

1 **RESEARCH ARTICLE**

2 **Genetic Architecture and Molecular Networks Underlying Leaf**
3 **Thickness in Desert-Adapted Tomato *Solanum pennellii***

4

5 **Viktoriya Coneva¹, Margaret H. Frank¹, Maria A. de Luis Balaguer², Mao Li¹,**
6 **Rosangela Sozzani², Daniel H. Chitwood^{1,3,4}**

7

8 ¹ *Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132,*
9 *USA*

10 ² *Department of Plant and Microbial Biology, North Carolina State University,*
11 *2552A Thomas Hall, Raleigh, NC 27695, USA*

12 ³ *Current address: Independent Researcher, Santa Rosa, CA 95409, USA*

13 ⁴ *Corresponding author: Daniel H. Chitwood, dhchitwood@gmail.com*

14

15 **Author Contributions**

16 VC, MHF and DHC designed the research. VC, MF, MADLB, RS, and ML conducted
17 the experiments and analyzed the data. VC wrote the manuscript with contributions from
18 other authors.

19

20 **One-Sentence Summary**

21 We identified QTL for leaf thickness in desert-adapted tomato and characterized the
22 anatomic and transcriptional alterations associated with this trait using a set of
23 introgression lines.

24

25 **Funding information**

26 This work was supported by funds from the Donald Danforth Plant Science Center. RS is
27 supported by an NSF CAREER grant (MCB-1453130). MHF is supported by an NSF
28 NPGI post-doctoral fellowship (IOS-1523668).

29 **Abstract**

30

31 Thicker leaves allow plants to grow in water-limited conditions. However, our
32 understanding of the genetic underpinnings of this highly functional leaf shape trait is
33 poor. We used a custom-built confocal profilometer to directly measure leaf thickness in
34 a set of introgression lines (ILs) derived from the desert tomato species *Solanum*
35 *pennellii*, and identified quantitative trait loci (QTL). We report evidence of a complex
36 genetic architecture of this trait and roles for both genetic and environmental factors.
37 Several ILs with thick leaves have dramatically elongated palisade mesophyll cells and,
38 in some cases, increased leaf ploidy. We characterized thick ILs 2-5 and 4-3 in detail and
39 found increased mesophyll cell size and leaf ploidy levels, suggesting that
40 endoreduplication underpins leaf thickness in tomato. Next, we queried the
41 transcriptomes and inferred Dynamic Bayesian Networks of gene expression across early
42 leaf ontogeny in these lines to compare the molecular networks that pattern leaf
43 thickness. We show that thick ILs share *S. pennellii*-like expression profiles for putative
44 regulators of cell shape and meristem determinacy, as well as a general signature of cell
45 cycle related gene expression. However, our network data suggest that leaf thickness in
46 these two lines is patterned by at least partially distinct mechanisms. Consistent with this
47 hypothesis, double homozygote lines combining introgression segments from these two
48 ILs show additive phenotypes including thick leaves, higher ploidy levels and larger
49 palisade mesophyll cells. Collectively, these data establish a framework of genetic,
50 anatomical, and molecular mechanisms that pattern leaf thickness in desert-adapted
51 tomato.

52 **Introduction**

53 Leaves are the primary photosynthetic organs of land plants. Quantitative leaf traits have
54 important connections to their physiological functions, and ultimately, to whole plant
55 productivity and survival. While few aspects of leaf morphology have been
56 unambiguously determined as functional (Nicotra et al., 2011), clear associations
57 between leaf traits and variations in climate have been drawn (Wright et al., 2004). Leaf
58 thickness, the distance between the upper (adaxial) and lower (abaxial) leaf surfaces, has
59 been shown to correlate with environmental variables such as water availability,
60 temperature and light quantity. Thus, on a global scale, across habitats and land plant
61 diversity, plants adapted to arid environments tend to have thicker leaves (Wright et al.,
62 2004; Poorter et al., 2009).

63

64 Leaf thickness is a continuous, rather than a categorical, trait. Thus, it is important to
65 distinguish between thickness in the context of “typical” leaf morphology, generally
66 possessing clear dorsiventrality (adaxial/abaxial flattening) in comparison to extremely
67 thick leaves, described as “succulent”, which are often more radial. While the definition
68 of succulence is eco-physiological, rather than morphological (Ogburn and Edwards,
69 2010), at the cellular level it is broadly associated with increased cell size and relative
70 vacuole volume (Gibson, 1982; von Willert et al., 1992). These cellular traits promote the
71 capacity to store water and to survive in dry environments (Becker, 2007). Allometric
72 studies across land plant families have shown that leaf thickness scales specifically with
73 the size of palisade mesophyll cells - the adaxial layer of photosynthetic cells in leaves
74 (Garnier and Laurent, 1994; Roderick et al., 1999; Sack and Frole, 2006; John et al.,
75 2013). Increased palisade cell height leads to increased area of contact with the
76 intercellular space and thereby to improved uptake of carbon dioxide (CO₂) into
77 mesophyll cells (Oguchi et al., 2005; Terashima et al., 2011), possibly offsetting the
78 increased CO₂ diffusion path in thicker leaves. At the organismal level, thicker leaves
79 present a tradeoff between rapid growth versus drought and heat tolerance (Smith et al.,
80 1997). This idea is supported by global correlations between leaf mass per area (LMA), a
81 proxy for leaf thickness, and habits associated with slower growth (Poorter et al., 2009).

82

83 Although leaf thickness is a highly functional trait, mechanistic understanding of how it
84 is patterned during leaf ontogeny is poor. The main cellular events that underpin leaf
85 development are the establishment of adaxial/abaxial polarity, followed by cell division,
86 directional expansion, and differentiation (Effroni et al., 2008). Changes in the relative
87 timing (heterochrony) and duration of these events can impact leaf morphology,
88 including thickness. Several mutants have been identified that show clear alterations in
89 leaf thickness. These include the *Arabidopsis angustifolia* and *rotundifolia3* (Tsuge et al.,
90 1996), as well as *argonaute1*, *phantastica*, and *phabulosa* (Bohmert et al., 1998), which
91 have aberrations in the polarity of cell elongation and the establishment of adaxial/abaxial
92 polarity, respectively, as well as the *N. sylvestris* *fat* and *lam-1* (McHale, 1992, 1993),
93 which affect the extent of periclinal cell division in leaves. However, these
94 developmental mutants do not necessarily inform us of the mechanisms by which natural
95 selection acts to pattern quantitative variation in leaf thickness.

96

97 Efforts to understand the genetic basis of leaf thickness in the context of natural variation
98 face several important challenges. First, direct measurement of leaf thickness at a scale
99 that would allow the investigation of Quantitative Trait Loci (QTL) for the trait is not
100 trivial. Because of the difficulty in measuring leaf thickness directly, LMA is most often
101 used as a proxy for this trait (Poorter et al., 2009; Muir et al., 2014). Second, in addition
102 to genetic components, leaf thickness is environmentally plastic – it is responsive to both
103 the quantity and quality of light (Pieruschka and Poorter, 2012). Finally, because leaf
104 thickness varies on a continuous spectrum and is not associated with any particular
105 phylogenetic lineage or growth habit, mechanistic questions regarding its patterning need
106 to be addressed in a taxon-specific manner.

107

108 With these considerations in mind, we used two members of the tomato clade (*Solanum*
109 sect. *Lycopersicon*), which are closely related, morphologically distinct, and occupy
110 distinct environments (Nakazato et al., 2010) to study the genetic basis and
111 developmental patterning of leaf thickness. The domesticated tomato species *S.*

112 *lycopersicum* inhabits a relatively wide geographic range characterized by warm, wet
113 conditions with little seasonal variation. By contrast, the wild species *S. pennellii* is
114 endemic to coastal regions of the Atacama desert of Peru, a habitat characterized by
115 extremely dry conditions (Nakazato, et al., 2010). The leaves of *S. pennellii* plants,
116 therefore, exhibit morphological and anatomical features that are likely adaptations to dry
117 conditions (McDowell et al., 2011; Haliński et al., 2015), including thick leaves (Koenig
118 et al., 2013). Moreover, a set of homozygous introgression lines (ILs) harboring defined,
119 partially overlapping segments of the *S. pennellii* genome in an otherwise *S. lycopersicum*
120 background (Eshed and Zamir 1995) has been used to successfully map a number of
121 QTL, including fruit metabolite concentrations (Fridman et al., 2004; Schauer et al.,
122 2006), yield (Semel et al., 2006), and leaf shape (Chitwood et al., 2013). Here, we used a
123 custom-built dual confocal profilometer to obtain precise measurements of leaf thickness
124 across the IL panel and identified QTL for this trait in tomato. Leaf thickness correlates
125 with other facets of leaf shape, as well as a suite of traits associated with desiccation
126 tolerance and lower productivity. We investigated the anatomical manifestations of
127 thickness in tomato and found a prominent increase in palisade cell height in many thick
128 ILs. Finally, we inferred comparative gene regulatory networks of early leaf development
129 (plastochron stages P1-P4) in two thick lines using organ-specific RNA-Seq and
130 identified molecular networks that pattern *S. pennellii*-like desert-adapted leaves.

131

132 **Results**

133 **Complex genetic architecture of leaf thickness across *S. pennellii* ILs**

134 To investigate the genetic architecture and patterning of leaf thickness in the *S. pennellii*
135 IL panel, we used a custom-built dual confocal profilometer device (Fig. S1), which
136 generates precise thickness measurements throughout the leaflet lamina at a range of
137 resolutions (0.1 - 1.0 mm²) and at high-throughput. The device makes use of two
138 confocal lasers positioned on either side of the sample and calculates thickness by
139 measuring the distance between each of the sample's surfaces and the corresponding laser
140 probe. Finally, we visualize thickness as a heatmap of thickness values across the surface
141 of the leaf lamina (Fig. 1A).

142

143 We first compared leaflet thickness in *S. lycopersicum* var. M82 and its desert relative *S.*
144 *pennellii* LA0716. Our confocal profilometer measurements showed that *S. pennellii*
145 leaflets are thicker than those of domesticated tomato, as previously reported (Fig. 1,
146 Koenig et al., 2013), demonstrating the capacity of this device to quantitatively detect
147 fine differences in leaf lamina thickness. We compared dynamic growth patterns of the
148 two species under water limited conditions and show that, unlike the domesticated
149 species, *S. pennellii* is unaffected by drought (Fig. 1C). This observation highlights the
150 importance of understanding the patterning of developmental traits in this species, such
151 as leaf thickness, which may contribute to drought tolerance. We proceeded to measure
152 leaf thickness across the *S. pennellii* introgression line panel in field conditions.

153

154 We used mixed linear regression models to compare each of the introgression lines to the
155 domesticated parent M82 (Dataset S1) and found that 31 ILs had significantly thicker
156 leaflets than the M82 parent, while 5 had transgressively thinner leaflets. The overall
157 broad-sense heritability for leaflet thickness is 39.1% (Fig. 2). The lines with thickest
158 leaflets are IL5-4, IL5-3, IL8-1, IL4-3, IL8-1-1 (contained within IL8-1), and IL2-5,
159 while IL4-1-1, IL2-6-5, IL9-1-3, IL12-4-1, and IL2-1 have thinner leaves than the M82
160 parent.

161

162 Based on the observation that the heritability value for leaf thickness is 39.1 %, we
163 reasoned that environmental factors are likely to play a role in modulating leaf thickness.
164 We thus compared our field experiment with leaf thickness data for vegetative leaves of
165 greenhouse-grown plants. We selected 20 ILs, which were highly significant for leaf
166 thickness differences from M82 in field conditions ($p < 0.001$) and observed that only
167 some of these lines are also significantly thicker than the domesticated parent in
168 greenhouse conditions ($p < 0.05$, Fig. S2A). Finally, our observations suggest that leaf
169 thickness varies across the shoot of a number of our select thick leaf ILs with post-
170 flowering leaves having thicker leaves than vegetative leaves (Fig. S2B).

171

172 For each leaflet in our field experiment, we also quantified leaf mass per unit area
173 (LMA), which reflects both thickness and density, and is traditionally used as a proxy for
174 leaf thickness. Although the heritability for LMA is similar to that for thickness (33.2%
175 and 39.1%, respectively), significant QTL for these two traits do not consistently overlap
176 (Dataset S1).

177

178 **Leaf thickness and LMA are correlated with distinct suites of traits in tomato**
179 We generated pairwise correlations between leaflet thickness, LMA, and a suite of other
180 previously published traits including metabolite (MET), morphological (MOR),
181 enzymatic activity in fruit pericarp (ENZ), seed-related (SED), developmental (DEV),
182 and elemental profile-related (ION) (Datasets S2-4, Chitwood et al., 2013 and references
183 therein). Spearman's correlation coefficients with significant q-values ($q < 0.050$) are
184 reported in Fig.2B. Leaf thickness and LMA are correlated ($\rho = 0.423$, $q = 0.003$). Leaf
185 thickness also correlates with leaf shape parameters, such as roundness ($\rho = 0.328$, $q =$
186 0.044), aspect ratio ($\rho = -0.327$, $q = 0.045$), and the first two principal components of
187 the elliptical Fourier descriptors of leaflet shape (EFD.PC1 $\rho = 0.414$, $q = 0.004$ and
188 EFD.PC2 $\rho = 0.406$, $q = 0.005$). Thickness is negatively correlated with several
189 reproductive traits, including yield ($\rho = -0.337$, $q = 0.037$), seed weight ($\rho = -0.342$, $q =$
190 0.033) and seed number per plant ($\rho = -0.339$, $q = 0.036$). Moreover, leaf thickness is
191 negatively correlated with leaf stomatal ratio, the relative density of stomata on the
192 abaxial and adaxial sides of the leaf ($\rho = -0.352$, $q = 0.031$), and positively with
193 glutamate dehydrogenase activity ($\rho = 0.367$, $q = 0.017$) and seed galactinol content
194 ($\rho = 0.342$, $q = 0.048$).

195

196 Leaf mass per area is associated with a distinct suite of traits from leaf thickness. In
197 addition to a positive correlation with the content of some enzymes (GAPDH and
198 Shikimate DE) and metabolites (Glutamate), LMA is significantly negatively correlated
199 with the accumulation of Na and Mg in all leaflets tested. LMA, but not leaf thickness, is
200 also significantly positively correlated with total plant weight, reflecting vegetative
201 biomass accumulation.

202

203 **Thick IL leaves have elongated palisade parenchyma cells**

204 Leaf cross-sections of field-grown M82 and select ILs with increased leaf thickness, as
205 well as greenhouse-grown *S. pennellii* (Sp) leaves were stained with propidium iodide to
206 assess the anatomical changes that lead to increased leaf thickness. We observed that,
207 relative to the M82 parent, the Sp parent and several ILs, have an elongated palisade
208 mesophyll cell layer corresponding to the adaxial layer of photosynthesizing cells in
209 tomato leaves (Fig. 3). Palisade parenchyma elongation is especially dramatic for IL1-3,
210 IL2-5, IL4-3, and IL10-3. Both leaf thickness and palisade elongation phenotypes are
211 attenuated for vegetative leaves of greenhouse-grown plants (Fig. S2, Fig. S3A).

212

213 **Anatomy and early leaf development in select ILs with thick leaves**

214 To capture an overall view into the core mechanisms of leaf thickness patterning, we
215 further analyzed lines IL2-5 and IL4-3. We selected IL2-5 due to its dramatic anatomy in
216 field conditions (Fig. 3) and its lack of other characterized leaf morphology phenotypes
217 (Chitwood et al., 2013), while IL4-3 leaflets are both significantly thicker and less
218 serrated than those of the domesticated parent (Fig. 2; Dataset S1, circularity - the ratio
219 between leaflet area and the square of its perimeter - reflects lobing and serration). To
220 further investigate the relationships between genetic determinants of leaf thickness in
221 these ILs, we generated a double homozygous line combining the entire *S. pennellii*
222 segments of IL2-5 and IL4-3.

223

224 Double homozygotes (IL2-5/IL4-3) have significantly thicker leaves than M82 at both
225 vegetative (Fig. 4A, $p = 0.019$) and post-flowering stages (Fig. S2B) in greenhouse
226 conditions. Additionally, IL2-5/IL4-3 plants have significantly smoother margins than
227 either of the IL parents (Fig. 4B), suggesting additive genetic interactions for both of
228 these traits. We next compared the dimensions of the mesophyll cell layers in each IL and
229 the double homozygote line to determine the contributions each cell layer makes to the
230 observed increase in leaflet thickness. We found that palisade mesophyll cells are
231 significantly larger in IL2-5/IL4-3 than in M82 leaves (Fig. S4). Further, the ratios of

232 palisade cell length to both total leaf thickness and to the length of the spongy mesophyll
233 are significantly larger in IL2-5/IL4-3 than in M82 leaves (Fig. S4). IL2-5 shows similar
234 albeit less pronounced trends as the double homozygote line, while in IL4-3 both spongy
235 and palisade mesophyll cell layers are longer than in M82, with the spongy mesophyll
236 layer making the most significant contribution to leaf thickness.

237

238 Since increases in cell size are often driven by endopolyploidy, we performed flow
239 cytometry on fully expanded vegetative leaves of each genotype and observed increased
240 ploidy profiles in all lines relative to the domesticated parent (Fig. 4C). Notably, the
241 double homozygote line exhibited higher ploidy levels than both single ILs and the *S.*
242 *penellii* parent (Fig. 4C, Fig. S4). Notably, we also observed a trend to increased ploidy
243 in several greenhouse-grown thick ILs (IL7-4-1, IL8-1) (Fig. S3B).

244

245 To understand if alterations in leaf size occur during early stages of leaf ontogeny in
246 these lines, we quantified P3 organ dimensions and compared them with the M82
247 parental line. For this, we assembled 3D confocal reconstructions of vegetative shoot
248 apices, calculated the surface mesh, extracted P3 leaf primordia, and quantified their total
249 volume, length, and mean diameter. We found that IL4-3 P3 leaf primordia are
250 significantly larger than M82 in terms of overall volume ($p = 0.0179$), as well as both
251 length ($p = 0.0035$) and diameter ($p = 0.0230$). In IL2-5 P3 volume (not statistically
252 significant) and diameter ($p = 0.0116$) are increased, while length is comparable to M82.
253 Although P3 primordia of double homozygote plants were statistically indistinguishable
254 from those of M82 plants except for shorter arc length ($p = 0.0411$) (Fig. 4D) our
255 observations also suggest that double homozygote leaves increase in size dramatically
256 between P3 and P4 stages (Fig. S5).

257

258 **Transcriptomic signatures of early leaf development in thicker ILs**

259 To investigate the molecular events that define the patterning of IL2-5 and IL4-3 leaves,
260 we isolated leaf primordia from each IL and the two parents (M82 or Sl and Sp) at four
261 successive stages of development: P1 (containing the shoot apical meristem, SAM, and

262 the youngest leaf primordium), P2, P3 (characterized by leaflet emergence) and P4
263 (typically the onset of cell differentiation) (Fig. 5A). For *S. pennellii*, P1 samples were
264 comprised of the SAM, P1, and P2, since these organs were not separable by hand
265 dissection. Thus, the Sp transcriptomic dataset includes samples designated as P1, P3,
266 and P4. Principal Component Analysis (PCA) of the resulting RNA-Seq data, after
267 normalization and filtering, shows that samples group clearly by organ stage (PC2) (Fig.
268 5B). In addition, PC1 separates *S. pennellii* samples from all other genotypes. To
269 investigate how IL leaves are similar to the Sp parent, we looked for genes that are
270 differentially expressed (DEGs) between corresponding stages of each IL and the M82
271 parent, while also being differentially expressed between M82 and Sp. In other words, we
272 identified the set of DEG for each organ stage that is common to each IL and Sp relative
273 to M82. For P2 we considered only the comparison with M82, as our Sp dataset did not
274 include independently dissected P2 stage primordium samples (Fig. S6, Dataset S5).

275

276 We identified a total of 812 DEGs across P1-P4 stages in IL2-5, and of these, 544 are up-
277 regulated in at least one organ stage, while 269 are down-regulated (Fig. 5C). In IL4-3, we
278 detected 632 DEG, 361 of which are up-regulated and 271 are down-regulated in the IL
279 (Fig. 5C). Many of the DEGs are differentially expressed at more than one stage (Fig. 5C,
280 Dataset S5). Additionally, based on tomato transcription factor (TF) annotation by Suresh
281 et al. (2014), we identified putative transcription factor-encoding genes among each IL's
282 DEG sets. Myb-related, Ethylene Responsive, MADS, and WRKY are the abundant
283 classes of TF-encoding DEGs in IL2-5, while in IL4-3 TFs belonging to bZIP and Myb-
284 related are highly represented families (Fig. S7).

285

286 We identified differentially expressed TF-encoding genes that are common to the two ILs
287 and the Sp parent (Fig. 6), reasoning that some of these can be regulators of leaf
288 thickness. Five of the seven shared TF-encoding genes are up-regulated in the ILs relative
289 to M82. A MADS-box TF (Solyc12g087830) is up-regulated at all stages in both ILs,
290 while two additional inflorescence meristem-related transcription factors, LFY-like
291 (Solyc03g118160) and AP2-like (Solyc07g049490) are differentially expressed at

292 corresponding stages in both ILs. The SHORTROOT-like (SHR-like) GRAS TF
293 Solyc08g014030 is up-regulated at P2 in both ILs, while its expression increases at each
294 progressive stage and peaks at P4 in all genotypes. A putative JASMONATE ZIM-
295 domain protein (JAZ1, Solyc12g009220) is also up-regulated at P2 in both ILs, while a
296 LIM-domain protein (Solyc04g077780) is up-regulated in the ILs at P3 (in IL4-3) and P4
297 (both ILs) (Fig. 6A).

298

299 Next, we compared the expression profiles of genes known to be involved in tomato leaf
300 development (Ichihashi et al., 2014). We selected only genes that are differentially
301 expressed in the same direction in each IL and Sp relative to the domesticated parent
302 M82 and highlighted genes that are common to both thick ILs to arrive at a set of entities
303 that may be core to the patterning of leaf thickness (Fig. 6B). A gibberellin 20-oxidase
304 encoding gene (GA 20-ox, Solyc03g006880) is up-regulated at P3 in both ILs and
305 throughout the P1-P3 interval in IL4-3. A set of two closely related ULTRAPETALA1
306 genes (ULT1, Solyc12g010360 and Solyc12g010370) is down-regulated at all leaf
307 developmental stages in both ILs. A number of leaf development regulators are
308 additionally differentially expressed in either of the ILs. Some noteworthy classes include
309 entities related to auxin metabolism or transport (auxin efflux carrier, IAA-
310 carboxymethyltransferase, YUCCA-like monooxygenase), leaf complexity, lobing and
311 serrations (three BEL1-like TFs, CUC2-like and BOP2-like), meristem maintenance or
312 patterning (two BAM1-like receptor kinases and an AP2-like TF), and cell division and
313 expansion (GRF1 and ROT3-like TFs).

314

315 Similarly, we also queried DEG sets for entities annotated as cell cycle or
316 endoreduplication to assess whether these two thick ILs share a common trajectory of
317 cellular events during leaf ontogeny (Fig. 6C). Overall, we observed distinct expression
318 profiles for these genes in IL2-5 and IL4-3.

319

320 Finally, to broadly characterize the types of processes that may regulate the molecular
321 networks of early leaf development in the ILs we applied GO enrichment analysis

322 (agriGO, Du et al., 2010) (Dataset S6) and identified statistically enriched promoter
323 motifs among the organ-specific DEG sets (Dataset S7). Importantly, we observed that at
324 P4, the set of up-regulated genes in IL2-5 is enriched for biological process terms relating
325 to “photosynthesis” (GO:0015979) and “translation” (GO:0006412), while down-
326 regulated genes at this stage are enriched for terms relating to “DNA binding”
327 (GO:0003677). Our promoter motif analysis showed that motifs associated with
328 regulation by abiotic factors such as light, circadian clock, water availability, and
329 temperature are prominent among IL2-5 DE genes. In addition, binding sites for
330 developmental regulators, hormone-associated promoter motifs, and a cell cycle regulator
331 are among the list of significant motifs. Among development-associated motifs, CArG
332 (MADS-box), BEL1-like (BELL) and SBP-box transcription factor binding sites are also
333 significantly enriched in both IL 2-5 and 4-3 DEG sets. (Fig. S8, Dataset S7).

334

335 **Gene regulatory networks of early leaf development in thick ILs**

336 To detect regulators of early leaf development that each IL (IL2-5 and IL4-3) shares with
337 the *S. pennellii* parent, we inferred Dynamic Bayesian Networks (DBN) using the IL and
338 Sp overlapping DEG sets described in the previous section (de Luis Balaguer et al.,
339 2017). Additionally, we only allowed putative transcription factor-encoding genes
340 (Suresh et al., 2014) as “source” nodes (genes that control the expression of other co-
341 expressed genes). First, we constructed individual networks for each leaf developmental
342 stage, for which an overlap with Sp data is available (P1, P3, P4), and then combined the
343 results to visualize the overall *S. pennellii*-like leaf developmental networks (Fig. 7,
344 Dataset S8). The IL2-5 network (Fig. 7A) contains two major regulators, which are
345 central to more than one developmental stage: a SQUAMOSA promoter-binding protein-
346 like domain gene (SBP-box 04g, Solyc04g064470) and a CONSTANS-like Zinc finger
347 (Zn-finger CO-like 05g, Solyc05g009310) (Dataset S8). Similarly, the IL4-3 network
348 (Fig. 7C) features two central regulators: a BEL1-like homeodomain transcription factor
349 gene (BEL1 04g, Solyc04g080780) and a MADS-box domain-containing gene (MADS-
350 box 12g, Solyc12g087830) (Dataset S8). Importantly, few nodes are shared between the
351 organ-specific networks of IL2-5 and IL4-3. We surveyed each network for shared

352 differentially expressed leaf development genes and found that GA 20-ox 03g
353 (Solyc03g006880) is present in both networks but is regulated by different sets of
354 transcription factors in each IL (Fig. 7B, D).

355

356 We also inferred a second set of networks for each of the ILs by identifying DEGs using
357 similar criteria as above. However, in contrast to the previous set of networks, where
358 genes were separated into organ stages based on differential expression at each discrete
359 stage, we used a clustering approach to group regulators and select co-expressed gene
360 sets according to expression profiles. For these analyses, we also included P2 DEGs (IL
361 vs M82) to ensure continuity of expression profiles (Dataset S9). This approach allowed
362 us to examine a more dynamic view of early developmental processes. The resulting
363 networks (Dataset S9) feature a putative auxin responsive TF AUX/IAA 12g
364 (Solyc12g096980) for both ILs (Fig. 7E, F). Moreover, the AUX/IAA 12g sub-network
365 or IL2-5 includes the SHR-like GRAS domain TF that is up-regulated during leaf
366 development in both ILs (GRAS 08g, Solyc08g014030) (Fig. 6A, Fig. 7E).

367

368 **Discussion**

369 **Leaf thickness has a complex genetic architecture in desert-adapted tomato and is
370 associated with overall leaf shape, desiccation tolerance, and decreased yield**

371 While extensive progress has been made dissecting the molecular-genetic patterning of
372 two-dimensional leaf morphology, relatively little is known about the third dimension of
373 leaf shape – thickness. Here, we used a custom-built dual confocal profilometer to obtain
374 direct measurements of leaf thickness across the *S. pennellii* x *S. lycopersicum* IL panel
375 (Eshed and Zamir, 1995) (Fig. 1, Fig. S1) and identified QTL for this trait (Fig. 2A). We
376 found that nearly half of the ILs have significantly thicker leaves than the domesticated
377 parent M82, while a small number have transgressively thinner leaves. The broad-sense
378 heritability for leaf thickness in this experiment is moderate (39%). Collectively, these
379 observations point to a complex genetic basis for this trait. A previous quantitative
380 genetic analysis of a suite of desert-adaptive traits in the same *S. pennellii* IL panel found
381 fewer significantly thicker lines and lower heritability (12%) for this trait (Muir et al.,

382 2014). However, the previous study estimated thickness as the ratio of LMA to leaflet dry
383 matter content, while we measured thickness directly. Further, our study was conducted
384 in field conditions, while Muir et al. (2014) measured the trait using greenhouse-grown
385 plants. Given that environment significantly affects the magnitude of this trait (Fig. S2) it
386 is not surprising that these studies report only partially overlapping outcomes.

387 In order to understand how variation in leaf thickness relates to other traits, particularly to
388 leaf mass per area, we calculated pairwise correlation coefficients among all leaf shape
389 and elemental profile traits, as well as a collection of previously published traits
390 (summarized in Chitwood et al., 2013; Datasets S3, S4). As expected, leaf thickness and
391 LMA are significantly correlated across the IL panel. However, the two traits have
392 distinct sets of significant trait correlations (Fig. 2B). Collectively, these data suggest that
393 thickness and LMA are likely patterned by separate mechanisms and that direct
394 measurements of leaf thickness are necessary to further dissect the genetic basis of this
395 trait.

396
397 Leaf thickness is significantly correlated with leaf shape traits such as aspect ratio and the
398 first two principal components of elliptical Fourier descriptors of overall shape. However,
399 our data do not establish whether this correlation reflects a common patterning
400 mechanism or developmental and/or mechanical constraints among these traits.

401 Alternatively, the relatively modest correlations (rho values between 0.33 - 0.41) could
402 reflect independent variation in these traits resulting in considerable flexibility in final
403 leaf morphology, as suggested by Muir et al. (2016).

404
405 Leaf thickness is negatively correlated with yield-related traits, which suggests a trade-off
406 between investments in vegetative and reproductive biomass that is further substantiated
407 by the positive correlation between LMA and plant weight (Fig. 2B). Some studies
408 support the hypothesis of a tradeoff between leaf mass per area and rapid growth (Smith
409 et al., 1997; Poorter et al., 2009), while others find poor coordination between growth
410 rate and LMA (Muir et al., 2016). Finally, leaf thickness is significantly correlated with
411 leaf stomatal ratio, glutamate dehydrogenase activity, and galactinol content in seeds, a

412 suite of traits associated with desiccation tolerance in plants (Taji et al., 2002; Lightfoot
413 et al., 2007). We also observed negative correlations between LMA and the accumulation
414 of several elements in leaves, most notably Na and Mg (Fig. 2C). This finding supports
415 the idea that LMA and thickness are distinct traits, and that LMA reflects the material
416 composition of leaves, while leaf thickness is a developmentally patterned trait.

417

418 **Thicker *S. pennellii* IL leaves have elongated palisade mesophyll cells**

419 The observed elongated palisade mesophyll cells in the leaves of several field-grown ILs
420 with significantly thicker leaves (Fig. 3A), as well as in the desert-adapted *S. pennellii*
421 parent suggest that dorsiventral expansion of palisade mesophyll cells contributes most
422 prominently to increased leaf thickness. This hypothesis is supported by the fact that
423 palisade cell height increases more significantly than the total height of the spongy
424 mesophyll in thick leaves of double homozygous IL2-5/IL4-3 lines (Fig. S4). Palisade
425 cell height is positively correlated with photosynthetic efficiency (Niinemets et al., 2009;
426 Terashima et al., 2011) and water storage capacity in succulent CAM (Crassulacean Acid
427 Metabolism) plants (Nelson et al., 2005). Our data also indicate that the magnitudes of
428 palisade cell elongation, as well as overall leaf thickness are modulated by environmental
429 inputs (Fig. 2, Fig. S2). High light has been shown to mediate increased leaf thickness
430 (Poorter et al., 2009; Wuyts et al., 2012; Kalve et al., 2014), as well as specifically
431 palisade cell elongation (Kozuka et al., 2011) in *Arabidopsis*, while elongated palisade
432 cells promote a more efficient distribution of direct light throughout the photosynthetic
433 mesophyll compared with shorter cells (Brodersen et al., 2008; Brodersen and Vogelman
434 2010). Thus, thicker leaves composed of elongated palisade cells may be an adaptation to
435 desert-like dry, direct light environments, whereby the magnitude of these traits is
436 responsive to these environmental cues. Consistent with this hypothesis, we observed that
437 IL2-5 DEG promoters are enriched in motifs that reflect sensitivity to abiotic stimuli,
438 prominently light and water status (Fig. S8, Dataset S7).

439

440 **Mechanisms of cell enlargement in thick ILs: increased ploidy and alterations in cell
441 cycle related gene expression**

442 We compared the size of palisade mesophyll cells in leaf cross sections of thick ILs 2-5,
443 4-3, and a homozygous line combining both introgression segments and observed larger
444 palisade cells compared to M82 (Fig. S4), suggesting a link between leaf thickness and
445 cell size in tomato. Further, we showed significantly higher ploidy levels in the leaves of
446 these lines relative to the domesticated parent (Fig. 4C), indicating that increased
447 endoreduplication may underpin larger cells, and ultimately, thicker leaves. A partially
448 overlapping series of cell division, cell expansion, and cell differentiation events underlie
449 leaf development (Effroni et al., 2008). These processes are tightly coordinated to buffer
450 perturbations in overall organ shape and size (Tsukaya 2003; Beemster et al., 2003).
451 Thus, the relative timing and duration of any of these events can impact leaf size and
452 morphology. Additionally, different tissue types in the leaf can have distinct schedules of
453 cellular events during leaf ontogeny; for example, in *Arabidopsis* palisade mesophyll
454 cells have a shorter window of cell division compared to epidermal cells, and thus an
455 earlier onset of cell expansion and endoreduplication, resulting in differences in cell
456 volumes and geometry (Wuyts et al., 2012; Kalve et al., 2014). Given the prominent
457 contribution of specific cell types to leaf thickness (palisade mesophyll cells in IL2-5, for
458 example, vs both palisade and spongy mesophyll cells in IL4-3 (Fig. S4)), kinematic
459 studies to capture the timing and extent of tissue-specific cell division and
460 endoreduplication are needed to fully address the dynamic cellular basis of leaf thickness
461 patterning. The observed increase in P3 organ volume and thickness in IL4-3 and, to a
462 lesser extent, IL2-5 relative to M82 (Fig. 4D) support the notion that differences in the
463 trajectory of cellular events during early leaf ontogeny may underpin leaf thickness.
464
465 Comparative gene expression profiles of early leaf ontogeny in ILs 2-5 and 4-3 show
466 evidence of *S. pennellii*-like alterations in cell proliferative activity in these thick ILs.
467 Specifically, among a small set of shared differentially expressed genes is a GRAS-
468 domain TF GRAS 08g (Solyc08g014030) up-regulated at P2 in both lines (Fig. 6A,
469 Dataset S5). This gene is closely related to the *Arabidopsis* gene encoding SHORTROOT
470 (SHR) (Huang et al., 2015), which together with another GRAS-domain TF,
471 SCARECROW (SCR), regulates the duration of cell proliferation in leaves (Dhondt et

472 al., 2010). Moreover, consistent with previous reports, IL2-5 and IL4-3 DEGs are
473 enriched for E2F binding site motifs (Dataset S7, Ranjan et al., 2016). E2F transcription
474 factors act downstream of SHR and SCR to regulate progression through the S-phase of
475 the cell cycle (Dhondt et al., 2010). These data support the notion that the extent and/or
476 duration of cell proliferation underpin increased thickness in these lines. Another set of
477 DEGs that distinguish the thick ILs and the Sp parent from domesticated tomato include
478 three genes with predicted functions in regulating the cell cycle and cell expansion
479 activities: a LIM-domain protein (Solyc04g077780), a JAZ1 TF (Solyc12g009220), and a
480 GA 20-oxidase (Solyc03g006880) (Fig. 6). LIM-domain proteins have been implicated in
481 a variety of functions including regulation of the cell cycle and organ size in Arabidopsis
482 (Li et al., 2008). GA 20-oxidase encodes a key GA biosynthetic enzyme, which acts to
483 promote cell elongation (Hisamatsu et al., 2005; De Lucas et al., 2008) and thus,
484 determinacy during leaf morphogenesis of compound leaves, such as those of tomato
485 (Hay et al., 2002). Moreover, JAZ proteins act as transcriptional repressors and are a
486 central hub in the signaling circuit that integrates environmental cues, such as light
487 quality, to balance growth and defense (reviewed in Hou et al., 2013). Finally, it is
488 noteworthy to highlight that abiotic cues such as light quality and ABA have been shown
489 to interact and modulate the activity of GA 20-ox and JAZ, and the Arabidopsis LIM-
490 domain protein DA1, respectively, thereby establishing a conceptual means of
491 environmental regulation of leaf thickness patterning. Taken together with higher
492 endopolyploidy levels, the shared expression patterns for these genes between both thick
493 ILs and the Sp parent suggests that leaf thickness results from an alteration in the
494 trajectory of cellular events during leaf ontogeny, specifically, the duration of cell
495 proliferation, and the timing and extent of cell expansion.

496

497 **Gene expression networks point to distinct leaf ontogeny in ILs 2-5 and 4-3**

498 Since we observed a set of shared DEGs in lines 2-5 and 4-3, we hypothesized that
499 general patterns of leaf ontogeny may also be shared between these lines, suggesting a
500 core shared trajectory of leaf thickness patterning. However, we found that Dynamic
501 Bayesian Networks of gene co-expression in ILs 2-5 and 4-3 are largely distinct (Datasets

502 S8, S9; Fig. 7A, D).

503

504 For example, central to the organ-specific network of IL2-5 is an SBP-box domain gene,
505 SBP 04g (SQUAMOSA promoter binding protein, Solyc04g064470) which is highly
506 expressed throughout leaf development in IL2-5 (Fig. S6, Fig. 7A,B). SBP transcription
507 factors regulate various aspects of plant growth by controlling the rate and timing of
508 developmental events, including leaf initiation rate (reviewed in Preston and Hileman,
509 2013). Further, the promoters of IL2-5 DEGs are enriched for SBP motifs (Dataset S7)
510 supporting the central role of this group of transcription factors during IL2-5 leaf
511 ontogeny. Interestingly, GO terms for “photosynthesis” and “translation” are enriched
512 among P4 up-regulated genes. This observation suggests that processes associated with
513 cell differentiation (i.e. photosynthetic gene function and protein translation) are
514 precociously activated in IL2-5 relative to domesticated tomato and supports a hypothesis
515 whereby the overall schedule of leaf developmental events may be hastened in IL2-5.

516

517 In contrast, a central node in the IL4-3 co-expression network is a BEL1-like 04g
518 (Solyc04g080780). BEL1-like homeodomain proteins interact with class I KNOX
519 transcription factors to pattern the SAM and lateral organs, including leaf complexity
520 (Kimura et al., 2008; Hay and Tsiantis, 2010) and the extent of lobing and serrations
521 (Kumar et al., 2007). Like *S. pennellii*, IL4-3 leaflets have significantly smoother margins
522 (fewer serrations) than M82, as reflected in increased circularity (Fig. 4B; Holtan and
523 Hake, 2003; Chitwood et al., 2013).

524

525 These distinct dynamic patterns of leaf ontogeny that each IL shares with the desert-
526 adapted parent may reflect aspects of leaf development unrelated to the patterning of leaf
527 thickness, such as the patterning of leaf complexity and leaflet shape in IL4-3.

528 Alternatively, it is also possible that the core mechanism of leaf thickness patterning is
529 achieved by regulation of the timing and extent of cellular activities, such as the balance
530 between cell proliferation and the onset of cell expansion and endoreduplication, with a
531 number of potential molecular networks needed to accomplish these roles. An

532 observation supporting this model is the fact that IL2-5 and IL4-3 have non-overlapping
533 sets of cell cycle related DEGs. This hypothesis is consistent with the additive
534 phenotypes of IL2-5/IL4-3 double homozygotes (Fig. 4, Fig. S4), whereby IL-specific
535 regulators may converge on a common set of targets to regulate cell size and shape, and
536 ultimately leaf thickness.

537

538 **Materials and Methods**

539 **Plant material and growth conditions**

540 Seeds for 76 *S. pennellii* introgression lines (LA4028-LA4103; Eshed and Zamir, 1995)
541 and the *S. lycopersicum* domesticated variety M82 (LA3475) were obtained either from
542 Dr. Neelima Sinha (University of California, Davis) or from the Tomato Genetics
543 Resource Center (University of California, Davis). All seeds were treated with 50%
544 bleach for 3 min, rinsed with water and germinated in Phytatrays (P1552, Sigma-
545 Aldrich). Seeds were left in the dark for 3 days, followed by 3 days in light, and finally
546 transferred to greenhouse conditions in 50-plug trays. Hardened plants were transplanted
547 to field conditions at the Bradford Research Station in Columbia, MO (May 21, 2014)
548 with 3 m between rows and about 1 m spacing between plants within rows. A non-
549 experimental M82 plant was placed at both ends of each row, and an entire row was
550 placed at each end of the field to reduce border effects on experimental plants. The final
551 design had 15 blocks, each consisting of 4 rows with 20 plants per row. Each of the 76
552 ILs and 2 experimental M82 plants were randomized within each block. IL6-2 was
553 excluded from final analyses due to seed stock contamination. For the analysis of leaf
554 primordia by confocal microscopy and RNA-Seq, IL2-5, IL4-3, M82, and *S. pennellii*
555 seeds were germinated as above and transferred to pots in controlled growth chamber
556 conditions: irradiance at 400 $\mu\text{mol}/\text{m}^2/\text{s}$, 23 °C, 14-hour days. Growth conditions for the
557 drought phenotyping experiment were irradiance of 200 $\mu\text{mol}/\text{m}^2/\text{s}$ at a daytime
558 temperature of 22 °C and 18 °C at night.

559

560 **Whole-plant phenotyping under drought**

561 The LemnaTec Scanalyzer plant phenotyping facility at the Donald Danforth Plant

562 Science Center (LemnaTec GmbH, Aachen, Germany) was used to phenotype
563 approximately 3-week old *S. lycopersicum* and *S. pennellii* plants (n = 8/genotype)
564 subjected to one of three watering regimes: 40 % field capacity, 20 % field capacity, and
565 no watering (0 % field capacity). Top view images of each plant taken every second night
566 over 16 nights were analyzed using custom pipelines in Lemna Launcher (LemnaTec
567 software) to extract total plant pixel area (a proxy for biomass).

568

569 **Trait measurements**

570 After flowering (July 2014), four fully expanded adult leaves were harvested from each
571 plant; the adaxial (upper) surfaces of distal lateral leaflets harvested from the left side of
572 the rachis were scanned with a flatbed scanner to obtain raw JPG files. The middle
573 portion of each leaflet was then attached on a custom-build dual confocal profilometer
574 device (Fig. S1) and the thickness of each leaflet was measured across the leaflet surface
575 at a resolution of 1 mm². Median thickness was calculated across each leaflet using
576 values in the range (0 mm < thickness < 2 mm) and these median values were averaged
577 across four leaflets per plant to arrive at a single robust metric of leaf thickness. Finally,
578 entire leaflets were dried and their dry mass used to calculate leaf mass per area (LMA)
579 for each leaflet. Leaflet outline scans were processed using custom macros in Image J
580 (Abramoff et al., 2004) to segment individual leaflets and to threshold and binarize each
581 leaflet image. Shape descriptors area, aspect ratio, roundness, circularity, and solidity
582 (described in detail in Chitwood et al., 2013) were extracted from binary images.
583 Additionally, elliptical Fourier descriptors (EFDs) for leaflet outlines were determined
584 using SHAPE (Iwata and Ukai, 2002). For this analysis 20 harmonics with 4 coefficients
585 each were used to derive principal components (PC) that describe major trends in the
586 shape data.

587

588 **Elemental profiling (ionomics)**

589 Distal lateral leaflets of fully expanded young (Y) and old (O) leaves of the same plants
590 as above were collected from five individuals of each genotype. Whole leaflets were
591 weighed and digested in nitric acid at 100 °C for 3 hours. Elemental concentrations were

592 measured using an inductively coupled plasma mass spectrometer (ICP-MS, Elan DRC-e,
593 Perkin Elmer) following the procedure described in Ziegler et al. (2012). Instrument
594 reported concentrations were corrected for losses during sample preparation and changes
595 in instrument response during analysis using Yttrium and Indium internal standards and a
596 matrix-matched control run every tenth sample. Final concentrations were normalized to
597 sample weight and reported in mg analyte per kilogram tissue.

598

599 **Statistical analyses and data visualization**

600 All statistical analysis and visualization was carried out using R packages (R Core Team,
601 2013). QTL were identified using the mixed effect linear model packages lme4 (Bates et
602 al., 2014) and lmerTest (Kuznetsova et al., 2015) with M82 as intercept, IL genotype as a
603 fixed effect, and field position attributes (block, row, and column) as random effects.
604 Only effects with significant variance ($p < 0.05$) were included in the final models. For
605 elemental composition data, leaf age (“young” and “old”) was also included as a random
606 effect unless the variance due to age was the greatest source of variance; in such cases,
607 young and old samples were analyzed separately. Heritability values represent the
608 relative proportion of variance due to genotype. For the quantification of organ volume
609 parameters and photosynthesis measurements, linear models were used to test the effect
610 of genotype. All plots were generated with the package ggplot2 (Wickham, 2009).

611

612 **Trait correlations and hierarchical clustering**

613 For trait correlation analyses we included all traits reported in this study and measured on
614 the same set of field-grown IL individuals (leaf thickness, LMA, leaflet shape traits,
615 elemental profiles). We also included several sets of meta-data detailed in Dataset S3,
616 including DEV (developmental), MOR (morphological), MET (fruit pericarp metabolite
617 content), ENZ (enzyme activity), and SED (seed metabolite content) related traits (from
618 Chitwood et al., 2013 and references within). Spearman correlation coefficients (ρ)
619 were calculated between each pair of traits using the rcorr function in Hmisc (Harrell et
620 al., 2015) and p-values for the correlations were corrected for False Discovery Rate using
621 Benjamini Hochberg (Dataset S4). Hierarchical clustering and visualization of significant

622 correlation ($q < 0.05$) of leaf thickness and LMA were clustered (hierarchical “ward”
623 algorithm) and visualized using pheatmap (Kolde, 2015).

624

625 **Estimation of nuclear size profiles by flow cytometry**

626 Distal lateral leaflets were harvested from the 7th leaf of greenhouse-grown 6-week-old
627 plants and immediately chopped in 1 mL of ice-cold buffer LB01 as in Doležel et al.
628 (2008). The resulting fine homogenate was filtered through a 30 um Partec CellTrics
629 filter (5004-004-2326) and incubated with 50 ug/mL propidium iodide (Thermo Fisher,
630 P21493) and 50 ug/mL RNase A (Qiagen, 19101) for 20 min on ice. Fluorescence scatter
631 data was collected without gating using a BD Acuri CS6 instrument (BD Biosciences).
632 Plots of event count as a function of fluorescence area were used to estimate the
633 proportion of nuclei of sizes corresponding to 2C, 4C, and 8C in each genotype.

634

635 **Confocal microscopy, 3D-reconstructions, and organ volume quantification**

636 For mature leaf cross-sections, field-grown leaves were fixed in FAA (4 % formaldehyde,
637 5 % glacial acetic acid, 50 % ethanol), vacuum infiltrated, dehydrated through an ethanol
638 series, rehydrated to 100 % water, stained in 0.002 % propidium iodide (Thermo Fisher,
639 P21493) for 2 hours, dehydrated to 100 % ethanol, and finally cleared in 100 % methyl
640 salicylate (Sigma, M6752) for 7 days. Hand-sections were visualized with a Leica SP8
641 laser scanning confocal microscope using white light laser excitation at 514 nm with a
642 20X objective. Two partially overlapping images were captured for each cross-section
643 and merged into a single image using the “Photomerge” function in Adobe Photoshop CC
644 2014 (Adobe Systems Incorporated). For the quantification of P3 leaf primordium
645 dimensions, shoot apices (shoot apical meristem and P1-P4) of 14 day-old seedlings
646 grown in controlled conditions were excised, fixed, processed, and stained as detailed for
647 leaf cross sections above. Confocal stacks were obtained at software-optimized intervals,
648 and exported as TIFF files. Raw stack files were imported into MorphoGraphX (Reulle et
649 al., 2015). After Gaussian filtering, the marching cubes surface reconstruction function
650 was used (cube size = 5 μm and threshold = 7,000). The resulting surface mesh was
651 smoothed and subdivided twice and exported as a PLY file. To minimize the effects of

652 trichomes on P3 volume, all meshes were trimmed in MeshLab (Cignoni et al., 2008).
653 Volume, length, and diameter of processed P3 meshes were calculated using custom
654 scripts in MatLab (MathWorks, Inc.). Briefly, first, we detected the boundary of each
655 hole and calculated its centroid point. We connected boundary points of each hole to its
656 centroid and filled the triangle faces. After filling all the holes, 3D mesh represents the
657 closed surface. Then we calculated the volume based on the divergence theorem, which
658 makes use of the fact that the inside fluid expansion equals the flux (\vec{F}) of the fluid out of
659 the surface (S). When the flux is $\vec{F} = (x, 0, 0)$, the volume is $V = \iint (\vec{F} \cdot \vec{n}) dS$, where \vec{n}
660 is normal vector. Thus, for each triangle, we computed the normal vector $\vec{n} =$
661 (x_n, y_n, z_n) , the area A , and the centroid point $P = (x_p, y_p, z_p)$. The volume V is the
662 summation of $Ax_n x_p$ for all triangles. To estimate organ arch length we made use of the
663 fact that the Laplace-Beltrami eigenfunctions are deformation invariant shape descriptor
664 (Rustamov, 2007). We thus employed its first eigenfunction, which is associated with the
665 smallest positive eigenvalue and discretized the eigenfunction values into 50 sets to
666 compute the centroid point to each set. We fit a cubic function by fixing two end-point
667 constraints to those centroid points to get a smooth principle median axis. Note that the
668 two end points were manually adjusted to correct for artifacts. The length of this axis is
669 used to quantify the length of the organ. Finally, we calculated mean organ diameter as

670
$$d = 2 \sqrt{\frac{V}{\pi L}}.$$

671

672 **RNA-Seq library preparation and sequencing**

673 Apices of fourteen day-old IL2-5, IL4-3, M82, and *S. pennellii* (Sp) plants grown in a
674 randomized design under controlled growth conditions were hand-dissected under a
675 dissecting microscope to separate plastochnrons P4, P3, P2, and P1+SAM organs
676 corresponding approximately to leaves L5 – L8. For Sp plants we were not able to
677 separate P2 primordia from the apex and so we obtained P4, P3, and SAM+P1+P2
678 samples. Dissected organs were removed from the apex in less than 60 seconds and
679 immediately fixed in 100 % ice-cold acetone to preserve the integrity of RNA in the
680 sample. Each biological replicate is a pool of 10 individuals, and a total of 5 biological

681 replicates were obtained for each genotype/organ combination. RNA was extracted using
682 PicoPure RNA Isolation Kit (Thermo Fisher Scientific, MA, USA) according to the
683 manufacturer's protocol with the optional on-column DNase treatment. RNA integrity
684 (RIN) was assessed by running all samples on an Agilent RNA 6000 Pico chip (Agilent
685 Technologies, CA, USA) and three biological replicates with RIN > 7.0 were selected for
686 further processing. Double stranded cDNA amplified using Clontech SMARTer PCR
687 cDNA synthesis kit (634926, TaKaRa Bio USA) was fragmented for 15 min using
688 Fragmentase (M0348, New England Biolabs) and processed into Illumina sequencing
689 libraries as follows: the ends of 1.5X AMPure XP bead (A63880, Agencourt) purified
690 fragmented DNA was repaired with End Repair Enzyme Mix (E6050 New England
691 Biolabs) and Klenow DNA Polymerase (M0210, NEB), followed by dA-tailing using
692 Klenow 3'-5' exonuclease (M0212, NEB). The Illumina TruSeq universal adapter dimer
693 was ligated to library fragments with rapid T4 DNA Ligase (L6030-HC-L, Enzymatics)
694 followed by 3 rounds of 1X AMPure XP bead purification to remove unligated adapter.
695 Finally, libraries were enriched and indexed by PCR using Phusion HiFi Polymerase mix
696 (M0531, NEB). Illumina libraries were quantified using a nanodrop, pooled to a final
697 concentration of 20 nM and sequenced as single end 100 bp reads on Illumina HiSeq2500
698 at the Washington University in St. Louis School of Medicine Genome Technology
699 Access Center (<https://gtac.wustl.edu/>).

700

701 **RNA-Seq data analysis**

702 Adapters and low quality bases were removed using Trimmomatic (Bolger et al., 2014)
703 with default parameters. Trimmed reads were mapped to the ITAG2.3 *Solanum*
704 *lycopersicum* genome
705 (https://solgenomics.net/organism/Solanum_lycopersicum/genome; The Tomato Genome
706 Consortium, 2012) using bowtie2 (Langmead and Salzberg, 2012) to obtain SAM files.
707 After sorting and indexing of SAM files, BAM files files were generated using samtools
708 commands (Li and Handsaker et al., 2009). The BEDtools multicov tool (Quinlan and
709 Hall, 2010) was then used to obtain read counts per annotated gene for each sample.
710 Subsequent analysis was done with the R package edgeR (Robinson et al., 2010). After

711 normalization for library size 20,231 genes with at least one count per million reads
712 across three samples were retained for further analysis. Lists of Differentially Expressed
713 Genes (DEGs) were generated between pairwise sample combinations with q-value <
714 0.05. For IL2-5 and IL4-3 at P1, P3, and P4 stages, we identified genes that are
715 differentially expressed relative to M82 in both the IL and the Sp parent to interrogate
716 Sp-like changes in gene expression in the ILs. For P2, the list of DEG in each IL reflects
717 changes relative to M82 only (Dataset S5).

718

719 **Gene Ontology, Mapman, and promoter motif enrichment analyses**

720 Lists of IL organ-specific DEGs were interrogated for enrichment of Gene Ontology
721 terms using agriGO (<http://bioinfo.cau.edu.cn/agriGO/>; Du et al., 2010) with default
722 parameters (Fisher's exact significance test and Yekutieli FDR adjustment at $q < 0.05$).
723 We further divided DEG gene lists into IL up-regulated and down-regulated genes and
724 report significant terms in Dataset S6. We tested IL organ-specific DEGs for enrichment
725 of annotated promoter motifs using a custom R script (Dr. Julin Maloof). Briefly,
726 functions in the Bioconductor Biostrings package (Pages et al., 2016) were implemented
727 to count the frequency of 100 known motifs in the promoters of DEGs (1000 bp upstream
728 sequence) and calculate p-values for enrichment based on these counts. We report exact
729 matches of known motifs and motifs with up to 1 mismatch in IL up-regulated and down-
730 regulated organ-specific gene sets (Dataset S7).

731

732 **IL organ-specific gene network inference**

733 To infer IL organ-specific networks (Fig. 7A-D, Dataset S8), we selected DEGs between
734 IL2-5/M82 (IL4-3/M82) and Sp/M82 for each organ (P1, P3, P4) (q value < 0.05). Since
735 co-expression analysis can inform the likelihood that genes interact, or participate in the
736 same functional pathway, the selected genes for each IL (IL2-5 or IL4-3) and each organ
737 were clustered based on their co-expression across genotypes. To perform clustering, the
738 Silhouette index (Rousseeuw, 1987) followed by K-means (MacQueen, 1967) were
739 applied. After clustering, networks were inferred as in de Luis Balaguer et al. (2017).
740 Briefly, for each DEG, we identified a set of potential regulators and measured the

741 likelihood of gene-target regulation using a Bayesian Dirichlet equivalence uniform
742 (Boutine, 1991). Genes that had the highest value of the Bayesian Dirichlet equivalence
743 uniform were chosen as regulators, and of these only transcription factors (as annotated
744 by Suresh et al., 2014) were further considered as regulatory (source) nodes. To obtain
745 the final IL2-5 and IL4-3 organ-specific networks, the networks for each cluster were
746 connected. For this, we found regulations among the cluster hubs (node of each
747 individual network with the largest degree of edges leaving the node) by using the same
748 Bayesian Dirichlet equivalence uniform metric. In addition, we implemented a score to
749 estimate whether the inferred interactions were activations or repressions. The score was
750 calculated for each edge and it measured the ratio between i) the conditional probability
751 that a gene is expressed given that its regulator was expressed in the prior time point, and
752 ii) the conditional probability that a gene is expressed given that its regulator was not
753 expressed in the prior time point. If the first conditional probability is larger than the
754 second one, then the parent was found to be an activator and *vice versa*. In the case of a
755 tie, the edge was found to have an undetermined sign. Networks for each organ were
756 jointly visualized in Cytoscape (Shannon et al., 2003).

757

758 **Dynamic IL network construction**

759 To infer dynamic IL networks (Fig. 7E-F, Dataset S9), we selected DEGs between IL2-
760 5/M82 or IL4-3/M82 and Sp/M82 for each organ (P1, P3, P4) (q value < 0.05 or $(FC >$
761 2.0 and q value < 0.2)). All DEG in the IL2-5 or IL4-3 were clustered in four groups,
762 corresponding to the four developmental stages: each gene was assigned to the
763 developmental stage where it showed the maximum expression. A network was then
764 inferred for each developmental stage as described for the IL organ-specific networks. To
765 ensure that all potential regulators of each gene were considered, genes from the
766 preceding developmental stage were included in the inference of the network of each
767 developmental stage. The final network for each IL was visualized in Cytoscape
768 (Shannon et al., 2003).

769

770 **Accession Numbers**

771 An NCBI SRA accession number will be provided upon publication.

772

773 **Supporting Data**

774 **Supplemental Figure S1.** Dual confocal profilometer device used to measure leaf
775 thickness.

776 **Supplemental Figure S2.** Comparison of leaf thickness of select ILs as a function of
777 shoot position and field vs. greenhouse conditions.

778 **Supplemental Figure S3.** Representative leaf cross-sections and flow cytometry of leaf
779 6/7 for 10 ILs harboring leaf thickness QTLs grown in greenhouse conditions.

780 **Supplemental Figure S4.** Mean dimensions of palisade and spongy mesophyll cell
781 layers in select thick leaf ILs. Representative flow cytometry histograms of leaf 7 and
782 post-flowering leaves from each genotype.

783 **Supplemental Figure S5.** Representative shoot apex reconstructions highlighting the
784 appearance of early and late stage leaf primordia for each genotype in Fig. 4

785 **Supplemental Figure S6.** Summary of differentially expressed genes in IL2-5 and IL4-3.

786 **Supplemental Figure S7.** Expression profiles of differentially expressed putative
787 transcription factors in ILs 2-5 and 4-3.

788 **Supplemental Figure S8.** Summary of enriched promoter motifs among differentially
789 expressed genes in ILs 2-5 and 4-3.

790 **Supplemental Dataset S1.** Trait value estimates and heritability for leaf thickness, LMA,
791 and leaflet shape across the IL panel.

792 **Supplemental Dataset S2.** Trait value estimates and heritability for elemental
793 concentration across the IL panel.

794 **Supplemental Dataset S3.** Summary of all measured and meta-data traits used in
795 correlation matrix.

796 **Supplemental Dataset S4.** Pairwise trait correlation matrix including significance
797 values.

798 **Supplemental Dataset S5.** List of differentially expressed genes ($q < 0.05$) in each organ
799 (P1 – P4) for the comparison: (M82/IL) overlapping with (M82/*S. pennellii*).

800 **Supplemental Dataset S6.** List of significantly enriched ($q < 0.05$) Gene Ontology (GO)

801 terms for gene sets listed in Dataset S5.

802 **Supplemental Dataset S7.** List of enriched ($q < 0.05$) promoter motifs for gene sets in
803 Dataset S5.

804 **Supplemental Dataset S8.** List of organ-specific (P1, P3, P4) gene interactions for IL2-5
805 and IL4-3.

806 **Supplemental Dataset S9.** List of dynamic gene interactions for IL2-5 and IL4-3.

807

808 **Acknowledgments**

809 *S. pennellii* introgression line panel seeds were provided by Dr. Neelima Sinha
810 (University of California, Davis) and the Tomato Genetics Resource Center (University
811 of California, Davis). We would like to thank Dr. Ivan Baxter and Dr. Greg Ziegler
812 (Danforth Plant Science Center) for generating elemental profile data, and Dr. Julin
813 Maloof (University of California, Davis) for sharing custom promoter enrichment
814 analysis scripts. We acknowledge the advice and assistance of Dr. Noah Fahlgren, Dr.
815 Malia Gehan, and Melinda Darnell (Danforth Plant Science Center) with drought
816 phenotyping experiments. We thank Dr. Elizabeth Kellogg for insightful discussions and
817 comments on the manuscript. This work was supported by funds from the Donald
818 Danforth Plant Science Center. RS is supported by an NSF CAREER grant (MCB-
819 1453130). MHF is supported by an NSF NPGI post-doctoral fellowship (IOS-1523668).

820 **Literature Cited**

821

822 Abràmoff, M. D., Magalhães, P. J., & Ram, S. J. (2004). Image processing with ImageJ.
823 *Biophotonics International* 11(7), 36-42.

824 Becker, B. (2007). Function and evolution of the vacuolar compartment in green algae
825 and land plants (Viridiplantae). *International Review of Cytology* 264, 1-24.

826 John, G. P., Scoffoni, C., & Sack, L. (2013). Allometry of cells and tissues within leaves.
827 *American Journal of Botany* 100(10), 1936-1948.

828 Bohmert, K., Camus, I., Bellini, C., Bouchez, D., Caboche, M., & Benning, C. (1998).
829 AGO1 defines a novel locus of Arabidopsis controlling leaf development. *The EMBO
830 Journal* 17(1), 170-180.

831 Brodersen, C. R., & Vogelmann, T. C. (2010). Do changes in light direction affect
832 absorption profiles in leaves?. *Functional Plant Biology*, 37(5), 403-412.

833 Brodersen, C. R., Vogelmann, T. C., Williams, W. E., & Gorton, H. L. (2008). A new
834 paradigm in leaf-level photosynthesis: direct and diffuse lights are not equal. *Plant, cell
835 & environment*, 31(1), 159-164.

836 Buntine, W. 1991. Theory refinement on Bayesian networks. In *Proceedings of the
837 Seventh conference on Uncertainty in Artificial Intelligence*, 52-60. Morgan Kaufmann
838 Publishers Inc.

839 Chitwood, D. H., Kumar, R., Headland, L. R., Ranjan, A., Covington, M. F., Ichihashi,
840 Y., ... & Sinha, N. R. (2013). A quantitative genetic basis for leaf morphology in a set of
841 precisely defined tomato introgression lines. *The Plant Cell* 25(7), 2465-2481.

842 Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F., & Ranzuglia, G.
843 (2008, July). Meshlab: an open-source mesh processing tool. In *Eurographics Italian
844 Chapter Conference 2008*, 129-136.

845 De Lucas, M., Daviere, J. M., Rodriguez-Falcon, M., Pontin, M., Iglesias-Pedraz, J. M.,
846 Lorrain, S., ... & Prat, S. (2008). A molecular framework for light and gibberellin control
847 of cell elongation. *Nature*, 451(7177), 480-484.

848 Dhondt, S., Coppens, F., De Winter, F., Swarup, K., Merks, R. M., Inzé, D., ... &
849 Beemster, G. T. (2010). SHORT-ROOT and SCARECROW regulate leaf growth in

850 Arabidopsis by stimulating S-phase progression of the cell cycle. *Plant Physiology*
851 154(3), 1183-1195.

852 Doležel, J., Greilhuber, J., & Suda, J. (2007). Estimation of nuclear DNA content in
853 plants using flow cytometry. *Nature protocols*, 2(9), 2233-2244.

854 Du, Z., Zhou, X., Ling, Y., Zhang, Z., & Su, Z. (2010). agriGO: a GO analysis toolkit for
855 the agricultural community. *Nucleic Acids Research* 38, W64-W70.

856 Eggli, U., & Nyffeler, R. (2009). Living under temporarily arid conditions—succulence as
857 an adaptive strategy. *Bradleya* 27, 13-36.

858 Eshed, Y., & Zamir, D. (1995). An introgression line population of *Lycopersicon*
859 *pennellii* in the cultivated tomato enables the identification and fine mapping of yield-
860 associated QTL. *Genetics* 141(3), 1147-1162.

861 Fridman, E., Carrari, F., Liu, Y. S., Fernie, A. R., & Zamir, D. (2004). Zooming in on a
862 quantitative trait for tomato yield using interspecific introgressions. *Science* 305(5691),
863 1786-1789.

864 Garnier, E., & Laurent, G. (1994). Leaf anatomy, specific mass and water content in
865 congeneric annual and perennial grass species. *New Phytologist* 128(4), 725-736.

866 Gibson, A. C. (1982). The anatomy of succulence. In *Crassulacean acid metabolism*. J.
867 Proc. V ann. Symp. Bot., Univ. Calif., Riverside. *J. Amer. Soc. Plant Physiologists*:
868 Rockville, USA, 1-17.

869 Haliński, Ł. P., Kalkowska, M., Kalkowski, M., Piorunowska, J., Topolewska, A., &
870 Stepnowski, P. (2015). Cuticular wax variation in the tomato (*Solanum lycopersicum* L.),
871 related wild species and their interspecific hybrids. *Biochemical Systematics and Ecology*
872 60, 215-224.

873 Hay, A., Kaur, H., Phillips, A., Hedden, P., Hake, S., & Tsiantis, M. (2002). The
874 gibberellin pathway mediates KNOTTED1-type homeobox function in plants with
875 different body plans. *Current Biology*, 12(18), 1557-1565.

876 Hay, A., & Tsiantis, M. (2010). KNOX genes: versatile regulators of plant development
877 and diversity. *Development* 137(19), 3153-3165.

878 Hisamatsu, T., King, R. W., Helliwell, C. A., & Koshioka, M. (2005). The involvement
879 of gibberellin 20-oxidase genes in phytochrome-regulated petiole elongation of

880 Arabidopsis. *Plant Physiology*, 138(2), 1106-1116.

881 Holtan, H. E., & Hake, S. (2003). Quantitative trait locus analysis of leaf dissection in
882 tomato using *Lycopersicon pennellii* segmental introgression lines. *Genetics* 165(3),
883 1541-1550.

884 Hou, X., Ding, L., & Yu, H. (2013). Crosstalk between GA and JA signaling mediates
885 plant growth and defense. *Plant cell reports*, 32(7), 1067-1074.

886 Huang, W., Xian, Z., Kang, X., Tang, N., & Li, Z. (2015). Genome-wide identification,
887 phylogeny and expression analysis of GRAS gene family in tomato. *BMC Plant Biology*
888 15(1), 209.

889 Ichihashi, Y., Aguilar-Martínez, J. A., Farhi, M., Chitwood, D. H., Kumar, R., Millon, L.
890 V., ... & Sinha, N. R. (2014). Evolutionary developmental transcriptomics reveals a gene
891 network module regulating interspecific diversity in plant leaf shape. *Proceedings of the*
892 *National Academy of Sciences* 111(25), E2616-E2621.

893 Iwata, H., & Ukai, Y. (2002). SHAPE: a computer program package for quantitative
894 evaluation of biological shapes based on elliptic Fourier descriptors. *Journal of Heredity*
895 93(5), 384-385.

896 John, G. P., Scoffoni, C., & Sack, L. (2013). Allometry of cells and tissues within leaves.
897 *American Journal of Botany* 100(10), 1936-1948.

898 Kalve, S., Fotschki, J., Beeckman, T., Vissenberg, K., & Beemster, G. T. (2014). Three-
899 dimensional patterns of cell division and expansion throughout the development of
900 *Arabidopsis thaliana* leaves. *Journal of Experimental Botany* 65, 6385-6397.

901 Kimura, S., Koenig, D., Kang, J., Yoong, F. Y., & Sinha, N. (2008). Natural variation in
902 leaf morphology results from mutation of a novel KNOX gene. *Current Biology* 18(9),
903 672-677.

904 Koenig, D., Jiménez-Gómez, J. M., Kimura, S., Fulop, D., Chitwood, D. H., Headland, L.
905 R., ... & Tohge, T. (2013). Comparative transcriptomics reveals patterns of selection in
906 domesticated and wild tomato. *Proceedings of the National Academy of Sciences*
907 110(28), E2655-E2662.

908 Kolde, R. (2015). pheatmap: Pretty Heatmaps. R package version 1.0. 2.

909 Kozuka, T., Kong, S. G., Doi, M., Shimazaki, K. I., & Nagatani, A. (2011). Tissue-

910 autonomous promotion of palisade cell development by phototropin 2 in
911 *Arabidopsis*. *The Plant Cell*, 23(10), 3684-3695.

912 Kumar, R., Kushalappa, K., Godt, D., Pidkowich, M. S., Pastorelli, S., Hepworth, S. R.,
913 & Haughn, G. W. (2007). The *Arabidopsis* BEL1-LIKE HOMEO DOMAIN proteins
914 SAW1 and SAW2 act redundantly to regulate KNOX expression spatially in leaf
915 margins. *The Plant Cell* 19(9), 2719-2735.

916 Kuznetsova, A., Christensen, R. H., Bavay, C., & Brockhoff, P. B. (2015). Automated
917 mixed ANOVA modeling of sensory and consumer data. *Food Quality and Preference*
918 40, 31-38.

919 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., ... & Durbin, R.
920 (2009). The sequence alignment/map format and SAMtools. *Bioinformatics* 25(16),
921 2078-2079.

922 Li, Y., Zheng, L., Corke, F., Smith, C., & Bevan, M. W. (2008). Control of final seed and
923 organ size by the DA1 gene family in *Arabidopsis thaliana*. *Genes &*
924 *Development*, 22(10), 1331-1336.

925 Lightfoot, D. A., Mungur, R., Ameziane, R., Nolte, S., Long, L., Bernhard, K., ... &
926 Young, B. (2007). Improved drought tolerance of transgenic *Zea mays* plants that express
927 the glutamate dehydrogenase gene (gdhA) of *E. coli*. *Euphytica* 156(1-2), 103-116.

928 de Luis Balaguer, M. A., Fisher, A. P., Clark, N. M., Fernandez-Espinosa, M. G., Moller,
929 B., Weijers, D., Lohmann, J. U., Williams, C., Lorenzo, O. and Sozzani, R. (2017). An
930 inference approach combines spatial and temporal gene expression data to predict gene
931 regulatory networks in *Arabidopsis* stem cells. *Pre-print* doi:
932 <https://doi.org/10.1101/140269>.

933 McDowell, E. T., Kapteyn, J., Schmidt, A., Li, C., Kang, J. H., Descour, A., ... & Jones,
934 A. D. (2011). Comparative functional genomic analysis of *Solanum* glandular trichome
935 types. *Plant Physiology* 155(1), 524-539.

936 McHale, N. A. (1992). A nuclear mutation blocking initiation of the lamina in leaves of
937 *Nicotiana sylvestris*. *Planta* 186(3), 355-360.

938 McHale, N. A. (1993). LAM-1 and FAT genes control development of the leaf blade in
939 *Nicotiana sylvestris*. *The Plant Cell* 5(9), 1029-1038.

940 MacQueen, J. (1967, June). Some methods for classification and analysis of multivariate
941 observations. In *Proceedings of the fifth Berkeley symposium on mathematical statistics*
942 and probability 1(14), 281-297.

943 Muir, C. D., Conesa, M. À., Roldán, E. J., Molins, A., & Galmés, J. (2016). Weak
944 coordination between leaf structure and function among closely related tomato species.
945 *New Phytologist*.

946 Muir, C. D., Pease, J. B., & Moyle, L. C. (2014). Quantitative genetic analysis indicates
947 natural selection on leaf phenotypes across wild tomato species (Solanum sect.
948 Lycopersicon; Solanaceae). *Genetics* 198(4), 1629-1643.

949 Nakazato, T., Warren, D. L., & Moyle, L. C. (2010). Ecological and geographic modes of
950 species divergence in wild tomatoes. *American Journal of Botany* 97(4), 680-693.

951 Nelson, E. A., Sage, T. L., & Sage, R. F. (2005). Functional leaf anatomy of plants with
952 crassulacean acid metabolism. *Functional Plant Biology* 32(5), 409-419.

953 Nicotra, A. B., Leigh, A., Boyce, C. K., Jones, C. S., Niklas, K. J., Royer, D. L., &
954 Tsukaya, H. (2011). The evolution and functional significance of leaf shape in the
955 angiosperms. *Functional Plant Biology* 38(7), 535-552.

956 Niinemets, Ü., Díaz-Espejo, A., Flexas, J., Galmés, J., & Warren, C. R. (2009). Role of
957 mesophyll diffusion conductance in constraining potential photosynthetic productivity in
958 the field. *Journal of Experimental Botany* 60(8), 2249-2270.

959 Ogburn, R., & Edwards, E. J. (2010). The ecological water-use strategies of succulent
960 plants. *Advances in Botanical Research* 55, 179-225.

961 Oguchi, R., Hikosaka, K., & Hirose, T. (2005). Leaf anatomy as a constraint for
962 photosynthetic acclimation: differential responses in leaf anatomy to increasing growth
963 irradiance among three deciduous trees. *Plant, Cell & Environment* 28(7), 916-927.

964 Pieruschka, R., & Poorter, H. (2012). Phenotyping plants: genes, phenes and machines.
965 *Functional Plant Biology* 39(11), 813-820.

966 Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., & Villar, R. (2009). Causes and
967 consequences of variation in leaf mass per area (LMA): a meta-analysis. *New Phytologist*
968 182(3), 565-588.

969 Preston, J. C., & Hileman, L. (2013). Functional evolution in the plant SQUAMOSA-

970 PROMOTER BINDING PROTEIN-LIKE (SPL) gene family. *Frontiers in Plant Science*
971 4, 80.

972 Quinlan, A. R., & Hall, I. M. (2010). BEDTools: a flexible suite of utilities for comparing
973 genomic features. *Bioinformatics* 26(6), 841-842.

974 Ranjan, A., Budke, J., Rowland, S. D., Chitwood, D. H., Kumar, R., Carriero, L. G., ... &
975 Sinha, N. (2016). eQTL regulating transcript levels associated with diverse biological
976 processes in tomato. *Plant Physiology* 172, 328-340.

977 de Reuille, P. B., Routier-Kierzkowska, A. L., Kierzkowski, D., Bassel, G. W.,
978 Schüpbach, T., Tauriello, G., ... & Burian, A. (2015). MorphoGraphX: a platform for
979 quantifying morphogenesis in 4D. *Elife* 4, e05864.

980 Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgeR: a Bioconductor
981 package for differential expression analysis of digital gene expression data.
982 *Bioinformatics* 26(1), 139-140.

983 Roderick, M. L., Berry, S. L., Noble, I. R., & Farquhar, G. D. (1999). A theoretical
984 approach to linking the composition and morphology with the function of leaves.
985 *Functional Ecology* 13(5), 683-695.

986 Rousseeuw, P. J. (1987). Silhouettes: a graphical aid to the interpretation and validation
987 of cluster analysis. *Journal of Computational and Applied Mathematics* 20, 53-65.

988 Rustamov, R. M. (2007, July). Laplace-Beltrami eigenfunctions for deformation invariant
989 shape representation. In *Proceedings of the fifth Eurographics symposium on Geometry
990 processing*, 225-233. Eurographics Association.

991 Sack, L., & Frole, K. (2006). Leaf structural diversity is related to hydraulic capacity in
992 tropical rain forest trees. *Ecology* 87(2), 483-491.

993 Schauer, N., Semel, Y., Roessner, U., Gur, A., Balbo, I., Carrari, F., ... & Willmitzer, L.
994 (2006). Comprehensive metabolic profiling and phenotyping of interspecific
995 introgression lines for tomato improvement. *Nature Biotechnology* 24(4), 447-454.

996 Semel, Y., Nissenbaum, J., Menda, N., Zinder, M., Krieger, U., Issman, N., ... & Zamir,
997 D. (2006). Overdominant quantitative trait loci for yield and fitness in tomato.
998 *Proceedings of the National Academy of Sciences* 103(35), 12981-12986.

999 Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., ... & Ideker,

1000 T. (2003). Cytoscape: a software environment for integrated models of biomolecular
1001 interaction networks. *Genome Research* 13(11), 2498-2504

1002 Smith, S. D., Monson, R. K., & Anderson, J. E. (1997). Plant processes and responses to
1003 stress. In *Physiological Ecology of North American Desert Plants*, 45-71. Springer Berlin
1004 Heidelberg.

1005 Suresh, B. V., Roy, R., Sahu, K., Misra, G., & Chattopadhyay, D. (2014). Tomato
1006 genomic resources database: an integrated repository of useful tomato genomic
1007 information for basic and applied research. *PLoS One* 9(1), e86387.

1008 Taji, T., Ohsumi, C., Iuchi, S., Seki, M., Kasuga, M., Kobayashi, M., ... & Shinozaki, K.
1009 (2002). Important roles of drought□and cold□inducible genes for galactinol synthase in
1010 stress tolerance in *Arabidopsis thaliana*. *The Plant Journal* 29(4), 417-426.

1011 Terashima, I., Hanba, Y. T., Tholen, D., & Niinemets, Ü. (2011). Leaf functional
1012 anatomy in relation to photosynthesis. *Plant Physiology* 155(1), 108-116.

1013 Tomato Genome Consortium. (2012). The tomato genome sequence provides insights
1014 into fleshy fruit evolution. *Nature* 485(7400), 635-641.

1015 Tsuge, T., Tsukaya, H., & Uchimiya, H. (1996). Two independent and polarized
1016 processes of cell elongation regulate leaf blade expansion in *Arabidopsis thaliana* (L.)
1017 Heynh. *Development* 122(5), 1589-1600.

1018 Tsukaya, H. (2003). Organ shape and size: a lesson from studies of leaf morphogenesis.
1019 *Current Opinion in Plant Biology* 6(1), 57-62.

1020 Wickham, H. (2009). *ggplot2: elegant graphics for data analysis*. Springer New York
1021 1(2), 3.

1022 von Willert, D. J. (1992). *Life strategies of succulents in deserts: with special reference
1023 to the Namib Desert*. CUP Archive.

1024 Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., ... &
1025 Flexas, J. (2004). The worldwide leaf economics spectrum. *Nature* 428(6985), 821-827.

1026 Wuyts, N., Massonnet, C., Dauzat, M., & Granier, C. (2012). Structural assessment of the
1027 impact of environmental constraints on *Arabidopsis thaliana* leaf growth: a 3D approach.
1028 *Plant, Cell & Environment* 35(9), 1631-1646.

1029 Ziegler, G., Terauchi, A., Becker, A., Armstrong, P., Hudson, K., & Baxter, I. (2013).

1030 Ionomic screening of field-grown soybean identifies mutants with altered seed elemental
1031 composition. *The Plant Genome* 6(2).

1032 **Figure Legends**

1033 **Figure 1. Desert-adapted tomato plants have thicker leaves than domesticated**
1034 **tomato and are resistant to drought. (A)** Thickness across leaflet blades of
1035 domesticated (*S. lycopersicum*, M82) and desert-adapted (*S. pennellii*) tomatoes
1036 measured with a custom-built dual confocal profilometer device (Supplemental Figure 1).
1037 Median thickness of the *S. lycopersicum* leaflet shown here is 211 μm , and 294 μm for *S.*
1038 *pennellii*. **(B)** Confocal images of propidium iodide stained leaflet cross-sections; scale
1039 bar is 200 μm . **(C)** Total shoot area normalized by taking the square root of pixels from
1040 top view phenotyping images over 16 days in three water treatments (n=8). Gray shading
1041 reflects standard error.

1042

1043 **Figure 2. Quantitative Trait Loci for leaf thickness in tomato. (A)** Leaflet thickness
1044 values across the *S. pennellii* introgression line panel. Colors indicate level of
1045 significance in comparisons of each IL with M82 (arrow). **(B)** Significant correlations
1046 (Spearman's rho) between leaf thickness ("Thickness"), or leaf mass per area ("LMA")
1047 and a suite of other traits across the *S. pennellii* IL panel ($q < 0.05$). Traits are grouped by
1048 type: ION, elemental profile; MOR, morphological; DEV, developmental; ENZ, enzyme
1049 activity; SED, seed metabolite content (Datasets S3 and S4).

1050

1051 **Figure 3. Anatomical manifestations of thicker leaves. (A)** Confocal images of
1052 propidium iodide stained cross-sections of field-grown M82, select ILs and *S. pennellii*
1053 grown in greenhouse conditions; scale bars are 50 μm . **(B)** Representative leaf thickness
1054 plots and **(C)** leaflet binary images of field-grown plants as for (A).

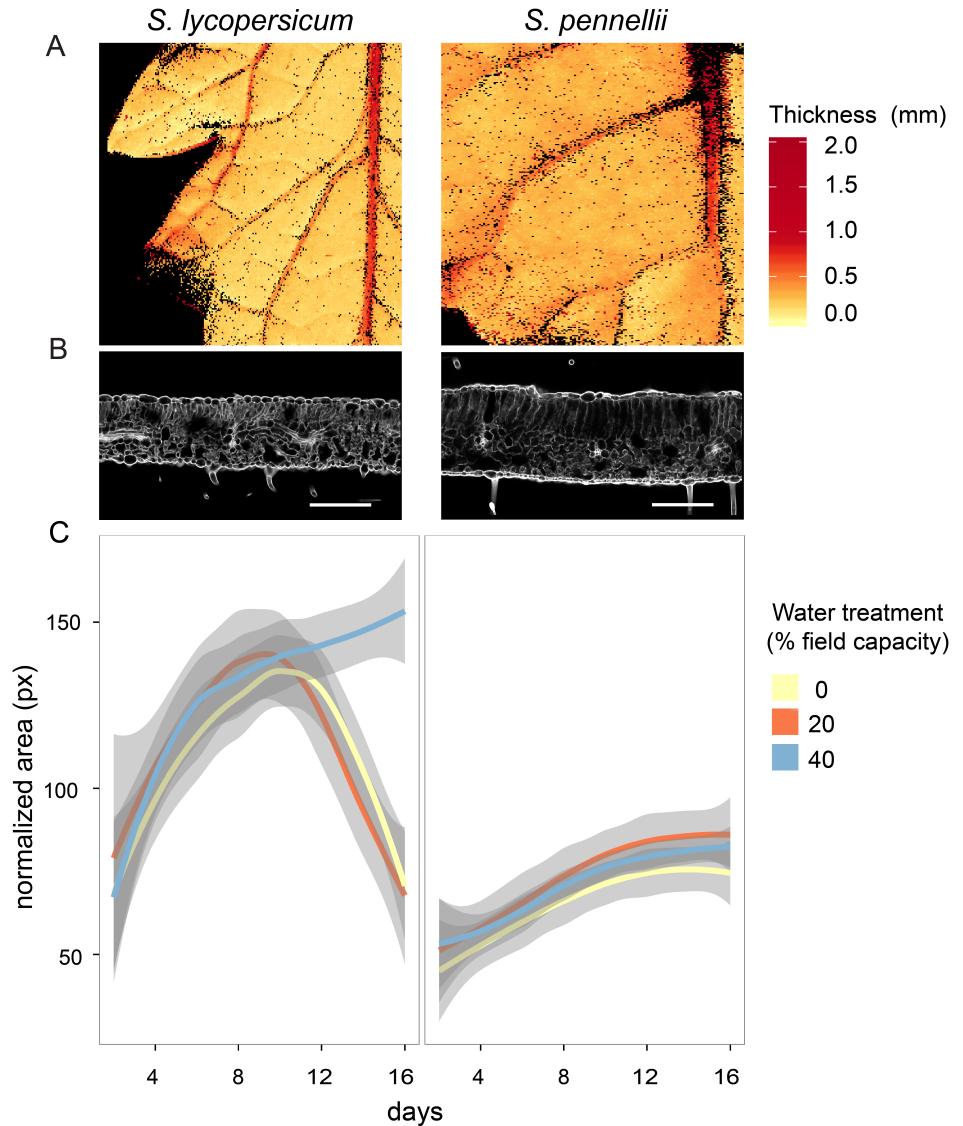
1055

1056 **Figure 4. Leaf morphology and ploidy of IL2-5/IL4-3 double homozygote plants. (A)**
1057 Representative propidium iodide-stained leaflet cross-sections (left) and thickness
1058 measurements (right) for the 7th leaf of greenhouse-grown M82 and double homozygous
1059 IL2-5/IL4-3 plants (n = 10). Scale bars are 200 μm ; ** $p < 0.01$. **(B)** Circularity (ratio of
1060 area to the square of the perimeter) of distal lateral leaflets as in (A). Silhouettes of
1061 representative M82 and IL2-5/IL4-3 leaflets are shown above bars. Letters indicate

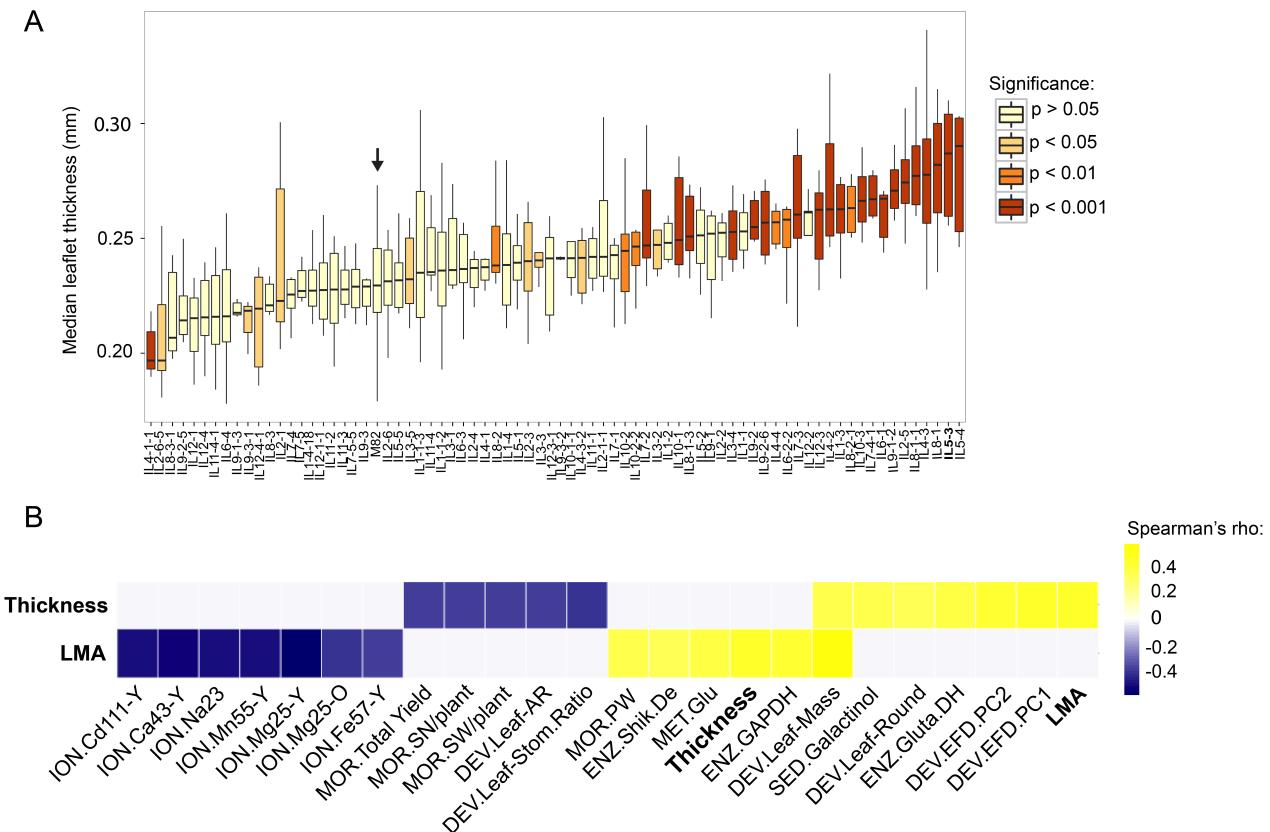
1062 statistical significance in each pairwise genotype comparison ($p < 0.05$). **(C)** Distribution
1063 of relative nuclear sizes reflecting endoreduplication in leaflets as in (A) and (B) ($n = 5$).
1064 Letters denote statistical significance between pairwise genotype comparisons at each
1065 ploidy level. **(D)** Leaf plastochron P3 dimensions calculated from 3D surface
1066 reconstructions of vegetative shoot apices ($n = 9$; * $p < 0.05$, ** $p < 0.01$ relative to
1067 M82).

1068

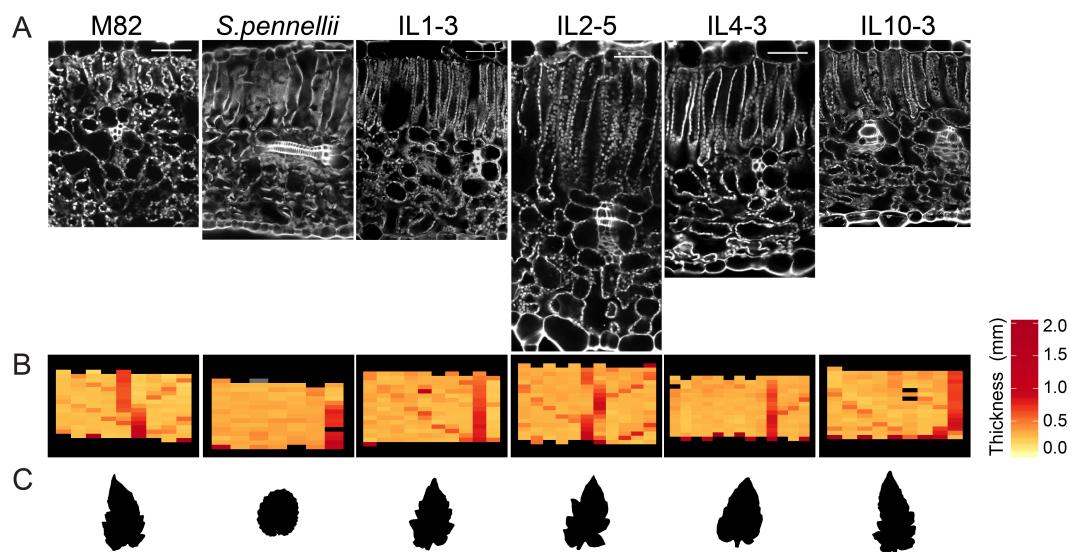
1069 **Figure 5. Comparative transcriptomics of leaf development in two thick ILs and**
1070 **their parents. (A)** Successive stages of leaf development (plastochrons P1-P4 colored as
1071 in legend in (B)) were dissected from M82, *S. pennellii* (Sp) and thick ILs 2-5 and 4-3.
1072 **(B)** Principal Components Analysis (PCA) of normalized RNA-Seq read counts.
1073 **(C)** Venn diagrams (not to scale) depict an overview of differentially expressed genes
1074 (DEGs, $q < 0.05$) that are shared in each IL and the Sp parent relative to M82. The
1075 number of DEGs unique to each organ is shown within ellipses and those common to all
1076 organs, in the center. The total number of DEGs at each plastochron stage is shown
1077 outside ellipses.

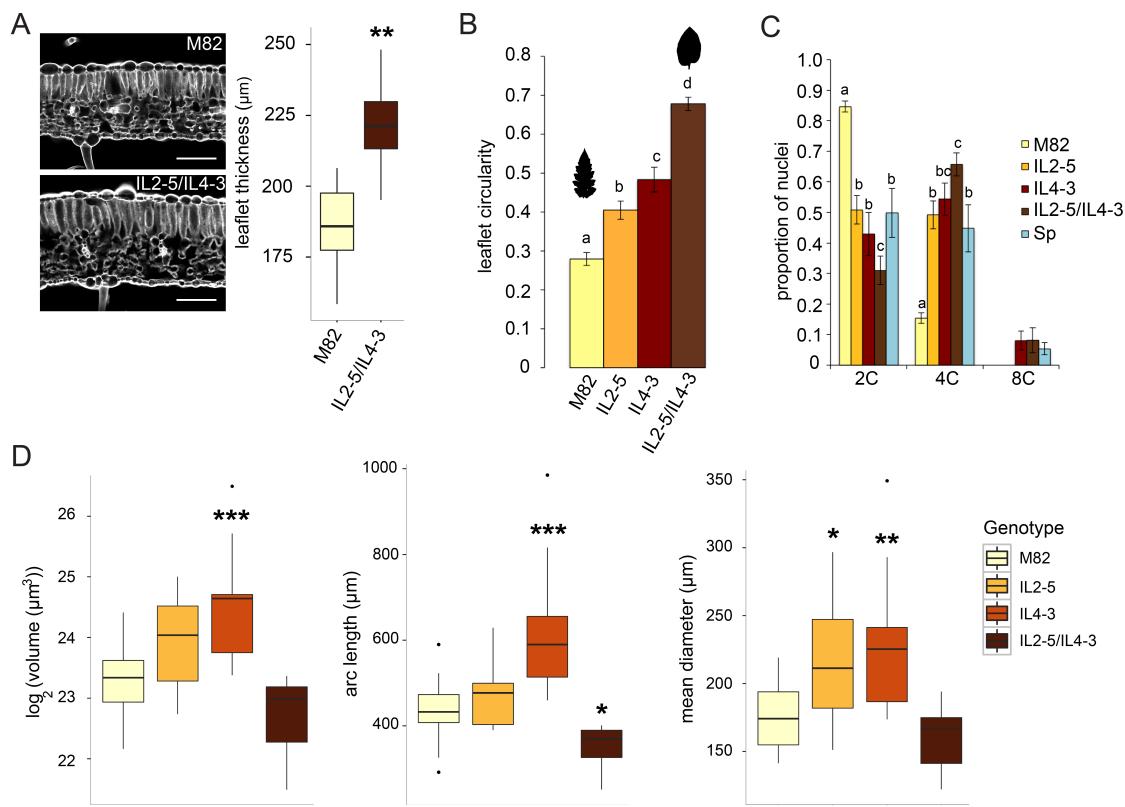

1078

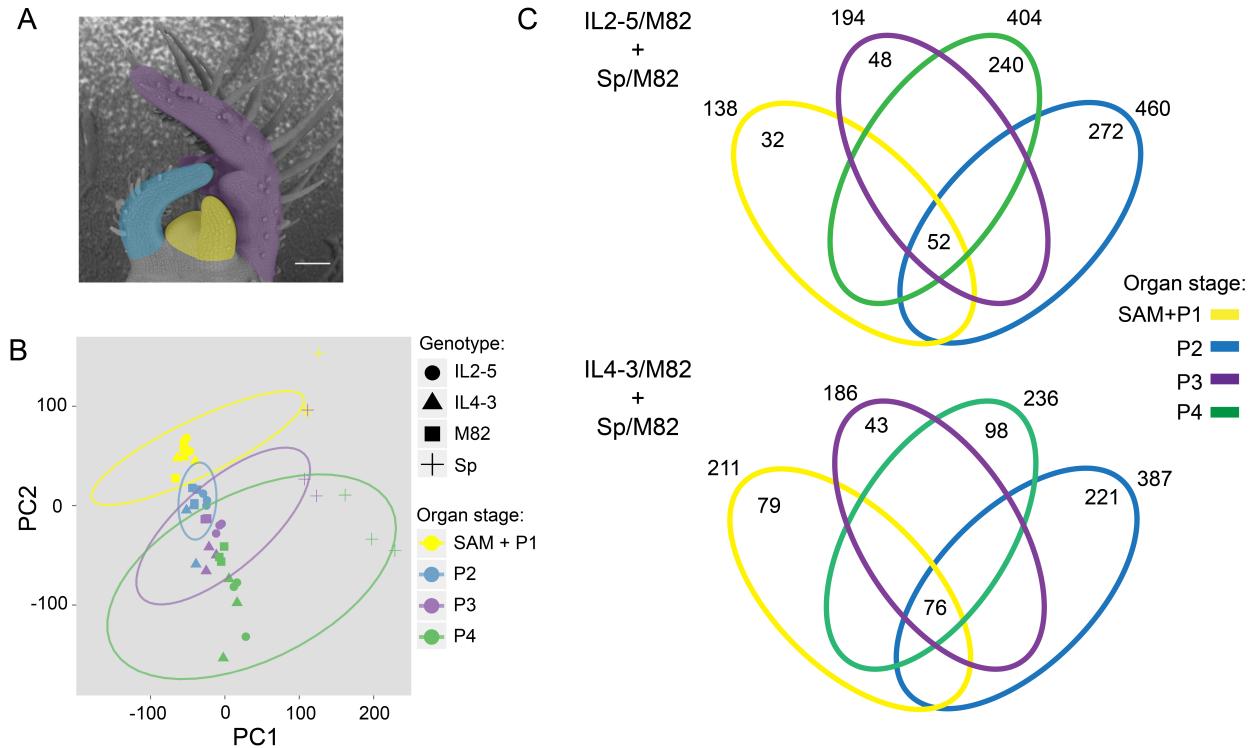
1079 **Figure 6. Comparative expression profiles of genes in three functional categories**
1080 **across leaf development (P1 – P4) in thick ILs 2-5 and 4-3: (A)** Transcription factors
1081 common to both ILs. **(B)** Genes involved in leaf development in tomato (as in Ichihashi
1082 et al., 2014), and **(C)** Gene annotated to encode components of the cell cycle or ubiquitin
1083 proteasome pathway (contain one of the terms “cell cycle”, “cyclin”, “ubiquitin”, “E2F”,
1084 “mitosis”, “mitotic”, “SKP”). Plastochron stages with statistically significant DE ($q <$
1085 0.05) relative to M82 are marked with an asterisk. Genes, which are differentially
1086 expressed in at least one stage in both ILs are marked in bold.

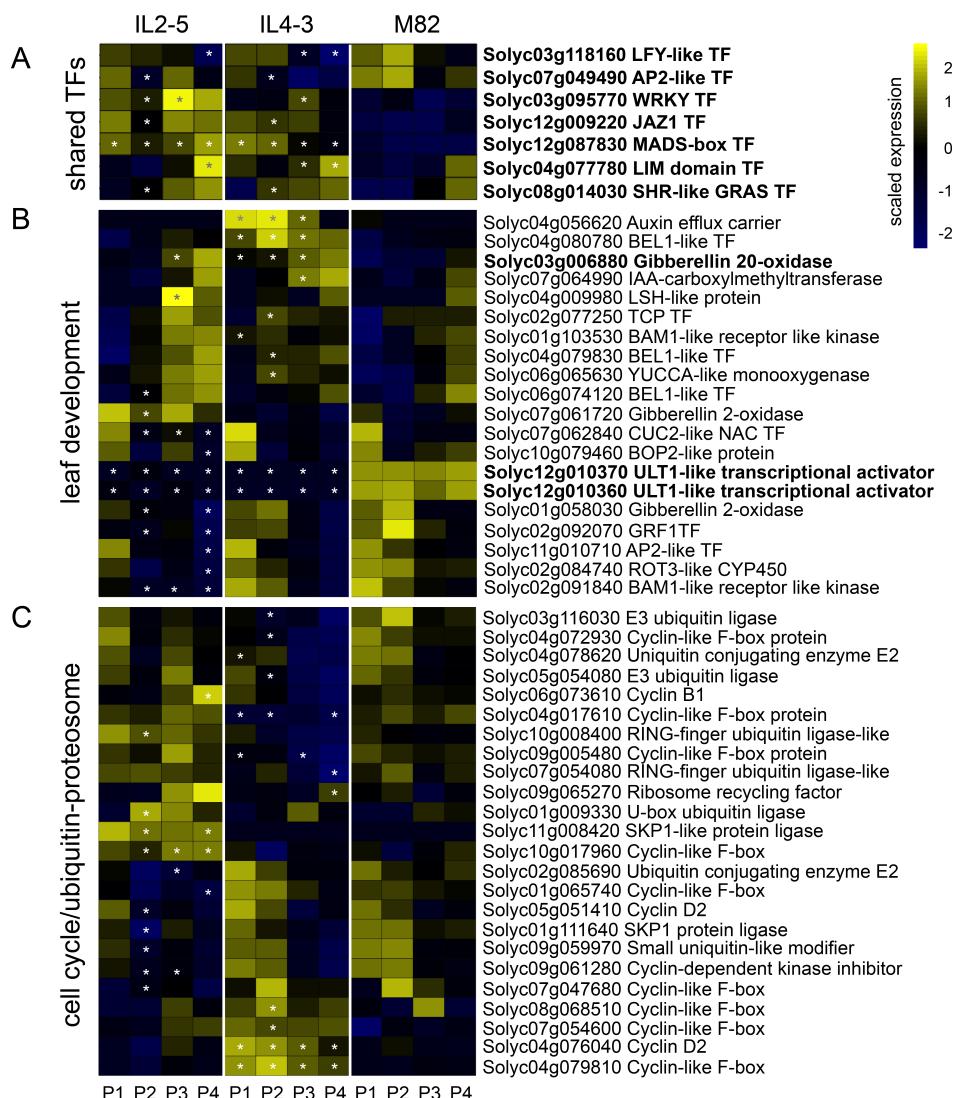

1087

1088 **Figure 7. Select leaf development gene regulatory sub-networks for (A-C) IL2-5 and**
1089 **(D-F) IL4-3.** Sub-networks for regulators central to more than one plastochron stage are
1090 shown in (A) and (D). A GA 20-oxidase gene (GA 20-ox 03g, Solyc03g006880) and its
1091 regulators in each IL **(B)** and **(E)**. Sub-networks of dynamic gene regulatory networks,


1092 showing interactions of an AUX/IAA TF (AUX/IAA 12g, Solyc12g096980) with other
1093 source nodes (**C**) and (**F**). Gene IDs of highlighted nodes: SBP-box 04g,
1094 Solyc04g064470; BEL1-like 04g, Solyc04g080780; MADS-box 12g, Solyc12g087820;
1095 MYB TF 05g, Solyc05g007710; bHLH TF 04g, Solyc04g074810; GRAS 08g,
1096 Solyc08g014030; Myb 07g, Solyc07g052490; WRKY 05g, Solyc05g015850; AUX/IAA
1097 06g, Solyc06g008580; Myb 03g, Solyc03g005570; Myb 08g, Solyc08g005870; WRKY
1098 02g, Solyc02g080890. Nodes and edges are colored according to legend.


Figure 1. Desert-adapted tomato plants have thicker leaves than domesticated tomato and are resistant to drought. (A) Thickness across leaflet blades of domesticated (*S. lycopersicum*) and desert-adapted (*S. pennellii*) tomatoes measured with a custom-built dual confocal profilometer device (Fig. S1). Median thickness of the *S. lycopersicum* leaflet shown here is 211 μm , and 294 μm for *S. pennellii*. **(B)** Confocal images of propidium iodide stained leaflet cross-sections; scale bar is 200 μm . **(C)** Total shoot area normalized by taking the square root of pixels from top-view phenotyping images taken over 16 days in three water treatments ($n = 8$). Gray shading around each colored line reflects standard error.


Figure 2. Quantitative Trait Loci for leaf thickness in tomato. (A) Leaflet thickness values across the *S. pennellii* introgression line panel. Colors indicate level of significance in comparisons of each IL with M82 (arrow). **(B)** Significant correlations (Spearman's rho) between leaf thickness ("Thickness"), or leaf mass per area ("LMA") and a suite of other traits across the *S. pennellii* IL panel ($q < 0.05$). Traits are grouped by type: ION, elemental profile; MOR, morphological; DEV, developmental; ENZ, enzyme activity; SED, seed metabolite content (Datasets S3 and S4).


Figure 3. Anatomical manifestations of thicker leaves. (A) Confocal images of propidium iodide-stained cross-sections of field-grown M82, select ILs and *S. pennellii* grown in greenhouse conditions; scale bars are 50 μ m. (B) Representative leaf thickness plots and (C) leaflet binary images of field-grown plants as for (A).

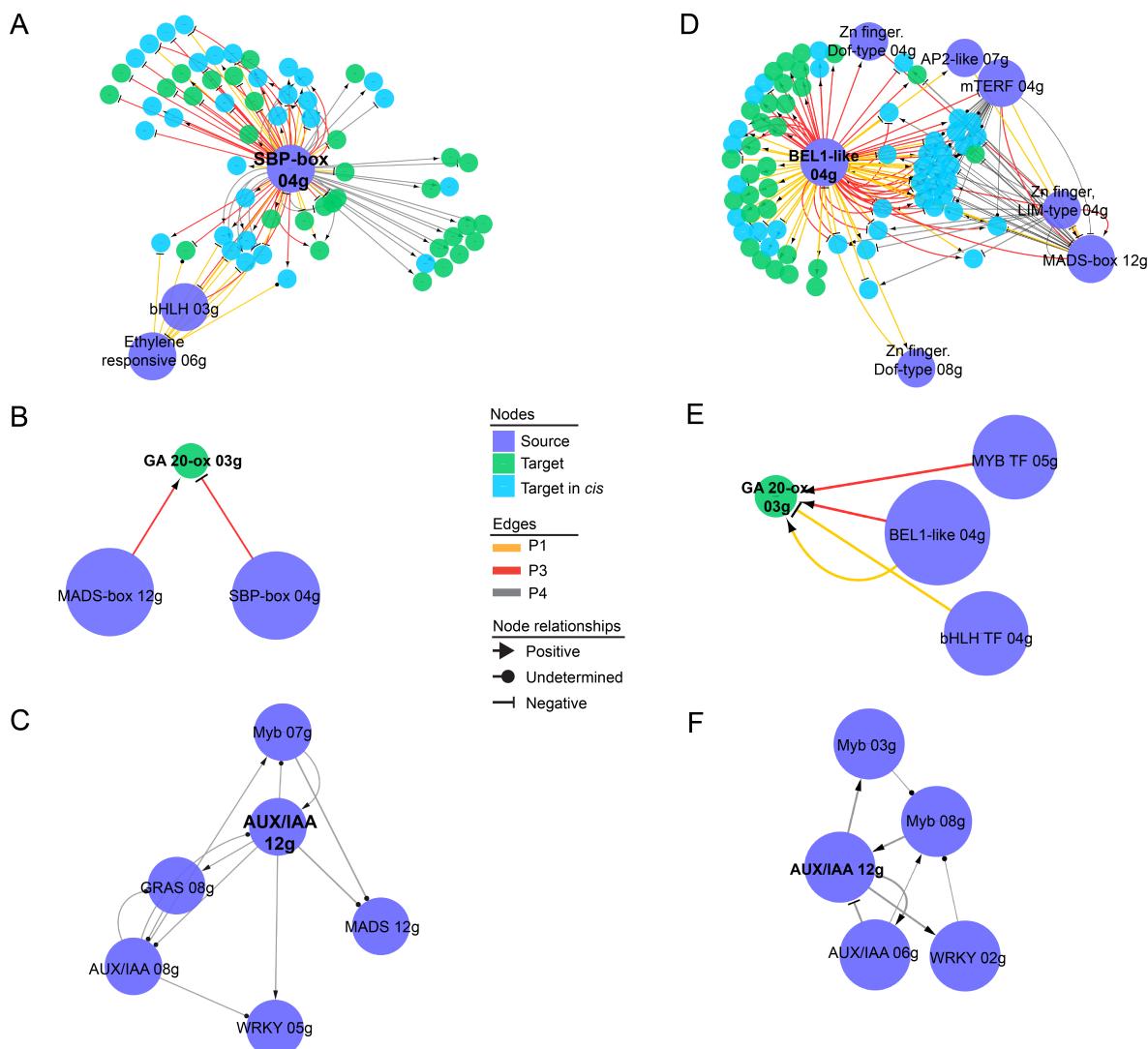

Figure 4. Leaf morphology and ploidy of IL2-5/IL4-3 double homozygote plants. (A) Representative propidium iodide-stained leaflet cross-sections (left) and thickness measurements (right) for the 7th leaf of greenhouse-grown M82 and double homozygous IL2-5/IL4-3 plants (n = 10). Scale bars are 200 μm; ** p < 0.01. (B) Circularity (ratio of area to the square of the perimeter) of distal lateral leaflets as in (A). Outlines of representative M82 and IL2-5/IL4-3 leaflets are shown above bars. Letters indicate statistical significance in each pairwise genotype comparison (p < 0.05). (C) Distribution of relative nuclear sizes reflecting endoreduplication in leaflets as in (A) and (B) (n = 5). Letters denote statistical significance between pairwise genotype comparisons at each ploidy level. (D) Leaf plastochron P3 dimensions calculated from 3D surface reconstructions of vegetative shoot apices (n = 18 for M82, n = 9 for each IL; n = 8 for double homozygotes; * p < 0.05, ** p < 0.01, *** p < 0.001 relative to M82).

Figure 5. Comparative transcriptomics of leaf development in two thick ILs and their parents. (A) Successive stages of leaf development (plastochrons P1-P4 colored as in legend in (B)) were dissected from M82, *S. pennellii* (Sp) and thick ILs 2-5 and 4-3. (B) Principal Components Analysis (PCA) of normalized RNA-Seq read counts. (C) Venn diagrams (not to scale) depict an overview of differentially expressed genes (DEGs, $q < 0.05$) that are shared in each IL and the Sp parent relative to M82. The number of DEGs unique to each organ is shown within ellipses and those common to all organs, in the center. The total number of DEGs at each plastochron stage is shown outside ellipses.

Figure 6. Comparative expression profiles of genes in three functional categories across leaf development (P1 - P4) in thick ILs 2-5 and 4-3: (A) Transcription factors common to both ILs. (B) Genes involved in leaf development in tomato (as in Ichihashi et al., 2014), and (C) Gene annotated to encode components of the cell cycle or ubiquitin protesaome pathway (contain one of the terms “cell cycle”, “cyclin”, “ubiquitin”, “E2F”, “mitosis”, “mitotic”, “SKP”). Plastochron stages with statistically significant DE ($q < 0.05$) relative to M82 are marked with an asterisk. Genes, which are differentially expressed in at least one stage in both ILs are marked in bold.

Figure 7. Select leaf development gene regulatory sub-networks for (A-C) IL2-5 and (D-F) IL4-3. Sub-networks for regulators central to more than one plastochron stage are shown in (A) and (D). A GA 20-oxidase gene (GA 20-ox 03g, Solyc03g006880) and its regulators in each IL (B) and (E). Sub-networks of dynamic gene regulatory networks, showing interactions of an AUX/IAA TF (AUX/IAA 12g, Solyc12g096980) with other source nodes (C) and (F). Gene IDs of highlighted nodes: SBP-box 04g, Solyc04g064470; BEL1-like 04g, Solyc04g080780; MADS-box 12g, Solyc12g087820; MYB TF 05g, Solyc05g007710; bHLH TF 04g, Solyc04g074810; GRAS 08g, Solyc08g014030; Myb 07g, Solyc07g052490; WRKY 05g, Solyc05g015850; AUX/IAA 06g, Solyc06g008580; Myb 03g, Solyc03g005570; Myb 08g, Solyc08g005870; WRKY 02g, Solyc02g080890. Nodes and edges are colored according to legend.