124 1. Leparc-Goffart I, Nougairede A, Cassadou S, Prat C, de Lamballerie X. Chikungunya in
125 the Americas. Lancet. 2014 Feb 8;383(9916):514.
- 126 2. Cardoso CW, Kikuti M, Prates AP, Paploski IA, Tauro LB, Silva MM, et al.
127 Unrecognized Emergence of Chikungunya Virus during a Zika Virus Outbreak in Salvador,
128 Brazil. PLoS Negl Trop Dis. 2017 Jan;11(1):e0005334.
- 129 3. Lai YL, Chung YK, Tan HC, Yap HF, Yap G, Ooi EE, et al. Cost-effective real-time
130 reverse transcriptase PCR (RT-PCR) to screen for Dengue virus followed by rapid single-tube
131 multiplex RT-PCR for serotyping of the virus. Journal of clinical microbiology. 2007
132 Mar;45(3):935-41.

133 4. Lanciotti RS, Kosoy OL, Laven JJ, Velez JO, Lambert AJ, Johnson AJ, et al. Genetic and
134 serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007.
135 Emerging infectious diseases. 2008 Aug;14(8):1232-9.

136 5. Lanciotti RS, Kosoy OL, Laven JJ, Panella AJ, Velez JO, Lambert AJ, et al. Chikungunya
137 virus in US travelers returning from India, 2006. Emerging infectious diseases. 2007
138 May;13(5):764-7.

139 6. Deng X, Naccache SN, Ng T, Federman S, Li L, Chiu CY, et al. An ensemble strategy
140 that significantly improves de novo assembly of microbial genomes from metagenomic next-
141 generation sequencing data. Nucleic acids research. 2015 Apr 20;43(7):e46.

142 7. Sardi SI, Somasekar S, Naccache SN, Bandeira AC, Tauro LB, Campos GS, et al.
143 Coinfections of Zika and Chikungunya Viruses in Bahia, Brazil, Identified by Metagenomic
144 Next-Generation Sequencing. Journal of clinical microbiology. 2016 Sep;54(9):2348-53.

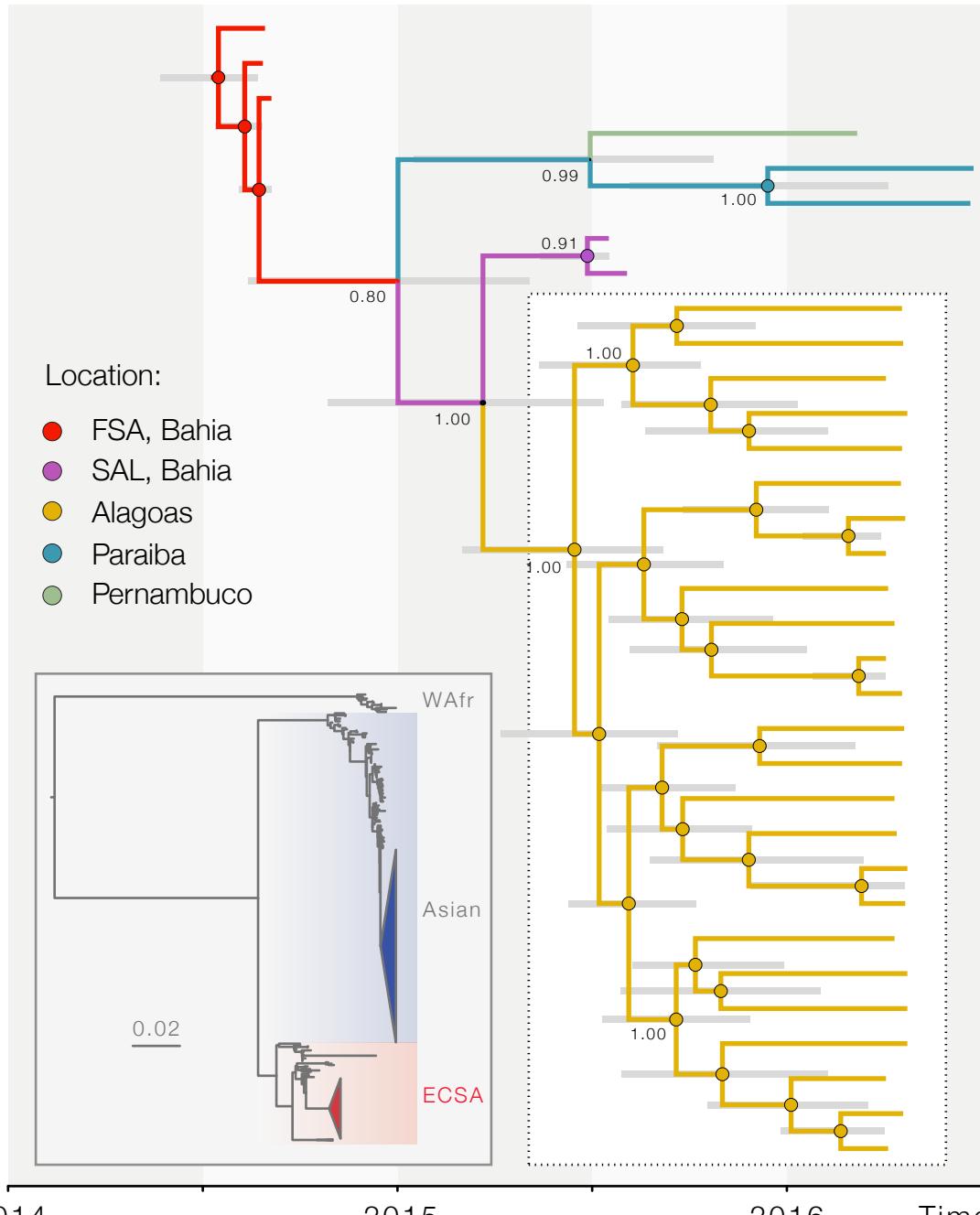
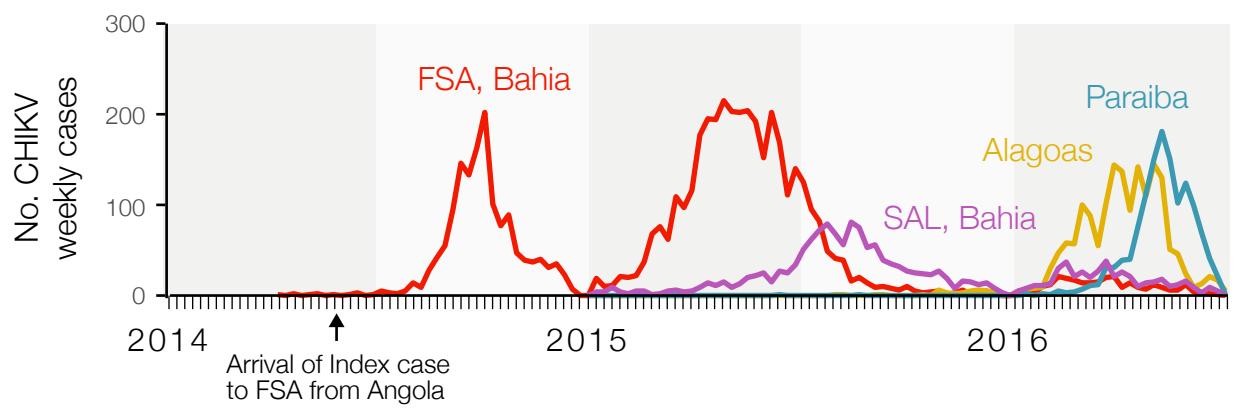
145 8. Nunes MR, Faria NR, de Vasconcelos JM, Golding N, Kraemer MU, de Oliveira LF, et
146 al. Emergence and potential for spread of Chikungunya virus in Brazil. BMC medicine.
147 2015;13:102.

148 9. Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S. A single mutation in
149 chikungunya virus affects vector specificity and epidemic potential. PLoS pathogens. 2007
150 Dec;3(12):e201.

151 10. Faria NR, Lourenco, J., Cerqueira, E. M., Lima, M. M., Pybus, O. G., Alcantara, L. C. J.
152 Epidemiology of Chikungunya Virus in Bahia, Brazil, 2014-2015. PLoS Currents Outbreaks.
153 2016;1.

154 11. Lourenco J dLM, Faria NR, Walker A, Kraemer MUG, Villabona-Arenas CJ, Lambert B,
155 de Cerqueira EM, Pybus OG, Alcantara LCJ, Recker M. Epidemiological and ecological
156 determinants of Zika virus transmission in an urban setting. bioRxiv.
157 2017; <https://doi.org/10.1101/101972>.

158 12. Faria NR, Azevedo Rdo S, Kraemer MU, Souza R, Cunha MS, Hill SC, et al. Zika virus in
159 the Americas: Early epidemiological and genetic findings. Science. 2016 Apr
160 15;352(6283):345-9.



161 13. Faria NR, Sabino EC, Nunes MR, Alcantara LC, Loman NJ, Pybus OG. Mobile real-time
162 surveillance of Zika virus in Brazil. Genome Med. 2016 Sep 29;8(1):97.

163 14. Lemey P, Rambaut A, Drummond AJ, Suchard MA. Bayesian phylogeography finds its
164 roots. PLoS computational biology. 2009 Sep;5(9):e1000520.

165

166

167 **Figure. Epidemiological and genetic surveillance of CHIKV in NE-Brazil.** The upper panel
168 shows CHIKV notified cases for Alagoas State (Maceió municipality), Paraíba State (João
169 Pessoa municipality), and for Feira de Santana (FSA) and Salvador (SAL) municipalities, both
170 located in Bahia State. The lower right panel shows the molecular clock phylogeny obtained
171 using the 33 novel partial and complete CHIKV sequences (with length > 1,500 nt) collected
172 in the NE Brazil (yellow branches, highlighted in white box). Colours in branches represent
173 most probable locations inferred using a discrete trait diffusion framework (14). At each
174 node, size of the grey circles is proportional to clade location posterior probability. On the
175 left, the inset shows a ML phylogeny with all publicly available CHIKV full-length genomes as
176 of 17 Feb 2017 ($n=659$). WAfr: West African genotype. The IOL genotype has been
177 collapsed. Coloured triangles represent clades circulating in the Americas; the American-
178 ECSA lineage reported in this study is shown in red and the American-Asian lineage is shown
179 in blue.

