
Predicting bioprocess targets of chemical compounds through integration of 1 

chemical-genetic and genetic interaction networks 2 

Scott W. Simpkins1, Justin Nelson1, Raamesh Deshpande2, Sheena C. Li3, Jeff S. Piotrowski3,6, 3 
Erin H. Wilson2, Abraham A. Gebre4, Reika Okamoto3, Mami Yoshimura3, Michael Costanzo5, 4 
Yoko Yashiroda3, Yoshikazu Ohya4, Hiroyuki Osada3, Minoru Yoshida3, Charles Boone3,5†, 5 
Chad L. Myers1,2† 6 
 7 

1. University of Minnesota-Twin Cities, Bioinformatics and Computational Biology 8 
Graduate Program, Minneapolis, Minnesota, USA 9 

2. University of Minnesota-Twin Cities, Department of Computer Science and Engineering, 10 
Minneapolis, Minnesota, USA 11 

3. RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan 12 
4. University of Tokyo, Department of Integrated Biosciences, Graduate School of Frontier 13 

Sciences, Kashiwa, Chiba, Japan 14 
5. University of Toronto, Donnelly Centre, Toronto, Ontario, Canada 15 
6. Present address: Yumanity Therapeutics, Cambridge, MA, USA 16 

 17 
†Correspondence to: chadm@umn.edu, charlie.boone@utoronto.ca 18 

 19 

Abstract 20 

Chemical-genetic interactions – observed when the treatment of mutant cells with chemical 21 

compounds reveals unexpected phenotypes – contain rich functional information linking 22 

compounds to their cellular modes of action. To systematically identify these interactions, an 23 

array of mutants is challenged with a compound and monitored for fitness defects, generating a 24 

chemical-genetic interaction profile that provides a quantitative, unbiased description of the 25 

cellular function(s) perturbed by the compound. Genetic interactions, obtained from genome-26 

wide double-mutant screens, provide a key for interpreting the functional information contained 27 

in chemical-genetic interaction profiles. Despite the utility of this approach, integrative analyses 28 

of genetic and chemical-genetic interaction networks have not been systematically evaluated. We 29 

developed a method, called CG-TARGET (Chemical Genetic Translation via A Reference 30 

Genetic nETwork), that integrates large-scale chemical-genetic interaction screening data with a 31 

genetic interaction network to predict the biological processes perturbed by compounds. CG-32 

TARGET compared favorably to a baseline enrichment approach across a variety of 33 

benchmarks, achieving similar accuracy while substantially improving the ability to control the 34 

false discovery rate of biological process predictions. We applied CG-TARGET to a recent 35 
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screen of nearly 14,000 chemical compounds in Saccharomyces cerevisiae, integrating this 36 

dataset with the global S. cerevisiae genetic interaction network to prioritize over 1500 37 

compounds with high-confidence biological process predictions for further study. Upon 38 

investigation of the compatibility of chemical-genetic and genetic interaction profiles, we 39 

observed that one-third of observed chemical-genetic interactions contributed to the highest-40 

confidence biological process predictions and that negative chemical-genetic interactions 41 

overwhelmingly formed the basis of these predictions. We present here a detailed 42 

characterization of the CG-TARGET method along with experimental validation of predicted 43 

biological process targets, focusing on inhibitors of tubulin polymerization and cell cycle 44 

progression. Our approach successfully demonstrates the use of genetic interaction networks in 45 

the functional annotation of compounds to biological processes. 46 

Author Summary 47 

Understanding how chemical compounds affect biological systems is of paramount 48 

importance as pharmaceutical companies strive to develop life-saving medicines, governments 49 

seek to regulate the safety of consumer products and agrichemicals, and basic scientists continue 50 

to study the fundamental inner workings of biological organisms. One powerful approach to 51 

characterize the effects of chemical compounds in living cells is chemical-genetic interaction 52 

screening. Using this approach, a collection of cells – each with a different defined genetic 53 

perturbation – is tested for sensitivity or resistance to the presence of a compound, resulting in a 54 

quantitative profile describing the functional effects of that compound on the cells. The work 55 

presented here describes our efforts to integrate compounds’ chemical-genetic interaction 56 

profiles with reference genetic interaction profiles containing information on gene function to 57 

predict the cellular processes perturbed by the compounds. We focused on specifically 58 

developing a method that could scale to perform these functional predictions for large collections 59 

of thousands of screened compounds and robustly control the false discovery rate. With 60 

chemical-genetic and genetic interaction screens now underway in multiple species including 61 

human cells, the method described here can be generally applied to enable the characterization of 62 

compounds’ effects across the tree of life. 63 
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Introduction 64 

The ability to discover chemical compounds with desirable and interesting biological activity 65 

is essential for understanding how compounds and biological systems interact. Chemical-genetic 66 

interaction screening provides a means to characterize the biological activity of compounds in an 67 

unbiased manner by measuring the response of defined gene mutants to these molecules [1–8]. A 68 

chemical-genetic interaction profile refers to the set of gene mutations that confer sensitivity (a 69 

negative chemical-genetic interaction) or resistance (a positive interaction) to a compound and 70 

provides functional insights into the compound’s mode(s) of action. 71 

Similar to chemical-genetic interactions, genetic interactions identify pairs of gene mutations 72 

whose combined effects are more or less severe than expected given the phenotypes of the 73 

individual mutants. In S. cerevisiae, the vast majority of all possible gene double-mutant pairs 74 

have been constructed and scored for fitness-based genetic interactions, yielding a global 75 

compendium of genome-wide genetic interaction profiles that quantitatively describe each gene’s 76 

function. Similarity between two genes’ genetic interaction profiles implies that these genes 77 

perform similar cellular functions, enabling the functional annotation of previously unannotated 78 

genes and the construction of a global hierarchy of cellular function [5,9].  79 

Chemical-genetic and genetic interaction profiles derived from fitness measurements contain 80 

analogous functional information on the cellular effects of chemicals and gene mutations, 81 

respectively. Similarity between these two types of profiles therefore implies that the respective 82 

chemical(s) and gene mutation(s) perturb similar functions in the cell, which means that a 83 

compound’s chemical-genetic interaction profile should resemble the genetic interaction 84 

profile(s) of its cellular target or target processes (Fig 1) [2,5]. The global genetic interaction 85 

network in S. cerevisiae therefore provides a resource for interpreting chemical-genetic 86 

interaction profiles across a broad range of cellular function. Importantly, this approach to 87 

interpretation does not depend on reference chemical-genetic interaction profiles and thus 88 

enables the discovery of compounds with novel modes of action. 89 

Recent advances in DNA sequencing technology have paved the way for high-throughput 90 

chemical-genetic interaction screening via multiplexed analysis of pooled, genetically-barcoded 91 

mutant libraries grown in the presence of compound [6,7,10]. This would enable, for example, 92 

functional profiling of compounds earlier in the drug discovery process, with insights from these 93 

screens providing a means to prioritize compounds before investing resources into their 94 
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development as drugs. Despite the recent generation of thousands of chemical-genetic interaction 95 

profiles across multiple studies [6,7] and the profound opportunities for genetic interaction-96 

powered functional characterization of thousands of novel compounds, the integration of 97 

chemical-genetic and genetic interaction profiles has only been performed in the context of 98 

relatively small studies [2,5]. A systematic investigation using a large-scale chemical-genetic 99 

interaction dataset is therefore necessary to assess the compatibility between chemical-genetic 100 

and genetic interaction profiles, with an emphasis on the ability of a genetic interaction-based 101 

method to control the false discovery rate (of critical importance in high-throughput chemical 102 

screening) and thereby prioritize compounds with the highest-confidence predictions. 103 

Here, we present the use of genetic interaction profiles to systematically interpret chemical-104 

genetic interaction profiles on a large scale. Specifically, we developed a computational method, 105 

called CG-TARGET (Chemical Genetic Translation via A Reference Genetic nETwork), that 106 

integrates chemical-genetic and genetic interaction profiles to predict the biological processes 107 

perturbed by compounds. We applied this method to a high-throughput chemical-genetic 108 

interaction screen of nearly 14,000 compounds in S. cerevisiae [11], using profiles from the 109 

global yeast genetic interaction network [5,9] to interpret the chemical-genetic interaction 110 

profiles. CG-TARGET recapitulated known information for well-characterized compounds and 111 

showed a marked improvement in the ability to control the false discovery rate for novel 112 

compound mode-of-action discovery compared to a baseline approach. Additionally, we 113 

experimentally validated two different mode-of-action predictions, one in an in vitro system 114 

using mammalian proteins, confirming both the accuracy of the predictions for novel compounds 115 

and the potential to translate these predictions across species. CG-TARGET is available, free for 116 

academic use, at https://github.com/csbio/CG-TARGET. 117 

Results 118 

Overview of datasets used in this study 119 

We obtained chemical-genetic interaction profiles from a recent large-scale chemical-genetic 120 

interaction screen in S. cerevisiae [11]. This screen consisted of two batches, the first of which 121 

containing 9850 compounds from the RIKEN Natural Product Depository [12] (the “RIKEN” 122 

screen) and the second containing 4116 compounds from the NCI Open Chemical Repository’s 123 

compound libraries, the NIH Clinical Collection, and GlaxoSmithKline’s Published Kinase 124 
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Inhibitor Set (the  “NCI/NIH/GSK” screen) [13]. The compounds in the RIKEN screen consisted 125 

primarily of natural products and natural product derivatives – most of which were previously 126 

uncharacterized – and ~200 approved drugs and chemical probes, a subset of which we used to 127 

assess the performance of CG-TARGET as their modes of action in yeast are well-characterized. 128 

The compounds in the NCI/NIH/GSK screen were more studied – having been tested against the 129 

NCI-60 cancer cell line panel (the NCI collections), tested in clinical trials (the NIH Clinical 130 

Collection) or designed and characterized as inhibitors against human kinases (GSK) – but many 131 

of these compounds’ specific modes of action remain uncharacterized. The final datasets 132 

consisted of 8418 chemical-genetic interaction profiles from the RIKEN screen and 3565 from 133 

the NCI/NIH/GSK screen, which were obtained using a diagnostic set of approximately 300 134 

haploid gene deletion mutants that were optimally selected to capture most of the information in 135 

the complete S. cerevisiae non-essential deletion collection [11,14]. Both datasets also contained 136 

a large set of experimental control profiles (5724 and 2128 for the RIKEN and NCI/NIH/GSK 137 

screens, respectively), in which the yeast were only treated with the solvent control (DMSO). 138 

Each profile contains z-scores that reflect the deviation of each strain’s observed fitness from 139 

expected fitness in the presence of a compound. 140 

Genetic interaction profiles were obtained from a recently assembled, genome-wide 141 

compendium of genetic interaction profiles in S. cerevisiae [5]. These profiles were generated by 142 

systematically constructing and analyzing the fitness of haploid double mutant strains and consist 143 

of epsilon scores that reflect the deviation of each double mutant’s observed fitness from that 144 

expected given the single mutant fitness values, assuming a multiplicative null model [15]. The 145 

construction of each profile involved crossing the mutant for the “query” gene into a genome-146 

wide array of mutants, and we mapped the query genes to Gene Ontology biological process 147 

terms [16,17] to define the bioprocess targets of compounds. Profiles were filtered to the ~35% 148 

with the highest signal (see Materials and Methods).  149 

Predicting perturbed bioprocesses from chemical-genetic interaction profiles 150 

We developed CG-TARGET (Chemical Genetic Translation via A Reference Genetic 151 

nETwork) to predict the biological processes perturbed by compounds in our recently-generated 152 

dataset of ~12,000 chemical-genetic interaction profiles (Fig 1). CG-TARGET requires three 153 

input datasets: 1) chemical-genetic interaction profiles; 2) genetic interaction profiles; and 3) a 154 

mapping from the query genes in the genetic interaction profiles to gene sets representing 155 
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coherent bioprocesses. Predicting the bioprocesses perturbed by a particular compound involves 156 

four distinct steps. First, a control set of resampled chemical-genetic interaction profiles is 157 

generated, each of which consists of one randomly-sampled interaction score per gene mutant 158 

across all compound treatment profiles in the chemical-genetic interaction dataset; these profiles 159 

thus provide a means to account for variance in each mutant strain observed upon treatment with 160 

bioactive compound but not upon treatment with experimental controls (DMSO with no active 161 

compound). Second, scores reflecting both the strength of each compound’s chemical-genetic 162 

interaction profile and its similarity to the profile of each gene mutant are obtained by computing 163 

an inner product between all chemical-genetic interaction profiles (comprising compound 164 

treatment, experimental control, and random profiles) and all L2-normalized query genetic 165 

interaction profiles. Third, these “gene-level” prediction scores are aggregated into bioprocess 166 

predictions; a z-score and empirical p-value for each compound-bioprocess prediction are 167 

obtained by mapping the gene-level prediction scores to the genes in the bioprocess of interest 168 

and comparing these scores to those from shuffled gene-level prediction scores and to 169 

distributions of the scores derived from experimental control and resampled profiles. Finally, the 170 

false discovery rates for these predictions are estimated by comparing, across a range of 171 

significance thresholds, the frequency at which experimental control and randomly resampled 172 

profiles predict bioprocesses versus that of compound treatment profiles (see Materials and 173 

Methods). 174 

Application to and evaluation on large-scale chemical-genetic interaction data 175 

To provide a baseline method for benchmarking the performance of CG-TARGET on these 176 

large screens, we implemented a simple, enrichment-based approach for predicting bioprocess-177 

level targets. The enrichment-based approach was designed to predict bioprocess-level targets by 178 

testing for the enrichment of GO biological processes among the top-n gene-level prediction 179 

scores for each compound. For the following comparisons, CG-TARGET was compared to top-180 

20 enrichment, which showed the best overall performance across a range of values of n (Fig 181 

S1). 182 

We applied CG-TARGET to the RIKEN and NCI/NIH/GSK chemical-genetic interaction 183 

screens, identifying 848 out of 8418 compounds (10%) from the RIKEN screen and 705 of 3565 184 

compounds (20%) from the NCI/NIH/GSK screen with at least one prediction that achieved false 185 

discovery rates of 25 and 27%, respectively (referred to as “high-confidence” compounds and 186 
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predictions) (Table 1, Fig 2). In all cases, the false discovery rates derived from resampled 187 

profiles were more conservative than those derived from experimental controls, suggesting that 188 

some sources of variance in each gene mutant’s interaction scores arose only upon treatment 189 

with compound and therefore could not be corrected using only solvent controls. Focusing on the 190 

results from the RIKEN screen, CG-TARGET substantially outperformed the baseline method 191 

with regard to the number of compounds that possessed at least one high-confidence bioprocess 192 

prediction (FDR ≤ 25%). Compared to the 848 high-confidence compounds identified by CG-193 

TARGET, top-20 enrichment only identified seven compounds that met this confidence 194 

threshold, and zero with a false discovery rate less than 21% (Fig 3A).  195 

CG-TARGET was also benchmarked against the baseline method using two different 196 

measures of prediction accuracy. The first accuracy-based evaluation was performed on genetic 197 

interaction profiles with added noise, which provided a means to both simulate chemical-genetic 198 

interaction profiles and annotate them with gold-standard GO biological process annotations for 199 

evaluation. For the second accuracy-based evaluation, we curated a set of gold-standard 200 

compound-bioprocess annotations from the literature for 35 compounds from the RIKEN screen 201 

and evaluated the ranks of the gold-standard bioprocesses within each compound’s list of 202 

bioprocess predictions. 203 

CG-TARGET performed comparably to the best-performing enrichment-based methods 204 

using our measures of accuracy. This is first shown in the evaluation of these methods’ 205 

respective abilities to predict a gold-standard annotated bioprocess as the top prediction for each 206 

simulated chemical-genetic interaction profile. Specifically, CG-TARGET performed nearly as 207 

well as the top-20 enrichment-based method across both low and high recall values (Fig 3B). 208 

Both methods captured a gold-standard annotation as the top predicted bioprocess for 209 

approximately 34% of the simulated compounds (33.4% and 35.6% for CG-TARGET and top-20 210 

enrichment, respectively), which represented more than a 22-fold enrichment over the 211 

background expectation of 1.5% (the average number of gold-standard bioprocess annotations 212 

per simulated compound divided by the number of bioprocesses). 213 

Secondly, for the 35 gold-standard compounds with known target bioprocesses, we observed 214 

that both methods captured the gold-standard bioprocess for 6 and 21 (out of 35) compounds 215 

above ranks of 2 and 40 (out of 1329), respectively, with slightly decreased performance for CG-216 

TARGET between these rank thresholds (Fig 3C, Table 2). The significance of these rank values 217 
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was evaluated by randomizing the order of each compound’s bioprocess predictions 10,000 218 

times and recalculating the ranks. Both methods achieved similar results in this respect, with CG-219 

TARGET and the top-20 enrichment method respectively identifying 22 and 21 gold-standard 220 

compounds with significantly better ranks than the random expectation. CG-TARGET and top-221 

20 enrichment also performed similarly when comparing the “effective rank” of each 222 

compound’s gold-standard bioprocess, with CG-TARGET and top-20 enrichment respectively 223 

identifying 20 and 22 compounds for which the gold-standard or a closely-related bioprocess 224 

achieved a rank of 5 or better. 225 

Given that the main performance advantage of CG-TARGET occurred in the context of 226 

controlling the false discovery rate, we conclude that the issues with simple enrichment-based 227 

approaches primarily emerge not when predicting the most likely perturbed bioprocess for any 228 

single compound but when comparing the strength and significance of bioprocess predictions 229 

across compounds to prioritize compounds from a large-scale chemical-genetic interaction 230 

screen. The aforementioned rank-based analysis of 35 gold-standard compound-bioprocess 231 

annotations supports this assertion, as none of the 21 significantly-ranked annotations predicted 232 

by top-20 enrichment passed the high-confidence threshold (FDR ≤ 25%), while 16 of the 22 233 

significantly-ranked annotations predicted by CG-TARGET did so (Table 2). This difference 234 

between CG-TARGET and enrichment-based methods likely emerges from the ability of weak 235 

chemical-genetic interaction profiles to generate strong, statistically significant predictions in the 236 

absence of methods (such as CG-TARGET) that account for general signals that arise upon 237 

treatment with bioactive compound – especially if these signals are amplified through their 238 

similarity to a large cluster of profiles in the genetic interaction network. Thus, the substantially 239 

superior ability of CG-TARGET to control the false discovery rate relative to the enrichment-240 

based approach is a critical quality in the context of large-scale, systematic compound screens. 241 

Characterizing performance with respect to individual bioprocess terms 242 

In addition to benchmarking CG-TARGET’s ability to prioritize gold-standard annotated 243 

bioprocesses for specific compounds, we also benchmarked its ability to prioritize compounds 244 

that perturb specific bioprocesses. Specifically, each GO term was evaluated based on the ranks 245 

of the predictions for the simulated chemical-genetic interaction profiles derived from genes 246 

annotated to that GO term. The 100 best-performing terms represented a diversity of 247 

bioprocesses related to the proteasome, glycolipid metabolism, DNA replication and repair, 248 
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replication and division checkpoints, RNA splicing, microtubules, Golgi and vesicle transport, 249 

and chromatin state (Fig S2). In contrast, the 100 worst-performing terms were bioprocesses 250 

primarily related to carbohydrate, nucleotide, and coenzyme/cofactor metabolism, as well as the 251 

mitochondria, transmembrane transport, and protein synthesis and localization (Fig S3). The 252 

best-performing terms were also significantly smaller than the worst-performing ones (8 and 35 253 

genes on average, respectively; rank-sum p-value < 2.2 ´ 10-16), which, given the fact that we 254 

would expect the power to increase with gene set size assuming the corresponding set was still 255 

functionally coherent, suggests that our method identifies functionally specific signal. 256 

Interestingly, the relatively poor performance of many metabolism-related bioprocess terms may 257 

result from the fact that the chemical-genetic and genetic interaction screens were both 258 

performed in relatively rich medium, precluding analysis of condition-specific phenotypes for 259 

genes only required for growth in minimal medium. While the set of best-performing terms did 260 

include a diverse range of bioprocesses, the possibility of “blind spots” should always be 261 

considered when interpreting the predictions made by CG-TARGET, as they may lead to false 262 

negative results that either exclude interesting compounds (e.g. those whose primary modes of 263 

action affect carbohydrate metabolism) or mask potential side effects of compounds whose 264 

primary modes of action are more easily observed by this method. 265 

Application of CG-TARGET to protein complexes refines functional specificity of 266 

mode-of-action predictions 267 

The prediction of perturbed protein complexes offers the opportunity to enhance the 268 

specificity of GO biological process predictions (especially for overly-general bioprocess terms) 269 

and investigate functional space not accessible by bioprocess annotations. As such, we 270 

investigated the potential to expand the use of CG-TARGET to the prediction of perturbed 271 

protein complexes. When CG-TARGET was applied to predict protein complex targets for the 272 

RIKEN screen data, 714 compounds were identified with at least one high-confidence (FDR ≤ 273 

25%) complex prediction, 604 of which also occurred in our original set of RIKEN compounds 274 

with high-confidence bioprocess predictions. Similar, but not completely overlapping, sets of 275 

genes (Jaccard index > 0.2) contributed to the top 5 of both bioprocess and protein complex 276 

predictions for more than one third of these compounds (219; 36%); this suggested that the two 277 

standards possessed both shared and complementary functional information that could be used to 278 

improve predictions. 279 
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We observed that protein complex predictions narrowed down less-specific bioprocess terms 280 

and enabled predictions in places where bioprocess annotations were sparser. To assess the 281 

ability to refine bioprocess prediction specificity, we mapped each protein complex to the 282 

childless bioprocess terms that completely encompassed them and looked for substantial 283 

improvements in prediction strength from the bioprocess to its protein complex “child.” We 284 

observed several instances in which bioprocess predictions with FDR > 25% (not high 285 

confidence) could be converted to high-confidence predictions by refining the bioprocess term to 286 

a constituent protein complex. For example, we saw substantial gains for the following 287 

bioprocess-to-complex combinations (sizes in parentheses): “mRNA polyadenylation” 288 

(bioprocess, not high confidence; size 8) to “mRNA cleavage factor matrix” (complex, high 289 

confidence; size 4); “cytoplasmic translation” (51) to “cytoplasmic ribosomal large subunit” 290 

(24); “vacuolar acidification” (14) to “H+-transporting ATPase, Golgi/vacuolar” (5); and 291 

“regulation of fungal-type cell wall organization” (8) to PKC pathway” (4) (Table S1). 292 

Importantly, 27 of the 110 compounds with high-confidence protein complex but not bioprocess 293 

predictions achieved their high-confidence status purely based on protein complex predictions 294 

that enhanced the specificity of a non-high-confidence, overlapping bioprocess prediction. 295 

Additionally, a separate set of 22 out of 110 compounds achieved high-confidence status based 296 

solely on predictions to protein complexes that did not strongly overlap with any bioprocesses 297 

(Jaccard < 0.2), demonstrating that the current set of protein complex annotations enabled 298 

predictions in functional space that was not well captured by a GO biological process term. 299 

Assessing the compatibility of chemical-genetic and genetic interaction profiles 300 

Our evaluations of CG-TARGET support the premise of the method that genetic interaction 301 

profiles can be used as a tool to interpret chemical-genetic interaction profiles. However, we 302 

sought to better understand the extent to which these two types of profiles actually agree with 303 

one another, and if their systematic differences could shed light on the limits of the core 304 

assumption behind our method (i.e. that chemicals mimic the interaction profiles of their genetic 305 

targets). To investigate the compatibility of chemical-genetic and genetic interaction profiles, we 306 

quantified the contribution of individual gene mutants in the chemical-genetic interaction 307 

profiles to the prediction of individual bioprocesses. For a single compound and predicted 308 

bioprocess, these “importance scores” were obtained by 1) computing a mean genetic interaction 309 

profile across all L2-normalized query genetic interaction profiles that possessed an inner product 310 
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of 2 or higher with the chemical-genetic interaction profile and mapped to the predicted 311 

bioprocess, and 2) computing the Hadamard product (elementwise multiplication) between this 312 

mean genetic interaction profile and the compound’s chemical-genetic interaction profile. Each 313 

score could have been positive, indicating agreement in the sign of chemical-genetic and genetic 314 

interactions for a gene mutant, or negative, indicating that the interactions did not agree for that 315 

gene mutant. As such, the importance scores summarized the concordance between chemical-316 

genetic and genetic interaction profiles, conditioned on an individual compound and a perturbed 317 

bioprocess of interest. 318 

We use the prediction of NPD4142, a compound from the RIKEN Natural Product 319 

Depository, to the “mRNA transport” bioprocess to illustrate how the overlap between chemical-320 

genetic and genetic interactions led to bioprocess predictions (Fig 4A). A qualitative examination 321 

revealed that, indeed, NPD4142 possessed a pattern of chemical-genetic interactions similar to 322 

the genetic interactions for the query genes annotated to mRNA transport. More quantitatively 323 

and as expected, we observed that the contribution of each gene mutant to a bioprocess 324 

prediction depended on the strength of its chemical-genetic interaction with NPD4142 and the 325 

number and intensity of its genetic interactions with the mRNA transport query genes. Chemical-326 

genetic interactions with mutants of POM152, NUP133, and NUP188, which encode 327 

components of the nuclear pore that facilitate import and export of molecules such as mRNA, 328 

were the most important, followed by interactions with mutants in the Lsm1-7-Pat1 complex, 329 

which is involved in the degradation of cytoplasmic mRNA. 330 

Using this approach to assess the importance of individual mutants in the chemical-genetic 331 

profile, we globally analyzed the contribution of chemical-genetic interactions to each 332 

compound’s top bioprocess prediction (Fig 5). We performed this analysis twice: first, on all 333 

HCS compounds, and second, on a diverse subset of 130 compounds to correct for potential 334 

functional biases in the full set [11]. We present here the results from the 130-compound subset, 335 

although the results for the full set were qualitatively similar. For each compound, an average of 336 

42% of its chemical-genetic interactions contributed to its top bioprocess prediction (chemical-337 

genetic interaction cutoff ± 2.5, importance score cutoff +0.1) – a fraction that increased 338 

substantially (to 78%) when limiting the analysis to each compound’s strong interactions that 339 

contributed strongly (chemical-genetic interaction cutoff ± 5, importance score cutoff +0.5). 340 
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Overall, we observed that more than one-third of chemical-genetic interactions (1112 / 3129) 341 

contributed to a top bioprocess prediction (chemical-genetic interaction cutoff ±2.5; importance 342 

score cutoff +0.1). Strikingly, negative chemical-genetic interactions much more frequently 343 

contributed to a bioprocess prediction: approximately one-half (1071 / 2112) of negative 344 

chemical-genetic interactions contributed as compared to only ~4% (41 / 1017) of positive 345 

chemical-genetic interactions at the same cutoff. Furthermore, we observed differences in how 346 

the signs within chemical-genetic and mean genetic interaction profiles could disagree with each 347 

other despite the global profile similarity that led to bioprocess prediction, with positive 348 

chemical-genetic interactions contributing negatively to bioprocess predictions (importance score 349 

cutoff < –0.1) over 10 times more frequently than negative interactions (1.9% vs. 0.14%). This 350 

trend of negative chemical-genetic interactions supporting strong bioprocess predictions was 351 

even more pronounced when restricting this analysis to strong interactions (chemical-genetic 352 

interaction cutoff ±5; importance score cutoff +0.5), where negative interactions comprised 353 

essentially the entire set of contributing chemical-genetic interactions (219 / 220, 99.5%). These 354 

observations were also supported by analyses in which we predicted perturbed bioprocesses 355 

using only negative or positive chemical-genetic interactions, finding that negative chemical-356 

genetic interactions were the primary drivers of bioprocess predictions and overwhelmingly 357 

responsible for their accuracy [11]. We conclude that negative interactions in chemical-genetic 358 

interaction profiles contain the large majority of the functional information necessary to predict 359 

modes of action. 360 

Negative chemical-genetic interactions also contained information specific to chemical 361 

perturbations. Specifically, we identified nine mutant strains that exhibited strong negative 362 

chemical genetic interactions (z-score < –5) yet were enriched for a lack of contribution 363 

(importance score < 0.1) to bioprocess predictions (hypergeometric test, Benjamini-Hochberg 364 

FDR ≤ 0.05; shaded region of Fig 5). Manual inspection of these mutants revealed connections 365 

to the high osmolarity glycol (HOG) pathway, cell polarity (cytoskeletal actin polarization, 366 

kinetochore and chromosome segregation), and other stress response mechanisms (Table S2). As 367 

the HOG pathway is important for the cellular response to high osmolarity and other stresses 368 

[18–20], and repolarization of the cytoskeleton is required for cells to adapt and continue 369 

dividing after stress [21,22], we hypothesize that many of these overrepresented mutants interact 370 

negatively with compounds due to an impaired ability to respond to external stress. This 371 
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chemical perturbation-specific information may complement or even completely obscure the 372 

chemical-genetic signature of a compound’s primary mode of action, potentially complicating 373 

the interpretation of chemical-genetic interaction profiles using a genetic interaction network. 374 

We compared the concordance of chemical-genetic and genetic interaction profiles across 375 

multiple compounds predicted to the same bioprocess, revealing that some bioprocesses were 376 

predicted by homogenous sets of chemical-genetic interaction profiles while others were much 377 

more heterogeneous despite their predicted targeting of the same bioprocess. For example, 378 

predictions made to the “CVT pathway” (FDR < 1%) depended almost entirely on a suite of 379 

strong negative chemical-genetic interactions with ARL1, ARL3, and ERV13, with contributions 380 

from IRS4 and COG8 (Fig 4B). This uniformity in the prediction of a bioprocess is contrasted by 381 

the diversity of profiles captured within “tubulin complex assembly” predictions (Fig 4C). 382 

Compounds with top predictions to this term could potentially be partitioned into three classes, 383 

divided according to strong contributions from: 1) CIN1/TUB3, PAN3/CIN4, and the SWR1 384 

complex (known tubulin polymerization inhibitors Benomyl and Nocodazole); 2) CIN1/TUB3 385 

and DSE2 (NPD4098 and NPD2784); or 3) only CIN1/TUB3 (all remaining compounds except 386 

NPD4619). Interestingly, the structures of the compounds in each of the former two groups are 387 

distinct from those in the other groups, suggesting that the observed diversity in these 388 

compounds’ functional profiles is mechanistically derived from their structures. 389 

Experimental validation of compound-bioprocess predictions 390 

Phenotypic analysis of cell cycle progression. The genes and pathways that govern the cell 391 

cycle are highly conserved throughout eukaryotes, enabling researchers to infer from yeast how 392 

cells in higher organisms integrate internal and external signals to decide when to divide [23]. As 393 

such, compounds that inhibit the progression of the cell cycle in yeast may enable a better 394 

understanding of the eukaryotic cell cycle or even form the basis for new therapeutic approaches 395 

for cancer, in which the cell division cycle is dysregulated [24,25]. We observed that compounds 396 

from the RIKEN Natural Product Depository were enriched for predictions to cell cycle-related 397 

bioprocesses [11], especially to the “mitotic spindle assembly checkpoint” that occurs at the 398 

beginning of M phase. After manual inspection of these compounds’ chemical-genetic 399 

interaction profiles, we selected 17 to test if our predictions validated experimentally. 400 

Specifically, we looked for increases in the percentage of cells in the G2 phase of the cell cycle 401 
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(via fluorescence-activated cell sorting) and two budding phenotypes (bud size and % cells with 402 

large buds) for yeast treated with compound, together indicative of arrest at the G2/M checkpoint 403 

of the cell cycle (Fig 6A-C). Indeed, 6 of the 17 selected compounds induced increases in all 404 

phenotypes, while zero out of 10 bioactive control compounds (with high-confidence predictions 405 

to bioprocesses not related to cell cycle signaling and progression) induced increases in any of 406 

these phenotypes (p < 0.05, one-sided Fisher exact test). As compounds can activate the G2/M 407 

checkpoint in multiple ways (e.g. induction of DNA damage, inhibition of chromosome 408 

segregation), the set of compounds with spindle assembly checkpoint predictions can serve as a 409 

resource for studying the diversity of mechanisms by which cell cycle progression is arrested at 410 

this checkpoint and which of these may have therapeutic potential. In addition to our study of 411 

G2/M checkpoint-activating compounds, we also selected two compounds with high-confidence 412 

predictions to the term “cell-cycle phase” (mutually exclusive with mitotic spindle assembly 413 

checkpoint), one of which (NPD7834) was observed to arrest cells in G1 phase (Fig 6A-C). 414 

Inhibition of tubulin polymerization. Compounds that disrupt microtubules are useful for 415 

studying cell organization and division and remain promising candidates as antitumor agents 416 

[26–28]. As such, we focused on all compounds with the strongest predictions to “tubulin 417 

complex assembly” (FDR < 1%) and tested them for activity in an in vitro, mammalian (porcine) 418 

tubulin polymerization assay (Fig 6D). Like the previous validation experiment, a negative 419 

control set of compounds was selected at random to contain high-confidence compounds 420 

(bioprocess predictions with FDR ≤ 25%) whose predictions were not related to microtubule 421 

assembly or related bioprocesses. We observed that the novel compound NPD2784 strongly 422 

inhibited tubulin polymerization, nearly as well as the drug nocodazole and more strongly than 423 

the microtubule probe benomyl. In addition, the entire set of compounds predicted to perturb 424 

tubulin complex assembly showed significantly increased inhibition of tubulin polymerization 425 

when compared to the negative control compounds (p < 0.006, Wilcoxon rank-sum test). 426 

Strikingly, all previously-uncharacterized members of this set would not have been discovered 427 

using a structure similarity-based approach, as the highest structural similarity between any NPD 428 

compound and six compounds representative of major classes of microtubule-perturbing agents 429 

did not exceed 0.25 (Fig 6E) [29]. However, we did observe that structural similarity was 430 

predictive of the top 20% of chemical-genetic profile similarities among the compounds selected 431 

for validation (AUPR = 0.43 vs. 0.2 for a random classifier), suggesting that their slight 432 
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differences in function inside the cell are influenced by their structures and that further 433 

exploration of compounds with similar structures may yield even more tubulin polymerization 434 

inhibitors. With this experimental validation, we have demonstrated the ability of CG-TARGET, 435 

and a genetic interaction network in general, to capture a shared mode of action across diverse 436 

compounds that can be biochemically-validated. Furthermore, we note that this validation was 437 

achieved with a mammalian tubulin assay, demonstrating the power of yeast chemical genomics 438 

coupled with CG-TARGET to predict modes of action that translate broadly to other species, 439 

including mammalian systems. 440 

Discussion 441 

The scaling of chemical-genetic interaction screens from tens or hundreds of compounds to 442 

tens of thousands of compounds has provided the opportunity, and the necessity, to develop 443 

better methods for interpreting the interaction profiles and prioritizing high-confidence 444 

compounds. We developed a method, CG-TARGET, to address this need and used it to predict 445 

perturbed biological processes for the nearly 14,000 compounds interrogated in our recent high-446 

throughput chemical-genetic interaction screen [11]. CG-TARGET demonstrated the ability to 447 

recapitulate known compound function while controlling the false discovery rate, enabling high-448 

confidence mode-of-action prediction for 1522 largely uncharacterized compounds [11], which 449 

we prioritized for further study. Further investigation of the profiles from these high-confidence 450 

compounds revealed broad compatibility between chemical-genetic and genetic interaction 451 

profiles, the overwhelming basis of which was contributed by negative chemical-genetic 452 

interactions. Some interesting exceptions to this compatibility were observed for genes that may 453 

reduce the ability of compounds to deal with external stress. We experimentally confirmed the 454 

accuracy of our predictions for two different classes of previously uncharacterized compounds – 455 

tubulin polymerization inhibitors and mitotic checkpoint inhibitors – and demonstrated the 456 

ability of CG-TARGET to predict activity against a conserved mammalian target. In addition to 457 

these findings, the predictions made using CG-TARGET were experimentally validated on a 458 

large scale for 67 compounds in an orthogonal cell cycle assay and revealed insights into the 459 

distribution of functions perturbed by compounds in large compound libraries, which is 460 

described in the companion paper [11]. 461 
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In high-throughput chemical screens, it is important to prioritize the compounds most likely 462 

to demonstrate desired biological activity in further studies. While CG-TARGET and a baseline, 463 

enrichment-based approach achieved similar performance in ranking gold-standard bioprocess 464 

annotations for simulated chemical-genetic interaction profiles and compounds with known 465 

modes of action, CG-TARGET outperformed the baseline approach with regard to controlling 466 

the false discovery rate, discovering two orders of magnitude more compounds at a false 467 

discovery rate of 25%. As a result, CG-TARGET was substantially better than the baseline 468 

approach at accurately annotating, with high confidence, compounds with known modes of 469 

action. The fact that our genetic interaction-based predictions were both accurate and achieved 470 

appropriate control of the false discovery rate is important, as the global genetic interaction 471 

network provides a much more comprehensive and unbiased resource than the limited set of gold 472 

standard compounds for predicting bioprocesses perturbed by compounds. In addition, predicting 473 

compound function at the bioprocess level allowed functional characterization of compounds 474 

whose effects in cells did not occur via direct action on protein targets (e.g. damaging DNA or 475 

disrupting cell membranes,), which would have been impossible with a method based purely on 476 

comparing chemical-genetic and genetic interaction profiles. 477 

While we demonstrated the ability to predict perturbed bioprocesses for compounds and 478 

prioritize the highest-confidence predictions, many further steps are required to identify lead 479 

compounds and ultimately develop molecular probes or pharmaceutical agents. Perturbing a 480 

biological process does not necessarily require perturbing a specific protein target, and as such, 481 

further refinements to our methods are needed to identify specific molecular targets (i.e. 482 

proteins) and prioritize the compounds most likely to perturb a small number of defined targets 483 

in the cell. We envision the use of multiple functional standards with CG-TARGET, such as 484 

biological processes and protein complexes as demonstrated here, to improve our ability to 485 

predict compound mode of action at different levels of resolution and predict the compounds that 486 

exert specific versus general effects in the cell. Different modes of chemical-genetic interaction 487 

screening can provide support in this endeavor, as heterozygous diploid mutant strains,  gene 488 

overexpression strains, and/or spontaneous compound-resistant mutants can provide evidence for 489 

the direct, essential cellular target(s) of a compound [1,7]. Regardless of the limitations in 490 

predicting precise molecular targets, information about the bioprocesses perturbed by an entire 491 
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library would be useful in selecting the compounds most amenable to activity optimization and 492 

off-target effect minimization in the development of a pharmaceutical agent or molecular probe. 493 

The approach described here can be translated to work in other species for which obtaining 494 

functional information on compounds would be useful. For example, genome-wide deletion 495 

collections have been developed for Escherichia coli [30] and Schizosaccharomyces pombe [31] 496 

and used to perform chemical-genetic interaction screens [32,33] as well as genetic interaction 497 

mapping [34–37]. Such efforts are even underway in human cell lines, enabled by genome-wide 498 

CRISPR screens [38–41]. Furthermore, future efforts to interpret chemical-genetic interaction 499 

profiles in a new species need not wait for the completion of a comprehensive, all-by-all genetic 500 

interaction network as exists in S. cerevisiae, as our work highlights the ability of a diagnostic set 501 

of gene mutants to capture functional information and predict perturbed biological processes. 502 

From the discovery of urgently-needed antibacterial or antifungal agents, to the treatment of 503 

orphan diseases or a better understanding of drug and chemical toxicity, the combination of 504 

chemical-genetic and genetic interactions in a high-throughput format, with appropriate analysis 505 

tools, offers a means to achieve these goals via the discovery of new compounds with previously 506 

uncharacterized modes of action. 507 

Materials and Methods 508 

Datasets 509 

Chemical-genetic interaction data. Chemical-genetic interaction profiles were obtained from a 510 

recent study [11], in which nearly 14,000 compounds were screened for chemical-genetic 511 

interactions across ~300 haploid yeast gene deletion strains. The chemical-genetic interaction 512 

profiles consisted of two sub-datasets: 1) the “RIKEN” dataset, containing chemical-genetic 513 

interaction profiles spanning 289 deletion strains for 8418 compounds from the RIKEN Natural 514 

Product Depository [12] and 5724 negative experimental controls (solvent control, DMSO); and 515 

2) the “NCI/NIH/GSK” dataset, containing chemical-genetic interactions spanning 282 deletion 516 

strains for 3565 compounds from the NCI Open Chemical Repository, the NIH Clinical 517 

Collection, and the GSK kinase inhibitor collection [13], as well as 2128 negative experimental 518 

control profiles. The solvent control profiles consisted of biological and technical replicate 519 

profiles. 520 
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Genetic interaction data. The genetic interaction dataset was obtained from a recently 521 

assembled S. cerevisiae genetic interaction map [5,9]; it was filtered to contain quantitative 522 

fitness observations for double mutants obtained upon crossing 1505 high-signal query gene 523 

mutants into an array of 3827 array gene mutants. The procedure for selecting the 1505 high-524 

signal query genes out of the larger pool of 4382 is described in [11]. Briefly, each query profile 525 

was required to possess at least 40 significant genetic interactions, a sum of cosine similarity 526 

scores with all other query profiles greater than 2, and a sum of inner products with all other 527 

query profiles greater than 2. The final genetic interaction dataset used in this study was filtered 528 

to contain only array strains present in the chemical-genetic interaction datasets. 529 

GO Biological Processes and protein complexes. A subset of terms from the “biological 530 

process” ontology within the Gene Ontology annotations [17] were used as the bioprocesses. 531 

Query genes from the S. cerevisiae genetic interaction dataset were mapped to biological process 532 

terms using annotations from the Saccharomyces cerevisiae Genome Database [16]. Both gene 533 

ontology and S. cerevisiae annotations were downloaded on September 12, 2013 from their 534 

respective databases via Bioconductor in R [42]. Terms were propagated using “is_a” 535 

relationships, such that each gene was also annotated to all parents of its direct biological process 536 

annotations. The final set of bioprocesses consisted of the terms with 4 – 200 gene annotations 537 

from the set of 1505 high-signal query genes in the genetic interaction dataset. 538 

Protein complex annotations were obtained from [9]. Complexes with 3 or more genes 539 

annotated to them were used as the input biological processes for CG-TARGET-based protein 540 

complex predictions. 541 

Gold-standard compound-process annotations. Biological processes were assigned to 35 542 

primarily antifungal compounds with chemical-genetic interaction profiles in the RIKEN dataset, 543 

based on known information about their modes of action. Bioprocess terms were selected to be 544 

specific to the compounds’ modes of action where applicable. 545 

Predicting perturbed bioprocesses from chemical-genetic interaction profiles 546 

Our method to predict biological processes perturbed by compounds is briefly summarized in 547 

the recent study from which the chemical-genetic interaction profiles were obtained [11], and is 548 

more formally described here. Fig S4 provides a schematic representation of the method. 549 

Notation. We first clarify here a few uses of mathematical notation that simplify the explanation 550 
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of the methods. First, the ith row and column vectors of a matrix A are denoted as Ai,* and A*,i, 551 

respectively. Second, the Iverson bracket is used to convert logical propositions into values of 1 552 

or 0, depending on if the logical proposition is true or false, respectively. This is used to simplify 553 

expressions for counting the number of elements in a vector that meet given criteria. Specifically, 554 

for a logical proposition L, the definition of the Iverson bracket is: 555 

["] = %1
0
			if	"	is	true
if	"	is	false

 556 

 (Eqn. 1). 557 

Data representation and overview of procedure. CG-TARGET requires chemical-genetic 558 

interaction profiles, genetic interaction profiles, and a mapping from genes to biological 559 

processes, all of which will be represented as matrices here (illustrated in Fig S4, along with 560 

example matrix dimensions and a graphical description of the bioprocess prediction procedure). 561 

For chemical-genetic interaction matrices, let us consider an nm x nα matrix of compound 562 

treatment profiles Cα, an nm x nβ matrix of negative experimental control profiles Cβ, and an nm x 563 

nγ matrix of resampled profiles Cγ, where nm is the number of mutant strains in each chemical-564 

genetic interaction profile, nα is the number of profiles derived from treatment with compound, 565 

nβ is the number of profiles derived from negative experimental controls, and nγ is the number of 566 

chemical-genetic interaction profiles resampled from Cα. The matrix G of genetic interaction 567 

profiles is nm x nq and the binary matrix B of gene to bioprocess mappings is nq x np, where nm is 568 

the number of mutant strains in the chemical-genetic interaction and genetic interaction profiles, 569 

nq is the number of genetic interaction profiles, and np is the number of bioprocesses in B 570 

annotated from the nq genetic interaction profiles in G. 571 

To predict perturbed biological processes, chemical-genetic interaction matrices for each 572 

profile type a � {α, β, γ} are first converted to matrices of compound-gene similarity scores and 573 

then to matrices containing the sums of these compound-gene similarity scores for each 574 

compound-process pair. Three different z-score/p-value matrix pairs are then computed for each 575 

profile type a, two of which are derived from the control chemical-genetic interaction profile 576 

types b � {β, γ} (“control-derived” z-scores/p-values) and one of which is derived by 577 

randomizing the scores within each compound’s vector of compound-gene similarity scores 578 

(“within-compound” z-scores/p-values, denoted as δ). The z-score and p-value matrices across 579 

all scoring approaches c � {β, γ, δ} are then combined into a final z-score/p-value matrix pair 580 
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for each profile type a. The false discovery rate is estimated by comparing the rate of prediction 581 

for the treatment profiles α against that of the control profiles b � {β, γ} across a range of p-582 

value thresholds. For the comparison of CG-TARGET to an enrichment-based approach, one 583 

enrichment factor/p-value matrix pair replaces the final z-score/p-value matrix pair for each 584 

profile type a, with the same false discovery rate calculations occurring afterward. 585 

Resampled chemical-genetic interaction profiles. An nm x nγ matrix of resampled chemical-586 

genetic interaction profiles Cγ is constructed such that interaction scores for each gene are 587 

sampled randomly with replacement across the chemical-genetic interaction profiles. Assuming 588 

that rand(x) is a function to randomly sample one value from the set of integers x in a uniformly 589 

random fashion, and {1..nα} is the set of integers between and including 1 and nα, the interaction 590 

score for the ith mutant in the jth resampled profile is denoted by: 591 

  592 

23456,8 =
(3:)6,	rand({?..AB}) 594 

  (Eqn. 2). 593 

Mapping the similarity between chemical-genetic and genetic interaction profiles onto 595 

biological processes. Scores reflecting the concordance between chemical-genetic and genetic 596 

interaction profiles were derived by taking the inner product between each chemical-genetic 597 

interaction profile and each L2-normalized genetic interaction profile. As such, a column-598 

normalized genetic interaction matrix G′ is constructed from the genetic interaction matrix G by: 599 

  600 

D′6,8 =
D6,8

FD∗,8FH
 602 

  (Eqn. 3). 601 

Matrices Sα (nα x nq), Sβ (nβ x nq), and SR (nγ x nq), containing the similarity scores between the 603 

genetic interaction profiles and the profiles from each compound-treated, negative experimental 604 

control, and resampled condition, respectively, are then generated as denoted by (where the 605 

superscript T indicates the matrix transpose): 606 

  607 

I: = (3:)
JD′; 	IL = 23L5

J
D′; 	I4 = 2345

J
D′ 609 

  (Eqn. 4). 608 
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To map these similarity scores onto biological processes, the inner product is taken between 610 

each row vector of compound-gene similarity scores (from Sα, Sβ, and Sγ) and the column vector 611 

of binary gene annotations from each bioprocess in matrix B. This generates matrices Xα (nα x 612 

np), Xβ (nβ x np), and Xγ (nγ x np) that contain the sum of gene similarity scores within each 613 

biological process for each compound treatment, negative experimental control, and resampled 614 

condition, respectively. These matrices are denoted by: 615 

  616 

M: = I:N;	ML = ILN; M4 = I4N 618 

  (Eqn. 5). 617 

Computing biological process predictions with CG-TARGET. Once the compound-gene 619 

similarity scores are mapped onto biological processes and summed into compound-process 620 

scores, we compute z-score matrices Z*(a,b) and empirical p-value matrices PZ*(a, b), where a 621 

denotes the type of profile we are predicting bioprocesses for and b denotes the type of control 622 

distribution used to compute the z-scores and p-values. For two of the values of b (α and β), 623 

these scores are “control-derived,” as we compare each compound-process score (Xa)i,j to the 624 

distribution of control profile compound-process scores (Xb)*,j within the respective jth 625 

bioprocess. For the remaining value of b (δ), we refer to these scores as “within-compound,” as 626 

we compare the ith compound’s average compound-gene similarity score within genes annotated 627 

to the jth bioprocess (Xa)i,j/dj (where dj is the size of the jth bioprocess) to the distribution of 628 

compound-gene similarity scores (Sa)i,* for the ith compound. 629 

The computation of each control-derived z-score requires an estimate of the mean and 630 

standard deviation of the compound-process scores within each bioprocess for both the negative 631 

experimental control and resampled profiles. The length np mean vector ub and standard 632 

deviation vector vb for each control profile type b � {β, γ} are thus defined as: 633 

  634 

(OP)8 =
1

QP
R(MP)6,8

AS

6T?

 635 

(UP)8 = V
1

QP − 1
R2(MP)6,8 − (OP)85

H
AS

6T?

 636 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 18, 2018. ; https://doi.org/10.1101/111252doi: bioRxiv preprint 

https://doi.org/10.1101/111252
http://creativecommons.org/licenses/by-nc-nd/4.0/


  (Eqn. 6). 637 

Z-score matrices derived using both types of control profile are computed for all compound 638 

treatment, negative experimental control, and resampled profile conditions, yielding six z-score 639 

matrices. These matrices, one for each combination of profile type a � {α, β, γ} and control 640 

profile type b � {β, γ}, are defined as: 641 

2X(Y,P)
∗ 5

6,8
=
(MY)6,8 − (OP)8

(UP)8
 642 

  (Eqn. 7). 643 

The control-derived p-values are computed by counting the number of times that a 644 

compound-process score (Xa)i,j for the ith compound and jth bioprocess is less than the 645 

corresponding control-derived compound-process scores (Xb)*,j. Again, this yields six p-value 646 

matrices, one for each combination of profile type a � {α, β, γ} and control profile type b � {β, 647 

γ}, which are given by: 648 

  649 

2Z[∗(Y,P)56,8 =
1

QP
R\(MY)6,8 ≤ (MP)^,8_

AS

^T?

 650 

  (Eqn. 8). 651 

The within-compound z-score is computed for each pair of ith compound and jth bioprocess 652 

by comparing the mean of the ith compound’s similarity scores with genes in the bioprocess to 653 

the mean and standard deviation of the ith compound’s similarity scores across all genes. To 654 

perform this calculation, length na mean and standard deviation vectors wa and ya, respectively, 655 

are generated, as well as a length np vector d that contains the number of genes annotated to each 656 

bioprocess in B. Z*(a,δ) refers to the matrix of z-scores for each profile of type a � {α, β, γ} 657 

computed using the within-compound z-score approach (represented by δ) and given by: 658 

  659 

(`Y)6 =
1

Qa
R(IY)6,8

Ab

8T?

 660 

 661 
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(cY)6 = V
1

Qa − 1
R2(IY)6,8 − (`Y)65

H

Ab

8T?

 662 

  663 

d8 =RN6,8

Ab

6T?

 665 

  664 

2X(Y,e)
∗ 5

6,8
=
(MY)6,8 d8⁄ − (`Y)6

(cY)6 gd8⁄ 	
 666 

  (Eqn. 9). 667 

For each compound-process pair, the within-compound empirical p-value is computed for 668 

each profile type a � {α, β, γ} by randomly permuting the compound’s compound-gene 669 

similarity scores, re-computing within-compound z-scores, and counting the number of times 670 

that the z-scores derived from randomly-permuted compound-gene similarity scores are greater 671 

than the observed compound-process z-score. This calculation conveniently reduces to a 672 

comparison of the sum of observed vs. permuted compound-gene similarity scores for genes in 673 

the respective bioprocess, as the number of genes that map to the bioprocess (dj) and the mean 674 

((wa)i) and standard deviation ((ya)i) of compound-gene similarity scores do not change upon 675 

permutation of the compound-gene similarity scores. Permuted matrices of compound-gene 676 

similarity scores are denoted by kSa, which represents, for profile type a, the kth row-wise 677 

permutation of the compound-gene similarity score matrix. Each resulting matrix that contains 678 

the sums of compound-gene similarity scores for all compound-process pairs with respect to 679 

random permutation k is denoted by kXa. Across nl permutations, the within-compound empirical 680 

p-value for each profile type a � {α, β, γ} (within-compound p-value signified by subscript δ) is 681 

denoted by: 682 

M^ Y = I^ YN 683 

  684 

2Z[∗(Y,e)56,8 =
1

Qh
R i(MY)6,8 ≤ 2 M^ Y56,8j

Ak

^T?

 685 

  (Eqn. 10). 686 
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Ultimately, the different p-values and z-scores for each compound-process pair are combined 687 

into one p-value and z-score for that pair. These scores are combined such that the largest (least 688 

significant) p-value is chosen along with its associated z-score. If multiple p-values tie for the 689 

largest value, then the one with the smallest associated z-score is chosen. As such, the resulting 690 

combination of p-value and z-score represents the most conservative estimate of the strength and 691 

significance of the prediction from compound to perturbed biological process. 692 

To combine the p-values and z-scores, a matrix Psourcea for each profile type a � {α, β, γ} 693 

is first created to determine, for each compound-process pair, which p-value and z-score matrices 694 

will contribute the final p-value and z-score. For each z-score/p-value scoring approach c �{β, 695 

γ, δ}, each entry of this matrix is denoted by: 696 

lm(n) = 2Z[∗(Y,o)56,8 697 

l[(n) = 2X(Y,o)
∗ 5

6,8
 698 

(ZpqOrstY)6,8 = argmin l[(w
x)where	wx ∈ argmax

P∈(L,4,e)
lm(w) 699 

  (Eqn. 11). 700 

The resulting final p-value and z-score matrices for each profile type a � (α, β, γ) are then: 701 

2X(Y)56,8 = }X2Y,(m~�ÄÅÇÉÑ)Ö,Ü5
∗ á

6,8
 702 

2Z[(Y)56,8 = }Z[∗2Y,(m~�ÄÅÇÉÑ)Ö,Ü5á6,8
 703 

  (Eqn. 12). 704 

Computing biological process enrichments. An enrichment-based method for predicting 705 

biological processes perturbed by compounds was also implemented to provide an appropriate 706 

baseline for assessing the performance of CG-TARGET. This enrichment-based method 707 

computes biological process enrichment within the genes that contribute the top n out of nq 708 

compound-gene similarity scores for each compound (from each compound-gene similarity score 709 

matrix Xa for profile types a �{α, β, γ}). Ultimately, two sets of matrices are computed, E(a,n) 710 

and PE(a,n), which respectively contain the enrichment factor and hypergeometric p-value for each 711 

compound and biological process pair. Enrichments were computed for n �{10, 20, 50, 100, 712 

200, 300, 400, 600, 800}. 713 
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First, a binary matrix X top
(a,k)  is derived from the matrix of compound-gene similarity scores Xa, 714 

such that in each row, the positions corresponding to the top n scores are set to 1 and the 715 

remaining positions are set to 0. This is denoted as:  716 

  717 

  718 

2M(Y,A)
à�â 5

6,8
= i(MY)6,8 ≥ 2sortDesc((MY)6,∗)5Aj 720 

  719 

  (Eqn. 13) 721 

where (Xa)i,* is the ith row vector of matrix Xa and sortDesc(x) is a function that returns the values 722 

in a vector x sorted in descending order. The final enrichment factor and p-value matrices are 723 

then computed as: 724 

  725 

2é(Y,A)56,8 =
}2M(Y,A)

à�â 5
6,∗
N∗,8á Qa

2∑N∗,85Q
 726 

   727 

2Zê(Y,A)56,8 = 1 − hygeCDF(Qa,RN∗,8 , Q, }2M(Y,A)
à�â 5

6,∗
N∗,8á − 1) 728 

  (Eqn. 14) 729 

where B*,j is the column vector of the binary bioprocess matrix B containing gene annotations for 730 

the jth bioprocess, ∑ B*,j is the number of genes annotated to the jth bioprocess, and hygeCDF(N, 731 

K, n, k) is the cumulative hypergeometric distribution given a population size of N with K 732 

success states and n draws with k observed successes. 733 

Estimating the false discovery rate. The false discovery rates of the compound-process 734 

predictions are estimated by comparing, using the entire range of observed p-values as 735 

thresholds, the number of compounds with at least one bioprocess prediction against the number 736 

of experimental controls and resampled profiles with at least one bioprocess prediction. We 737 

compute a false discovery rate matrix FDRb for the treatment profiles α against each control 738 

profile type b � {β, γ}. This FDRb matrix is individually computed for the CG-TARGET-based 739 

compound-process predictions as well as for each version of the enrichment-based compound-740 

process predictions (using the p-value matrices PZ(a) and PE(a,n)); for simplicity, we do not change 741 
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the notation of FDRb to reflect if the false discovery rate values were computed on the output 742 

from CG-TARGET or our baseline enrichment-based approach. 743 

The first step in computing the false discovery rate is obtaining length na vectors ptopa that 744 

contain the smallest p-value within each profile’s bioprocess predictions, for each profile type a 745 

� {α, β, γ}. Additionally, the union of all observed p-values pall defines the universe of p-values 746 

for which corresponding false discovery rates will be computed. Given p-value matrices Pa (PZ(a) 747 

or PE(a,n) for one value of n) and a function sortAsc() that returns the input values sorted in 748 

ascending order, the vectors ptopa and pall are given by: 749 

(îïqîY)6 = min2(ZY)6,∗5 750 

îYhh = sortAscó ò (ZY)6,8
6,8,Y∈{:,L,4}

ô 751 

  (Eqn. 15). 752 

We then compute a mapping from each observed p-value to its corresponding false discovery 753 

rate, with mappings generated with respect to each control profile type b � {β, γ}. First, a vector 754 

of false discovery rates r*b is computed, each value corresponding to a p-value threshold in pall, by 755 

dividing the fraction of treatment profiles with one or more bioprocess predictions that pass the 756 

threshold by the fraction of control profiles that also pass the threshold. As the p-values in the 757 

vector pall are monotonically increasing, it is desirable for the false discovery rate to increase 758 

monotonically with the p-value. However, it is possible for the false discovery rate to decrease as 759 

p-value increases (if the fraction of treatment profiles passing the threshold increases faster than 760 

the fraction of control profiles passing the threshold), and thus we adjust each false discovery 761 

rate value in the vector r*b to be the minimum of its current value or any value at a larger index to 762 

generate a new vector rb (similar to the Benjamini-Hochberg procedure [43]). The final p-value 763 

to false discovery rate mappings can be written as a function of the p-value p, with the procedure 764 

to generate these mappings given by: 765 

  766 

(rP
∗)6 =

1
QP
∑ \(îïqîP)8 ≤ (îYhh)6_
AS
8T?

1
Q:
∑ \(îïqî:)8 ≤ (îYhh)6_
AB
8T?

 767 

rP = rev }cumMin2rev(rP
∗)5á 768 
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lúùû(P)(î) = (rP){6	∶	(ÅS)Ö	T	â} 769 

  (Eqn. 16). 770 

Given this mapping of p-value to false discovery rate, the resulting matrices of false 771 

discovery rates with respect to control profile types b � {β, γ} are given by: 772 

(†°¢P)6,8 = lúùû(P)2(ZY)6,85 773 

  (Eqn. 17). 774 

Computational evaluation of bioprocess predictions 775 

Performance on simulated chemical-genetic interaction profiles. We generated a set of 776 

simulated chemical-genetic interaction profiles derived from genetic interaction profiles [11]. 777 

Each simulated chemical-genetic interaction profile was a query genetic interaction profile 778 

augmented with noise sampled from a Gaussian distribution with a mean of 0 and a variance for 779 

each array gene twice that of the same array gene in the genetic interaction dataset. Three 780 

simulated profiles were generated based on each query gene, resulting in 4515 total profiles. 781 

Because each simulated chemical-genetic interaction profile was derived from a query genetic 782 

interaction profile, it inherited the gold-standard bioprocess annotations from its parent genetic 783 

interaction profile in subsequent benchmarking efforts. 784 

We then used CG-TARGET and each top-n enrichment method to predict perturbed 785 

bioprocesses for this set of 4515 simulated chemicals x 289 deletion mutants. For each simulated 786 

chemical, its top bioprocess prediction was compared to the set of inherited gold-standard 787 

bioprocess annotations, counting as a true positive if the top prediction matched an existing 788 

annotation and a false positive if it did not. Precision-recall curves were then generated by 789 

sorting the list of each simulated chemical’s top bioprocess predictions (p-value ascending, z-790 

score or enrichment factor descending) and computing the precision (true positives / (true 791 

positives + false positives)) and recall (true positives) at each point in this list. 792 

Performance on gold-standard compound-bioprocess annotations. The predicted perturbed 793 

bioprocesses for each of the gold-standard compounds were sorted, first in ascending order by 794 

their p-value and then descending order by their z-score (for CG-TARGET) or enrichment factor 795 

(top-n enrichment), and the rank of each compound’s gold-standard bioprocess annotation was 796 

recorded. To assess the significance of each rank, each pair of p-value and z-score was randomly 797 

assigned to a new bioprocess (without replacement), the lists re-ordered, and the ranks of each 798 
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compound’s target bioprocess re-computed. The empirical p-value for each gold-standard 799 

compound-process pair was computed as the number of times the rank from the shuffled 800 

bioprocesses achieved the same or better rank as the observed rank, divided by the number of 801 

randomizations. These randomizations were also used as a baseline against which to compare the 802 

number of compounds (out of 35) that achieved a given rank, as seen in Figs 3 and S1; the 803 

displayed ribbons were generated by calculating, for each rank, the relevant percentiles on the 804 

distribution of compounds with randomized predictions that achieved that rank. The “effective 805 

rank” of a compound’s gold-standard bioprocess annotation was determined as the minimum 806 

rank of any bioprocess term with which it possessed sufficient gene annotation similarity 807 

(overlap index ≥ 0.4, where the overlap index of two sets is defined as the size of the intersection 808 

divided by the size of the smaller set). 809 

Characterizing performance with respect to individual bioprocess terms. For each 810 

propagated GO biological process term used for bioprocess prediction, we gathered all 811 

predictions to that term across the 4515 simulated chemical-genetic interaction profiles and 812 

sorted the predictions in ascending order by p-value and then in descending order by z-score. The 813 

area under the precision-recall curve (AUPR) was calculated across this sorted list of simulated 814 

compounds, with a true positive defined as the occurrence of a simulated compound that was 815 

annotated to the bioprocess (via the simulated compound’s parent gene). To obtain the final 816 

evaluation statistic for each GO term, this AUPR was divided by the AUPR of a random 817 

classifier, which is equal to the number of true positives divided by the total number of simulated 818 

compounds. 819 

Assessing the compatibility of chemical-genetic and genetic interaction profiles 820 

Analysis of bioprocess prediction drivers in chemical-genetic interaction data. Given a 821 

compound and a predicted bioprocess, a profile of “importance scores” describes the 822 

contribution of each gene mutant to that compound’s bioprocess prediction. To obtain this score, 823 

a mean genetic interaction profile was first computed across all L2-normalized genetic interaction 824 

profiles annotated to the biological process for which the inner product with the compound’s 825 

chemical-genetic interaction profile was 2 or greater. The importance score profile was then 826 

obtained by taking the Hadamard product (elementwise multiplication) between this mean 827 

genetic interaction profile and the compound’s chemical-genetic interaction profile. 828 
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Overrepresentation analyses of gene mutants with strong chemical-genetic and/or genetic 829 

interactions. After restricting the data to the top biological process prediction for each 830 

compound, gene mutants that possessed strong, negative chemical-genetic interaction scores (z-831 

score < –5) were assessed for overrepresentation with respect to the number of times they did not 832 

contribute (importance score within ±0.1) to a compound’s top bioprocess prediction. 833 

Specifically, the number of times each strain occurred inside and outside the region described 834 

above (grey box in Figure 5) was compared to the number of times all strains occurred inside and 835 

outside the region using a hypergeometric test, using all strains with interaction z-scores < –5 as 836 

the background set. Details on the genes overrepresented in this region are given in Table S2. 837 

Experimental validation of compound-bioprocess predictions 838 

Phenotypic analysis of cell cycle progression. To examine the effect of compounds on arresting 839 

cells in G2/M phase, we looked for differences in budding index and cell DNA content between 840 

compounds predicted to perturb the cell cycle versus negative control compounds. Seventeen 841 

compounds with high-confidence predictions to the bioprocess term “mitotic spindle assembly 842 

checkpoint” and strong negative chemical-genetic interactions with PAT1 and LSM6 (a common 843 

signature for compounds with this bioprocess prediction) were selected for validation. 844 

Additionally, ten bioactive (growth inhibition 50–80% compared to DMSO control) compounds 845 

with high confidence predictions (false discovery rate ≤ 25%) to bioprocess terms not related to 846 

cell cycle signaling and progression were selected as negative controls. Two compounds 847 

predicted to perturb “cell cycle phase” were also tested in these experiments. All compounds 848 

were tested at a concentration of 10 µg/mL, which was also the concentration used for chemical 849 

genomic screening [11]. 850 

To quantify budding index, logarithmically-growing pdr1∆pdr3∆snq2∆ cells were 851 

transferred to fresh galactose-containing medium (YPGal) containing compounds and incubated 852 

at 25 °C for 4 hours. The budding status of at least 200 cells was visually determined under the 853 

microscope. The percentage of the budded cells in no compound or compound-treated samples 854 

was counted. 855 

For flow cytometry analysis, log phase pdr1∆pdr3∆snq2∆ cells were grown in YPGal media 856 

in the presence or absence of a compound for 4 hours; they were then fixed in 70% ethanol for 857 

1 hour at 25 °C. Cells were collected by centrifugation, washed, and resuspended in buffer 858 
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containing RNase A (0.25 mg/mL in 50 mM Tris, pH 7.5) for 1.5 hours. Cells were further 859 

incubated in 20 µl of 20 mg/ml proteinase K at 50 °C for 1 hour. Samples were then stained with 860 

propidium iodide, briefly sonicated, and measured using FACSCalibur ver 2.0 (Becton 861 

Dickinson, CA, USA). 862 

The proportions of predicted active compounds and negative controls with positive 863 

phenotypic results were compared using the prop.test function in R to assess significance. 864 

Inhibition of tubulin polymerization. In vitro tubulin polymerization assays using a 865 

fluorescent-based porcine tubulin polymerization assay (Cytoskeleton, BK011P) were performed 866 

following manufacturer specifications. Compounds were tested at a concentration of 10 µg/ml 867 

(with the exception of assay controls), which was identical to the concentration used for 868 

chemical genomic screening. All ten compounds predicted to perturb “tubulin complex 869 

assembly” with the minimum estimated false discovery rate (FDR < 1%) were selected for 870 

testing. Twelve compounds with predictions of false discovery rate ≤ 25% to any bioprocess 871 

except those related to chromosome segregation, kinetochore, spindle assembly, and 872 

microtubules were randomly selected as negative controls. 873 

The degree of tubulin polymerization inhibition was summarized in a single Vmax statistic for 874 

each compound treatment replicate. The Vmax for each compound’s fluorescence time-course was 875 

calculated as the maximum change in fluorescence between consecutive time points, which were 876 

measured at 1-minute intervals. Three batches of experiments were performed in total (resulting 877 

in N ≥ 2 for each compound), and we normalized the Vmax values in each batch by subtracting the 878 

difference between that batch’s mean DMSO (solvent control) Vmax and the overall mean DMSO 879 

Vmax. To determine if the tubulin-predicted compounds inhibited polymerization to a 880 

significantly greater degree than the controls, we calculated the mean of the normalized Vmax 881 

values for each compound and performed a one-sided Wilcoxon rank-sum to test for a difference 882 

in the ranks of these values between the two classes of compounds. 883 

Chemical structure similarities between each pair of compounds selected for tubulin 884 

polymerization validation were obtained by first computing an all-shortest-paths fingerprint with 885 

path length 8 for each compound [44]. Similarities were computed on the fingerprints using the 886 

Braun-Blanquet similarity coefficient, which is defined as the size of the intersection divided by 887 

the size of the larger set. In a recent study, this combination of structure descriptor and similarity 888 
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coefficient performed well when evaluated globally on our entire chemical-genetic interaction 889 

dataset [45]. 890 
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 1036 

Figure legends 1037 

Figure 1. Overview of the integration of chemical-genetic and genetic interaction networks 1038 
for bioprocess target prediction using CG-TARGET. Chemical-genetic interaction profiles, 1039 
obtained by measuring the sensitivity or resistance of a library of gene mutants to a chemical 1040 
compound, are compared against genetic interaction profiles consisting of double mutant 1041 
interaction scores. The resulting similarities are aggregated at the level of biological processes to 1042 
predict the bioprocess(es) perturbed by the compound. Better agreement between chemical-1043 
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genetic and genetic interaction profiles leads to stronger bioprocess predictions. Each blue box 1044 
represents a negative chemical-genetic (i.e. sensitivity) or genetic interaction, while each black 1045 
box represents the absence of an interaction. Stronger bioprocess predictions are depicted with a 1046 
darker red. 1047 
 1048 
Figure 2. Rate of compound discovery and control of the false discovery rate for the 1049 
prediction of bioprocesses from chemical-genetic interaction profiles. Perturbed bioprocesses 1050 
were predicted using CG-TARGET for compounds, negative controls (DMSO), and resampled 1051 
chemical-genetic interaction profiles from the RIKEN and NCI/NIH/GSK datasets. (A) The 1052 
number of compounds, experimental controls, and randomly resampled chemical-genetic 1053 
interaction profiles discovered with at least one bioprocess prediction passing the given 1054 
significance thresholds, for the RIKEN dataset. (B) DMSO and resampled profile-derived 1055 
estimates of the false discovery rate of biological process predictions, for the RIKEN dataset, 1056 
given the number of discovered compounds. Values were calculated from (A). (C-D) Same as 1057 
(A-B), respectively, but for the NCI/NIH/GSK dataset. 1058 
 1059 

Figure 3. Performance comparison of CG-TARGET versus a baseline enrichment 1060 
approach. Perturbed bioprocesses were predicted using both CG-TARGET and a method that 1061 
calculated enrichment on the set of each compound’s 20 most similar genetic interaction profiles 1062 
(“top 20”). (A) Bioprocess prediction false discovery rate estimates derived from resampled 1063 
chemical-genetic interaction profiles, performed on compounds from the RIKEN dataset. (B) 1064 
Precision-recall analysis of the ability to recapitulate gold-standard annotations within the set of 1065 
top bioprocess predictions for ~4500 simulated compounds. Each simulated compound was 1066 
designed to target one query gene in the genetic interaction network and thus inherited gold-1067 
standard biological process annotations from its target gene. (C) For each of 35 well-1068 
characterized compounds in the RIKEN dataset with literature-derived, gold-standard biological 1069 
process annotations, we determined the rank of its gold-standard bioprocess within its list of 1070 
predictions. The number of compounds for which a given rank (or better) was achieved is 1071 
plotted. The grey ribbons represent the median, interquartile range (25th to 75th percentiles), and 1072 
95% confidence interval of 10,000 rank permutations.  1073 
 1074 
Figure 4. Detailed analysis of the contribution of individual gene mutants to biological 1075 
process predictions. Each panel shows, for a bioprocess and either a compound (A) or a set of 1076 
compounds (B-C) predicted to perturb that bioprocess, the subset of the respective chemical-1077 
genetic and L2-normalized genetic interaction profiles with signal. The importance profiles are 1078 
the row-wise mean of the Hadamard product (elementwise multiplication) of each chemical-1079 
genetic interaction profile and the genetic interaction profiles for query genes with which it 1080 
possessed an inner product of 2 or higher that are annotated to the GO term; they reflect the 1081 
strength of each strain’s contribution to the bioprocess prediction. For all panels, a query gene 1082 
from the genetic interaction network was selected if it contributed to the importance score 1083 
calculation for any selected compound; query genes were ordered from left to right in ascending 1084 
order of their inner products (or their average, for B-C) with the selected chemical-genetic 1085 
interaction profile(s). Each strain (row) was included if it passed at least one of three criteria: 1) 1086 
the magnitude of its mean genetic interaction score across the selected query genes exceeded 1087 
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0.04; 2) the magnitude of its chemical-genetic interaction score (for B-C, the mean of such 1088 
scores) exceeded 2.5; or 3) its importance score exceeded 0.1 (for B-C, the mean of such scores). 1089 
(A) Schematic showing the prediction of the “mRNA transport” bioprocess (GO:0051028) for 1090 
chemical compound NPD4142. (B) Schematic showing the prediction of “CVT pathway” (FDR 1091 
< 1%) for compounds whose top prediction was to that term. (C) Schematic showing the 1092 
prediction of “tubulin complex assembly” (FDR <1%). 1093 
 1094 
Figure 5. Global visualization of the contribution of chemical-genetic interactions to CG-1095 
TARGET bioprocess predictions. Chemical-genetic interaction profiles and their 1096 
corresponding importance score profiles (see Fig 4 legend) were gathered for each of 130 diverse 1097 
compounds from the high confidence set (FDR ≤ 25%) and their associated top bioprocess 1098 
predictions. Importance is plotted as a function of chemical-genetic interaction score. One 1099 
thousand points from the regions of lowest density (white) are plotted, with only density plotted 1100 
in the remaining higher-density regions. Density increases in order of white, yellow, green, and 1101 
violet. The shaded region highlights strains with strong negative (≤ –5) chemical-genetic 1102 
interactions and no contribution (± 0.1) to a compound’s top bioprocess prediction. 1103 

 1104 
Figure 6. In vivo and in vitro experimental validations of biological process predictions. 1105 
(A,B,C) Phenotypic validation of cell cycle-related predictions, performed on drug-1106 
hypersensitive yeast treated with solvent control (DMSO) or compounds predicted to perturb the 1107 
cell cycle. (A) Differential interference contrast microscopy (DIC) and fluorescence upon DAPI 1108 
staining showing bud size and DNA localization, respectively, after compound treatment. The 1109 
scale bar represents a distance of 5 µm. (B) FACS analysis of cell populations in different cell 1110 
cycle phases at 0, 2, and 4 hours after compound treatment. The green curve overlay represents 1111 
the estimated cell population in G1, S and G2/M phases. (C) Budding index percentages induced 1112 
by treatment with compound or solvent control. (D) In vitro inhibition of tubulin polymerization 1113 
by compounds predicted to perturb “tubulin complex assembly” (FDR < 1%; red) compared to 1114 
randomly-selected negative control compounds with high-confidence predictions to bioprocesses 1115 
not related to chromosome segregation, kinetochore, spindle assembly, and microtubules (blue). 1116 
Vmax values reflecting the maximum rate of tubulin polymerization for each compound from 1117 
independent replicate experiments are plotted. Assay positive and negative control compounds 1118 
are colored grey. (E) Structural similarity-based hierarchical clustering of compounds tested in 1119 
(D). Single linkage was used in combination with (1 – structural similarity) as the distance 1120 
metric; as such, the structural similarity of the two most similar compounds at each junction can 1121 
be inferred directly from the dendrogram. Compounds predicted to perturb “tubulin complex 1122 
assembly” (FDR < 1%) are in bold, and known microtubule-perturbing agents are marked with 1123 
an asterisk. Structural similarity was calculated as the Braun-Blanquet similarity coefficient on 1124 
all-shortest-path chemical fingerprints of length 8 (see Materials and Methods). 1125 
 1126 

Table legends 1127 

Table 1. The number of compounds discovered at selected false discovery rates upon 1128 
application of CG-TARGET to data from two large-scale chemical-genetic interaction 1129 
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screens. The “RIKEN” screen consisted of 8418 total compounds from the RIKEN Natural 1130 
Product Depository, and the “NCI/NIH/GSK” consisted of 3565 compounds across 6 chemical 1131 
compound collections from the National Cancer Institute, National Institutes of Health, and 1132 
GlaxoSmithKline. 1133 

 1134 
Table 2. Evaluation of predictions made by CG-TARGET, and comparison to a baseline 1135 
enrichment approach, for literature-derived, gold-standard compound-process 1136 
annotations. The target bioprocess rank was determined by its position in the list of all 1137 
bioprocess predictions for each gold-standard compound, with the significance computed 1138 
empirically by shuffling the bioprocesses and re-computing the rank (bold p-values indicate 1139 
significance, p < 0.05). Asterisks indicate cases in which the false discovery rate of the gold-1140 
standard compound-process prediction was less than 25%. The “top-20 enrichment” approach 1141 
was selected as a baseline for comparison. The “effective rank” of a compound-bioprocess 1142 
prediction represents the top rank within the compound’s list of predictions among bioprocesses 1143 
that are similar to the original bioprocess. 1144 
 1145 

Supporting figure legends 1146 

Figure S1. Performance comparison of CG-TARGET versus baseline enrichment 1147 
approaches. Perturbed biological processes were predicted using both CG-TARGET and 1148 
methods that calculated enrichment on the set of each compound’s n most similar genetic 1149 
interaction profiles (“top n,” n � {10, 20, 50, 100, 200, 300, 400, 600, 800}). (A) Biological 1150 
process prediction false discovery rate estimates derived from resampled chemical-genetic 1151 
interaction profiles, performed on compounds from the RIKEN dataset. (B) Precision-recall 1152 
analysis of the ability to recapitulate gold-standard annotations within the set of top bioprocess 1153 
predictions for ~4500 simulated compounds. Each simulated compound was designed to target 1154 
one query gene in the genetic interaction network and thus inherited gold-standard biological 1155 
process annotations from its target gene. (C) For each of 35 well-characterized compounds in the 1156 
RIKEN dataset with literature-derived, gold-standard biological process annotations, we 1157 
determined the rank of its gold-standard bioprocess within its list of predictions. The number of 1158 
compounds for which a given rank (or better) was achieved is plotted. The grey ribbons represent 1159 
the median, interquartile range (25th to 75th percentiles), and 95% confidence interval of 10,000 1160 
rank permutations. 1161 
Figure S2. Induced GO hierarchy of the 100 best-performing GO biological process terms, 1162 
evaluated using simulated chemical-genetic interaction profiles. Each term was evaluated 1163 
using precision-recall statistics (area under the precision-recall curve divided by the area under a 1164 
curve produced by a random classifier) to analyze its ability to rank simulated chemical-genetic 1165 
interaction profiles from which it was annotated as a gold-standard bioprocess. Green nodes 1166 
represent the 100 best-performing GO biological process terms, yellow nodes represent terms for 1167 
which predictions were made but did not rank among the top 100, and white nodes represent 1168 
terms in the Biological Process ontology that were not selected for bioprocess prediction. 1169 
Hovering the mouse over each node reveals its GO ID and name. 1170 
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Figure S3. Induced GO hierarchy of the 100 worst-performing GO biological process 1171 
terms, evaluated using simulated chemical-genetic interaction profiles. Same as Fig S2, but 1172 
for the 100-worst performing GO biological process terms. 1173 
Figure S4. Schematic representation of CG-TARGET bioprocess prediction procedure. 1174 
Further details on the presented procedures, including equations, are given in “Predicting the 1175 
biological processes perturbed by compounds” in Materials and Methods. 1176 
 1177 

Supporting table legends 1178 

Table S1. Using protein complexes to refine CG-TARGET GO biological process mode-of-1179 
action predictions. Compounds, GO biological processes, and protein complexes are shown if 1180 
the mode-of-action prediction to the protein complex was stronger than that to the associated GO 1181 
biological process (comparison first based on p-value, then on z-score in the case of a tie). 1182 
Protein complexes were limited to those of size 4 or greater whose gene annotations were a 1183 
subset of those for the corresponding GO biological process term. The final column indicates 1184 
compounds that did not achieve a false discovery rate of 25% or less for any GO biological 1185 
process mode-of-action predictions but did for at least one protein complex prediction (with 1186 
“HCS” denoting “high confidence set”). 1187 
Table S2. Overrepresentation analysis of mutant strains with strong negative chemical-1188 
genetic interactions and no contribution to top bioprocess predictions. Overrepresentation 1189 
within the shaded region of Fig 5 was evaluated using a hypergeometric test to compare the 1190 
occurrence of one strain versus all strains inside and outside of the region, with the background 1191 
containing only strains that possessed strong (z-score < –5) negative chemical-genetic 1192 
interactions. The compounds and top bioprocess predictions associated with each strain’s 1193 
occurrences in the region are given, as well as the appropriate background list of strains and 1194 
information on the gene deleted in each strain. 1195 

 1196 
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Table 1. The number of compounds discovered at selected false discovery rates upon application of CG-TARGET to data from two 
large-scale chemical-genetic interaction screens. The “RIKEN” screen consisted of 8418 total compounds from the RIKEN Natural Product 
Depository, and the “NCI/NIH/GSK” consisted of 3565 compounds across 6 chemical compound collections from the National Cancer Institute, 
National Institutes of Health, and GlaxoSmithKline. 

Dataset RIKEN NCI/NIH/GSK 

FDR cutoff p-value 
number of 
compounds p-value 

number of 
compounds 

0.00 < 2 ´ 10-5 434 < 2 ´ 10-5 352 

0.05 2 ´ 10-5 505 4 ´ 10-5 405 

0.10 8 ´ 10-5 598 1.6 ´ 10-4 494 

0.25* 2.8 ´ 10-4 848 4.7 ´ 10-4 705 

*This cutoff is 0.27 for the NCI/NIH/GSK dataset 
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Table 2. Evaluation of predictions made by CG-TARGET, and comparison to a baseline enrichment approach, for literature-derived, gold-standard compound-process annotations. The 
target bioprocess rank was determined by its position in the list of all bioprocess predictions for each gold-standard compound, with the significance computed empirically by shuffling the bioprocesses 
and re-computing the rank (bold p-values indicate significance, p < 0.05). Asterisks indicate cases in which the false discovery rate of the gold-standard compound-process prediction was less than 25%. 
The “top-20 enrichment” approach was selected as a baseline for comparison. The “effective rank” of a compound-bioprocess prediction represents the top rank within the compound’s list of predictions 
among bioprocesses that are similar to the original bioprocess. 

   
CG-TARGET top-20 enrichment 

Compound GO ID GO term Target process 
rank 

Rank 
significance 

Effective 
rank 

Target process 
rank 

Rank 
significance 

Effective 
rank 

5-Fluorocytosine GO:0032774 RNA biosynthetic process 27 0.0208 2 3 0.0027 1 
Aclacinomycin A GO:0071103 DNA conformation change 1 *0.0009 1 86 0.0643 2 
Acriflavine GO:0006259 DNA metabolic process 30 *0.0238 1 5 0.0042 1 
Benomyl GO:0007017 microtubule-based process 2 *0.0015 2 8 0.0056 2 
Blasticidin S GO:0006412 translation 772 0.5842 57 1311 0.9883 247 
Bortezomib GO:0030163 protein catabolic process 3 0.0026 1 8 0.0084 1 
Brefeldin A GO:0006888 ER to Golgi vesicle-mediated transport 565 0.4207 32 1172 0.8818 169 
Caffeine GO:0031929 TOR signaling cascade 1 *0.0007 1 1 0.0007 1 
Calcofluor White GO:0071554 cell wall organization or biogenesis 624 0.4675 90 1127 0.8526 176 
Camptothecin GO:0071103 DNA conformation change 16 *0.0114 4 6 0.0040 1 
Cisplatin GO:0006260 DNA replication 134 0.1018 23 10 0.0071 1 
Daunorubicin GO:0006260 DNA replication 70 0.0530 21 1210 0.9092 178 
FK228 GO:0006325 chromatin organization 23 *0.0169 2 17 0.0131 2 
Fluconazole GO:0008202 steroid metabolic process 114 0.0870 12 708 0.5333 187 
Furazolidone GO:0006260 DNA replication 20 *0.0148 4 5 0.0034 1 
Gramicidin S GO:0071554 cell wall organization or biogenesis 286 0.2186 39 1151 0.8705 173 
Griseofulvin GO:0007017 microtubule-based process 1291 0.9718 227 750 0.5673 216 
Haloperidol GO:0008202 steroid metabolic process 5 *0.0035 2 37 0.0279 6 
Hedamycin GO:0006281 DNA repair 4 *0.0029 1 3 0.0022 1 
Hydroxyurea GO:0006260 DNA replication 29 0.0239 6 1236 0.9269 1 
Itraconazole GO:0008202 steroid metabolic process 234 0.1786 29 696 0.5239 193 
Latrunculin B GO:0007010 cytoskeleton organization 11 *0.0083 1 8 0.0068 2 
Micafungin GO:0071554 cell wall organization or biogenesis 495 0.3718 47 1134 0.8577 150 
Mitomycin GO:0006260 DNA replication 15 0.0104 4 2 0.0014 1 
MMS GO:0006281 DNA repair 3 *0.0022 1 3 0.0022 1 
Mycophenolic acid GO:0006259 DNA metabolic process 1 *0.0006 1 3 0.0025 1 
Nigericin GO:0048193 Golgi vesicle transport 157 0.1158 13 1 0.0007 1 
Nocodazole GO:0007017 microtubule-based process 2 *0.0015 2 14 0.0100 3 
Oligomycin A GO:0009268 response to pH 9 0.0075 2 2 0.0012 1 
Podophyllotoxin GO:0007017 microtubule-based process 53 0.0411 6 800 0.6038 157 
Polyoxin D GO:0071554 cell wall organization or biogenesis 1302 0.9788 225 1168 0.8828 173 
Rapamycin GO:0031929 TOR signaling cascade 156 0.1140 8 422 0.3117 9 
Trichostatin A GO:0006325 chromatin organization 23 *0.0169 3 24 0.0173 1 
Tunicamycin GO:0070085 glycosylation 1 *0.0005 1 1 0.0005 1 
Tyrocidine B GO:0071554 cell wall organization or biogenesis 5 *0.0040 1 2 0.0019 1          
  

Num with significant rank  22 
 

 21 
 

  
Num with significant rank and FDR < 25%  16 

 
 0 
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