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Abstract

Chemical-genetic interactions — observed when the treatment of mutant cells with chemical
compounds reveals unexpected phenotypes — contain rich functional information linking
compounds to their cellular modes of action. To systematically identify these interactions, an
array of mutants is challenged with a compound and monitored for fitness defects, generating a
chemical-genetic interaction profile that provides a quantitative, unbiased description of the
cellular function(s) perturbed by the compound. Genetic interactions, obtained from genome-
wide double-mutant screens, provide a key for interpreting the functional information contained
in chemical-genetic interaction profiles. Despite the utility of this approach, integrative analyses
of genetic and chemical-genetic interaction networks have not been systematically evaluated. We
developed a method, called CG-TARGET (Chemical Genetic Translation via A Reference
Genetic nETwork), that integrates large-scale chemical-genetic interaction screening data with a
genetic interaction network to predict the biological processes perturbed by compounds. CG-
TARGET compared favorably to a baseline enrichment approach across a variety of
benchmarks, achieving similar accuracy while substantially improving the ability to control the

false discovery rate of biological process predictions. We applied CG-TARGET to a recent
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screen of nearly 14,000 chemical compounds in Saccharomyces cerevisiae, integrating this
dataset with the global S. cerevisiae genetic interaction network to prioritize over 1500
compounds with high-confidence biological process predictions for further study. Upon
investigation of the compatibility of chemical-genetic and genetic interaction profiles, we
observed that one-third of observed chemical-genetic interactions contributed to the highest-
confidence biological process predictions and that negative chemical-genetic interactions
overwhelmingly formed the basis of these predictions. We present here a detailed
characterization of the CG-TARGET method along with experimental validation of predicted
biological process targets, focusing on inhibitors of tubulin polymerization and cell cycle
progression. Our approach successfully demonstrates the use of genetic interaction networks in

the functional annotation of compounds to biological processes.

Author Summary

Understanding how chemical compounds affect biological systems is of paramount
importance as pharmaceutical companies strive to develop life-saving medicines, governments
seek to regulate the safety of consumer products and agrichemicals, and basic scientists continue
to study the fundamental inner workings of biological organisms. One powerful approach to
characterize the effects of chemical compounds in living cells is chemical-genetic interaction
screening. Using this approach, a collection of cells — each with a different defined genetic
perturbation — is tested for sensitivity or resistance to the presence of a compound, resulting in a
quantitative profile describing the functional effects of that compound on the cells. The work
presented here describes our efforts to integrate compounds’ chemical-genetic interaction
profiles with reference genetic interaction profiles containing information on gene function to
predict the cellular processes perturbed by the compounds. We focused on specifically
developing a method that could scale to perform these functional predictions for large collections
of thousands of screened compounds and robustly control the false discovery rate. With
chemical-genetic and genetic interaction screens now underway in multiple species including
human cells, the method described here can be generally applied to enable the characterization of

compounds’ effects across the tree of life.
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Introduction

The ability to discover chemical compounds with desirable and interesting biological activity
is essential for understanding how compounds and biological systems interact. Chemical-genetic
interaction screening provides a means to characterize the biological activity of compounds in an
unbiased manner by measuring the response of defined gene mutants to these molecules [1-8]. A
chemical-genetic interaction profile refers to the set of gene mutations that confer sensitivity (a
negative chemical-genetic interaction) or resistance (a positive interaction) to a compound and
provides functional insights into the compound’s mode(s) of action.

Similar to chemical-genetic interactions, genetic interactions identify pairs of gene mutations
whose combined effects are more or less severe than expected given the phenotypes of the
individual mutants. In S. cerevisiae, the vast majority of all possible gene double-mutant pairs
have been constructed and scored for fitness-based genetic interactions, yielding a global
compendium of genome-wide genetic interaction profiles that quantitatively describe each gene’s
function. Similarity between two genes’ genetic interaction profiles implies that these genes
perform similar cellular functions, enabling the functional annotation of previously unannotated
genes and the construction of a global hierarchy of cellular function [5,9].

Chemical-genetic and genetic interaction profiles derived from fitness measurements contain
analogous functional information on the cellular effects of chemicals and gene mutations,
respectively. Similarity between these two types of profiles therefore implies that the respective
chemical(s) and gene mutation(s) perturb similar functions in the cell, which means that a
compound’s chemical-genetic interaction profile should resemble the genetic interaction
profile(s) of its cellular target or target processes (Fig 1) [2,5]. The global genetic interaction
network in S. cerevisiae therefore provides a resource for interpreting chemical-genetic
interaction profiles across a broad range of cellular function. Importantly, this approach to
interpretation does not depend on reference chemical-genetic interaction profiles and thus
enables the discovery of compounds with novel modes of action.

Recent advances in DNA sequencing technology have paved the way for high-throughput
chemical-genetic interaction screening via multiplexed analysis of pooled, genetically-barcoded
mutant libraries grown in the presence of compound [6,7,10]. This would enable, for example,
functional profiling of compounds earlier in the drug discovery process, with insights from these

screens providing a means to prioritize compounds before investing resources into their
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95  development as drugs. Despite the recent generation of thousands of chemical-genetic interaction

96  profiles across multiple studies [6,7] and the profound opportunities for genetic interaction-

97  powered functional characterization of thousands of novel compounds, the integration of

98  chemical-genetic and genetic interaction profiles has only been performed in the context of

99 relatively small studies [2,5]. A systematic investigation using a large-scale chemical-genetic
100  interaction dataset is therefore necessary to assess the compatibility between chemical-genetic
101  and genetic interaction profiles, with an emphasis on the ability of a genetic interaction-based
102  method to control the false discovery rate (of critical importance in high-throughput chemical
103 screening) and thereby prioritize compounds with the highest-confidence predictions.
104 Here, we present the use of genetic interaction profiles to systematically interpret chemical-
105  genetic interaction profiles on a large scale. Specifically, we developed a computational method,
106  called CG-TARGET (Chemical Genetic Translation via A Reference Genetic nETwork), that
107  integrates chemical-genetic and genetic interaction profiles to predict the biological processes
108  perturbed by compounds. We applied this method to a high-throughput chemical-genetic
109  interaction screen of nearly 14,000 compounds in S. cerevisiae [11], using profiles from the
110  global yeast genetic interaction network [5,9] to interpret the chemical-genetic interaction
111 profiles. CG-TARGET recapitulated known information for well-characterized compounds and
112 showed a marked improvement in the ability to control the false discovery rate for novel
113 compound mode-of-action discovery compared to a baseline approach. Additionally, we
114  experimentally validated two different mode-of-action predictions, one in an in vitro system
115  using mammalian proteins, confirming both the accuracy of the predictions for novel compounds
116  and the potential to translate these predictions across species. CG-TARGET is available, free for

117  academic use, at https://github.com/csbio/CG-TARGET.

118 Results

119  Overview of datasets used in this study

120 We obtained chemical-genetic interaction profiles from a recent large-scale chemical-genetic
121  interaction screen in S. cerevisiae [11]. This screen consisted of two batches, the first of which
122 containing 9850 compounds from the RIKEN Natural Product Depository [12] (the “RIKEN”
123 screen) and the second containing 4116 compounds from the NCI Open Chemical Repository’s

124 compound libraries, the NIH Clinical Collection, and GlaxoSmithKline’s Published Kinase
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125  Inhibitor Set (the “NCI/NIH/GSK” screen) [13]. The compounds in the RIKEN screen consisted
126  primarily of natural products and natural product derivatives — most of which were previously
127  uncharacterized — and ~200 approved drugs and chemical probes, a subset of which we used to
128  assess the performance of CG-TARGET as their modes of action in yeast are well-characterized.
129  The compounds in the NCI/NIH/GSK screen were more studied — having been tested against the
130 NCI-60 cancer cell line panel (the NCI collections), tested in clinical trials (the NIH Clinical

131 Collection) or designed and characterized as inhibitors against human kinases (GSK) — but many
132 of these compounds’ specific modes of action remain uncharacterized. The final datasets

133 consisted of 8418 chemical-genetic interaction profiles from the RIKEN screen and 3565 from
134  the NCI/NIH/GSK screen, which were obtained using a diagnostic set of approximately 300

135  haploid gene deletion mutants that were optimally selected to capture most of the information in
136  the complete S. cerevisiae non-essential deletion collection [11,14]. Both datasets also contained
137  alarge set of experimental control profiles (5724 and 2128 for the RIKEN and NCI/NIH/GSK
138  screens, respectively), in which the yeast were only treated with the solvent control (DMSO).
139  Each profile contains z-scores that reflect the deviation of each strain’s observed fitness from
140  expected fitness in the presence of a compound.

141 Genetic interaction profiles were obtained from a recently assembled, genome-wide

142 compendium of genetic interaction profiles in S. cerevisiae [5]. These profiles were generated by
143 systematically constructing and analyzing the fitness of haploid double mutant strains and consist
144 of epsilon scores that reflect the deviation of each double mutant’s observed fitness from that
145  expected given the single mutant fitness values, assuming a multiplicative null model [15]. The
146  construction of each profile involved crossing the mutant for the “query” gene into a genome-
147  wide array of mutants, and we mapped the query genes to Gene Ontology biological process

148  terms [16,17] to define the bioprocess targets of compounds. Profiles were filtered to the ~35%
149  with the highest signal (see Materials and Methods).

150  Predicting perturbed bioprocesses from chemical-genetic interaction profiles

151 We developed CG-TARGET (Chemical Genetic Translation via A Reference Genetic

152  nETwork) to predict the biological processes perturbed by compounds in our recently-generated
153  dataset of ~12,000 chemical-genetic interaction profiles (Fig 1). CG-TARGET requires three
154  input datasets: 1) chemical-genetic interaction profiles; 2) genetic interaction profiles; and 3) a

155  mapping from the query genes in the genetic interaction profiles to gene sets representing
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156  coherent bioprocesses. Predicting the bioprocesses perturbed by a particular compound involves
157  four distinct steps. First, a control set of resampled chemical-genetic interaction profiles is

158  generated, each of which consists of one randomly-sampled interaction score per gene mutant
159  across all compound treatment profiles in the chemical-genetic interaction dataset; these profiles
160  thus provide a means to account for variance in each mutant strain observed upon treatment with
161  bioactive compound but not upon treatment with experimental controls (DMSO with no active
162  compound). Second, scores reflecting both the strength of each compound’s chemical-genetic
163  interaction profile and its similarity to the profile of each gene mutant are obtained by computing
164  an inner product between all chemical-genetic interaction profiles (comprising compound

165  treatment, experimental control, and random profiles) and all L>-normalized query genetic

166 interaction profiles. Third, these “gene-level” prediction scores are aggregated into bioprocess
167  predictions; a z-score and empirical p-value for each compound-bioprocess prediction are

168  obtained by mapping the gene-level prediction scores to the genes in the bioprocess of interest
169  and comparing these scores to those from shuffled gene-level prediction scores and to

170  distributions of the scores derived from experimental control and resampled profiles. Finally, the
171  false discovery rates for these predictions are estimated by comparing, across a range of

172  significance thresholds, the frequency at which experimental control and randomly resampled
173  profiles predict bioprocesses versus that of compound treatment profiles (see Materials and

174  Methods).

175  Application to and evaluation on large-scale chemical-genetic interaction data

176 To provide a baseline method for benchmarking the performance of CG-TARGET on these
177  large screens, we implemented a simple, enrichment-based approach for predicting bioprocess-
178  level targets. The enrichment-based approach was designed to predict bioprocess-level targets by
179  testing for the enrichment of GO biological processes among the top-n gene-level prediction

180  scores for each compound. For the following comparisons, CG-TARGET was compared to top-
181 20 enrichment, which showed the best overall performance across a range of values of n (Fig
182 S1).

183 We applied CG-TARGET to the RIKEN and NCI/NIH/GSK chemical-genetic interaction
184  screens, identifying 848 out of 8418 compounds (10%) from the RIKEN screen and 705 of 3565
185  compounds (20%) from the NCI/NIH/GSK screen with at least one prediction that achieved false

186  discovery rates of 25 and 27%, respectively (referred to as “high-confidence” compounds and
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187  predictions) (Table 1, Fig 2). In all cases, the false discovery rates derived from resampled

188  profiles were more conservative than those derived from experimental controls, suggesting that
189  some sources of variance in each gene mutant’s interaction scores arose only upon treatment

190  with compound and therefore could not be corrected using only solvent controls. Focusing on the
191  results from the RIKEN screen, CG-TARGET substantially outperformed the baseline method
192  with regard to the number of compounds that possessed at least one high-confidence bioprocess
193  prediction (FDR <25%). Compared to the 848 high-confidence compounds identified by CG-
194  TARGET, top-20 enrichment only identified seven compounds that met this confidence

195  threshold, and zero with a false discovery rate less than 21% (Fig 3A).

196 CG-TARGET was also benchmarked against the baseline method using two different

197  measures of prediction accuracy. The first accuracy-based evaluation was performed on genetic
198 interaction profiles with added noise, which provided a means to both simulate chemical-genetic
199  interaction profiles and annotate them with gold-standard GO biological process annotations for
200  evaluation. For the second accuracy-based evaluation, we curated a set of gold-standard

201  compound-bioprocess annotations from the literature for 35 compounds from the RIKEN screen
202  and evaluated the ranks of the gold-standard bioprocesses within each compound’s list of

203  bioprocess predictions.

204 CG-TARGET performed comparably to the best-performing enrichment-based methods

205  using our measures of accuracy. This is first shown in the evaluation of these methods’

206  respective abilities to predict a gold-standard annotated bioprocess as the top prediction for each
207  simulated chemical-genetic interaction profile. Specifically, CG-TARGET performed nearly as
208  well as the top-20 enrichment-based method across both low and high recall values (Fig 3B).
209  Both methods captured a gold-standard annotation as the top predicted bioprocess for

210  approximately 34% of the simulated compounds (33.4% and 35.6% for CG-TARGET and top-20
211  enrichment, respectively), which represented more than a 22-fold enrichment over the

212 background expectation of 1.5% (the average number of gold-standard bioprocess annotations
213 per simulated compound divided by the number of bioprocesses).

214 Secondly, for the 35 gold-standard compounds with known target bioprocesses, we observed
215  that both methods captured the gold-standard bioprocess for 6 and 21 (out of 35) compounds
216  above ranks of 2 and 40 (out of 1329), respectively, with slightly decreased performance for CG-
217  TARGET between these rank thresholds (Fig 3C, Table 2). The significance of these rank values
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was evaluated by randomizing the order of each compound’s bioprocess predictions 10,000
times and recalculating the ranks. Both methods achieved similar results in this respect, with CG-
TARGET and the top-20 enrichment method respectively identifying 22 and 21 gold-standard
compounds with significantly better ranks than the random expectation. CG-TARGET and top-
20 enrichment also performed similarly when comparing the “effective rank™ of each
compound’s gold-standard bioprocess, with CG-TARGET and top-20 enrichment respectively
identifying 20 and 22 compounds for which the gold-standard or a closely-related bioprocess
achieved a rank of 5 or better.

Given that the main performance advantage of CG-TARGET occurred in the context of
controlling the false discovery rate, we conclude that the issues with simple enrichment-based
approaches primarily emerge not when predicting the most likely perturbed bioprocess for any
single compound but when comparing the strength and significance of bioprocess predictions
across compounds to prioritize compounds from a large-scale chemical-genetic interaction
screen. The aforementioned rank-based analysis of 35 gold-standard compound-bioprocess
annotations supports this assertion, as none of the 21 significantly-ranked annotations predicted
by top-20 enrichment passed the high-confidence threshold (FDR < 25%), while 16 of the 22
significantly-ranked annotations predicted by CG-TARGET did so (Table 2). This difference
between CG-TARGET and enrichment-based methods likely emerges from the ability of weak
chemical-genetic interaction profiles to generate strong, statistically significant predictions in the
absence of methods (such as CG-TARGET) that account for general signals that arise upon
treatment with bioactive compound — especially if these signals are amplified through their
similarity to a large cluster of profiles in the genetic interaction network. Thus, the substantially
superior ability of CG-TARGET to control the false discovery rate relative to the enrichment-

based approach is a critical quality in the context of large-scale, systematic compound screens.

Characterizing performance with respect to individual bioprocess terms

In addition to benchmarking CG-TARGET’s ability to prioritize gold-standard annotated
bioprocesses for specific compounds, we also benchmarked its ability to prioritize compounds
that perturb specific bioprocesses. Specifically, each GO term was evaluated based on the ranks
of the predictions for the simulated chemical-genetic interaction profiles derived from genes
annotated to that GO term. The 100 best-performing terms represented a diversity of

bioprocesses related to the proteasome, glycolipid metabolism, DNA replication and repair,
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249  replication and division checkpoints, RNA splicing, microtubules, Golgi and vesicle transport,
250  and chromatin state (Fig S2). In contrast, the 100 worst-performing terms were bioprocesses
251  primarily related to carbohydrate, nucleotide, and coenzyme/cofactor metabolism, as well as the
252 mitochondria, transmembrane transport, and protein synthesis and localization (Fig S3). The
253 best-performing terms were also significantly smaller than the worst-performing ones (8 and 35
254  genes on average, respectively; rank-sum p-value < 2.2 x 107!6), which, given the fact that we
255  would expect the power to increase with gene set size assuming the corresponding set was still
256  functionally coherent, suggests that our method identifies functionally specific signal.

257  Interestingly, the relatively poor performance of many metabolism-related bioprocess terms may
258  result from the fact that the chemical-genetic and genetic interaction screens were both

259  performed in relatively rich medium, precluding analysis of condition-specific phenotypes for
260  genes only required for growth in minimal medium. While the set of best-performing terms did
261  include a diverse range of bioprocesses, the possibility of “blind spots” should always be

262  considered when interpreting the predictions made by CG-TARGET, as they may lead to false
263  negative results that either exclude interesting compounds (e.g. those whose primary modes of
264  action affect carbohydrate metabolism) or mask potential side effects of compounds whose

265  primary modes of action are more easily observed by this method.

266  Application of CG-TARGET to protein complexes refines functional specificity of
267 mode-of-action predictions

268 The prediction of perturbed protein complexes offers the opportunity to enhance the

269  specificity of GO biological process predictions (especially for overly-general bioprocess terms)
270  and investigate functional space not accessible by bioprocess annotations. As such, we

271  investigated the potential to expand the use of CG-TARGET to the prediction of perturbed

272 protein complexes. When CG-TARGET was applied to predict protein complex targets for the
273  RIKEN screen data, 714 compounds were identified with at least one high-confidence (FDR <
274 25%) complex prediction, 604 of which also occurred in our original set of RIKEN compounds
275  with high-confidence bioprocess predictions. Similar, but not completely overlapping, sets of
276  genes (Jaccard index > 0.2) contributed to the top 5 of both bioprocess and protein complex

277  predictions for more than one third of these compounds (219; 36%); this suggested that the two
278  standards possessed both shared and complementary functional information that could be used to

279  improve predictions.
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280 We observed that protein complex predictions narrowed down less-specific bioprocess terms
281  and enabled predictions in places where bioprocess annotations were sparser. To assess the

282  ability to refine bioprocess prediction specificity, we mapped each protein complex to the

283  childless bioprocess terms that completely encompassed them and looked for substantial

284  improvements in prediction strength from the bioprocess to its protein complex “child.” We

285  observed several instances in which bioprocess predictions with FDR > 25% (not high

286  confidence) could be converted to high-confidence predictions by refining the bioprocess term to
287  a constituent protein complex. For example, we saw substantial gains for the following

288  bioprocess-to-complex combinations (sizes in parentheses): “mRNA polyadenylation”

289  (bioprocess, not high confidence; size 8) to “mRNA cleavage factor matrix” (complex, high

290  confidence; size 4); “cytoplasmic translation” (51) to “cytoplasmic ribosomal large subunit”

291  (24); “vacuolar acidification” (14) to “H*-transporting ATPase, Golgi/vacuolar” (5); and

292 “regulation of fungal-type cell wall organization” (8) to PKC pathway” (4) (Table S1).

293 Importantly, 27 of the 110 compounds with high-confidence protein complex but not bioprocess
294  predictions achieved their high-confidence status purely based on protein complex predictions
295  that enhanced the specificity of a non-high-confidence, overlapping bioprocess prediction.

296  Additionally, a separate set of 22 out of 110 compounds achieved high-confidence status based
297  solely on predictions to protein complexes that did not strongly overlap with any bioprocesses
298  (Jaccard < 0.2), demonstrating that the current set of protein complex annotations enabled

299  predictions in functional space that was not well captured by a GO biological process term.

300 Assessing the compatibility of chemical-genetic and genetic interaction profiles

301 Our evaluations of CG-TARGET support the premise of the method that genetic interaction
302  profiles can be used as a tool to interpret chemical-genetic interaction profiles. However, we

303  sought to better understand the extent to which these two types of profiles actually agree with
304  one another, and if their systematic differences could shed light on the limits of the core

305  assumption behind our method (i.e. that chemicals mimic the interaction profiles of their genetic
306  targets). To investigate the compatibility of chemical-genetic and genetic interaction profiles, we
307  quantified the contribution of individual gene mutants in the chemical-genetic interaction

308  profiles to the prediction of individual bioprocesses. For a single compound and predicted

309  bioprocess, these “importance scores” were obtained by 1) computing a mean genetic interaction

310  profile across all L>-normalized query genetic interaction profiles that possessed an inner product
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311  of 2 or higher with the chemical-genetic interaction profile and mapped to the predicted

312 bioprocess, and 2) computing the Hadamard product (elementwise multiplication) between this
313 mean genetic interaction profile and the compound’s chemical-genetic interaction profile. Each
314  score could have been positive, indicating agreement in the sign of chemical-genetic and genetic
315 interactions for a gene mutant, or negative, indicating that the interactions did not agree for that
316  gene mutant. As such, the importance scores summarized the concordance between chemical-
317  genetic and genetic interaction profiles, conditioned on an individual compound and a perturbed
318  bioprocess of interest.

319 We use the prediction of NPD4142, a compound from the RIKEN Natural Product

320  Depository, to the “mRNA transport” bioprocess to illustrate how the overlap between chemical-
321  genetic and genetic interactions led to bioprocess predictions (Fig 4A). A qualitative examination
322 revealed that, indeed, NPD4142 possessed a pattern of chemical-genetic interactions similar to
323  the genetic interactions for the query genes annotated to mRNA transport. More quantitatively
324  and as expected, we observed that the contribution of each gene mutant to a bioprocess

325  prediction depended on the strength of its chemical-genetic interaction with NPD4142 and the
326  number and intensity of its genetic interactions with the mRNA transport query genes. Chemical-
327  genetic interactions with mutants of POM152, NUP133, and NUP188, which encode

328  components of the nuclear pore that facilitate import and export of molecules such as mRNA,
329  were the most important, followed by interactions with mutants in the Lsm1-7-Patl complex,
330  which is involved in the degradation of cytoplasmic mRNA.

331 Using this approach to assess the importance of individual mutants in the chemical-genetic
332 profile, we globally analyzed the contribution of chemical-genetic interactions to each

333 compound’s top bioprocess prediction (Fig 5). We performed this analysis twice: first, on all
334  HCS compounds, and second, on a diverse subset of 130 compounds to correct for potential

335 functional biases in the full set [11]. We present here the results from the 130-compound subset,
336 although the results for the full set were qualitatively similar. For each compound, an average of
337  42% of its chemical-genetic interactions contributed to its top bioprocess prediction (chemical-
338  genetic interaction cutoff £ 2.5, importance score cutoff +0.1) — a fraction that increased

339  substantially (to 78%) when limiting the analysis to each compound’s strong interactions that

340  contributed strongly (chemical-genetic interaction cutoff & 5, importance score cutoff +0.5).
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341 Overall, we observed that more than one-third of chemical-genetic interactions (1112 /3129)
342 contributed to a top bioprocess prediction (chemical-genetic interaction cutoff +2.5; importance
343  score cutoff +0.1). Strikingly, negative chemical-genetic interactions much more frequently

344  contributed to a bioprocess prediction: approximately one-half (1071 /2112) of negative

345  chemical-genetic interactions contributed as compared to only ~4% (41 / 1017) of positive

346  chemical-genetic interactions at the same cutoff. Furthermore, we observed differences in how
347  the signs within chemical-genetic and mean genetic interaction profiles could disagree with each
348  other despite the global profile similarity that led to bioprocess prediction, with positive

349  chemical-genetic interactions contributing negatively to bioprocess predictions (importance score
350  cutoff <—0.1) over 10 times more frequently than negative interactions (1.9% vs. 0.14%). This
351  trend of negative chemical-genetic interactions supporting strong bioprocess predictions was
352  even more pronounced when restricting this analysis to strong interactions (chemical-genetic
353  interaction cutoff £5; importance score cutoff +0.5), where negative interactions comprised

354  essentially the entire set of contributing chemical-genetic interactions (219 / 220, 99.5%). These
355  observations were also supported by analyses in which we predicted perturbed bioprocesses

356  using only negative or positive chemical-genetic interactions, finding that negative chemical-
357  genetic interactions were the primary drivers of bioprocess predictions and overwhelmingly

358  responsible for their accuracy [11]. We conclude that negative interactions in chemical-genetic
359 interaction profiles contain the large majority of the functional information necessary to predict
360  modes of action.

361 Negative chemical-genetic interactions also contained information specific to chemical

362  perturbations. Specifically, we identified nine mutant strains that exhibited strong negative

363  chemical genetic interactions (z-score < —5) yet were enriched for a lack of contribution

364  (importance score < 0.1) to bioprocess predictions (hypergeometric test, Benjamini-Hochberg
365 FDR <0.05; shaded region of Fig 5). Manual inspection of these mutants revealed connections
366  to the high osmolarity glycol (HOG) pathway, cell polarity (cytoskeletal actin polarization,

367  kinetochore and chromosome segregation), and other stress response mechanisms (Table S2). As
368  the HOG pathway is important for the cellular response to high osmolarity and other stresses
369  [18-20], and repolarization of the cytoskeleton is required for cells to adapt and continue

370  dividing after stress [21,22], we hypothesize that many of these overrepresented mutants interact

371  negatively with compounds due to an impaired ability to respond to external stress. This
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372  chemical perturbation-specific information may complement or even completely obscure the
373  chemical-genetic signature of a compound’s primary mode of action, potentially complicating
374  the interpretation of chemical-genetic interaction profiles using a genetic interaction network.
375 We compared the concordance of chemical-genetic and genetic interaction profiles across
376  multiple compounds predicted to the same bioprocess, revealing that some bioprocesses were
377  predicted by homogenous sets of chemical-genetic interaction profiles while others were much
378  more heterogeneous despite their predicted targeting of the same bioprocess. For example,

379  predictions made to the “CVT pathway” (FDR < 1%) depended almost entirely on a suite of
380  strong negative chemical-genetic interactions with ARLI, ARL3, and ERV 13, with contributions
381  from IRS4 and COGS8 (Fig 4B). This uniformity in the prediction of a bioprocess is contrasted by
382  the diversity of profiles captured within “tubulin complex assembly” predictions (Fig 4C).

383  Compounds with top predictions to this term could potentially be partitioned into three classes,
384  divided according to strong contributions from: 1) CINI/TUB3, PAN3/CIN4, and the SWR1
385  complex (known tubulin polymerization inhibitors Benomyl and Nocodazole); 2) CIN1/TUB3
386  and DSE2 (NPD4098 and NPD2784); or 3) only CINI/TUB3 (all remaining compounds except
387  NPD4619). Interestingly, the structures of the compounds in each of the former two groups are
388  distinct from those in the other groups, suggesting that the observed diversity in these

389  compounds’ functional profiles is mechanistically derived from their structures.
390 Experimental validation of compound-bioprocess predictions

391  Phenotypic analysis of cell cycle progression. The genes and pathways that govern the cell

392  cycle are highly conserved throughout eukaryotes, enabling researchers to infer from yeast how
393  cells in higher organisms integrate internal and external signals to decide when to divide [23]. As
394  such, compounds that inhibit the progression of the cell cycle in yeast may enable a better

395  understanding of the eukaryotic cell cycle or even form the basis for new therapeutic approaches
396  for cancer, in which the cell division cycle is dysregulated [24,25]. We observed that compounds
397  from the RIKEN Natural Product Depository were enriched for predictions to cell cycle-related
398  Dbioprocesses [11], especially to the “mitotic spindle assembly checkpoint” that occurs at the

399  beginning of M phase. After manual inspection of these compounds’ chemical-genetic

400 interaction profiles, we selected 17 to test if our predictions validated experimentally.

401  Specifically, we looked for increases in the percentage of cells in the G2 phase of the cell cycle
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402  (via fluorescence-activated cell sorting) and two budding phenotypes (bud size and % cells with
403  large buds) for yeast treated with compound, together indicative of arrest at the G2/M checkpoint
404  of the cell cycle (Fig 6A-C). Indeed, 6 of the 17 selected compounds induced increases in all
405  phenotypes, while zero out of 10 bioactive control compounds (with high-confidence predictions
406  to bioprocesses not related to cell cycle signaling and progression) induced increases in any of
407  these phenotypes (p < 0.05, one-sided Fisher exact test). As compounds can activate the G2/M
408  checkpoint in multiple ways (e.g. induction of DNA damage, inhibition of chromosome

409  segregation), the set of compounds with spindle assembly checkpoint predictions can serve as a
410  resource for studying the diversity of mechanisms by which cell cycle progression is arrested at
411  this checkpoint and which of these may have therapeutic potential. In addition to our study of
412  G2/M checkpoint-activating compounds, we also selected two compounds with high-confidence
413  predictions to the term “cell-cycle phase” (mutually exclusive with mitotic spindle assembly

414  checkpoint), one of which (NPD7834) was observed to arrest cells in G1 phase (Fig 6A-C).

415  Inhibition of tubulin polymerization. Compounds that disrupt microtubules are useful for

416  studying cell organization and division and remain promising candidates as antitumor agents
417  [26-28]. As such, we focused on all compounds with the strongest predictions to “tubulin

418  complex assembly” (FDR < 1%) and tested them for activity in an in vitro, mammalian (porcine)
419  tubulin polymerization assay (Fig 6D). Like the previous validation experiment, a negative

420  control set of compounds was selected at random to contain high-confidence compounds

421  (bioprocess predictions with FDR < 25%) whose predictions were not related to microtubule
422  assembly or related bioprocesses. We observed that the novel compound NPD2784 strongly

423  inhibited tubulin polymerization, nearly as well as the drug nocodazole and more strongly than
424  the microtubule probe benomyl. In addition, the entire set of compounds predicted to perturb
425  tubulin complex assembly showed significantly increased inhibition of tubulin polymerization
426  when compared to the negative control compounds (p < 0.006, Wilcoxon rank-sum test).

427  Strikingly, all previously-uncharacterized members of this set would not have been discovered
428  using a structure similarity-based approach, as the highest structural similarity between any NPD
429  compound and six compounds representative of major classes of microtubule-perturbing agents
430  did not exceed 0.25 (Fig 6E) [29]. However, we did observe that structural similarity was

431  predictive of the top 20% of chemical-genetic profile similarities among the compounds selected

432 for validation (AUPR = 0.43 vs. 0.2 for a random classifier), suggesting that their slight
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differences in function inside the cell are influenced by their structures and that further
exploration of compounds with similar structures may yield even more tubulin polymerization
inhibitors. With this experimental validation, we have demonstrated the ability of CG-TARGET,
and a genetic interaction network in general, to capture a shared mode of action across diverse
compounds that can be biochemically-validated. Furthermore, we note that this validation was
achieved with a mammalian tubulin assay, demonstrating the power of yeast chemical genomics
coupled with CG-TARGET to predict modes of action that translate broadly to other species,

including mammalian systems.

Discussion

The scaling of chemical-genetic interaction screens from tens or hundreds of compounds to
tens of thousands of compounds has provided the opportunity, and the necessity, to develop
better methods for interpreting the interaction profiles and prioritizing high-confidence
compounds. We developed a method, CG-TARGET, to address this need and used it to predict
perturbed biological processes for the nearly 14,000 compounds interrogated in our recent high-
throughput chemical-genetic interaction screen [11]. CG-TARGET demonstrated the ability to
recapitulate known compound function while controlling the false discovery rate, enabling high-
confidence mode-of-action prediction for 1522 largely uncharacterized compounds [11], which
we prioritized for further study. Further investigation of the profiles from these high-confidence
compounds revealed broad compatibility between chemical-genetic and genetic interaction
profiles, the overwhelming basis of which was contributed by negative chemical-genetic
interactions. Some interesting exceptions to this compatibility were observed for genes that may
reduce the ability of compounds to deal with external stress. We experimentally confirmed the
accuracy of our predictions for two different classes of previously uncharacterized compounds —
tubulin polymerization inhibitors and mitotic checkpoint inhibitors — and demonstrated the
ability of CG-TARGET to predict activity against a conserved mammalian target. In addition to
these findings, the predictions made using CG-TARGET were experimentally validated on a
large scale for 67 compounds in an orthogonal cell cycle assay and revealed insights into the
distribution of functions perturbed by compounds in large compound libraries, which is

described in the companion paper [11].
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462 In high-throughput chemical screens, it is important to prioritize the compounds most likely
463  to demonstrate desired biological activity in further studies. While CG-TARGET and a baseline,
464  enrichment-based approach achieved similar performance in ranking gold-standard bioprocess
465  annotations for simulated chemical-genetic interaction profiles and compounds with known

466  modes of action, CG-TARGET outperformed the baseline approach with regard to controlling
467  the false discovery rate, discovering two orders of magnitude more compounds at a false

468  discovery rate of 25%. As a result, CG-TARGET was substantially better than the baseline

469  approach at accurately annotating, with high confidence, compounds with known modes of

470  action. The fact that our genetic interaction-based predictions were both accurate and achieved
471  appropriate control of the false discovery rate is important, as the global genetic interaction

472  network provides a much more comprehensive and unbiased resource than the limited set of gold
473  standard compounds for predicting bioprocesses perturbed by compounds. In addition, predicting
474  compound function at the bioprocess level allowed functional characterization of compounds
475  whose effects in cells did not occur via direct action on protein targets (e.g. damaging DNA or
476  disrupting cell membranes,), which would have been impossible with a method based purely on
477  comparing chemical-genetic and genetic interaction profiles.

478 While we demonstrated the ability to predict perturbed bioprocesses for compounds and

479  prioritize the highest-confidence predictions, many further steps are required to identify lead

480  compounds and ultimately develop molecular probes or pharmaceutical agents. Perturbing a

481  biological process does not necessarily require perturbing a specific protein target, and as such,
482  further refinements to our methods are needed to identify specific molecular targets (i.e.

483  proteins) and prioritize the compounds most likely to perturb a small number of defined targets
484  in the cell. We envision the use of multiple functional standards with CG-TARGET, such as

485  biological processes and protein complexes as demonstrated here, to improve our ability to

486  predict compound mode of action at different levels of resolution and predict the compounds that
487  exert specific versus general effects in the cell. Different modes of chemical-genetic interaction
488  screening can provide support in this endeavor, as heterozygous diploid mutant strains, gene
489  overexpression strains, and/or spontaneous compound-resistant mutants can provide evidence for
490 the direct, essential cellular target(s) of a compound [1,7]. Regardless of the limitations in

491  predicting precise molecular targets, information about the bioprocesses perturbed by an entire
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492  library would be useful in selecting the compounds most amenable to activity optimization and
493  off-target effect minimization in the development of a pharmaceutical agent or molecular probe.
494 The approach described here can be translated to work in other species for which obtaining
495  functional information on compounds would be useful. For example, genome-wide deletion

496  collections have been developed for Escherichia coli [30] and Schizosaccharomyces pombe [31]
497  and used to perform chemical-genetic interaction screens [32,33] as well as genetic interaction
498  mapping [34-37]. Such efforts are even underway in human cell lines, enabled by genome-wide
499  CRISPR screens [38—41]. Furthermore, future efforts to interpret chemical-genetic interaction
500  profiles in a new species need not wait for the completion of a comprehensive, all-by-all genetic
501 interaction network as exists in S. cerevisiae, as our work highlights the ability of a diagnostic set
502  of gene mutants to capture functional information and predict perturbed biological processes.
503  From the discovery of urgently-needed antibacterial or antifungal agents, to the treatment of

504  orphan diseases or a better understanding of drug and chemical toxicity, the combination of

505  chemical-genetic and genetic interactions in a high-throughput format, with appropriate analysis
506  tools, offers a means to achieve these goals via the discovery of new compounds with previously

507  uncharacterized modes of action.

508 Materials and Methods

509 Datasets

510 Chemical-genetic interaction data. Chemical-genetic interaction profiles were obtained from a
511  recent study [11], in which nearly 14,000 compounds were screened for chemical-genetic

512 interactions across ~300 haploid yeast gene deletion strains. The chemical-genetic interaction
513 profiles consisted of two sub-datasets: 1) the “RIKEN” dataset, containing chemical-genetic

514  interaction profiles spanning 289 deletion strains for 8418 compounds from the RIKEN Natural
515  Product Depository [12] and 5724 negative experimental controls (solvent control, DMSO); and
516  2) the “NCI/NIH/GSK” dataset, containing chemical-genetic interactions spanning 282 deletion
517  strains for 3565 compounds from the NCI Open Chemical Repository, the NIH Clinical

518  Collection, and the GSK kinase inhibitor collection [13], as well as 2128 negative experimental
519  control profiles. The solvent control profiles consisted of biological and technical replicate

520  profiles.
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521  Genetic interaction data. The genetic interaction dataset was obtained from a recently

522  assembled S. cerevisiae genetic interaction map [5,9]; it was filtered to contain quantitative

523  fitness observations for double mutants obtained upon crossing 1505 high-signal query gene
524  mutants into an array of 3827 array gene mutants. The procedure for selecting the 1505 high-
525  signal query genes out of the larger pool of 4382 is described in [11]. Briefly, each query profile
526  was required to possess at least 40 significant genetic interactions, a sum of cosine similarity
527  scores with all other query profiles greater than 2, and a sum of inner products with all other
528  query profiles greater than 2. The final genetic interaction dataset used in this study was filtered

529  to contain only array strains present in the chemical-genetic interaction datasets.

530 GO Biological Processes and protein complexes. A subset of terms from the “biological

531  process” ontology within the Gene Ontology annotations [17] were used as the bioprocesses.

532 Query genes from the S. cerevisiae genetic interaction dataset were mapped to biological process
533  terms using annotations from the Saccharomyces cerevisiae Genome Database [16]. Both gene
534  ontology and S. cerevisiae annotations were downloaded on September 12, 2013 from their

535  respective databases via Bioconductor in R [42]. Terms were propagated using “is_a”

536  relationships, such that each gene was also annotated to all parents of its direct biological process
537  annotations. The final set of bioprocesses consisted of the terms with 4 — 200 gene annotations
538  from the set of 1505 high-signal query genes in the genetic interaction dataset.

539 Protein complex annotations were obtained from [9]. Complexes with 3 or more genes

540  annotated to them were used as the input biological processes for CG-TARGET-based protein

541  complex predictions.

542  Gold-standard compound-process annotations. Biological processes were assigned to 35
543  primarily antifungal compounds with chemical-genetic interaction profiles in the RIKEN dataset,
544  based on known information about their modes of action. Bioprocess terms were selected to be

545  specific to the compounds’ modes of action where applicable.

546  Predicting perturbed bioprocesses from chemical-genetic interaction profiles
547 Our method to predict biological processes perturbed by compounds is briefly summarized in
548  the recent study from which the chemical-genetic interaction profiles were obtained [11], and is

549  more formally described here. Fig S4 provides a schematic representation of the method.

550  Notation. We first clarify here a few uses of mathematical notation that simplify the explanation
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551  of the methods. First, the i row and column vectors of a matrix 4 are denoted as A, + and A+,
552 respectively. Second, the Iverson bracket is used to convert logical propositions into values of 1
553  or 0, depending on if the logical proposition is true or false, respectively. This is used to simplify
554  expressions for counting the number of elements in a vector that meet given criteria. Specifically,

555  for alogical proposition L, the definition of the Iverson bracket is:

_ (1 ifListrue
3356 [L]_{o if L is false

557 (Egn. 1).
558  Data representation and overview of procedure. CG-TARGET requires chemical-genetic

559 interaction profiles, genetic interaction profiles, and a mapping from genes to biological

560  processes, all of which will be represented as matrices here (illustrated in Fig S4, along with

561  example matrix dimensions and a graphical description of the bioprocess prediction procedure).
562  For chemical-genetic interaction matrices, let us consider an n, X n, matrix of compound

563  treatment profiles Cq, an n, X ng matrix of negative experimental control profiles Cs, and an n, x
564  n, matrix of resampled profiles C,, where n,, is the number of mutant strains in each chemical-
565  genetic interaction profile, n, is the number of profiles derived from treatment with compound,
566  ngis the number of profiles derived from negative experimental controls, and n, is the number of
567  chemical-genetic interaction profiles resampled from C,. The matrix G of genetic interaction
568  profiles is n, X ny and the binary matrix B of gene to bioprocess mappings is 1y X 1p, Where n,, s
569  the number of mutant strains in the chemical-genetic interaction and genetic interaction profiles,
570  n4 is the number of genetic interaction profiles, and 7, is the number of bioprocesses in B

571  annotated from the n, genetic interaction profiles in G.

572 To predict perturbed biological processes, chemical-genetic interaction matrices for each

573  profile type a € {a, f, y} are first converted to matrices of compound-gene similarity scores and
574  then to matrices containing the sums of these compound-gene similarity scores for each

575  compound-process pair. Three different z-score/p-value matrix pairs are then computed for each
576  profile type a, two of which are derived from the control chemical-genetic interaction profile
577  types b & {p, y} (“control-derived” z-scores/p-values) and one of which is derived by

578  randomizing the scores within each compound’s vector of compound-gene similarity scores

579  (“within-compound” z-scores/p-values, denoted as o). The z-score and p-value matrices across

580  all scoring approaches ¢ & {p, y, 0} are then combined into a final z-score/p-value matrix pair
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for each profile type a. The false discovery rate is estimated by comparing the rate of prediction
for the treatment profiles a against that of the control profiles b € {f, y} across a range of p-

value thresholds. For the comparison of CG-TARGET to an enrichment-based approach, one
enrichment factor/p-value matrix pair replaces the final z-score/p-value matrix pair for each

profile type a, with the same false discovery rate calculations occurring afterward.

Resampled chemical-genetic interaction profiles. An 7, x n, matrix of resampled chemical-
genetic interaction profiles C,is constructed such that interaction scores for each gene are
sampled randomly with replacement across the chemical-genetic interaction profiles. Assuming
that rand(x) is a function to randomly sample one value from the set of integers x in a uniformly
random fashion, and {1..n,} is the set of integers between and including 1 and 7., the interaction

score for the i mutant in the j" resampled profile is denoted by:

(CY)L]- = (Ca)i, rand({1.n4})
(Eqn. 2).

Mapping the similarity between chemical-genetic and genetic interaction profiles onto
biological processes. Scores reflecting the concordance between chemical-genetic and genetic
interaction profiles were derived by taking the inner product between each chemical-genetic
interaction profile and each L,-normalized genetic interaction profile. As such, a column-

normalized genetic interaction matrix G’ is constructed from the genetic interaction matrix G by:

(Eqn. 3).
Matrices S« (na X ng), Sp (np X ny), and Sk (n, X ny), containing the similarity scores between the
genetic interaction profiles and the profiles from each compound-treated, negative experimental
control, and resampled condition, respectively, are then generated as denoted by (where the

superscript 7 indicates the matrix transpose):

Se = (CTG; Sp=(Cp) 65 s, =(¢,) ¢
(Eqn. 4).
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610 To map these similarity scores onto biological processes, the inner product is taken between
611  each row vector of compound-gene similarity scores (from S,, Sp, and S,) and the column vector
612  of binary gene annotations from each bioprocess in matrix B. This generates matrices Xy (714 X
613 mp), Xp (npx np), and X, (n, X np) that contain the sum of gene similarity scores within each

614  biological process for each compound treatment, negative experimental control, and resampled
615  condition, respectively. These matrices are denoted by:

616

618 Xo =SoB; Xp = SgB; X, =S,B

617 (Eqgn. 5).

619  Computing biological process predictions with CG-TARGET. Once the compound-gene
620  similarity scores are mapped onto biological processes and summed into compound-process

621  scores, we compute z-score matrices Z(,» and empirical p-value matrices Pzxq, »), where a

622  denotes the type of profile we are predicting bioprocesses for and b denotes the type of control
623  distribution used to compute the z-scores and p-values. For two of the values of b (a and f),

624  these scores are “control-derived,” as we compare each compound-process score (X,);; to the
625  distribution of control profile compound-process scores (X»)+; within the respective j

626  bioprocess. For the remaining value of b (), we refer to these scores as “within-compound,” as
627  we compare the i compound’s average compound-gene similarity score within genes annotated
628  to the /™ bioprocess (X,)i/d; (where d; is the size of the j bioprocess) to the distribution of

629  compound-gene similarity scores (S,);« for the i compound.

630 The computation of each control-derived z-score requires an estimate of the mean and

631  standard deviation of the compound-process scores within each bioprocess for both the negative
632  experimental control and resampled profiles. The length 7, mean vector u; and standard

633  deviation vector v, for each control profile type b & {f, y} are thus defined as:

634

np

1
b 4
i=1

1 & 2
— 12((Xb)i,j - (ub)j)

636 W) = |-
b
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637 (Eqn. 6).
638  Z-score matrices derived using both types of control profile are computed for all compound

639 treatment, negative experimental control, and resampled profile conditions, yielding six z-score
640  matrices. These matrices, one for each combination of profile type a € {a, f, y} and control

641  profile type b & {p, y}, are defined as:
(Xa)ij — (up);

642 Z* =
643 (Eqgn. 7).
644 The control-derived p-values are computed by counting the number of times that a

645  compound-process score (X,);; for the i compound and ;" bioprocess is less than the
646  corresponding control-derived compound-process scores (X5)+,. Again, this yields six p-value
647  matrices, one for each combination of profile type a € {a, B, y} and control profile type b & {p,

648 v}, which are given by:

649
1
650 (PZ*(a,b))l-']- = n_Z[(Xa)i,j < (Xb)k,j]
bi=1
651 (Eqn. 8).
652 The within-compound z-score is computed for each pair of i compound and ;™ bioprocess

653 by comparing the mean of the i compound’s similarity scores with genes in the bioprocess to
654  the mean and standard deviation of the i compound’s similarity scores across all genes. To

655  perform this calculation, length n, mean and standard deviation vectors w, and y., respectively,
656  are generated, as well as a length n, vector d that contains the number of genes annotated to each
657  bioprocess in B. Z(,s refers to the matrix of z-scores for each profile of type a € {a, B, 7}

658  computed using the within-compound z-score approach (represented by J) and given by:

659

Ng
1
660 (W) = —Z(Sa)i.j
Ng 4
j=1

661
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Ngq
1 2
662 (i = > ()i = way)
ng — 14
j=1
663
Ngq
i=1
664
% (Xa)i,j/dj - (Wa)i
J (.Va)i/\/d_j
667 (Eqn. 9).
668 For each compound-process pair, the within-compound empirical p-value is computed for

669  each profile type a € {a, f, y} by randomly permuting the compound’s compound-gene

670  similarity scores, re-computing within-compound z-scores, and counting the number of times
671  that the z-scores derived from randomly-permuted compound-gene similarity scores are greater
672  than the observed compound-process z-score. This calculation conveniently reduces to a

673  comparison of the sum of observed vs. permuted compound-gene similarity scores for genes in
674  the respective bioprocess, as the number of genes that map to the bioprocess (d;) and the mean
675  ((wa)i) and standard deviation ((y4);) of compound-gene similarity scores do not change upon
676  permutation of the compound-gene similarity scores. Permuted matrices of compound-gene

677  similarity scores are denoted by %S, which represents, for profile type a, the k" row-wise

678  permutation of the compound-gene similarity score matrix. Each resulting matrix that contains
679  the sums of compound-gene similarity scores for all compound-process pairs with respect to

680  random permutation k is denoted by “X,. Across n; permutations, the within-compound empirical
681  p-value for each profile type a < {a, f, y} (within-compound p-value signified by subscript J) is
682  denoted by:

683 kX, = *S,B
684
n
1 k
685 (PZ*(a,é‘))l-']- = n_lz [(Xa)i,]' = ( Xa)l"]-]
k=1

686 (Eqn. 10).
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687 Ultimately, the different p-values and z-scores for each compound-process pair are combined
688  into one p-value and z-score for that pair. These scores are combined such that the largest (least
689  significant) p-value is chosen along with its associated z-score. If multiple p-values tie for the
690 largest value, then the one with the smallest associated z-score is chosen. As such, the resulting
691  combination of p-value and z-score represents the most conservative estimate of the strength and
692  significance of the prediction from compound to perturbed biological process.

693 To combine the p-values and z-scores, a matrix Psource, for each profile type a € {a, B, v}
694  is first created to determine, for each compound-process pair, which p-value and z-score matrices
695  will contribute the final p-value and z-score. For each z-score/p-value scoring approach ¢ € {f,

696 7y, 0}, each entry of this matrix is denoted by:

697 fe(e) = (PZ*(a.E))l-']-
699 (Psource,); ; = argmin f7(b") where b’ € argmax fp(b)
be(B,y.8)
700 (Eqgn. 11).
701 The resulting final p-value and z-score matrices for each profile type a € (a, f, y) are then:
702 (Z(a))i']' = (ZEa,(Psourcea)i,j))l.].
703 (PZ(a))l-']- = (PZ*(a,(Psourcea)i,j))l.'].
704 (Eqn. 12).

705  Computing biological process enrichments. An enrichment-based method for predicting

706  biological processes perturbed by compounds was also implemented to provide an appropriate
707  Dbaseline for assessing the performance of CG-TARGET. This enrichment-based method

708  computes biological process enrichment within the genes that contribute the top » out of n,

709  compound-gene similarity scores for each compound (from each compound-gene similarity score
710  matrix X, for profile types a < {a, f, y}). Ultimately, two sets of matrices are computed, E )
711 and Pk, which respectively contain the enrichment factor and hypergeometric p-value for each
712 compound and biological process pair. Enrichments were computed for n & {10, 20, 50, 100,

713 200, 300, 400, 600, 800}.
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714 First, a binary matrix X7 is derived from the matrix of compound-gene similarity scores Xa,

715  such that in each row, the positions corresponding to the top n scores are set to 1 and the

716  remaining positions are set to 0. This is denoted as:

717

718

720 (X(tg'i) y = [(Xa)l-,]- > (sortDesc((Xa)i'*))n]

719

721 (Eqn. 13)

722 where (X,);+ is the i row vector of matrix X, and sortDesc(x) is a function that returns the values
723 in a vector x sorted in descending order. The final enrichment factor and p-value matrices are

724  then computed as:

725
726 (E@m). . = ((X(tg'i))i'*B*'j) -
(an) ij - (2 B*']')Tl
727
728 (Pecam),; = 1- hygeCDF(nq,z B.;.m, ((X(tz'i))i'*B*'j) —1)
729 (Eqn. 14)

730  where B+, is the column vector of the binary bioprocess matrix B containing gene annotations for
731  the j" bioprocess, Y. B+, is the number of genes annotated to the /™ bioprocess, and hygeCDF(N,
732 K, n, k) is the cumulative hypergeometric distribution given a population size of N with K

733 success states and » draws with &k observed successes.

734  Estimating the false discovery rate. The false discovery rates of the compound-process

735  predictions are estimated by comparing, using the entire range of observed p-values as

736  thresholds, the number of compounds with at least one bioprocess prediction against the number
737  of experimental controls and resampled profiles with at least one bioprocess prediction. We

738  compute a false discovery rate matrix FDR; for the treatment profiles a against each control

739  profile type b & {f, y}. This FDR, matrix is individually computed for the CG-TARGET-based
740  compound-process predictions as well as for each version of the enrichment-based compound-

741  process predictions (using the p-value matrices Pzq) and Pru,n); for simplicity, we do not change
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742 the notation of FDR;, to reflect if the false discovery rate values were computed on the output
743 from CG-TARGET or our baseline enrichment-based approach.

744 The first step in computing the false discovery rate is obtaining length n, vectors ptop. that
745  contain the smallest p-value within each profile’s bioprocess predictions, for each profile type a
746 < {a, p, y}. Additionally, the union of all observed p-values p.; defines the universe of p-values
747  for which corresponding false discovery rates will be computed. Given p-value matrices P, (Pzu)
748  or Pga,n) for one value of n) and a function sortAsc() that returns the input values sorted in

749  ascending order, the vectors ptop, and p.; are given by:

750 (ptopg); = min((P,);.)
751 Pau = SOrtAsc U (P
i,j,ae{a,ﬁ,y}
752 (Egn. 15).
753 We then compute a mapping from each observed p-value to its corresponding false discovery

754  rate, with mappings generated with respect to each control profile type b & {p, y}. First, a vector
755  of false discovery rates 75 is computed, each value corresponding to a p-value threshold in pa, by
756  dividing the fraction of treatment profiles with one or more bioprocess predictions that pass the
757  threshold by the fraction of control profiles that also pass the threshold. As the p-values in the
758  vector p. are monotonically increasing, it is desirable for the false discovery rate to increase

759  monotonically with the p-value. However, it is possible for the false discovery rate to decrease as
760  p-value increases (if the fraction of treatment profiles passing the threshold increases faster than
761  the fraction of control profiles passing the threshold), and thus we adjust each false discovery
762  rate value in the vector 75 to be the minimum of its current value or any value at a larger index to
763  generate a new vector 75 (similar to the Benjamini-Hochberg procedure [43]). The final p-value
764  to false discovery rate mappings can be written as a function of the p-value p, with the procedure
765  to generate these mappings given by:

766

nlbzyil[(pwpb)i < (a)i]

767 ()i =2
225 wtopa) s < ()]

768 T, = rev (cumMin(rev(rg)))
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769 fror@)(P) = ()i () = )
770 (Egn. 16).
771 Given this mapping of p-value to false discovery rate, the resulting matrices of false

772  discovery rates with respect to control profile types b & {f, y} are given by:

773 (FDRb)i,j = fFDR(b)((Pa)i,]')
774 (Eqn. 17).

775  Computational evaluation of bioprocess predictions

776  Performance on simulated chemical-genetic interaction profiles. We generated a set of

777  simulated chemical-genetic interaction profiles derived from genetic interaction profiles [11].
778  Each simulated chemical-genetic interaction profile was a query genetic interaction profile

779  augmented with noise sampled from a Gaussian distribution with a mean of 0 and a variance for
780  each array gene twice that of the same array gene in the genetic interaction dataset. Three

781  simulated profiles were generated based on each query gene, resulting in 4515 total profiles.
782  Because each simulated chemical-genetic interaction profile was derived from a query genetic
783  interaction profile, it inherited the gold-standard bioprocess annotations from its parent genetic
784  interaction profile in subsequent benchmarking efforts.

785 We then used CG-TARGET and each top-n enrichment method to predict perturbed

786  bioprocesses for this set of 4515 simulated chemicals x 289 deletion mutants. For each simulated
787  chemical, its top bioprocess prediction was compared to the set of inherited gold-standard

788  bioprocess annotations, counting as a true positive if the top prediction matched an existing

789  annotation and a false positive if it did not. Precision-recall curves were then generated by

790  sorting the list of each simulated chemical’s top bioprocess predictions (p-value ascending, z-
791  score or enrichment factor descending) and computing the precision (true positives / (true

792  positives + false positives)) and recall (true positives) at each point in this list.

793  Performance on gold-standard compound-bioprocess annotations. The predicted perturbed
794  bioprocesses for each of the gold-standard compounds were sorted, first in ascending order by
795  their p-value and then descending order by their z-score (for CG-TARGET) or enrichment factor
796  (top-n enrichment), and the rank of each compound’s gold-standard bioprocess annotation was
797  recorded. To assess the significance of each rank, each pair of p-value and z-score was randomly

798  assigned to a new bioprocess (without replacement), the lists re-ordered, and the ranks of each
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799  compound’s target bioprocess re-computed. The empirical p-value for each gold-standard

800  compound-process pair was computed as the number of times the rank from the shuffled

801  bioprocesses achieved the same or better rank as the observed rank, divided by the number of
802  randomizations. These randomizations were also used as a baseline against which to compare the
803  number of compounds (out of 35) that achieved a given rank, as seen in Figs 3 and S1; the

804  displayed ribbons were generated by calculating, for each rank, the relevant percentiles on the
805  distribution of compounds with randomized predictions that achieved that rank. The “effective
806  rank” of a compound’s gold-standard bioprocess annotation was determined as the minimum
807  rank of any bioprocess term with which it possessed sufficient gene annotation similarity

808  (overlap index > 0.4, where the overlap index of two sets is defined as the size of the intersection

809  divided by the size of the smaller set).

810  Characterizing performance with respect to individual bioprocess terms. For each

811  propagated GO biological process term used for bioprocess prediction, we gathered all

812  predictions to that term across the 4515 simulated chemical-genetic interaction profiles and

813  sorted the predictions in ascending order by p-value and then in descending order by z-score. The
814  area under the precision-recall curve (AUPR) was calculated across this sorted list of simulated
815  compounds, with a true positive defined as the occurrence of a simulated compound that was

816  annotated to the bioprocess (via the simulated compound’s parent gene). To obtain the final

817  evaluation statistic for each GO term, this AUPR was divided by the AUPR of a random

818  classifier, which is equal to the number of true positives divided by the total number of simulated

819  compounds.
820  Assessing the compatibility of chemical-genetic and genetic interaction profiles

821  Analysis of bioprocess prediction drivers in chemical-genetic interaction data. Given a

822  compound and a predicted bioprocess, a profile of “importance scores” describes the

823  contribution of each gene mutant to that compound’s bioprocess prediction. To obtain this score,
824  amean genetic interaction profile was first computed across all L;-normalized genetic interaction
825  profiles annotated to the biological process for which the inner product with the compound’s

826  chemical-genetic interaction profile was 2 or greater. The importance score profile was then

827  obtained by taking the Hadamard product (elementwise multiplication) between this mean

828  genetic interaction profile and the compound’s chemical-genetic interaction profile.


https://doi.org/10.1101/111252
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/111252; this version posted May 18, 2018. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

829  Overrepresentation analyses of gene mutants with strong chemical-genetic and/or genetic
830 interactions. After restricting the data to the top biological process prediction for each

831  compound, gene mutants that possessed strong, negative chemical-genetic interaction scores (z-
832  score <-5) were assessed for overrepresentation with respect to the number of times they did not
833  contribute (importance score within +£0.1) to a compound’s top bioprocess prediction.

834  Specifically, the number of times each strain occurred inside and outside the region described
835  above (grey box in Figure 5) was compared to the number of times all strains occurred inside and
836  outside the region using a hypergeometric test, using all strains with interaction z-scores < -5 as

837  the background set. Details on the genes overrepresented in this region are given in Table S2.
838  Experimental validation of compound-bioprocess predictions

839  Phenotypic analysis of cell cycle progression. To examine the effect of compounds on arresting
840  cells in G2/M phase, we looked for differences in budding index and cell DNA content between
841  compounds predicted to perturb the cell cycle versus negative control compounds. Seventeen
842  compounds with high-confidence predictions to the bioprocess term “mitotic spindle assembly
843  checkpoint” and strong negative chemical-genetic interactions with PAT1 and LSM6 (a common
844  signature for compounds with this bioprocess prediction) were selected for validation.

845  Additionally, ten bioactive (growth inhibition 50-80% compared to DMSO control) compounds
846  with high confidence predictions (false discovery rate < 25%) to bioprocess terms not related to
847  cell cycle signaling and progression were selected as negative controls. Two compounds

848  predicted to perturb “cell cycle phase” were also tested in these experiments. All compounds
849  were tested at a concentration of 10 pug/mL, which was also the concentration used for chemical
850  genomic screening [11].

851 To quantify budding index, logarithmically-growing pdriApdr3Asnq2A cells were

852  transferred to fresh galactose-containing medium (YPGal) containing compounds and incubated
853  at 25 °C for 4 hours. The budding status of at least 200 cells was visually determined under the
854  microscope. The percentage of the budded cells in no compound or compound-treated samples
855  was counted.

856 For flow cytometry analysis, log phase pdriApdr3Asng2A cells were grown in YPGal media
857  in the presence or absence of a compound for 4 hours; they were then fixed in 70% ethanol for

858 1 hour at 25 °C. Cells were collected by centrifugation, washed, and resuspended in buffer
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859  containing RNase A (0.25 mg/mL in 50 mM Tris, pH 7.5) for 1.5 hours. Cells were further

860  incubated in 20 pl of 20 mg/ml proteinase K at 50 °C for 1 hour. Samples were then stained with
861  propidium iodide, briefly sonicated, and measured using FACSCalibur ver 2.0 (Becton

862  Dickinson, CA, USA).

863 The proportions of predicted active compounds and negative controls with positive

864  phenotypic results were compared using the prop.test function in R to assess significance.

865  Inhibition of tubulin polymerization. /n vitro tubulin polymerization assays using a

866  fluorescent-based porcine tubulin polymerization assay (Cytoskeleton, BKO11P) were performed
867  following manufacturer specifications. Compounds were tested at a concentration of 10 pg/ml
868  (with the exception of assay controls), which was identical to the concentration used for

869  chemical genomic screening. All ten compounds predicted to perturb “tubulin complex

870  assembly” with the minimum estimated false discovery rate (FDR < 1%) were selected for

871  testing. Twelve compounds with predictions of false discovery rate < 25% to any bioprocess

872  except those related to chromosome segregation, kinetochore, spindle assembly, and

873  microtubules were randomly selected as negative controls.

874 The degree of tubulin polymerization inhibition was summarized in a single Vmax statistic for
875  each compound treatment replicate. The Vmax for each compound’s fluorescence time-course was
876  calculated as the maximum change in fluorescence between consecutive time points, which were
877  measured at 1-minute intervals. Three batches of experiments were performed in total (resulting
878  in N =2 for each compound), and we normalized the Vmax values in each batch by subtracting the
879  difference between that batch’s mean DMSO (solvent control) Vmax and the overall mean DMSO
880  Vmax. To determine if the tubulin-predicted compounds inhibited polymerization to a

881  significantly greater degree than the controls, we calculated the mean of the normalized Viax

882  wvalues for each compound and performed a one-sided Wilcoxon rank-sum to test for a difference
883  in the ranks of these values between the two classes of compounds.

884 Chemical structure similarities between each pair of compounds selected for tubulin

885  polymerization validation were obtained by first computing an all-shortest-paths fingerprint with
886  path length 8 for each compound [44]. Similarities were computed on the fingerprints using the
887  Braun-Blanquet similarity coefficient, which is defined as the size of the intersection divided by

888  the size of the larger set. In a recent study, this combination of structure descriptor and similarity
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889  coefficient performed well when evaluated globally on our entire chemical-genetic interaction
890  dataset [45].
891
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genetic and genetic interaction profiles leads to stronger bioprocess predictions. Each blue box
represents a negative chemical-genetic (i.e. sensitivity) or genetic interaction, while each black
box represents the absence of an interaction. Stronger bioprocess predictions are depicted with a
darker red.

Figure 2. Rate of compound discovery and control of the false discovery rate for the
prediction of bioprocesses from chemical-genetic interaction profiles. Perturbed bioprocesses
were predicted using CG-TARGET for compounds, negative controls (DMSO), and resampled
chemical-genetic interaction profiles from the RIKEN and NCI/NIH/GSK datasets. (A) The
number of compounds, experimental controls, and randomly resampled chemical-genetic
interaction profiles discovered with at least one bioprocess prediction passing the given
significance thresholds, for the RIKEN dataset. (B) DMSO and resampled profile-derived
estimates of the false discovery rate of biological process predictions, for the RIKEN dataset,
given the number of discovered compounds. Values were calculated from (A). (C-D) Same as
(A-B), respectively, but for the NCI/NIH/GSK dataset.

Figure 3. Performance comparison of CG-TARGET versus a baseline enrichment
approach. Perturbed bioprocesses were predicted using both CG-TARGET and a method that
calculated enrichment on the set of each compound’s 20 most similar genetic interaction profiles
(“top 20”). (A) Bioprocess prediction false discovery rate estimates derived from resampled
chemical-genetic interaction profiles, performed on compounds from the RIKEN dataset. (B)
Precision-recall analysis of the ability to recapitulate gold-standard annotations within the set of
top bioprocess predictions for ~4500 simulated compounds. Each simulated compound was
designed to target one query gene in the genetic interaction network and thus inherited gold-
standard biological process annotations from its target gene. (C) For each of 35 well-
characterized compounds in the RIKEN dataset with literature-derived, gold-standard biological
process annotations, we determined the rank of its gold-standard bioprocess within its list of
predictions. The number of compounds for which a given rank (or better) was achieved is
plotted. The grey ribbons represent the median, interquartile range (25" to 75" percentiles), and
95% confidence interval of 10,000 rank permutations.

Figure 4. Detailed analysis of the contribution of individual gene mutants to biological
process predictions. Each panel shows, for a bioprocess and either a compound (A) or a set of
compounds (B-C) predicted to perturb that bioprocess, the subset of the respective chemical-
genetic and L>-normalized genetic interaction profiles with signal. The importance profiles are
the row-wise mean of the Hadamard product (elementwise multiplication) of each chemical-
genetic interaction profile and the genetic interaction profiles for query genes with which it
possessed an inner product of 2 or higher that are annotated to the GO term; they reflect the
strength of each strain’s contribution to the bioprocess prediction. For all panels, a query gene
from the genetic interaction network was selected if it contributed to the importance score
calculation for any selected compound; query genes were ordered from left to right in ascending
order of their inner products (or their average, for B-C) with the selected chemical-genetic
interaction profile(s). Each strain (row) was included if it passed at least one of three criteria: 1)
the magnitude of its mean genetic interaction score across the selected query genes exceeded


https://doi.org/10.1101/111252
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/111252; this version posted May 18, 2018. The copyright holder for this preprint (which was not

certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

1088
1089
1090
1091
1092
1093

1094

1095
1096
1097
1098
1099
1100
1101
1102
1103

1104

1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125

1126

1127

1128
1129

aCC-BY-NC-ND 4.0 International license.

0.04; 2) the magnitude of its chemical-genetic interaction score (for B-C, the mean of such
scores) exceeded 2.5; or 3) its importance score exceeded 0.1 (for B-C, the mean of such scores).
(A) Schematic showing the prediction of the “mRNA transport” bioprocess (GO:0051028) for
chemical compound NPD4142. (B) Schematic showing the prediction of “CVT pathway” (FDR
< 1%) for compounds whose top prediction was to that term. (C) Schematic showing the
prediction of “tubulin complex assembly” (FDR <1%).

Figure 5. Global visualization of the contribution of chemical-genetic interactions to CG-
TARGET bioprocess predictions. Chemical-genetic interaction profiles and their
corresponding importance score profiles (see Fig 4 legend) were gathered for each of 130 diverse
compounds from the high confidence set (FDR < 25%) and their associated top bioprocess
predictions. Importance is plotted as a function of chemical-genetic interaction score. One
thousand points from the regions of lowest density (white) are plotted, with only density plotted
in the remaining higher-density regions. Density increases in order of white, yellow, green, and
violet. The shaded region highlights strains with strong negative (< —5) chemical-genetic
interactions and no contribution (£ 0.1) to a compound’s top bioprocess prediction.

Figure 6. In vivo and in vitro experimental validations of biological process predictions.
(A,B,C) Phenotypic validation of cell cycle-related predictions, performed on drug-
hypersensitive yeast treated with solvent control (DMSO) or compounds predicted to perturb the
cell cycle. (A) Differential interference contrast microscopy (DIC) and fluorescence upon DAPI
staining showing bud size and DNA localization, respectively, after compound treatment. The
scale bar represents a distance of 5 um. (B) FACS analysis of cell populations in different cell
cycle phases at 0, 2, and 4 hours after compound treatment. The green curve overlay represents
the estimated cell population in G1, S and G2/M phases. (C) Budding index percentages induced
by treatment with compound or solvent control. (D) In vitro inhibition of tubulin polymerization
by compounds predicted to perturb “tubulin complex assembly” (FDR < 1%; red) compared to
randomly-selected negative control compounds with high-confidence predictions to bioprocesses
not related to chromosome segregation, kinetochore, spindle assembly, and microtubules (blue).
Vmax values reflecting the maximum rate of tubulin polymerization for each compound from
independent replicate experiments are plotted. Assay positive and negative control compounds
are colored grey. (E) Structural similarity-based hierarchical clustering of compounds tested in
(D). Single linkage was used in combination with (1 — structural similarity) as the distance
metric; as such, the structural similarity of the two most similar compounds at each junction can
be inferred directly from the dendrogram. Compounds predicted to perturb “tubulin complex
assembly” (FDR < 1%) are in bold, and known microtubule-perturbing agents are marked with
an asterisk. Structural similarity was calculated as the Braun-Blanquet similarity coefficient on
all-shortest-path chemical fingerprints of length 8 (see Materials and Methods).

Table legends

Table 1. The number of compounds discovered at selected false discovery rates upon
application of CG-TARGET to data from two large-scale chemical-genetic interaction
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screens. The “RIKEN” screen consisted of 8418 total compounds from the RIKEN Natural
Product Depository, and the “NCI/NIH/GSK” consisted of 3565 compounds across 6 chemical
compound collections from the National Cancer Institute, National Institutes of Health, and
GlaxoSmithKline.

Table 2. Evaluation of predictions made by CG-TARGET, and comparison to a baseline
enrichment approach, for literature-derived, gold-standard compound-process
annotations. The target bioprocess rank was determined by its position in the list of all
bioprocess predictions for each gold-standard compound, with the significance computed
empirically by shuffling the bioprocesses and re-computing the rank (bold p-values indicate
significance, p < 0.05). Asterisks indicate cases in which the false discovery rate of the gold-
standard compound-process prediction was less than 25%. The “top-20 enrichment” approach
was selected as a baseline for comparison. The “effective rank™ of a compound-bioprocess
prediction represents the top rank within the compound’s list of predictions among bioprocesses
that are similar to the original bioprocess.

Supporting figure legends

Figure S1. Performance comparison of CG-TARGET versus baseline enrichment
approaches. Perturbed biological processes were predicted using both CG-TARGET and
methods that calculated enrichment on the set of each compound’s #» most similar genetic
interaction profiles (“top n,” n & {10, 20, 50, 100, 200, 300, 400, 600, 800}). (A) Biological
process prediction false discovery rate estimates derived from resampled chemical-genetic
interaction profiles, performed on compounds from the RIKEN dataset. (B) Precision-recall
analysis of the ability to recapitulate gold-standard annotations within the set of top bioprocess
predictions for ~4500 simulated compounds. Each simulated compound was designed to target
one query gene in the genetic interaction network and thus inherited gold-standard biological
process annotations from its target gene. (C) For each of 35 well-characterized compounds in the
RIKEN dataset with literature-derived, gold-standard biological process annotations, we
determined the rank of its gold-standard bioprocess within its list of predictions. The number of
compounds for which a given rank (or better) was achieved is plotted. The grey ribbons represent
the median, interquartile range (25" to 75" percentiles), and 95% confidence interval of 10,000
rank permutations.

Figure S2. Induced GO hierarchy of the 100 best-performing GO biological process terms,
evaluated using simulated chemical-genetic interaction profiles. Each term was evaluated
using precision-recall statistics (area under the precision-recall curve divided by the area under a
curve produced by a random classifier) to analyze its ability to rank simulated chemical-genetic
interaction profiles from which it was annotated as a gold-standard bioprocess. Green nodes
represent the 100 best-performing GO biological process terms, yellow nodes represent terms for
which predictions were made but did not rank among the top 100, and white nodes represent
terms in the Biological Process ontology that were not selected for bioprocess prediction.
Hovering the mouse over each node reveals its GO ID and name.
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Figure S3. Induced GO hierarchy of the 100 worst-performing GO biological process
terms, evaluated using simulated chemical-genetic interaction profiles. Same as Fig S2, but
for the 100-worst performing GO biological process terms.

Figure S4. Schematic representation of CG-TARGET bioprocess prediction procedure.
Further details on the presented procedures, including equations, are given in “Predicting the
biological processes perturbed by compounds” in Materials and Methods.

Supporting table legends

Table S1. Using protein complexes to refine CG-TARGET GO biological process mode-of-
action predictions. Compounds, GO biological processes, and protein complexes are shown if
the mode-of-action prediction to the protein complex was stronger than that to the associated GO
biological process (comparison first based on p-value, then on z-score in the case of a tie).
Protein complexes were limited to those of size 4 or greater whose gene annotations were a
subset of those for the corresponding GO biological process term. The final column indicates
compounds that did not achieve a false discovery rate of 25% or less for any GO biological
process mode-of-action predictions but did for at least one protein complex prediction (with
“HCS” denoting “high confidence set”).

Table S2. Overrepresentation analysis of mutant strains with strong negative chemical-
genetic interactions and no contribution to top bioprocess predictions. Overrepresentation
within the shaded region of Fig 5 was evaluated using a hypergeometric test to compare the
occurrence of one strain versus all strains inside and outside of the region, with the background
containing only strains that possessed strong (z-score < —5) negative chemical-genetic
interactions. The compounds and top bioprocess predictions associated with each strain’s
occurrences in the region are given, as well as the appropriate background list of strains and
information on the gene deleted in each strain.
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Table 1. The number of compounds discovered at selected false discovery rates upon application of CG-TARGET to data from two
large-scale chemical-genetic interaction screens. The “RIKEN” screen consisted of 8418 total compounds from the RIKEN Natural Product
Depository, and the “NCI/NIH/GSK” consisted of 3565 compounds across 6 chemical compound collections from the National Cancer Institute,
National Institutes of Health, and GlaxoSmithKline.

Dataset RIKEN NCI/NIH/GSK
number of number of
FDR cutoff p-value compounds p-value compounds
0.00 <2x10° 434 <2x10° 352
0.05 2x10° 505 4x10° 405
0.10 8x 107 598 1.6 x 10 494
0.25% 2.8 x10% 848 4.7 x10% 705

*This cutoff is 0.27 for the NCI/NIH/GSK dataset
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Table 2. Evaluation of predictions made by CG-TARGET, and comparison to a baseline enrichment approach, for literature-derived, gold-standard compound-process annotations. The
target bioprocess rank was determined by its position in the list of all bioprocess predictions for each gold-standard compound, with the significance computed empirically by shuffling the bioprocesses
and re-computing the rank (bold p-values indicate significance, p < 0.05). Asterisks indicate cases in which the false discovery rate of the gold-standard compound-process prediction was less than 25%.
The “top-20 enrichment” approach was selected as a baseline for comparison. The “effective rank” of a compound-bioprocess prediction represents the top rank within the compound’s list of predictions
among bioprocesses that are similar to the original bioprocess.

CG-TARGET top-20 enrichment
S GOID GO term Target process ‘ Rank Effective Target process ‘ Rank Effective
rank significance rank rank significance rank
5-Fluorocytosine G0:0032774 RNA biosynthetic process 27 0.0208 2 3 0.0027 1
Aclacinomycin A GO:0071103 DNA conformation change 1 *0.0009 1 86 0.0643 2
Acriflavine G0:0006259 DNA metabolic process 30 *0.0238 1 5 0.0042 1
Benomyl G0:0007017 microtubule-based process 2 *0.0015 2 8 0.0056 2
Blasticidin S GO:0006412 translation 772 0.5842 57 1311 0.9883 247
Bortezomib G0:0030163 protein catabolic process 3 0.0026 1 8 0.0084 1
Brefeldin A GO:0006888 ER to Golgi vesicle-mediated transport 565 0.4207 32 1172 0.8818 169
Caffeine G0:0031929 TOR signaling cascade 1 *0.0007 1 1 0.0007 1
Calcofluor White GO:0071554 cell wall organization or biogenesis 624 0.4675 90 1127 0.8526 176
Camptothecin GO:0071103 DNA conformation change 16 *0.0114 4 6 0.0040 1
Cisplatin GO:0006260 DNA replication 134 0.1018 23 10 0.0071 1
Daunorubicin G0O:0006260 DNA replication 70 0.0530 21 1210 0.9092 178
FK228 GO:0006325 chromatin organization 23 *0.0169 2 17 0.0131 2
Fluconazole G0:0008202 steroid metabolic process 114 0.0870 12 708 0.5333 187
Furazolidone G0:0006260 DNA replication 20 *0.0148 4 5 0.0034 1
Gramicidin S GO:0071554 cell wall organization or biogenesis 286 0.2186 39 1151 0.8705 173
Griseofulvin G0:0007017 microtubule-based process 1291 0.9718 227 750 0.5673 216
Haloperidol G0O:0008202 steroid metabolic process 5 *0.0035 2 37 0.0279 6
Hedamycin G0O:0006281 DNA repair 4 *0.0029 1 3 0.0022 1
Hydroxyurea G0O:0006260 DNA replication 29 0.0239 6 1236 0.9269 1
Itraconazole G0:0008202 steroid metabolic process 234 0.1786 29 696 0.5239 193
Latrunculin B G0:0007010 cytoskeleton organization 11 *0.0083 1 8 0.0068 2
Micafungin GO:0071554 cell wall organization or biogenesis 495 0.3718 47 1134 0.8577 150
Mitomycin G0O:0006260 DNA replication 15 0.0104 4 2 0.0014 1
MMS GO0:0006281 DNA repair 3 *0.0022 1 3 0.0022 1
Mycophenolic acid GO:0006259 DNA metabolic process 1 *0.0006 1 3 0.0025 1
Nigericin G0:0048193 Golgi vesicle transport 157 0.1158 13 1 0.0007 1
Nocodazole G0:0007017 microtubule-based process 2 *0.0015 2 14 0.0100 3
Oligomycin A G0O:0009268 response to pH 9 0.0075 2 2 0.0012 1
Podophyllotoxin G0:0007017 microtubule-based process 53 0.0411 6 800 0.6038 157
Polyoxin D GO:0071554 cell wall organization or biogenesis 1302 0.9788 225 1168 0.8828 173
Rapamycin G0:0031929 TOR signaling cascade 156 0.1140 8 422 0.3117 9
Trichostatin A GO0:0006325 chromatin organization 23 *0.0169 3 24 0.0173 1
Tunicamycin GO0:0070085 glycosylation 1 *0.0005 1 1 0.0005 1
Tyrocidine B GO:0071554 cell wall organization or biogenesis 5 *0.0040 1 2 0.0019 1
Num with significant rank 22 21

Num with significant rank and FDR <25% 16 0
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